1
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
2
|
Miller LJ, Harikumar KG, Wootten D, Sexton PM. Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Front Endocrinol (Lausanne) 2021; 12:684656. [PMID: 34149622 PMCID: PMC8206557 DOI: 10.3389/fendo.2021.684656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cholecystokinin is a gastrointestinal peptide hormone with important roles in metabolic physiology and the maintenance of normal nutritional status, as well as potential roles in the prevention and management of obesity, currently one of the dominant causes of direct or indirect morbidity and mortality. In this review, we discuss the roles of this hormone and its receptors in maintaining nutritional homeostasis, with a particular focus on appetite control. Targeting this action led to the development of full agonists of the type 1 cholecystokinin receptor that have so far failed in clinical trials for obesity. The possible reasons for clinical failure are discussed, along with alternative pharmacologic strategies to target this receptor for prevention and management of obesity, including development of biased agonists and allosteric modulators. Cellular cholesterol is a natural modulator of the type 1 cholecystokinin receptor, with elevated levels disrupting normal stimulus-activity coupling. The molecular basis for this is discussed, along with strategies to overcome this challenge with a corrective positive allosteric modulator. There remains substantial scope for development of drugs to target the type 1 cholecystokinin receptor with these new pharmacologic strategies and such drugs may provide new approaches for treatment of obesity.
Collapse
Affiliation(s)
- Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
- *Correspondence: Laurence J. Miller,
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Denise Wootten
- Drug Discovery Biology theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
3
|
Wang HH, Portincasa P, Liu M, Tso P, Wang DQH. An Update on the Lithogenic Mechanisms of Cholecystokinin a Receptor (CCKAR), an Important Gallstone Gene for Lith13. Genes (Basel) 2020; 11:E1438. [PMID: 33260332 PMCID: PMC7761502 DOI: 10.3390/genes11121438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK's regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical-chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy;
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
4
|
Microstructural diversity of gallstones revealed by spectral microanalyses and their association with hepatic parameters. Indian J Gastroenterol 2019; 38:391-398. [PMID: 31808141 DOI: 10.1007/s12664-019-00972-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 07/03/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gallstones (GS) are formed as a result of impaired metabolic regulation and can be reflected in serum parameters. This study was focused on classifying GS based on spectral microanalysis and identifying the possible role of serum hepatic parameters on GS of different compositions. METHODS The study included a total of 126 GS from 80 consecutive patients who underwent cholecystectomy for GS diseases in a single center. The composition and microstructure of GS were analyzed using Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS). The serum hepatic parameters were studied in order to establish a possible etiologic relationship with GS composition. RESULTS In the study group, the incidence of GS was higher in females 62 (77.5%) compared with males 18 (22.5%). The mean age was 42.81 ± 13.01 and 43.78 ± 14.4 years for female and male patients, respectively. Based on composition, the GS were assigned to four major groups: cholesterol, pigment, phosphate, and mixed stones. Mixed composition stones totally represented the majority 53 (66.3%), followed by pure cholesterol 23 (28.8%), pigment stones 2 (2.5%), and phosphate stones 2 (2.5%), respectively. Elemental composition revealed the presence of carbon (C), oxygen (O), calcium (Ca), and phosphorus (P) to be major elements along with traces of sodium (Na), magnesium (Mg), aluminum (Al), iron (Fe), copper (Cu), bromine (Br), manganese (Mn), and zinc (Zn). Among serum parameters, total bilirubin, direct bilirubin, indirect bilirubin, serum glutamic-oxaloacetic transaminase, and total protein were higher in patients with pigment GS than cholesterol GS. CONCLUSIONS Characterization of GS indicates that different types of stones have different characteristics in terms of microstructure, elemental composition, and distribution. Serum hepatic function test profiles showed an association with the compositions of GS.
Collapse
|
5
|
Abstract
The high prevalence of cholesterol gallstones, the availability of new information about pathogenesis, and the relevant health costs due to the management of cholelithiasis in both children and adults contribute to a growing interest in this disease. From an epidemiologic point of view, the risk of gallstones has been associated with higher risk of incident ischemic heart disease, total mortality, and disease-specific mortality (including cancer) independently from the presence of traditional risk factors such as body weight, lifestyle, diabetes, and dyslipidemia. This evidence points to the existence of complex pathogenic pathways linking the occurrence of gallstones to altered systemic homeostasis involving multiple organs and dynamics. In fact, the formation of gallstones is secondary to local factors strictly dependent on the gallbladder (that is, impaired smooth muscle function, wall inflammation, and intraluminal mucin accumulation) and bile (that is, supersaturation in cholesterol and precipitation of solid crystals) but also to "extra-gallbladder" features such as gene polymorphism, epigenetic factors, expression and activity of nuclear receptors, hormonal factors (in particular, insulin resistance), multi-level alterations in cholesterol metabolism, altered intestinal motility, and variations in gut microbiota. Of note, the majority of these factors are potentially manageable. Thus, cholelithiasis appears as the expression of systemic unbalances that, besides the classic therapeutic approaches to patients with clinical evidence of symptomatic disease or complications (surgery and, in a small subgroup of subjects, oral litholysis with bile acids), could be managed with tools oriented to primary prevention (changes in diet and lifestyle and pharmacologic prevention in subgroups at high risk), and there could be relevant implications in reducing both prevalence and health costs.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine - Hospital of Bisceglie, ASL BAT, Bisceglie, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
6
|
Desai AJ, Miller LJ. Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein-coupled receptor structure and function. Br J Pharmacol 2017; 175:4009-4025. [PMID: 28691227 DOI: 10.1111/bph.13943] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Drug development targeting GPCRs often utilizes model heterologous cell expression systems, reflecting an implicit assumption that the membrane environment has little functional impact on these receptors or on their responsiveness to drugs. However, much recent data have illustrated that membrane components can have an important functional impact on intrinsic membrane proteins. This review is directed toward gaining a better understanding of the structure of the plasma membrane in health and disease, and how this organelle can influence GPCR structure, function and regulation. It is important to recognize that the membrane provides a potential mode of lateral allosteric regulation of GPCRs and can affect the effectiveness of drugs and their biological responses in various disease states, which can even vary among individuals across the population. The type 1 cholecystokinin receptor is reviewed as an exemplar of a class A GPCR that is affected in this way by changes in the plasma membrane. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
7
|
Desai AJ, Dong M, Langlais BT, Dueck AC, Miller LJ. Cholecystokinin responsiveness varies across the population dependent on metabolic phenotype. Am J Clin Nutr 2017; 106:447-456. [PMID: 28592602 PMCID: PMC5525122 DOI: 10.3945/ajcn.117.156943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Cholecystokinin (CCK) is an important satiety factor, acting at type 1 receptors (CCK1Rs) on vagal afferent neurons; however, CCK agonists have failed clinical trials for obesity. We postulated that CCK1R function might be defective in such patients due to abnormal membrane composition, such as that observed in cholesterol gallstone disease.Objective: Due to the challenges in directly studying CCK1Rs relevant to appetite control, our goal was to develop and apply a method to determine the impact of a patient's own cellular environment on CCK stimulus-activity coupling and to determine whether CCK sensitivity correlated with the metabolic phenotype of a high-risk population.Design: Wild-type CCK1Rs were expressed on leukocytes from 112 Hispanic patients by using adenoviral transduction and 24-h culture, with quantitation of cholesterol composition and intracellular calcium responses to CCK. Results were correlated with clinical, biochemical, and morphometric characteristics.Results: Broad ranges of cellular cholesterol and CCK responsiveness were observed, with elevated cholesterol correlated with reduced CCK sensitivity. This was prominent with increasing degrees of obesity and the presence of diabetes, particularly when poorly controlled. No single standard clinical metric correlated directly with CCK responsiveness. Reduced CCK sensitivity best correlated with elevated serum triglycerides in normal-weight participants and with low HDL concentrations and elevated glycated hemoglobin in obese and diabetic patients.Conclusions: CCK responsiveness varies widely across the population, with reduced signaling in patients with obesity and diabetes. This could explain the failure of CCK agonists in previous clinical trials and supports the rationale to develop corrective modulators to reverse this defective servomechanism for appetite control. This trial was registered at www.clinicaltrials.gov as NCT03121755.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics and
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics and
| | | | | | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics and
| |
Collapse
|
8
|
Desai AJ, Dong M, Harikumar KG, Miller LJ. Cholecystokinin-induced satiety, a key gut servomechanism that is affected by the membrane microenvironment of this receptor. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016; 6:S22-S27. [PMID: 28685026 DOI: 10.1038/ijosup.2016.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gastrointestinal (GI) tract has a central role in nutritional homeostasis, as location for food ingestion, digestion and absorption, with the gut endocrine system responding to and regulating these events, as well as influencing appetite. One key GI hormone with the full spectrum of these activities is cholecystokinin (CCK), a peptide released from neuroendocrine I cells scattered through the proximal intestine in response to fat and protein, with effects to stimulate gall bladder contraction and pancreatic exocrine secretion, to regulate gastric emptying and intestinal transit, and to induce satiety. There has been interest in targeting the type 1 CCK receptor (CCK1R) for drug development to provide non-caloric satiation as an aid to dieting and weight loss; however, there have been concerns about CCK1R agonists related to side effects and potential trophic impact on the pancreas. A positive allosteric modulator (PAM) of CCK action at this receptor without intrinsic agonist activity could provide a safer and more effective approach to long-term administration. In addition, CCK1R stimulus-activity coupling has been shown to be negatively affected by excess membrane cholesterol, a condition described in the metabolic syndrome, thereby potentially interfering with an important servomechanism regulating appetite. A PAM targeting this receptor could also potentially correct the negative impact of cholesterol on CCK1R function. We will review the molecular basis for binding natural peptide agonist, binding and action of small molecules within the allosteric pocket, and the impact of cholesterol. Novel strategies for taking advantage of this receptor for the prevention and management of obesity will be reviewed.
Collapse
Affiliation(s)
- A J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - M Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - K G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - L J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
9
|
Colak Y, Bozbey G, Erim T, Caklili OT, Ulasoglu C, Senates E, Mutlu HH, Mesci B, Doğan MS, Tasan G, Enc FY, Tuncer I. Impaired Gallbladder Motility and Increased Gallbladder Wall Thickness in Patients with Nonalcoholic Fatty Liver Disease. J Neurogastroenterol Motil 2016; 22:470-6. [PMID: 26932908 PMCID: PMC4930302 DOI: 10.5056/jnm15159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/22/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide. Along with the increase in the incidence of NAFLD and associated obesity, an increase in gallbladder disease (GD) has been noted. This has led to the identification of a new disease entity called fatty GD. There is a gap in the literature on the dynamics of gallbladder function in patients with NAFLD. METHODS An observational case-control study, a total of 50 patients with biopsy proven NAFLD without gallbladder stone/sludge and 38 healthy comparison subjects were enrolled. Fasting, postprandial gallbladder volumes (PGV), gallbladder ejection fraction (GEF), and fasting gallbladder wall thickness (FGWT) were measured by real-time 2-dimensional ultrasonography. RESULTS Fasting gallbladder wall thickness, fasting gallbladder volumes and PGV were significantly higher in patients with NAFLD than control subjects (P < 0.001, P = 0.006, and P < 0.001, respectively). Gallbladder ejection fraction was significantly lower in the NAFLD group than the controls (P = 0.008). The presence of NAFLD was an independent predictor for GEF, PGV, and FGWT. Also, steatosis grade was an independent predictor for GEF, and GEF was significantly lower in the nonalcoholic steatohepatitis (NASH) subgroup than the controls. CONCLUSIONS Gallbladder dysfunction and increase in gallbladder wall thickness exists in asymptomatic (without stone/sludge and related symptoms) patients with NAFLD and are useful in identifying fatty GD. Measurement of these variables in NAFLD patients may be useful in identifying those at higher risk for GD.
Collapse
Affiliation(s)
- Yasar Colak
- Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey.,Department of Gastroenterology, Cleveland Clinic Florida, Weston, FL, USA
| | - Gulcin Bozbey
- Department of Radiology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Tolga Erim
- Department of Gastroenterology, Cleveland Clinic Florida, Weston, FL, USA
| | - Ozge Telci Caklili
- Department of Internal Medicine, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Celal Ulasoglu
- Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Ebubekir Senates
- Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Hasan Huseyin Mutlu
- Department of Family of Medicine, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Banu Mesci
- Department of Internal Medicine, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Mehmet Sait Doğan
- Department of Radiology, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Guralp Tasan
- Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Feruze Yilmaz Enc
- Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Ilyas Tuncer
- Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Desai AJ, Dong M, Miller LJ. Beneficial effects of β-sitosterol on type 1 cholecystokinin receptor dysfunction induced by elevated membrane cholesterol. Clin Nutr 2016; 35:1374-1379. [PMID: 27016394 DOI: 10.1016/j.clnu.2016.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The type 1 cholecystokinin receptor (CCK1R) mediates the actions of CCK to support nutritional homeostasis, including post-cibal satiety. However, elevated levels of membrane cholesterol, such as have been observed in metabolic syndrome, interfere with CCK stimulus-activity coupling at the CCK1R, thereby disrupting this important servomechanism. We hypothesize that reversal of the negative impact of cholesterol on this receptor could be useful in the management of obesity. METHODS We have studied the effects of β-sitosterol, a phytosterol structurally related to cholesterol, on CCK receptor function. This included CCK binding and biological activity at wild type CCK1R and CCK2R, as well as at CCK1R in a high cholesterol environment, and at a CCK1R mutant, Y140A, which mimics the behavior of wild type receptor in high cholesterol. RESULTS β-sitosterol (100 μM and 10 μM) significantly improved the defective signaling of the CCK1R present in high cholesterol (p < 0.05), without affecting CCK binding affinity. This effect was absent at the CCK1R present in a normal cholesterol environment, as well as at the structurally-related CCK2R. Furthermore, the cholesterol-insensitive Y140A mutant of CCK1R was resistant to the effects of β-sitosterol. CONCLUSION These data suggest that β-sitosterol affects CCK1R function in high cholesterol by competing with cholesterol at a receptor cholesterol-binding site and may shift its conformation toward normal. This phytosterol extends our understanding of the structure-activity relationships for developing a drug that can target the external surface of CCK1R. Since the concentrations of β-sitosterol shown to be effective in this study are similar to serum levels of this compound achievable during oral administration, it may be worthwhile to study possible beneficial effects of β-sitosterol in metabolic syndrome.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA.
| |
Collapse
|
11
|
Wang HH, Portincasa P, Wang DQH. The cholecystokinin-1 receptor antagonist devazepide increases cholesterol cholelithogenesis in mice. Eur J Clin Invest 2016; 46:158-69. [PMID: 26683129 PMCID: PMC6037422 DOI: 10.1111/eci.12580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND A defect in gallbladder contraction function plays a key role in the pathogenesis of gallstones. The cholecystokinin-1 receptor (CCK-1R) antagonists have been extensively investigated for their therapeutic effects on gastrointestinal and metabolic diseases in animal studies and clinical trials. However, it is still unknown whether they have a potential effect on gallstone formation. DESIGN To study whether the CCK-1R antagonists enhance cholelithogenesis, we investigated cholesterol crystallization, gallstone formation, hepatic lipid secretion, gallbladder emptying function and intestinal cholesterol absorption in male C57BL/6J mice treated by gavage with devazepide (4 mg/day/kg) or vehicle (as controls) twice per day and fed the lithogenic diet for 21 days. RESULTS During 21 days of feeding, oral administration of devazepide significantly accelerated cholesterol crystallization and crystal growth to microlithiasis, with 40% of mice forming gallstones, whereas only agglomerated cholesterol monohydrate crystals were found in mice receiving vehicle. Compared to the vehicle group, fasting and postprandial residual gallbladder volumes in response to the high-fat meal were significantly larger in the devazepide group during cholelithogenesis, showing reduced gallbladder emptying and bile stasis. Moreover, devazepide significantly increased hepatic secretion of biliary cholesterol, but not phospholipids or bile salts. The percentage of intestinal cholesterol absorption was higher in devazepide-treated mice, increasing the bioavailability of chylomicron-derived cholesterol in the liver for biliary hypersecretion into bile. These abnormalities induced supersaturated bile and rapid cholesterol crystallization. CONCLUSIONS The potent CCK-1R antagonist devazepide increases susceptibility to gallstone formation by impairing gallbladder emptying function, disrupting biliary cholesterol metabolism and enhancing intestinal cholesterol absorption in mice.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Desai AJ, Dong M, Harikumar KG, Miller LJ. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function. Am J Physiol Gastrointest Liver Physiol 2015; 309:G377-86. [PMID: 26138469 PMCID: PMC4556949 DOI: 10.1152/ajpgi.00173.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 01/31/2023]
Abstract
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation.
Collapse
Affiliation(s)
- Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
13
|
de Bari O, Wang TY, Liu M, Portincasa P, Wang DQH. Estrogen induces two distinct cholesterol crystallization pathways by activating ERα and GPR30 in female mice. J Lipid Res 2015; 56:1691-700. [PMID: 26152119 DOI: 10.1194/jlr.m059121] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/10/2023] Open
Abstract
To distinguish the lithogenic effect of the classical estrogen receptor α (ERα) from that of the G protein-coupled receptor 30 (GPR30), a new estrogen receptor, on estrogen-induced gallstones, we investigated the entire spectrum of cholesterol crystallization pathways and sequences during the early stage of gallstone formation in gallbladder bile of ovariectomized female wild-type, GPR30((-/-)), ERα((-/-)), and GPR30((-/-))/ERα((-/-)) mice treated with 17β-estradiol (E2) at 6 µg/day and fed a lithogenic diet for 12 days. E2 disrupted biliary cholesterol and bile salt metabolism through ERα and GPR30, leading to supersaturated bile and predisposing to the precipitation of cholesterol monohydrate crystals. In GPR30((-/-)) mice, arc-like and tubular crystals formed first, followed by classical parallelogram-shaped cholesterol monohydrate crystals. In ERα((-/-)) mice, precipitation of lamellar liquid crystals, typified by birefringent multilamellar vesicles, appeared earlier than cholesterol monohydrate crystals. Both crystallization pathways were accelerated in wild-type mice with the activation of GPR30 and ERα by E2. However, cholesterol crystallization was drastically retarded in GPR30((-/-))/ERα((-/-)) mice. We concluded that E2 activates GPR30 and ERα to produce liquid crystalline versus anhydrous crystalline metastable intermediates evolving to cholesterol monohydrate crystals from supersaturated bile. GPR30 produces a synergistic lithogenic action with ERα to enhance E2-induced gallstone formation.
Collapse
Affiliation(s)
- Ornella de Bari
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Tony Y Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO 63104 Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Piero Portincasa
- Clinica Medica "A. Murri," Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
14
|
Chen Y, Kong J, Wu S. Cholesterol gallstone disease: focusing on the role of gallbladder. J Transl Med 2015; 95:124-31. [PMID: 25502177 DOI: 10.1038/labinvest.2014.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Gallstone disease (GSD) is one of the most common biliary tract diseases worldwide in which both genetic and environmental factors have roles in its pathogenesis. Biliary cholesterol supersaturation from metabolic defects in the liver is traditionally seen as the main pathogenic factor. Recently, there have been renewed investigative interests in the downstream events that occur in gallbladder lithogenesis. This article focuses on the role of the gallbladder in the pathogenesis of cholesterol GSD (CGD). Various conditions affecting the crystallization process are discussed, such as gallbladder motility, concentrating function, lipid transport, and an imbalance between pro-nucleating and nucleation inhibiting proteins.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Desai AJ, Harikumar KG, Miller LJ. A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment. J Biol Chem 2014; 289:18314-26. [PMID: 24825903 DOI: 10.1074/jbc.m114.570200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cholecystokinin (CCK) stimulates the type 1 CCK receptor (CCK1R) to elicit satiety after a meal. Agonists with this activity, although potentially useful for treatment of obesity, can also have side effects and toxicities of concern, making the development of an intrinsically inactive positive allosteric modulator quite attractive. Positive allosteric modulators also have the potential to correct the defective receptor-G protein coupling observed in the high membrane cholesterol environment described in metabolic syndrome. Current model systems to study CCK1R in such an environment are unstable and expensive to maintain. We now report that the Y140A mutation within a cholesterol-binding motif and the conserved, class A G protein-coupled receptor-specific (E/D)RY signature sequence results in ligand binding and activity characteristics similar to wild type CCK1R in a high cholesterol environment. This is true for natural CCK, as well as ligands with distinct chemistries and activity profiles. Additionally, the Y140A construct also behaved like CCK1R in high cholesterol in regard to its internalization, sensitivity to a nonhydrolyzable GTP analog, and anisotropy of a bound fluorescent CCK analog. Chimeric CCK1R/CCK2R constructs that systematically changed the residues in the allosteric ligand-binding pocket were studied in the presence of Y140A. This established increased importance of unique residues within TM3 and reduced the importance of TM2 for binding in the presence of this mutation, with the agonist trigger likely pulled away from its Leu(356) target on TM7. The distinct conformation of this intramembranous pocket within Y140A CCK1R provides an opportunity to normalize this by using a small molecule allosteric ligand, thereby providing safe and effective correction of the coupling defect in metabolic syndrome.
Collapse
Affiliation(s)
- Aditya J Desai
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Kaleeckal G Harikumar
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Laurence J Miller
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| |
Collapse
|
16
|
Qiao T, Ma RH, Luo XB, Yang LQ, Luo ZL, Zheng PM. The systematic classification of gallbladder stones. PLoS One 2013; 8:e74887. [PMID: 24124459 PMCID: PMC3790764 DOI: 10.1371/journal.pone.0074887] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background To develop a method for systematic classification of gallbladder stones, analyze the clinical characteristics of each type of stone and provide a theoretical basis for the study of the formation mechanism of different types of gallbladder stones. Methodology A total of 807 consecutive patients with gallbladder stones were enrolled and their gallstones were studied. The material composition of gallbladder stones was analyzed using Fourier Transform Infrared spectroscopy and the distribution and microstructure of material components was observed with Scanning Electron Microscopy. The composition and distribution of elements were analyzed by an X-ray energy spectrometer. Gallbladder stones were classified accordingly, and then, gender, age, medical history and BMI of patients with each type of stone were analyzed. Principal Findings Gallbladder stones were classified into 8 types and more than ten subtypes, including cholesterol stones (297), pigment stones (217), calcium carbonate stones (139), phosphate stones (12), calcium stearate stones (9), protein stones (3), cystine stones (1) and mixed stones (129). Mixed stones were those stones with two or more than two kinds of material components and the content of each component was similar. A total of 11 subtypes of mixed stones were found in this study. Patients with cholesterol stones were mainly female between the ages of 30 and 50, with higher BMI and shorter medical history than patients with pigment stones (P<0.05), however, patients with pigment, calcium carbonate, phosphate stones were mainly male between the ages of 40 and 60. Conclusion The systematic classification of gallbladder stones indicates that different types of stones have different characteristics in terms of the microstructure, elemental composition and distribution, providing an important basis for the mechanistic study of gallbladder stones.
Collapse
Affiliation(s)
- Tie Qiao
- Laboratory of Gallbladder Diseases, Institute of Gallbladder Disease of Panyu, Panyu, Guangzhou, People's Republic of China
- Laboratory of Gallbladder Diseases, The Sixth People's Hospital of Nansha, Nansha, Guangzhou, People's Republic of China
- * E-mail:
| | - Rui-hong Ma
- Laboratory of Gallbladder Diseases, Institute of Gallbladder Disease of Panyu, Panyu, Guangzhou, People's Republic of China
- Laboratory of Gallbladder Diseases, The Sixth People's Hospital of Nansha, Nansha, Guangzhou, People's Republic of China
| | - Xiao-bing Luo
- Laboratory of Gallbladder Diseases, Institute of Gallbladder Disease of Panyu, Panyu, Guangzhou, People's Republic of China
- Laboratory of Gallbladder Diseases, The Sixth People's Hospital of Nansha, Nansha, Guangzhou, People's Republic of China
| | - Liu-qing Yang
- Laboratory of Gallbladder Diseases, Institute of Gallbladder Disease of Panyu, Panyu, Guangzhou, People's Republic of China
- Laboratory of Gallbladder Diseases, The Sixth People's Hospital of Nansha, Nansha, Guangzhou, People's Republic of China
| | - Zhen-liang Luo
- Laboratory of Gallbladder Diseases, Institute of Gallbladder Disease of Panyu, Panyu, Guangzhou, People's Republic of China
- Laboratory of Gallbladder Diseases, The Sixth People's Hospital of Nansha, Nansha, Guangzhou, People's Republic of China
| | - Pei-ming Zheng
- Laboratory of Gallbladder Diseases, Institute of Gallbladder Disease of Panyu, Panyu, Guangzhou, People's Republic of China
- Laboratory of Gallbladder Diseases, The Sixth People's Hospital of Nansha, Nansha, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Lavoie B, Nausch B, Zane E, Leonard M, Balemba O, Bartoo A, Wilcox R, Nelson M, Carey M, Mawe G. Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil 2012; 24:e313-24. [PMID: 22621672 PMCID: PMC3378777 DOI: 10.1111/j.1365-2982.2012.01935.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED BACKGROUND; Decreased gallbladder smooth muscle (GBSM) contractility is a hallmark of cholesterol gallstone disease, but the interrelationship between lithogenicity, biliary stasis, and inflammation are poorly understood. We studied a mouse model of gallstone disease to evaluate the development of GBSM dysfunction relative to changes in bile composition and the onset of sterile cholecystitis. METHODS BALB/cJ mice were fed a lithogenic diet for up to 8 weeks, and tension generated by gallbladder muscle strips was measured. Smooth muscle Ca(2+) transients were imaged in intact gallbladder. KEY RESULTS Lipid composition of bile was altered lithogenically as early as 1 week, with increased hydrophobicity and cholesterol saturation indexes; however, inflammation was not detectable until the fourth week. Agonist-induced contractility was reduced from weeks 2 through 8. GBSM normally exhibits rhythmic synchronized Ca(2+) flashes, and their frequency is increased by carbachol (3 μm). After 1 week, lithogenic diet-fed mice exhibited disrupted Ca(2+) flash activity, manifesting as clustered flashes, asynchronous flashes, or prolonged quiescent periods. These changes could lead to a depletion of intracellular Ca(2+) stores, which are required for agonist-induced contraction, and diminished basal tone of the organ. Responsiveness of Ca(2+) transients to carbachol was reduced in mice on the lithogenic diet, particularly after 4-8 weeks, concomitant with appearance of mucosal inflammatory changes. CONCLUSIONS & INFERENCES These observations demonstrate that GBSM dysfunction is an early event in the progression of cholesterol gallstone disease and that it precedes mucosal inflammation.
Collapse
Affiliation(s)
- B. Lavoie
- Department of Anatomy and Neurobiology, University of Vermont School of Medicine, Burlington, VT
| | - B. Nausch
- Department of Anatomy and Neurobiology, University of Vermont School of Medicine, Burlington, VT
| | - E.A. Zane
- Department of Medicine, Harvard Medical School, Gastroenterology Division, Brigham and Women's Hospital, Boston, MA
| | - M.R. Leonard
- Department of Medicine, Harvard Medical School, Gastroenterology Division, Brigham and Women's Hospital, Boston, MA
| | - O.B. Balemba
- Department of Anatomy and Neurobiology, University of Vermont School of Medicine, Burlington, VT
| | - A.C. Bartoo
- Department of Anatomy and Neurobiology, University of Vermont School of Medicine, Burlington, VT
| | - R. Wilcox
- Department of Pathology, University of Vermont School of Medicine, Burlington, VT
| | - M.T. Nelson
- Department of Pharmacology, University of Vermont School of Medicine, Burlington, VT
| | - M.C. Carey
- Department of Medicine, Harvard Medical School, Gastroenterology Division, Brigham and Women's Hospital, Boston, MA
| | - G.M. Mawe
- Department of Anatomy and Neurobiology, University of Vermont School of Medicine, Burlington, VT
- Department of Pharmacology, University of Vermont School of Medicine, Burlington, VT
| |
Collapse
|
18
|
Xie M, Kotecha VR, Andrade JDP, Fox JG, Carey MC. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis. J Physiol 2012; 590:1811-24. [PMID: 22331417 DOI: 10.1113/jphysiol.2011.224717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation,we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P <0.05) by LD but not slowed further by helicobacter infection (males, 9.4±0.5 (uninfected), 9.6±0.5 (infected) on LD compared with 12.5±0.4 and 11.4±0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed.
Collapse
Affiliation(s)
- Meimin Xie
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
19
|
Desai AJ, Miller LJ. Sensitivity of cholecystokinin receptors to membrane cholesterol content. Front Endocrinol (Lausanne) 2012; 3:123. [PMID: 23087674 PMCID: PMC3475150 DOI: 10.3389/fendo.2012.00123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022] Open
Abstract
Cholesterol represents a structurally and functionally important component of the eukaryotic cell membrane, where it increases lipid order, affects permeability, and influences the lateral mobility and conformation of membrane proteins. Several G protein-coupled receptors have been shown to be affected by the cholesterol content of the membrane, with functional impact on their ligand binding and signal transduction characteristics. The effects of cholesterol can be mediated directly by specific molecular interactions with the receptor and/or indirectly by altering the physical properties of the membrane. This review focuses on the importance and differential effects of membrane cholesterol on the activity of cholecystokinin (CCK) receptors. The type 1 CCK receptor is quite sensitive to its cholesterol environment, while the type 2 CCK receptor is not. The possible structural basis for this differential impact is explored and the implications of pathological states, such as metabolic syndrome, in which membrane cholesterol may be increased and CCK1R function may be abnormal are discussed. This is believed to have substantial potential importance for the development of drugs targeting the CCK receptor.
Collapse
Affiliation(s)
| | - Laurence J. Miller
- *Correspondence: Laurence J. Miller, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA. e-mail:
| |
Collapse
|
20
|
Potter RM, Harikumar KG, Wu SV, Miller LJ. Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 2011; 53:137-48. [PMID: 22021636 DOI: 10.1194/jlr.m020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that membrane cholesterol can associate with G protein-coupled receptors (GPCRs) and affect their function. Previously, we reported that manipulation of membrane cholesterol affects ligand binding and signal transduction of the type 1 cholecystokinin receptor (CCK1R), a Class A GPCR. We now demonstrate that the closely related type 2 cholecystokinin receptor (CCK2R) does not share this cholesterol sensitivity. The sequences of both receptors reveal almost identical cholesterol interaction motifs in analogous locations in transmembrane segments two, three, four, and five. The disparity in cholesterol sensitivity between these receptors, despite their close structural relationship, provides a unique opportunity to define the possible structural basis of cholesterol sensitivity of CCK1R. To evaluate the relative contributions of different regions of CCK1R to cholesterol sensitivity, we performed ligand binding studies and biological activity assays of wild-type and CCK2R/CCK1R chimeric receptor-bearing Chinese hamster ovary cells after manipulation of membrane cholesterol. We also extended these studies to site-directed mutations within the cholesterol interaction motifs. The results contribute to a better understanding of the structural requirements for cholesterol sensitivity in CCK1R and provides insight into the function of other cholesterol-sensitive Class A GPCRs.
Collapse
Affiliation(s)
- Ross M Potter
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
21
|
Cong P, Pricolo V, Biancani P, Behar J. Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle. Am J Physiol Gastrointest Liver Physiol 2010; 299:G742-50. [PMID: 20558763 PMCID: PMC2950694 DOI: 10.1152/ajpgi.00064.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a delta-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM.
Collapse
Affiliation(s)
- P. Cong
- Departments of 1Medicine and
| | - V. Pricolo
- 2Surgery, Rhode Island Hospital and Brown University Medical School, Providence, Rhode Island
| | | | | |
Collapse
|
22
|
Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2009; 159:1009-21. [PMID: 19922535 DOI: 10.1111/j.1476-5381.2009.00489.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholecystokinin (CCK) is a physiologically important gastrointestinal and neuronal peptide hormone, with roles in stimulating gallbladder contraction, pancreatic secretion, gastrointestinal motility and satiety. CCK exerts its effects via interactions with two structurally related class I guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs), the CCK(1) receptor and the CCK(2) receptor. Here, we focus on the CCK(1) receptor, with particular relevance to the broad spectrum of signalling initiated by activation with the natural full agonist peptide ligand, CCK. Distinct ligand-binding pockets have been defined for the natural peptide ligand and for some non-peptidyl small molecule ligands. While many CCK(1) receptor ligands have been developed and have had their pharmacology well described, their clinical potential has not yet been fully explored. The case is built for the potential importance of developing more selective partial agonists and allosteric modulators of this receptor that could have important roles in the treatment of common clinical syndromes.
Collapse
Affiliation(s)
- Erin E Cawston
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
23
|
Cong P, Pricolo V, Biancani P, Behar J. High levels of caveolar cholesterol inhibit progesterone-induced genomic actions in human and guinea pig gallbladder muscle. Am J Physiol Gastrointest Liver Physiol 2009; 296:G948-54. [PMID: 19221014 PMCID: PMC2670676 DOI: 10.1152/ajpgi.90699.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/30/2009] [Indexed: 01/31/2023]
Abstract
Gallbladder disease is prevalent during pregnancy. It has been suggested that this complication of pregnancy is attributable to increased bile cholesterol (Ch) induced by estrogens and to gallbladder hypomotility caused by increasing levels of progesterone (P4). Studies on nonpregnant gallbladders have shown that increased levels of bile Ch contribute to both gallstone formation and bile stasis. These studies investigated the effects of high levels of plasma membrane Ch on P4 on gallbladder muscle cells from human and guinea pigs. Contraction was studied in intact and permeabilized muscle cells. G proteins were determined by Western blot, and 3H-P4 incorporation by muscle cells was measured in the beta-scintillation counter. High levels of caveolar Ch blocked the effects induced by P4 treatment for 6 h. They suppressed the expected P4 inhibition of GTP-gammaS (a G protein activator)-induced contraction and changes in G proteins by downregulating Gi3 and upregulating Gs protein levels. Ch inhibited these P4 actions at the caveolar 3 (CAV-3) level, since the P4 effects were antagonized by treatment with CAV-3 antibody, by reducing CAV-3 expression through CAV-3 siRNA. CAV-3 antibody and siRNA reduced caveolar Ch levels. High caveolar levels of Ch and CAV-3 antibody blocked the incorporation of 3H-P4 into caveolae. Treatment with GDP-betaS (a G protein antagonist) had no effect on P4 actions. High caveolar Ch levels blocked the P4 effects on muscle contraction and G protein changes probably because both Ch and P4 require CAV-3 proteins for their transport across the plasma membrane.
Collapse
Affiliation(s)
- Ping Cong
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
24
|
Miller LJ, Gao F. Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther 2008; 119:83-95. [PMID: 18558433 DOI: 10.1016/j.pharmthera.2008.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/03/2008] [Indexed: 01/02/2023]
Abstract
Two structurally-related guanine nucleotide-binding protein-coupled receptors for two related peptides, cholecystokinin (CCK) and gastrin, have evolved to exhibit substantial diversity in specificity of ligand recognition, in their molecular basis of binding these ligands, and in their mechanisms of biochemical and cellular regulation. Consistent with this, the CCK1 and CCK2 receptors also play unique and distinct roles in physiology and pathophysiology. The paradigms for ligand recognition and receptor regulation and function are reviewed in this article, and should be broadly applicable to many members of this remarkable receptor superfamily. This degree of specialization is instructive and provides an encouraging basis for the diversity of potential drugs targeting these receptors and their actions that can be developed.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA.
| | | |
Collapse
|
25
|
Miyasaka K, Kanai S, Ohta M, Sekime A, Akimoto S, Takiguchi S, Funakoshi A. Susceptibility to obesity and gallbladder stasis produced by a protein- and fat-enriched diet in male mice compared with female mice. Nutr Metab (Lond) 2007; 4:14. [PMID: 17547774 PMCID: PMC1914076 DOI: 10.1186/1743-7075-4-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 06/05/2007] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The frequency of Japanese subjects over 20 years old with metabolic syndrome is 45.6% in men but just 16.7% in women. The reason why Japanese male subjects are more susceptible to metabolic syndrome than women is unknown. One possibility is the higher frequency of Japanese male subjects (40-70 years old) who had a drinking habit (67%), while that of female subjects was only 25%. In addition, daily fat intake was markedly increased in Japanese subjects (from 9% to 25%), and cholesterol cholelithiasis is one of the most rapidly increasing digestive diseases during the past 50 years. The object of this study is to examine whether a potential sex-related risk factor exists in the manifestation of metabolic syndrome as well as gallstone formation. METHODS Gallbladder dysmotility accerelates gallstone formation and gallbladder contraction depends on cholecystokinin (CCK) and its receptor (CCK-1R). We developed CCK-1R gene knockout (-/-) mice. The effects of the fat- and protein- enriched diet OA-2 on body weight, hyperlipidemia, and frequencies of sludge and gallstone formation were examined, and compared between wild-type and CCK-1R(-/-) male and female mice. The OA-2 diet contains slightly higher protein and fat (7.9 % fat and 27.6 % protein) compared with a standard diet (CRF-1) (5.6 % fat and 22.6 % protein), but their total energies are similar. After weaning, CRF-1 was provided until 3 months of age in all animals. Administration of an OA-2 diet was started when age-matched CCK-1R(-/-) and wild-type male and female mice reached maturity, at 3 months of age. Administration of CRF-1 was continued in the rest of the animals. Mice were sacrificed by guillotine at 6 and 12 months of age and the blood was collected to measure plasma levels of triglyceride and cholesterol. The gallbladder was removed and classified as normal (clear gallbladder), clouded (sludge formation), and/or containing gallstone formations. RESULTS As long as CRF-1 was provided, the frequency of sludge and/or gallstone formation in CCK-1R(-/-) male mice was 3 of 8 (35%) and 4 of 9 (45%) in females at 12 months of age, whereas no gallstone formation was observed at 6 months of age. On the other hand, male mice fed OA-2 increased their body weight and plasma lipid concentrations, compared with those fed CRF-1 regardless of genotype. Under the OA-2 diet, sludge and gallstone formation was observed at 6 months of age, not only in CCK-1R(-/-) male mice but also in wild-type male mice. In contrast, parameters in female mice did not differ between the two diets. CONCLUSION Male mice were more susceptible to protein- and fat-enriched diet-induced obesity than female mice, and hyper-nutritional status accelerated sludge and gallstone formation in male mice.
Collapse
Affiliation(s)
- Kyoko Miyasaka
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho Itabashiku 173-0015, Tokyo, Japan
| | - Setsuko Kanai
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho Itabashiku 173-0015, Tokyo, Japan
| | - Minoru Ohta
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho Itabashiku 173-0015, Tokyo, Japan
| | - Ayako Sekime
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho Itabashiku 173-0015, Tokyo, Japan
| | - Saeko Akimoto
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho Itabashiku 173-0015, Tokyo, Japan
| | - Soichi Takiguchi
- Department of Clinical Research, National Kyushu Cancer Center, 3-1-1 Notame, Minamiku Fukuoka 811-1396, Japan
| | - Akihiro Funakoshi
- Division of Gastroenterology, National Kyushu Cancer Center, 3-1-1 Notame, Minamiku Fukuoka 811-1396, Japan
| |
Collapse
|
26
|
Xiao Z, Schmitz F, Pricolo VE, Biancani P, Behar J. Role of caveolae in the pathogenesis of cholesterol-induced gallbladder muscle hypomotility. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1641-9. [PMID: 17307729 DOI: 10.1152/ajpgi.00495.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities. Muscle cells from GB with ChS exhibit higher Ch levels in the plasma membrane that were mostly localized in caveolae and associated with parallel increases in the expression of Cav-3 in the caveolae compared with that in GB with pigment stones (PS). The overall number of CCK-1 receptors in the plasma membrane was not different between muscle cells from GB with ChS and PS, but they were increased in the caveolae in muscle cells from GB with ChS. Treatment of muscle cells from GB with ChS with a Galpha(i3) protein fragment increased the total binding of CCK-1 receptors (from 8.3 to 11.2%) and muscle contraction induced by CCK-8 (from 11.2 to 17.3% shortening). However, Galpha(q/11) protein fragment had no such effect. Moreover, neither fragment had any effect on muscle cells from GB with PS. We conclude that the defective contraction of muscle cells with excessive Ch levels in the plasma membrane is due to an increased expression of Cav-3 that results in the sequestration of CCK-1 receptors in the caveolae, probably by inhibiting the functions of Galpha(i3) proteins.
Collapse
Affiliation(s)
- Zuoliang Xiao
- Division of Gastroenterology, APC 406, Rhode Island Hospital/Brown Univ. Medical School, 593 Eddy St., Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
27
|
Cong P, Xiao ZL, Biancani P, Behar J. Prostaglandins mediate tonic contraction of the guinea pig and human gallbladder. Am J Physiol Gastrointest Liver Physiol 2007; 292:G409-18. [PMID: 16763290 DOI: 10.1152/ajpgi.00091.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gallbladder (GB) maintains tonic contraction modulated by neurohormonal inputs but generated by myogenic mechanisms. The aim of these studies was to examine the role of prostaglandins in the genesis of GB myogenic tension. Muscle strips and cells were treated with prostaglandin agonists, antagonists, cyclooxygenase (COX) inhibitors, and small interference RNA (siRNA). The results show that PGE2, thromboxane A2 (TxA2), and PGF(2alpha) cause a dose-dependent contraction of muscle strips and cells. However, only TxA2 and PGE2 (E prostanoid 1 receptor type) antagonists induced a dose-dependent decrease in tonic tension. A COX-1 inhibitor decreased partially the tonic contraction and TxB2 (TxA2 stable metabolite) levels; a COX-2 inhibitor lowered the tonic contraction partially and reduced PGE2 levels. Both inhibitors and the nonselective COX inhibitor indomethacin abolished the tonic contraction. Transfection of human GB muscle strips with COX-1 siRNA partially lowered the tonic contraction and reduced COX-1 protein expression and TxB2 levels; COX-2 siRNA also partially reduced the tonic contraction, the protein expression of COX-2, and PGE2. Stretching muscle strips by 1, 2, 3, and 4 g increased the active tension, TxB2, and PGE2 levels; a COX-1 inhibitor prevented the increase in tension and TxB2; and a COX-2 inhibitor inhibited the expected rise in tonic contraction and PGE2. Indomethacin blocked the rise in tension and TxB2 and PGE2 levels. We conclude that PGE2 generated by COX-2 and TxA2 generated by COX-1 contributes to the maintenance of GB tonic contraction and that variations in tonic contraction are associated with concomitant changes in PGE2 and TxA2 levels.
Collapse
Affiliation(s)
- Ping Cong
- Division of Gastroenterology, Department of Medicine, Rhode Island Hospital/Brown Univ. Medical School, 593 Eddy St., Providence, RI 02903, USA
| | | | | | | |
Collapse
|
28
|
Colecchia A, Mazzella G, Sandri L, Azzaroli F, Magliuolo M, Simoni P, Bacchi-Reggiani ML, Roda E, Festi D. Ursodeoxycholic acid improves gastrointestinal motility defects in gallstone patients. World J Gastroenterol 2006; 12:5336-43. [PMID: 16981264 PMCID: PMC4088201 DOI: 10.3748/wjg.v12.i33.5336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To simultaneously evaluate the presence of defects in gallbladder and gastric emptying, as well as in intestinal transit in gallstone patients (GS) and the effect of chronic ursodeoxycholic acid (UDCA) administration on these parameters and on serum bile acids and clinical outcome in GS and controls (CTR).
METHODS: After a standard liquid test meal, gallbla-dder and gastric emptying (by ultrasound), oroileal transit time (OITT) (by an immunoenzymatic technique) and serum bile acids (by HPLC) were evaluated before and after 3 mo of UDCA (12 mg/kg bw/d) or placebo administration in 10 symptomatic GS and 10 matched healthy CTR.
RESULTS: OITT was longer in GS than in CTR (P < 0.0001); UDCA significantly reduced OITT in GS (P < 0.0001), but not in CTR. GS had longer gastric half-emptying time (t1/2) than CTR (P < 0.0044) at baseline; after UDCA, t1/2 significantly decreased (P < 0.006) in GS but not in CTR. Placebo administration had no effect on gastric emptying and intestinal transit in both GS and CTR.
CONCLUSION: The gallstone patient has simultaneous multiple impairments of gallbladder and gastric emptying, as well as of intestinal transit. UDCA administration restores these defects in GS, without any effect in CTR. These results confirm the pathogenetic role of gastrointestinal motility in gallstone disease and suggest an additional mechanism of action for UDCA in reducing bile cholesterol supersaturation.
Collapse
Affiliation(s)
- A Colecchia
- Dipartmento di Medicina Interna e Gastroenterologia Policlinico S.Orsola-Malpighi Via Massarenti 9, Bologna 40138, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
30
|
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 2005; 25:553-80. [PMID: 16075379 DOI: 10.1007/s10571-005-3969-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/03/2004] [Indexed: 12/14/2022]
Abstract
1. Serotonin is an intrinsically fluorescent biogenic amine that acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous system. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions. 2. Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups. The serotonin1A (5-HT1A) receptor is the most extensively studied of the serotonin receptors and belongs to the large family of seven transmembrane domain G-protein coupled receptors. 3. The tissue and sub-cellular distribution, structural characteristics, signaling of the serotonin1A receptor and its interaction with G-proteins are discussed. 4. The pharmacology of serotonin1A receptors is reviewed in terms of binding of agonists and antagonists and sensitivity of their binding to guanine nucleotides. 5. Membrane biology of 5-HT1A receptors is presented using the bovine hippocampal serotonin1A receptor as a model system. The ligand binding activity and G-protein coupling of the receptor is modulated by membrane cholesterol thereby indicating the requirement of cholesterol in maintaining the receptor organization and function. This, along with the reported detergent resistance characteristics of the receptor, raises important questions on the role of membrane lipids and domains in the function of this receptor.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | |
Collapse
|
31
|
Cheng L, Cao W, Behar J, Biancani P, Harnett KM. Inflammation induced changes in arachidonic acid metabolism in cat LES circular muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G787-97. [PMID: 15550558 DOI: 10.1152/ajpgi.00327.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myogenic lower esophageal sphincter (LES) tone is maintained by arachidonic acid metabolites, such as PGF(2alpha) and thromboxane A(2)/B(2). Experimental esophagitis in cat reduces LES in vivo pressure and in vitro tone. Because IL-1beta may mediate esophagitis-associated reduction in ACh release in esophagus, we examined whether IL-1beta may also play a role in esophagitis-induced reduction of LES tone. A cat model of experimental esophagitis was obtained by repeated esophageal perfusion with HCl (Biancani P, Barwick K, Selling J, and McCallum R. Gastreonterology 87: 8-16, 1984 and Sohn UD, Harnett KM, Cao W, Rich H, Kim N, Behar J, and Biancani P. J Pharmacol Exp Ther 283: 1293-1304, 1997.). LES circular muscle strips were examined in muscle chambers as previously described (Biancani P, Billett G, Hillemeier C, Nissenshon M, Rhim BY, Sweczack S, and Behar J. Gastroenterology 103: 1199-1206, 1992). Levels of inflammatory mediators were measured. IL-1beta levels were higher in esophagitis than in normal LES. IL-1beta reduced normal LES tone, and the reduction was reversed by catalase, suggesting a role of H(2)O(2). This was confirmed by IL-1beta-induced production of H(2)O(2) in normal LES and elevated H(2)O(2) levels in esophagitis. H(2)O(2) by itself is sufficient to explain the changes that occur in the muscle, reducing its ability to contract. H(2)O(2) increased PGE(2) in normal LES, and PGE(2) levels were elevated in esophagitis LES, whereas PGF(2alpha) levels were unchanged. H(2)O(2) also increased levels of 8-isoprostanes, stable prostaglandin-like compounds formed by free radical-induced peroxidation of arachidonic acid, and 8-isoprostane levels were elevated in esophagitis. The PGF(2alpha) analog 8-iso-PGF(2alpha) caused little contraction of LES strips but reduced PGF(2alpha) binding and contraction of normal LES. In esophagitis, PGF(2alpha) binding and contraction were reduced in LES, suggesting that isoprostanes may contribute to reduction in tone in esophagitis. The data suggest that, in esophagitis, IL-1beta causes production of H(2)O(2). H(2)O(2) increases PGE(2), which relaxes the LES, and 8-iso-F(2alpha), which blocks PGF(2alpha)-mediated contraction.
Collapse
Affiliation(s)
- Ling Cheng
- G.I. Motility Research Laboratory, Rhode Island Hospital and Brown Univ., 55 Claverick St., Room 333, Providence RI 02903, USA
| | | | | | | | | |
Collapse
|
32
|
Zhu J, Han TQ, Chen S, Jiang Y, Zhang SD. Gallbladder motor function, plasma cholecystokinin and cholecystokinin receptor of gallbladder in cholesterol stone patients. World J Gastroenterol 2005; 11:1685-9. [PMID: 15786550 PMCID: PMC4305954 DOI: 10.3748/wjg.v11.i11.1685] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the interactive relationship of gallbladder motor function, plasma cholecystokinin (CCK) and cholecystokinin A receptor (CCK-R) of gallbladder in patients with cholesterol stone disease.
METHODS: Gallbladder motility was studied by ultrasonography in 33 patients with gallbladder stone and 10 health subjects as controls. Plasma CCK concentration was measured by radioimmunoassay in fasting status (CCK-f) and in 30 min after lipid test meal (CCK-30). Radioligand method was employed to analyze the amount and activity of CCK-R from 33 gallstone patients having cholecystectomy and 8 persons without gallstone died of severe trauma as controls.
RESULTS: The percentage of cholesterol in the gallstone composition was more than 70%. The cholesterol stone type was indicated for the patients with gallbladder stone in this study. Based on the criterion of gallbladder residual fraction of the control group, 33 gallstone patients were divided into two subgroups, contractor group (14 cases) and non-contractor group (19 cases). The concentration of CCK-30 was significantly higher in non-contractor group than that in both contractor group and control group (55.86±3.86 pmol/L vs 37.85±0.88 pmol/L and 37.95±0.74 pmol/L, P<0.01), but there was no difference between contractor group and control group. Meanwhile no significant difference of the concentration of CCK-f could be observed among three groups. The amount of CCK-R was lower in non-contractor group than those in both control group and contractor group (10.27±0.94 fmol/mg vs 24.59±2.39 fmol/mg and 22.66±0.55 fmol/mg, P<0.01). The activity of CCK-R shown as KD in non-contractor group decreased compared to that in control group and contractor group. Only was the activity of CCK-R lower in contractor group than that in control group. The ejection fraction correlated closely with the amount of CCK-R (r = 0.9683, P<0.01), and the concentration of CCK-30 correlated negatively with the amount of CCK-R closely (r = -0.9627, P<0.01).
CONCLUSION: The distinctive interactive relationship of gallbladder emptying, plasma CCK and CCK-R in gallbladder from this study suggested that the defect of CCK-R may be a key point leading to the impairment of gallbladder motor function and the pathogenesis of cholesterol gallstone formation may differ in two subgroups of gallstone patient, gallbladder non-contractor group or contractor group.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Surgery, Ruijin Hospital, Shanghai Second Medical University, Shanghai Institute of Digestive Surgery, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
33
|
Xiao ZL, Amaral J, Biancani P, Behar J. Impaired cytoprotective function of muscle in human gallbladders with cholesterol stones. Am J Physiol Gastrointest Liver Physiol 2005; 288:G525-32. [PMID: 15486345 DOI: 10.1152/ajpgi.00261.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute cholecystitis develops in gallbladders (GB) with excessive bile cholesterol (Ch). Increased membrane Ch content affects membrane function and may affect PGE(2) receptors involved in the cytoprotection against acute inflammation. This study was aimed at determining whether the cytoprotective response to PGE(2) is affected by lithogenic bile with Ch. Muscle cells from human GB with cholesterol stones (ChS) or pigment stones (PS) were obtained by enzymatic digestion. PGE(2) levels were measured by radioimmunoassay, and activities of superoxide dismutase (SOD) and catalase were assayed by spectrophotometry. The contraction in response to H(2)O(2) in muscle cells from PS was 14 +/- 0.3%, not different from normal controls, and decreased after the cells were incubated with Ch-rich liposomes (P < 0.05), which increase the Ch content in the plasma membranes. In muscle cells from GB with ChS, H(2)O(2)-induced contraction was only 9.2 +/- 1.3% and increased to 14 +/- 0.2% after Ch-free liposome treatment to remove Ch from the plasma membranes (P < 0.01). H(2)O(2) caused a similar increase in the levels of lipid peroxidation and PGE(2) content in muscle cells from GBs with ChS and PS. However, the activities of SOD and catalase were significantly lower in muscle cells from GBs with ChS compared with those with PS. The binding capacity of PGE(2) receptors was also significantly lower in muscle cells from GBs with ChS compared with those with PS. In conclusion, the cytoprotective response to reactive oxygen species is reduced in muscle cells from GBs with ChS despite a normal increase in the cellular levels of PGE(2). This impaired cytoprotective response may be due to a dysfunction of PGE(2) receptors with decreased binding capacity resulting from excessive Ch levels in the plasma membrane.
Collapse
Affiliation(s)
- Zuo-Liang Xiao
- Division of Gastroenterology, APC 421, 593 Eddy St., Providence, RI 02903, USA
| | | | | | | |
Collapse
|
34
|
Wang DQH, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Invest 2004; 114:521-8. [PMID: 15314689 PMCID: PMC503765 DOI: 10.1172/jci16801] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 06/29/2004] [Indexed: 01/09/2023] Open
Abstract
Cholecystokinin (CCK) modulates contractility of the gallbladder, the sphincter of Oddi, and the stomach. These effects are mediated through activation of gastrointestinal smooth muscle as well as enteric neuron CCK-1 receptors (CCK-1Rs). To investigate the potential physiological and pathophysiological functions linked to CCK-1R-mediated signaling, we compared male WT and CCK-1R-deficient mice (129/SvEv). After 12 weeks on either a standard mouse chow or a lithogenic diet (containing 1% cholesterol, 0.5% cholic acid, and 15% dairy fat), small-intestinal transit time, intestinal cholesterol absorption, biliary cholesterol secretion, and cholesterol gallstone prevalence were compared in knockout versus WT animals. Analysis of mice on either the chow or the lithogenic diet revealed that CCK-1R(-/-) animals had larger gallbladder volumes (predisposing to bile stasis), significant retardation of small-intestinal transit times (resulting in increased cholesterol absorption), and increased biliary cholesterol secretion rates. The elevation in bile cholesterol, coupled with a tendency toward gallbladder stasis (due to the absence of CCK-induced contraction), facilitates nucleation, growth, and agglomeration of cholesterol monohydrate crystals; this sequence of events in turn results in a significantly higher prevalence of cholesterol gallstones in the CCK-1R-null mice.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
35
|
Wang DQH, Afdhal NH. Genetic analysis of cholesterol gallstone formation: searching for Lith (gallstone) genes. Curr Gastroenterol Rep 2004; 6:140-50. [PMID: 15191694 DOI: 10.1007/s11894-004-0042-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genetics of cholesterol cholelithiasis is complex because a number of interacting genes regulate biliary cholesterol homeostasis. Quantitative trait locus (QTL) analysis is a powerful method for identifying primary rate-limiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes. The subsequent positional cloning of such genes responsible for QTLs may lead to the discovery of pathophysiologic functions of Lith (gallstone) genes. In this review, we present a map of candidate genes for Lith genes that may determine gallstone susceptibility in mice. The physical-chemical, pathophysiologic, and genetic studies of Lith genes in bile, liver, gallbladder, and intestine will be crucial for elucidating the genetic mechanisms of cholesterol gallstone disease in mice and in humans. Because exceptionally close homology exists between mouse and human genomes, the orthologous human LITH genes can often be recognized after mouse genes are identified.
Collapse
Affiliation(s)
- David Q-H Wang
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, DA 601, Boston, MA 02215, USA
| | | |
Collapse
|
36
|
Xiao ZL, Biancani P, Behar J. Role of PGE2 on gallbladder muscle cytoprotection of guinea pigs. Am J Physiol Gastrointest Liver Physiol 2004; 286:G82-8. [PMID: 12936912 DOI: 10.1152/ajpgi.00247.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
H2O2 and taurochenodeoxycholic acid (TCDC) impair the contraction induced by CCK-8, ACh, and KCl without affecting the actions of PGE2 and damage functions of membrane proteins except for PGE2 receptors. The aim of this study was to examine whether the preserved PGE2 actions contribute to cytoprotective mechanisms against reactive oxygen species. Muscle cells from guinea pig gallbladder were obtained by enzymatic digestion. Levels of lipid peroxidation and activities of SOD and catalase were determined by spectrophotometry. Pretreatment with PGE2 prevented the inhibition of H2O2 or TCDC on agonist (CCK-8, ACh, and KCl)-induced contraction and reduced the expected increase in lipid peroxidation and activities of catalase and SOD caused by H2O2 and TCDC. Incubation with CCK-8 for 60 min desensitized CCK-1 receptors up to 30 min, whereas no receptor desensitization was observed after PGE2 pretreatment. Cholesterol-rich liposome treatment enhanced the inhibition of H2O2 and TCDC on agonists-induced contraction, including that of PGE2. Pretreatment with PGE2 before H2O2 and TCDC did not completely block their inhibition on agonist-induced contraction. Cholesterol-rich liposome treatment impaired the expected increase in catalase activities in response to PGE2. We conclude that pretreatment with PGE2 prevents the muscle cell damage caused by H2O2 and TCDC due to the resistance of PGE2 receptors to agonist-induced desensitization. The preservation of PGE2 receptors may be designed to conserve these cytoprotective functions that are, however, impaired by the presence of excess cholesterol in the plasma membrane.
Collapse
Affiliation(s)
- Zuo-Liang Xiao
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
37
|
Guarino MPL, Xiao ZL, Biancani P, Behar J. PAF-like lipids- and PAF-induced gallbladder muscle contraction is mediated by different pathways in guinea pigs. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1189-97. [PMID: 12936911 DOI: 10.1152/ajpgi.00200.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
H2O2 stimulates gallbladder muscle contraction and scavengers of free radicals through the generation of PGE2. Oxidative stress causes lipid peroxidation and generation of platelet-activating factor (PAF) or PAF-like lipids. The present studies therefore were aimed at determining whether either one induced by H2O2 mediates the increased generation of PGE2. Dissociated muscle cells of guinea pig gallbladder were obtained by enzymatic digestion. Both PAF-like lipids and PAF-induced muscle contraction was blocked by the PAF receptor antagonist CV-3988. This antagonist also blocked the increased PGE2 production caused by PAF-like lipids or PAF. Actions of PAF-like lipids were completely inhibited by indomethacin, but those of PAF were only partially reduced by indomethacin or by nordihydroguaiaretic acid and completely blocked by their combination. PAF-like lipids-induced contraction was inhibited by AACOCF3 (cystolic phospholipase A2 inhibitor), whereas the actions of PAF were blocked by MJ33 (secretory phospholipase A2 inhibitor). Receptor protection studies showed that pretreatment with PAF-like lipids before N-ethylmaleimide protected the contraction induced by a second dose of PAF-like lipids or PGE2 but not by PAF. In contrast, pretreatment with PAF protected the actions of PAF and PGE2 but not that of PAF-like lipids. Both PAF-like lipids and PAF-induced contractions were inhibited by anti-Galphaq/11 antibody and by inhibitors of MAPK and PKC. In conclusion, PAF-like lipids seem to activate a pathway different from that of PAF probably by stimulating a different PAF receptor subtype.
Collapse
Affiliation(s)
- Michele P L Guarino
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
38
|
Sato N, Miyasaka K, Suzuki S, Kanai S, Ohta M, Kawanami T, Yoshida Y, Takiguchi S, Noda T, Takata Y, Funakoshi A. Lack of cholecystokinin-A receptor enhanced gallstone formation: a study in CCK-A receptor gene knockout mice. Dig Dis Sci 2003. [PMID: 14627338 DOI: 10.1023/a: 1026110002713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The etiology of gallstones is multifactorial, with interactions between genes and the environment. We generated cholecystokinin (CCK) -A receptor (R)-deficient (-/-) mice and found that CCK did not produce gallbladder contraction in CCK-AR(-/-) mice. The purpose of this study was to identify the role of CCK-AR on gallstone formation. Age-matched CCK-AR gene (+/+) and (-/-) progenies were used. Sludge and gallstone formation, as well as plasma cholesterol levels, were measured at 12 and 24 months of age. Sludge and gallstone formation were significantly higher in CCK-AR(-/-) mice than in CCK-AR(+/+) mice at 12 and 24 months of age, although these were not different between 12 and 24 months of age. The plasma cholesterol levels, daily food intake, and body weight were not significantly different between CCK-AR(+/+) and (-/-) mice. Sludge and gallstone formation were not observed at 6 months of age. In conclusion, deteriorated gallbladder contraction due to a lack of CCK-AR favored gallstone formation after the middle age of life.
Collapse
Affiliation(s)
- Norikazu Sato
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku, Tokyo-173-0015, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Miyasaka K, Takata Y, Funakoshi A. Association of cholecystokinin A receptor gene polymorphism with cholelithiasis and the molecular mechanisms of this polymorphism. J Gastroenterol 2002; 37 Suppl 14:102-6. [PMID: 12572876 DOI: 10.1007/bf03326426] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The etiology of gallstone formation is multifactorial, and genetic factors are involved. The genetic variations of cholecystokinin A receptor (CCK-AR) in patients having gallstones and the molecular mechanisms of this polymorhpism were examined. The involvement of CCK-AR in gallstone formation was confirmed using CCK-AR gene knockout mice. METHODS CCK-AR gene expression was determined by Northern transfer analysis in gallbladders with or without gallstones. Genetic variations were determined by Southern blot and by direct sequencing. Molecular mechanisms in terms of the transcriptional activity and methylation status were examined. Finally, we investigated whether gallstone formation was enhanced in CCK-AR gene knockout mice. RESULTS The gene expression of CCK-AR was significantly decreased in gallbladders with gallstones compared to those without gallstones. No genetic variations were detected in the coding region, but two sequence variations were detected in the promoter region in gallstone patients. However, no significant differences were found for the promoter activities of polymorphic promoter constructs. In contrast, less methylation in the promoter region was related to substantial expression of the CCK-AR gene. Gallstone formation was enhanced in CCK-AR gene knockout mice. The homozygote (GG/TT) polymorphism of the CCK-AR gene showed a significantly higher percentage of body fat. CONCLUSIONS Deteriorating gallbladder contractions, possibly induced by alterations in the CCK-AR gene, as well as CCK-AR gene polymorphism, promoted gallstone formation.
Collapse
Affiliation(s)
- Kyoko Miyasaka
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku, Tokyo 173-0015, Japan
| | | | | |
Collapse
|
40
|
Morton MF, Harper EA, Tavares IA, Shankley NP. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle. Br J Pharmacol 2002; 136:873-82. [PMID: 12110612 PMCID: PMC1573423 DOI: 10.1038/sj.bjp.0704794] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The pharmacology of the cholecystokinin CCK(1) receptors endogenously expressed in human gallbladder and human ascending colon smooth muscle tissue was compared using radioligand binding assays. 2. Saturation analysis of the interaction between the radiolabelled, selective CCK(1)-receptor antagonist, [(3)H]-L-364,718, and enriched gastrointestinal tissue membranes suggested the presence of multiple binding sites in human colon but not human gallbladder. 3. Competition studies, using a range of structurally diverse, CCK-receptor selective ligands provided further evidence for CCK(1) receptor heterogeneity in human colon tissue (n(H) values significantly less than unity for SR27897=0.77+/-0.07, 2-NAP=0.73+/-0.03, YM220=0.70+/-0.09 and PD-134,308=0.83+/-0.01). Moreover, the competition data for SR27897, 2-NAP and YM220 were consistent with the interaction of these compounds at two binding sites. In contrast, in the human gallbladder assay, a single binding site model provided a good fit of the competition curve data obtained with all the CCK receptor selective compounds. 4. The data obtained are consistent with the presence of a single CCK(1) receptor binding site in the gallbladder but not in the colon. A two-site analysis of the colon data, indicated that one of the two sites was indistinguishable from that characterized in the gallbladder. The molecular basis of the apparent receptor heterogeneity in the colon remains to be established.
Collapse
Affiliation(s)
- M F Morton
- Academic Department of Surgery, GKT Schools of Medicine and Dentistry, King's College, London.
| | | | | | | |
Collapse
|
41
|
Xiao ZL, Rho AK, Biancani P, Behar J. Effects of bile acids on the muscle functions of guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 2002; 283:G87-94. [PMID: 12065295 DOI: 10.1152/ajpgi.00536.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrophobic bile acids impair gallbladder emptying in vivo and inhibit gallbladder muscle contraction in response to CCK-8 in vitro. This study was aimed at determining the mechanisms of muscle cell dysfunction caused by bile acids in guinea pig gallbladders. Muscle cells were obtained by enzymatic digestion. Taurochenodeoxycholic acid (TCDC), a hydrophobic bile acid, caused a contraction of up to 15% and blocked CCK-induced contraction. Indomethacin abolished the TCDC-induced contraction. Hydrophilic bile acid tauroursodeoxycholic acid (TUDC) had no effect on muscle contraction but prevented the TCDC-induced contraction and its inhibition on CCK-induced contraction. Pretreatment with NADPH oxidase inhibitor PH2I, xanthine oxidase inhibitor allopurinol, and free-radical scavenger catalase also prevented TCDC-induced contraction and its inhibition of the CCK-induced contraction. TCDC caused H2O2 production, lipid peroxidation, and increased PGE2 synthesis and activities of catalase and SOD. These changes were significantly inhibited by pretreatment of PH2I or allopurinol. Inhibitors of cytosolic phospholipase A2 (cPLA2), protein kinase C (PKC), and mitogen-activating protein kinase (MAPK) also blocked the TCDC-induced contraction. It is concluded that hydrophobic bile acids cause muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.
Collapse
Affiliation(s)
- Zuo-Liang Xiao
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
42
|
Xiao ZL, Andrada MJP, Biancani P, Behar J. Reactive oxygen species (H(2)O(2)): effects on the gallbladder muscle of guinea pigs. Am J Physiol Gastrointest Liver Physiol 2002; 282:G300-6. [PMID: 11804851 DOI: 10.1152/ajpgi.00241.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of muscle dysfunction in acute inflammatory processes. The aim of these studies was to determine the effects of ROS on gallbladder muscle function in vitro. Single muscle cells were obtained by enzymatic digestion. H(2)O(2) (70 microM) caused maximal contraction of up to 14% and blocked the response to CCK-8, ACh, and KCl. It did not affect the contractions induced by guanosine 5'-O-(3-thiotriphosphate), diacylglycerol, and inositol 1,4,5-trisphosphate that circumvent membrane receptors. The contraction induced by H(2)O(2) was inhibited by AACOCF(3) [cytosolic phospholipase A(2) (cPLA(2)) inhibitor], indomethacin (cyclooxygenase inhibitor), chelerythrine [protein kinase C (PKC) inhibitor], or PD-98059 [mitogen-activated protein kinase (MAPK) inhibitor]. H(2)O(2) also reduced the CCK receptor binding capacity from 0.36 +/- 0.05 pmol/mg protein (controls) to 0.17 +/- 0.03 pmol/mg protein. The level of lipid peroxidation as well as the PGE(2) content was significantly increased after H(2)O(2) pretreatment. Unlike superoxide dismutase, the free radical scavenger catalase prevented the H(2)O(2) induced contraction, and its inhibition of the CCK-8 induced contraction. It is concluded that ROS cause damage to the plasma membrane of the gallbladder muscle and contraction through the generation of PGE(2) induced by cPLA(2)-cyclooxygenase and probably mediated by the PKC-MAPK pathway.
Collapse
Affiliation(s)
- Zuo-Liang Xiao
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, 593 Eddy Street, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
43
|
Xiao ZL, Chen Q, Biancani P, Behar J. Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs. Am J Physiol Gastrointest Liver Physiol 2001; 281:G490-7. [PMID: 11447029 DOI: 10.1152/ajpgi.2001.281.2.g490] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscle strips from experimental acute cholecystitis (AC) exhibit a defective contraction. The mechanisms responsible for this impaired contraction are not known. The present studies investigated the nature of these abnormalities. AC was induced by ligating the common bile duct of guinea pigs for 3 days. Contraction was studied in enzymatic dissociated muscle cells. Cholecystokinin (CCK) and prostaglandin E2 (PGE2) receptor binding studies were performed by radioreceptor assay. The levels of lipid peroxidation, cholesterol, phospholipid, and H2O2 as well as the catalase and superoxide dismutase (SOD) activities were determined. PGE2 content was measured by radioimmunoassay. Muscle contraction induced by CCK, ACh, or KCl was significantly reduced in AC, but PGE2-induced contraction remained normal. GTPgammaS, diacyglycerol (DAG), and 1,4,5-trisphosphate (IP3), which bypass the plasma membrane, caused a normal contraction in AC. The number of functional receptors for CCK was significantly decreased, whereas those for PGE2 remained unchanged in AC. There was a reduction in the phospholipid content and increase in the level of lipid peroxidation as well as H2O2 content in the plasma membrane in AC. The PGE2 content and the activities of catalase and SOD were also elevated. These data suggest that AC cause damage to the constituents of the plasma membrane of muscle cells. The preservation of the PGE2 receptors may be the result of muscle cytoprotection.
Collapse
Affiliation(s)
- Z L Xiao
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
44
|
Xiao ZL, Chen Q, Amaral J, Biancani P, Behar J. Defect of receptor-G protein coupling in human gallbladder with cholesterol stones. Am J Physiol Gastrointest Liver Physiol 2000; 278:G251-8. [PMID: 10666049 DOI: 10.1152/ajpgi.2000.278.2.g251] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human gallbladders with cholesterol stones (ChS) exhibit an impaired muscle contraction and relaxation and a lower CCK receptor-binding capacity compared with those with pigment stones (PS). This study was designed to determine whether there is an abnormal receptor-G protein coupling in human gallbladders with ChS using (35)S-labeled guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding, (125)I-labeled CCK-8 autoradiography, immunoblotting, and G protein quantitation. CCK and vasoactive intestinal peptide caused significant increases in [(35)S]GTPgammaS binding to Galpha(i-3) and G(s)alpha, respectively. The binding was lower in ChS than in PS (P < 0.01). The reduced [(35)S]GTPgammaS binding in ChS was normalized after the muscles were treated with cholesterol-free liposomes (P < 0.01). Autoradiography and immunoblots showed a decreased optical density (OD) for CCK receptors, an even lower OD value for receptor-G protein coupling, and a higher OD for uncoupled receptors or Galpha(i-3) protein in ChS compared with PS (P < 0.001). G protein quantitation also showed that there were no significant differences in the Galpha(i-3) and G(s)alpha content in ChS and PS. We conclude that, in addition to an impaired CCK receptor-binding capacity, there is a defect in receptor-G protein coupling in muscle cells from gallbladder with ChS. These changes may be normalized after removal of excess cholesterol from the plasma membrane.
Collapse
Affiliation(s)
- Z L Xiao
- Departments of Medicine and Surgery, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|