1
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
2
|
Guarino BD, Dado CD, Kumar A, Braza J, Harrington EO, Klinger JR. Deletion of the Npr3 gene increases severity of acute lung injury in obese mice. Pulm Circ 2023; 13:e12270. [PMID: 37528869 PMCID: PMC10387407 DOI: 10.1002/pul2.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Previous studies have shown that atrial natriuretic peptide (ANP) attenuates agonist-induced pulmonary edema and that this effect may be mediated in part by the ANP clearance receptor, natriuretic peptide receptor-C (NPR-C). Obesity has been associated with lower plasma ANP levels due to increased expression of NPR-C, and with decreased severity of acute lung injury (ALI). Therefore, we hypothesized that increased expression of NPR-C may attenuate ALI severity in obese populations. To test this, we examined ALI in Npr3 wild-type (WT) and knockout (KO) mice fed normal chow (NC) or high-fat diets (HFD). After 12 weeks, ALI was induced with intra-tracheal administration of Pseudomonas aeruginosa strain 103 (PA103) or saline. ALI severity was determined by lung wet-to-dry ratio (W/D) along with measurement of cell count, protein levels from bronchoalveolar lavage fluid (BALF), and quantitative polymerase chain reaction was performed on whole lung to measure cytokine/chemokine and Npr3 mRNA expression. ANP levels were measured from plasma. PA103 caused ALI as determined by significant increases in W/D, BALF protein concentration, and whole lung cytokine/chemokine expression. PA103 increased Npr3 expression in the lungs of wild-type (WT) mice regardless of diet. There was a nonsignificant trend toward increased Npr3 expression in the lungs of WT mice fed HFD versus NC. No differences in ALI were seen between Npr3 knockout (KO) mice and WT-fed NC, but Npr3 KO mice fed HFD had a significantly greater W/D and BALF protein concentration than WT mice fed HFD. These findings support the hypothesis that Npr3 may help protect against ALI in obesity.
Collapse
Affiliation(s)
- Brianna D. Guarino
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Christopher D. Dado
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Ashok Kumar
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Julie Braza
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Elizabeth O. Harrington
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - James R. Klinger
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
3
|
Zheng H, Patel TA, Liu X, Patel KP. C-type natriuretic peptide (CNP) in the paraventricular nucleus-mediated renal sympatho-inhibition. Front Physiol 2023; 14:1162699. [PMID: 37082246 PMCID: PMC10110992 DOI: 10.3389/fphys.2023.1162699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Volume reflex produces sympatho-inhibition that is mediated by the hypothalamic paraventricular nucleus (PVN). However, the mechanisms for the sympatho-inhibitory role of the PVN and the neurochemical factors involved remain to be identified. In this study, we proposed C-type natriuretic peptide (CNP) as a potential mediator of this sympatho-inhibition within the PVN. Microinjection of CNP (1.0 μg) into the PVN significantly decreased renal sympathetic nerve activity (RSNA) (-25.8% ± 1.8% vs. -3.6% ± 1.5%), mean arterial pressure (-15.0 ± 1.9 vs. -0.1 ± 0.9 mmHg) and heart rate (-23.6 ± 3.5 vs. -0.3 ± 0.9 beats/min) compared with microinjection of vehicle. Picoinjection of CNP significantly decreased the basal discharge of extracellular single-unit recordings in 5/6 (83%) rostral ventrolateral medulla (RVLM)-projecting PVN neurons and in 6/13 (46%) of the neurons that were not antidromically activated from the RVLM. We also observed that natriuretic peptide receptor type C (NPR-C) was present on the RVLM projecting PVN neurons detected by dual-labeling with retrograde tracer. Prior NPR-C siRNA microinjection into the PVN significantly blunted the decrease in RSNA to CNP microinjections into the PVN. Volume expansion-mediated reduction in RSNA was significantly blunted by prior administration of NPR-C siRNA into the PVN. These results suggest a potential role for CNP within the PVN in regulating RSNA, specifically under physiological conditions of alterations in fluid balance.
Collapse
Affiliation(s)
- Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Xuefei Liu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Katsuki S, Ota S, Yoda S, Onimaru H, Dohi K, Izumizaki M. Effects of ANP and BNP on the generation of respiratory rhythms in brainstem-spinal cord preparation isolated from newborn rats. Biomed Res 2022; 43:127-135. [PMID: 35989288 DOI: 10.2220/biomedres.43.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natriuretic peptides (NPs) are a family of peptide hormones produced in cardiac muscle cells and consist mainly of three types: atrial NP (ANP), B-type (or brain) NP (BNP), and C-type NP. We herein report the effects of ANP and BNP on central respiratory activity in brainstem-spinal cord preparation isolated from newborn rats. Bath application of these peptides (100 nM) induced a weak transient depression of the respiratory rhythm followed by recovery. Respiratory-related neurons in the rostral ventrolateral medulla showed a tendency for transient hyperpolarization followed by recovery during the application of ANP or BNP. The application of a membrane-permeable cGMP, 8-Br-cGMP (10 or 20 μM), did not induce significant effects on respiratory rhythm, suggesting no involvement of guanylyl cyclase in effects of ANP or BNP. We also examined effects of BNP on respiratory depression induced by the sedative dexmedetomidine, which exerts an inhibitory influence on respiratory rhythm. When pretreated with 50 nM BNP, the inhibitory effect of 100 nM dexmedetomidine was significantly reduced. Our findings suggest that ANP and BNP act as mild excitatory agents with sustained effects on respiratory rhythm after an initial transient depression.
Collapse
Affiliation(s)
- Shino Katsuki
- Department of Physiology, Showa University School of Medicine.,Department of Emergency, Disaster and Critical Care Medicine, Showa University
| | - Shinichiro Ota
- Department of Physiology, Showa University School of Medicine
| | - Shunya Yoda
- Department of Physiology, Showa University School of Medicine
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine
| | - Kenji Dohi
- Department of Emergency, Disaster and Critical Care Medicine, Showa University
| | | |
Collapse
|
5
|
CNP, the Third Natriuretic Peptide: Its Biology and Significance to the Cardiovascular System. BIOLOGY 2022; 11:biology11070986. [PMID: 36101368 PMCID: PMC9312265 DOI: 10.3390/biology11070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary CNP is the third natriuretic peptide to be isolated and is widely expressed in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by the other two natriuretic peptides, ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. Research into the actions of CNP has shown that CNP attenuates cardiac remodeling in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. Studies examining CNP/GC-B signaling showed that it contributes to the prevention of cardiac stiffness. Endogenous CNP, perhaps acting in part through CNP/NPR-C signaling, contributes to the regulation of vascular function and blood pressure. CNP regulates vascular remodeling and angiogenesis via CNP/GC-B/CGK signaling. CNP attenuates interstitial fibrosis and fibrosis-related gene expression in pressure overload and myocardial infarction models. The clinical application of CNP as a therapeutic agent for cardiovascular diseases is anticipated. Abstract The natriuretic peptide family consists of three biologically active peptides: ANP, BNP, and CNP. CNP is more widely expressed than the other two peptides, with significant levels in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. CNP knockout leads to severe dwarfism, and there has been important research into the role of CNP in the osteochondral system. As a result, a CNP analog is now available for clinical use in patients with achondroplasia. In the cardiovascular system, CNP and its downstream signaling are involved in the regulatory mechanisms underlying myocardial remodeling, cardiac function, vascular tone, angiogenesis, and fibrosis, among others. This review focuses on the roles of CNP in the cardiovascular system and considers its potential for clinical application in the treatment of cardiovascular diseases.
Collapse
|
6
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
7
|
Sogawa-Fujiwara C, Fujiwara Y, Hanagata A, Yang Q, Mihara T, Kaji N, Kunieda T, Hori M. Npr2 mutant mice show vasodilation and undeveloped adipocytes in mesentery. BMC Res Notes 2021; 14:438. [PMID: 34838130 PMCID: PMC8626926 DOI: 10.1186/s13104-021-05853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.
Collapse
Affiliation(s)
- Chizuru Sogawa-Fujiwara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuki Hanagata
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Qunhui Yang
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taiki Mihara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medcine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masatoshi Hori
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
8
|
Shen G, Hu S, Zhao Z, Zhang L, Ma Q. C-Type Natriuretic Peptide Ameliorates Vascular Injury and Improves Neurological Outcomes in Neonatal Hypoxic-Ischemic Brain Injury in Mice. Int J Mol Sci 2021; 22:ijms22168966. [PMID: 34445671 PMCID: PMC8396645 DOI: 10.3390/ijms22168966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
C-type natriuretic peptide (CNP) is an important vascular regulator that is present in the brain. Our previous study demonstrated the innate neuroprotectant role of CNP in the neonatal brain after hypoxic-ischemic (HI) insults. In this study, we further explored the role of CNP in cerebrovascular pathology using both in vivo and in vitro models. In a neonatal mouse HI brain injury model, we found that intracerebroventricular administration of recombinant CNP dose-dependently reduces brain infarct size. CNP significantly decreases brain edema and immunoglobulin G (IgG) extravasation into the brain tissue, suggesting a vasculoprotective effect of CNP. Moreover, in primary brain microvascular endothelial cells (BMECs), CNP dose-dependently protects BMEC survival and monolayer integrity against oxygen-glucose deprivation (OGD). The vasculoprotective effect of CNP is mediated by its innate receptors NPR2 and NPR3, in that inhibition of either NPR2 or NPR3 counteracts the protective effect of CNP on IgG leakage after HI insult and BMEC survival under OGD. Of importance, CNP significantly ameliorates brain atrophy and improves neurological deficits after HI insults. Altogether, the present study indicates that recombinant CNP exerts vascular protection in neonatal HI brain injury via its innate receptors, suggesting a potential therapeutic target for the treatment of neonatal HI brain injury.
Collapse
Affiliation(s)
- Guofang Shen
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
| | - Shirley Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
| | - Qingyi Ma
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (G.S.); (S.H.); (L.Z.)
- Correspondence: ; Tel.: +1-909-558-4325; Fax: +1-909-558-4029
| |
Collapse
|
9
|
Prickett TC, A Espiner E. Circulating products of C-type natriuretic peptide and links with organ function in health and disease. Peptides 2020; 132:170363. [PMID: 32634451 DOI: 10.1016/j.peptides.2020.170363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Paracrine actions of CNP and rapid degradation at source severely limit study of CNP's many roles in vivo. However provided sensitive and validated assays are used, there is increasing evidence that low concentrations of bioactive CNP in plasma, and the readily detectable concentrations of the bio-inactive processed product of proCNP (aminoterminal proCNP), can be used to advance understanding of the hormone's role in pathophysiology. Provided renal function is normal, concordant changes in both CNP and NTproCNP reflect change in tissue production of proCNP whereas change in CNP alone results from altered rates of bioactive CNP degradation and are reflected in the ratio of NTproCNP to CNP. As already shown in juveniles, where plasma concentration of CNP products are higher and are associated with concurrent endochondral bone growth, measurements of plasma CNP products in mature adults have potential to clarify organ response to stress and injury. Excepting the role of CNP in fetal-maternal welfare, this review examines evidence linking plasma CNP products with function of a wide range of tissues in adults, including the impact of extraneous factors such as nutrients, hormone therapy and exercise.
Collapse
Affiliation(s)
- Timothy Cr Prickett
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand
| |
Collapse
|
10
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
He Y, Liu Y, Zhou M, Xie K, Tang Y, Huang H, Huang C. C-type natriuretic peptide suppresses ventricular arrhythmias in rats with acute myocardial ischemia. Peptides 2020; 126:170238. [PMID: 31870937 DOI: 10.1016/j.peptides.2019.170238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effects of C-type natriuretic peptide (CNP) on ventricular arrhythmias in rats with acute myocardial ischemia (AMI). Forty male Sprague-Dawley rats were randomly divided into sham group (n = 10), AMI group (n = 15) and AMI + CNP group (n = 15). AMI model was induced by ligating the left anterior descending branch of the coronary artery, and CNP was pumped through the femoral vein starting 30 min before ischemia and continuing until 1 h after AMI. The occurrence of ventricular arrhythmias after ischemia and heart rate variability (HRV) were recorded and analyzed. The plasma norepinephrine level was detected at 15 min after AMI. Ventricular electrophysiological parameters including ventricular effective refractory period (ERP), ERP dispersion, ventricular action potential duration (APD) alternans and ventricular fibrillation threshold (VFT) were measured one hour after AMI. Then, the expressions of cyclic guanosine monophosphate in myocardial tissue and left stellate ganglion were examined. Compared to sham group, AMI significantly shortened the ERP, augmented ERP dispersion, elevated APD alternans cycle length, reduced VFT, and increased the incidence of ventricular arrhythmias. Moreover, AMI increased the sympathetic component of HRV, raised plasma norepinephrine levels, and decreased the cyclic guanosine monophosphate levels in myocardium and left stellate ganglion. All those changes were attenuated by CNP treatment. These findings suggest that CNP protected against ventricular arrhythmias in rats with AMI, potentially by inhibiting ischemia-induced cardiac sympathetic hyperactivity and cardiac electrophysiology instability.
Collapse
Affiliation(s)
- Yan He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
12
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
13
|
Ahmed A, Gulino A, Amayo S, Arancio W, Florena AM, Belmonte B, Jurjus A, Leone A, Miletich I. Natriuretic peptide system expression in murine and human submandibular salivary glands: a study of the spatial localisation of ANB, BNP, CNP and their receptors. J Mol Histol 2019; 51:3-13. [PMID: 31722080 DOI: 10.1007/s10735-019-09849-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
The natriuretic peptide (NP) system comprises of three ligands, the Atrial Natriuretic Peptide (ANP), Brain Natriuretic peptide (BNP) and C-type Natriuretic peptide (CNP), and three natriuretic peptide receptors, NPRA, NPRB and NPRC. Here we present a comprehensive study of the natriuretic peptide system in healthy murine and human submandibular salivary glands (SMGs). We show CNP is the dominant NP in mouse and human SMG and is expressed together with NP receptors in ducts, autonomic nerves and the microvasculature of the gland, suggesting CNP autocrine signalling may take place in some of these glandular structures. These data suggest the NP system may control salivary gland function during homeostasis through the regulation of electrolyte re-absorption, neural stimulation and/or blood vessel wall contraction/relaxation. We also show abnormal expression of NPRA in the stroma of a subset of human SMGs resected from patients diagnosed with oral squamous cell carcinoma (OSCC) of non-salivary gland origin. This finding warrants further research to investigate a possible correlation between early OSCC invasion and NPRA overexpression.
Collapse
Affiliation(s)
- Araz Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK
| | - Alessandro Gulino
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Simita Amayo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK
| | - Walter Arancio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Ada Maria Florena
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK. .,Department of Biomedicine, Neuroscience and Advanced Diagnostic, Bi.N.D, School of Medicine, Institute of Anatomy and Histology, University of Palermo, Palermo, Italy.
| | - Isabelle Miletich
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK.
| |
Collapse
|
14
|
Musclin, A Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers (Basel) 2019; 11:cancers11101541. [PMID: 31614775 PMCID: PMC6826436 DOI: 10.3390/cancers11101541] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Physical activity improves the prognosis of cancer patients, partly by contrasting the associated muscle wasting (cachexia), through still unknown mechanisms. We asked whether aerobic exercise causes secretion by skeletal muscles of proteins (myokines) that may contrast cachexia. Media conditioned by peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α)-expressing myotubes, reproducing some metabolic adaptations of aerobic exercise, as increased mitochondrial biogenesis and oxidative phosphorylation, restrained constitutively active Forkhead box-containing subfamily O3 (caFoxO3)-induced proteolysis. Microarray analysis identified amphiregulin (AREG), natriuretic peptide precursor B (NppB), musclin and fibroblast growth factor 18 (FGF18) as myokines highly induced by PGC1α. Notably, only musclin tended to be low in muscle of mice with a rare human renal carcinoma; it was reduced in plasma and in muscles of C26-bearing mice and in atrophying myotubes, where PGC1α expression is impaired. Therefore, we electroporated the Tibialis Anterior (TA) of C26-bearing mice with musclin or (its receptor) natriuretic peptide receptor 3 (Npr3)-encoding plasmids and found a preserved fiber area, as a result of restrained proteolysis. Musclin knockout (KO) mice lose more muscle tissue during growth of two distinct cachexia-causing tumors. Running protected C26-bearing mice from cachexia, not changing tumor growth, and rescued the C26-induced downregulation of musclin in muscles and plasma. Musclin expression did not change in overloaded plantaris of mice, recapitulating partially muscle adaptations to anaerobic exercise. Musclin might, therefore, be beneficial to cancer patients who cannot exercise and are at risk of cachexia and may help to explain how aerobic exercise alleviates cancer-induced muscle wasting.
Collapse
|
15
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
16
|
LaDisa JF, Tomita-Mitchell A, Stamm K, Bazan K, Mahnke DK, Goetsch MA, Wegter BJ, Gerringer JW, Repp K, Palygin O, Zietara AP, Krolikowski MM, Eddinger TJ, Alli AA, Mitchell ME. Human genotyping and an experimental model reveal NPR-C as a possible contributor to morbidity in coarctation of the aorta. Physiol Genomics 2019; 51:177-185. [PMID: 31002586 DOI: 10.1152/physiolgenomics.00049.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coarctation of the aorta (CoA) is a common congenital cardiovascular (CV) defect characterized by a stenosis of the descending thoracic aorta. Treatment exists, but many patients develop hypertension (HTN). Identifying the cause of HTN is challenging because of patient variability (e.g., age, follow-up duration, severity) and concurrent CV abnormalities. Our objective was to conduct RNA sequencing of aortic tissue from humans with CoA to identify a candidate gene for mechanistic studies of arterial dysfunction in a rabbit model of CoA devoid of the variability seen with humans. We present the first known evidence of natriuretic peptide receptor C (NPR-C; aka NPR3) downregulation in human aortic sections subjected to high blood pressure (BP) from CoA versus normal BP regions (validated to PCR). These changes in NPR-C, a gene associated with BP and proliferation, were replicated in the rabbit model of CoA. Artery segments from this model were used with human aortic endothelial cells to reveal the functional relevance of altered NPR-C activity. Results showed decreased intracellular calcium ([Ca2+]i) activity to C-type natriuretic peptide (CNP). Normal relaxation induced by CNP and atrial natriuretic peptide was impaired for aortic segments exposed to elevated BP from CoA. Inhibition of NPR-C (M372049) also impaired aortic relaxation and [Ca2+]i activity. Genotyping of NPR-C variants predicted to be damaging revealed that rs146301345 was enriched in our CoA patients, but sample size limited association with HTN. These results may ultimately be used to tailor treatment for CoA based on mechanical stimuli, genotyping, and/or changes in arterial function.
Collapse
Affiliation(s)
- John F LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Division of Cardiovascular Medicine; Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Aoy Tomita-Mitchell
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Karl Stamm
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathleen Bazan
- Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Donna K Mahnke
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Mary A Goetsch
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Brandon J Wegter
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Jesse W Gerringer
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathryn Repp
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Adrian P Zietara
- Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Mary M Krolikowski
- Department of Pediatrics; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Thomas J Eddinger
- Department of Biological Sciences; Marquette University , Milwaukee, Wisconsin
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Michael E Mitchell
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,Children's Hospital of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
17
|
Ma Q, Zhang L. C-type natriuretic peptide functions as an innate neuroprotectant in neonatal hypoxic-ischemic brain injury in mouse via natriuretic peptide receptor 2. Exp Neurol 2018; 304:58-66. [PMID: 29501420 DOI: 10.1016/j.expneurol.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is the most common cause of brain injury in neonates, which leads to high neonatal mortality and severe neurological morbidity in later life (Vannucci, 2000; Volpe, 2001). Yet the molecular mechanisms of neuronal death and brain damage induced by neonatal HI remain largely elusive. Herein, using both in vivo and in vitro models, we determine an endogenous neuroprotectant role of c-type natriuretic peptide (CNP) in preserving neuronal survival after HI brain injury in mouse pups. Postnatal day 7 (P7) mouse pups with CNP deficiency (Nppclbab/lbab) exhibit increased brain infarct size and worsened long-term locomotor function after neonatal HI compared with wildtype control (Nppc+/+). In isolated primary cortical neurons, recombinant CNP dose-dependently protects primary neurons from oxygen-glucose deprivation (OGD) insult. This neuroprotective effect appears to be mediated through its cognate natriuretic peptide receptor 2 (NPR2), in that antagonization of NPR2, but not NPR3, exacerbates neuronal death and counteracts the protective effect of CNP on primary neurons exposed to OGD insult. Immunoblot and confocal microscopy demonstrate the abundant expression of NPR2 in neurons of the neonatal brain and in isolated primary cortical neurons as well. Moreover, similar to CNP deficiency, administration of NPR2 antagonist P19 via intracerebroventricular injection prior to HI results in exacerbated neuronal death and brain injury after HI. Altogether, the present study indicates that CNP and its cognate receptor NPR2 mainly expressed in neurons represent an innate neuroprotective mechanism in neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
18
|
Shi F, Collins S. Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0062/hmbci-2017-0062.xml. [PMID: 28949928 DOI: 10.1515/hmbci-2017-0062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 01/19/2023]
Abstract
β-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the 'browning' of adipocytes within white fat depots (so-called 'brite' or 'beige' adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like ('beige' or 'brite') adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.
Collapse
|
19
|
Compartmentation of Natriuretic Peptide Signalling in Cardiac Myocytes: Effects on Cardiac Contractility and Hypertrophy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54579-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
20
|
Natriuretic peptide C receptor in the developing sheep lung: role in perinatal transition. Pediatr Res 2017; 82:349-355. [PMID: 28288148 DOI: 10.1038/pr.2017.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Background: At birth, the release of surfactant from alveolar type II cells (ATIIs) is stimulated by increased activity of the beta-adrenergic/adenylyl cyclase/cyclic 3'-5' adenosine monophosphate-signaling cascade. Atrial natriuretic peptide (ANP) stimulates surfactant secretion through natriuretic peptide receptor A (NPR-A). ANP inhibits adenylyl cyclase activity through its binding to NPR-C. We wished to further understand the role of the NPR-C in perinatal transition. Methods: We studied ATII expression of NPR-C in fetal and newborn sheep using immunohistochemistry, and surfactant secretion in isolated ATIIs by measuring 3[H] choline release into the media. Results: ANP induced surfactant secretion, and, at higher doses, it inhibits the stimulatory effect of the secretagogue terbutaline. ATII NPR-C expression decreased significantly after birth. Premature delivery also markedly decreased ANP and NPR-C in ATIIs. Co-incubation of terbutaline (10-4 M) with ANP (10-6 M) significantly decreased 3[H] choline release from isolated newborn ATII cells when compared with terbutaline alone; this inhibitory effect was mimicked by the specific NPR-C agonist, C-ANP (10-10 M). Conclusion: ANP may act as an important epithelial-derived inhibitor of surfactant release in the fetal lung, and downregulation of ANP and NPR-C following birth may sensitize ATII cells to the effects of circulating catecholamines, thus facilitating surfactant secretion.
Collapse
|
21
|
Nakao K, Kuwahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T, Kuwabara Y, Yamada C, Yamada Y, Tokudome T, Nagai-Okatani C, Minamino N, Nakao YM, Yasuno S, Ueshima K, Sone M, Kimura T, Kangawa K, Nakao K. Endothelium-Derived C-Type Natriuretic Peptide Contributes to Blood Pressure Regulation by Maintaining Endothelial Integrity. Hypertension 2017; 69:286-296. [DOI: 10.1161/hypertensionaha.116.08219] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/10/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022]
Abstract
We previously reported the secretion of C-type natriuretic peptide (CNP) from vascular endothelial cells and proposed the existence of a vascular natriuretic peptide system composed of endothelial CNP and smooth muscle guanylyl cyclase-B (GC-B), the CNP receptor, and involved in the regulation of vascular tone, remodeling, and regeneration. In this study, we assessed the functional significance of this system in the regulation of blood pressure in vivo using vascular endothelial cell–specific CNP knockout and vascular smooth muscle cell–specific GC-B knockout mice. These mice showed neither the skeletal abnormality nor the early mortality observed in systemic CNP or GC-B knockout mice. Endothelial cell–specific CNP knockout mice exhibited significantly increased blood pressures and an enhanced acute hypertensive response to nitric oxide synthetase inhibition. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in rings of mesenteric artery isolated from endothelial cell–specific CNP knockout mice. In addition, endothelin-1 gene expression was enhanced in pulmonary vascular endothelial cells from endothelial cell–specific CNP knockout mice, which also showed significantly higher plasma endothelin-1 concentrations and a greater reduction in blood pressure in response to an endothelin receptor antagonist than their control littermates. By contrast, vascular smooth muscle cell–specific GC-B knockout mice exhibited blood pressures similar to control mice, and acetylcholine-induced vasorelaxation was preserved in their isolated mesenteric arteries. Nonetheless, CNP-induced acute vasorelaxation was nearly completely abolished in mesenteric arteries from vascular smooth muscle cell–specific GC-B knockout mice. These results demonstrate that endothelium-derived CNP contributes to the chronic regulation of vascular tone and systemic blood pressure by maintaining endothelial function independently of vascular smooth muscle GC-B.
Collapse
Affiliation(s)
- Kazuhiro Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Koichiro Kuwahara
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Toshio Nishikimi
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yasuaki Nakagawa
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Hideyuki Kinoshita
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeya Minami
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yoshihiro Kuwabara
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Chinatsu Yamada
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yuko Yamada
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeshi Tokudome
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Chiaki Nagai-Okatani
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Naoto Minamino
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yoko M. Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Shinji Yasuno
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kenji Ueshima
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Masakatsu Sone
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeshi Kimura
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kenji Kangawa
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kazuwa Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| |
Collapse
|
22
|
Roloff EVL, Tomiak‐Baquero AM, Kasparov S, Paton JFR. Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 2016; 594:6463-6485. [PMID: 27357059 PMCID: PMC5108906 DOI: 10.1113/jp272450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022] Open
Abstract
This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Ana M. Tomiak‐Baquero
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
23
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:37-49. [DOI: 10.1016/j.pbiomolbio.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
25
|
Santiquet N, Papillon-Dion E, Djender N, Guillemette C, Richard FJ. New elements in the C-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption. Biol Reprod 2014; 91:16. [PMID: 24899572 DOI: 10.1095/biolreprod.113.114132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
C-type natriuretic peptide (CNP) and its cognate receptor, natriuretic peptide receptor (NPR) B, have been shown to promote cGMP production in granulosa/cumulus cells. Once transferred to the oocyte through the gap junctions, the cGMP inhibits oocyte meiotic resumption. CNP has been shown to bind another natriuretic receptor, NPR-C. NPR-C is known to interact with and degrade bound CNP, and has been reported to possess signaling functions. Therefore, NPR-C could participate in the control of oocyte maturation during swine in vitro maturation (IVM). Here, we examine the effect of CNP signaling on meiotic resumption, the amount of cGMP and gap junctional communication (GJC) regulation during swine IVM. The results show an inhibitory effect of CNP in inhibiting oocyte meiotic resumption in follicle-stimulating hormone (FSH)-stimulated IVM. We also found that an NPR-C-specific agonist (cANP([4-23])) is likely to play a role in maintaining meiotic arrest during porcine IVM when in the presence of a suboptimal dose of CNP. Moreover, we show that, even if CNP can increase intracellular concentration of cGMP in cumulus-oocyte complexes, cANP((4-23)) had no impact on cGMP concentration, suggesting a potential cGMP-independent signaling pathway related to NPR-C activation. These data support a potential involvement of cANP((4-23)) through NPR-C in inhibiting oocyte meiotic resumption while in the presence of a suboptimal dose of CNP. The regulation of GJC was not altered by CNP, cANP((4-23)), or the combination of CNP and cANP((4-23)), supporting their potential contribution in sending signals to the oocytes. These findings offer promising insights in to new elements of the signaling pathways that may be involved in inhibiting resumption of meiosis during FSH-stimulated swine IVM.
Collapse
Affiliation(s)
- Nicolas Santiquet
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | - Emilie Papillon-Dion
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | - Nadjib Djender
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | - Christine Guillemette
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | - François J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| |
Collapse
|
26
|
Andrade FA, Restini CBA, Grando MD, Ramalho LNZ, Bendhack LM. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway. PLoS One 2014; 9:e95446. [PMID: 24787693 PMCID: PMC4006788 DOI: 10.1371/journal.pone.0095446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) and nitric oxide (NO) are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3) contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.
Collapse
Affiliation(s)
- Fernanda A. Andrade
- Department of Pharmacology, School of Medicine of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| | | | - Marcella D. Grando
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| | - Leandra N. Z. Ramalho
- Department of Cellular and Molecular Pathology, School of Medicine of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| | - Lusiane M. Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, São Paulo, Brasil
| |
Collapse
|
27
|
Sun F, Zhou K, Wang SJ, Liang PF, Zhu MZ, Qiu JH. Expression patterns of atrial natriuretic peptide and its receptors within the cochlear spiral ganglion of the postnatal rat. Hear Res 2013; 309:103-12. [PMID: 24333928 DOI: 10.1016/j.heares.2013.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/31/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
The spiral ganglion, which is primarily composed of spiral ganglion neurons and satellite glial cells, transmits auditory information from sensory hair cells to the central nervous system. Atrial natriuretic peptide (ANP), acting through specific receptors, is a regulatory peptide required for a variety of cardiac, neuronal and glial functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors (NPR-A and NPR-C) in the inner ear, their presence within the cochlear spiral ganglion and their regulatory roles during auditory neurotransmission and development is not known. Here we investigated the expression patterns and levels of ANP and its receptors within the cochlear spiral ganglion of the postnatal rat using immunofluorescence and immunoelectron microscopy techniques, reverse transcription-polymerase chain reaction and Western blot analysis. We have demonstrated that ANP and its receptors colocalize in both subtypes of spiral ganglion neurons and in perineuronal satellite glial cells. Furthermore, we have analyzed differential expression levels associated with both mRNA and protein of ANP and its receptors within the rat spiral ganglion during postnatal development. Collectively, our research provides direct evidence for the presence and synthesis of ANP and its receptors in both neuronal and non-neuronal cells within the cochlear spiral ganglion, suggesting possible roles for ANP in modulating neuronal and glial functions, as well as neuron-satellite glial cell communication, within the spiral ganglion during auditory neurotransmission and development.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China; Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Ke Zhou
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China; Center of Clinical Laboratory Medicine of PLA, Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Shu-juan Wang
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Peng-fei Liang
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Miao-zhang Zhu
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China.
| | - Jian-hua Qiu
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China.
| |
Collapse
|
28
|
Borgognone A, Lowe KL, Watson SP, Madhani M. Natriuretic peptides induce weak VASP phosphorylation at Serine 239 in platelets. Platelets 2013; 25:1-7. [PMID: 23469931 DOI: 10.3109/09537104.2013.773969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cyclic guanosine-3',5'-monophoshate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides (NP; e.g. atrial NP [ANP]), which activate soluble and particulate guanylyl cyclases, respectively. The role of NO in regulating cGMP and platelet function is well documented, whereas there is little evidence supporting a role for NPs in regulating platelet reactivity. By studying platelet aggregation and secretion in response to a PAR-1 peptide, collagen and ADP, and phosphorylation of the cGMP-dependent protein kinase (PKG) substrate vasodilator-stimulated phosphoprotein (VASP) at serine 239, we evaluated the effects of NPs in the absence or presence of the non-selective cGMP and cAMP phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Our results show that NPs, possibly through the clearance receptor (natriuretic peptide receptor-C) expressed on platelet membranes, increase VASP phosphorylation but only following PDE inhibition, indicating a small, localised cGMP synthesis. As platelet aggregation and secretion measured under the same conditions were not affected, we conclude that the magnitude of PKG activation achieved by NPs in platelets per se is not sufficient to exert functional inhibition of platelet involvement in haemostasis.
Collapse
Affiliation(s)
- Alessandra Borgognone
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| | | | | | | |
Collapse
|
29
|
Guo LJ, Alli AA, Eaton DC, Bao HF. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. Am J Physiol Renal Physiol 2013; 304:F930-7. [PMID: 23324181 DOI: 10.1152/ajprenal.00638.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epithelial sodium channels (ENaCs) located at the apical membrane of polarized epithelial cells are regulated by the second messenger guanosine 3',5'-cyclic monophosphate (cGMP). The mechanism for this regulation has not been completely characterized. Guanylyl cyclases synthesize cGMP in response to various intracellular and extracellular signals. We investigated the regulation of ENaC activity by natriuretic peptide-dependent activation of guanylyl cyclases in Xenopus 2F3 cells. Confocal microscopy studies show natriuretic peptide receptors (NPRs), including those coupled to guanylyl cyclases, are expressed at the apical membrane of 2F3 cells. Single-channel patch-clamp studies using 2F3 cells revealed that atrial natriuretic peptide (ANP) or 8-(4-chlorophenylthio)-cGMP, but not C-type natriuretic peptide or cANP, decreased the open probability of ENaC. This suggests that NPR-A, but not NPR-B or NPR-C, is involved in the natriuretic peptide-mediated regulation of ENaC activity. Also, it is likely that a signaling pathway involving cGMP and nitric oxide (NO) are involved in this mechanism, since inhibitors of soluble guanylyl cyclase, protein kinase G, inducible NO synthase, or an NO scavenger blocked or reduced the effect of ANP on ENaC activity.
Collapse
Affiliation(s)
- Lai-Jing Guo
- Department of Physiology, Emory University School of Medicine and the Center for Cell and Molecular Signaling, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
30
|
The C-type natriuretic peptide induces thermal hyperalgesia through a noncanonical Gβγ-dependent modulation of TRPV1 channel. J Neurosci 2012; 32:11942-55. [PMID: 22933780 DOI: 10.1523/jneurosci.1330-12.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain essentially unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific Gα(i)-Gβγ-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is coexpressed in transient receptor potential vanilloid-1 (TRPV1)-expressing mouse dorsal root ganglia (DRG) neurons. NPR-C can be coimmunoprecipitated with Gα(i), and C-type natriuretic peptide (CNP) treatment induced translocation of protein kinase Cε (PKCε) to the plasma membrane of these neurons, which was inhibited by pertussis toxin pretreatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons and increased their firing frequency, an effect that was absent in DRG neurons from TRPV1(-/-) mice. CNP-induced sensitization of TRPV1 activity was attenuated by pretreatment of DRG neurons with the specific inhibitors of Gβγ, phospholipase C-β (PLCβ), or PKC, but not of protein kinase A, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Furthermore, CNP injection into mouse hindpaw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of Gβγ or TRPV1 and was also absent in TRPV1(-/-) mice. Thus, our work identifies the Gβγ-PLCβ-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity.
Collapse
|
31
|
Amritraj A, Posse de Chaves EI, Hawkes C, Macdonald RG, Kar S. Single-transmembrane domain IGF-II/M6P receptor: potential interaction with G protein and its association with cholesterol-rich membrane domains. Endocrinology 2012; 153:4784-98. [PMID: 22903618 DOI: 10.1210/en.2012-1139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The IGF-II/mannose 6-phosphate (M6P) receptor is a single-transmembrane domain glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. The receptor may also mediate certain biological effects in response to IGF-II binding by interacting with G proteins. However, the nature of the IGF-II/M6P receptor's interaction with the G protein or with G protein-coupled receptor (GPCR) interacting proteins such as β-arrestin remains unclear. Here we report that [(125)I]IGF-II receptor binding in the rat hippocampal formation is sensitive to guanosine-5'-[γ-thio]triphosphate, mastoparan, and Mas-7, which are known to interfere with the coupling of the classical GPCR with G protein. Monovalent and divalent cations also influenced [(125)I]IGF-II receptor binding. The IGF-II/M6P receptor, as observed for several GPCRs, was found to be associated with β-arrestin 2, which exhibits sustained ubiquitination after stimulation with Leu(27)IGF-II, an IGF-II analog that binds rather selectively to the IGF-II/M6P receptor. Activation of the receptor by Leu(27)IGF-II induced stimulation of extracellular signal-related kinase 1/2 via a pertussis toxin-dependent pathway. Additionally, we have shown that IGF-II/M6P receptors under normal conditions are associated mostly with detergent-resistant membrane domains, but after stimulation with Leu(27)IGF-II, are translocated to the detergent-soluble fraction along with a portion of β-arrestin 2. Collectively these results suggest that the IGF-II/M6P receptor may interact either directly or indirectly with G protein as well as β-arrestin 2, and activation of the receptor by an agonist can lead to alteration in its subcellular distribution along with stimulation of an intracellular signaling cascade.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
32
|
Abstract
The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the actions of NPs on endothelial permeability and regeneration.
Collapse
Affiliation(s)
- Michaela Kuhn
- Physiologisches Institut der Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
33
|
Khambata RS, Panayiotou CM, Hobbs AJ. Natriuretic peptide receptor-3 underpins the disparate regulation of endothelial and vascular smooth muscle cell proliferation by C-type natriuretic peptide. Br J Pharmacol 2012; 164:584-97. [PMID: 21457229 PMCID: PMC3178781 DOI: 10.1111/j.1476-5381.2011.01400.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE C-type natriuretic peptide (CNP) is an endothelium-derived vasorelaxant, exerting anti-atherogenic actions in the vasculature and salvaging the myocardium from ischaemic injury. The cytoprotective effects of CNP are mediated in part via the Gi-coupled natriuretic peptide receptor (NPR)3. As GPCRs are well-known to control cell proliferation, we investigated if NPR3 activation underlies effects of CNP on endothelial and vascular smooth muscle cell mitogenesis. EXPERIMENTAL APPROACH Proliferation of human umbilical vein endothelial cells (HUVEC), rat aortic smooth muscle cells (RAoSMC) and endothelial and vascular smooth muscle cells from NPR3 knockout (KO) mice was investigated in vitro. KEY RESULTS CNP (1 pM–1 µM) facilitated HUVEC proliferation and inhibited RAoSMC growth concentration-dependently. The pro- and anti-mitogenic effects of CNP were blocked by the NPR3 antagonist M372049 (10 µM) and the extracellular signal-regulated kinase (ERK) 1/2 inhibitor PD98059 (30 µM) and were absent in cells from NPR3 KO mice. Activation of ERK 1/2 by CNP was inhibited by Pertussis toxin (100 ng·mL−1) and M372049 (10 µM). In HUVEC, ERK 1/2 activation enhanced expression of the cell cycle promoter, cyclin D1, whereas in RAoSMC, ERK 1/2 activation increased expression of the cell cycle inhibitors p21waf1/cip1 and p27kip1. CONCLUSIONS AND IMPLICATIONS A facet of the vasoprotective profile of CNP is mediated via NPR3-dependent ERK 1/2 phosphorylation, resulting in augmented endothelial cell proliferation and inhibition of vascular smooth muscle growth. This pathway may offer an innovative approach to reversing the endothelial damage and vascular smooth muscle hyperplasia that characterize many vascular disorders.
Collapse
|
34
|
Rodríguez MR, Diez F, Ventimiglia MS, Morales V, Copsel S, Vatta MS, Davio CA, Bianciotti LG. Atrial natriuretic factor stimulates efflux of cAMP in rat exocrine pancreas via multidrug resistance-associated proteins. Gastroenterology 2011; 140:1292-302. [PMID: 21237168 DOI: 10.1053/j.gastro.2010.12.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 12/02/2010] [Accepted: 12/27/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Atrial natriuretic factor (ANF) prevents increases in intracellular levels of cAMP that are induced by secretin in the exocrine pancreas. We investigated the contribution of cyclic adenosine monophosphate (cAMP) efflux to ANF inhibition of secretin signaling. METHODS Intracellular and extracellular cAMP were measured by radio-binding assays in isolated pancreatic acini exposed to secretin and other secretagogues, alone or with ANF. Levels of messenger RNA for multidrug resistance-associated protein (MRP)4, MRP5, and MRP8 were measured by real-time polymerase chain reaction. MRP4 was knocked down in AR42J cells by small interfering RNA. In vivo studies were performed in rats. RESULTS Pancreatic secretagogues increased levels of intracellular cAMP, but only secretin and vasoactive intestinal peptide promoted cAMP efflux; efflux was increased by ANF, through signaling via natriuretic peptide receptor-C and phospholipase C-protein kinase C. In time-course studies with active phosphodiesterases, levels of intracellular and extracellular cAMP increased earlier after the addition of secretin and ANF (1 min) than after the addition of secretin alone (3 min). Similar kinetic patterns occurred with a phosphodiesterase inhibitor. A probenecid-sensitive transporter mediated cAMP egression. The main cAMP transporter, MRP4, was expressed in AR42J cells and pancreas. cAMP egression occurred in AR42J cells exposed to secretin, but this response was reduced in cells that expressed MRP4 small interfering RNA. In rats, levels of cAMP in plasma and pancreatic juice increased after infusion with secretin alone or secretin plus ANF. CONCLUSIONS ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C-protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.
Collapse
Affiliation(s)
- Myrian R Rodríguez
- Cátedras de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Alli AA, Gower WR. Molecular approaches to examine the phosphorylation state of the C type natriuretic peptide receptor. J Cell Biochem 2010; 110:985-94. [PMID: 20564198 DOI: 10.1002/jcb.22612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular domain of the C type natriuretic peptide receptor (NPRC) contains one threonine and several serine residues where phosphorylation is thought to occur. Several phosphorylation consensus sequences for various kinases have been identified within the intracellular domain of NPRC, but the exact residues that are phosphorylated and the specific kinases responsible for their phosphorylation have not been thoroughly defined. Here we introduce a recombinant GST fusion protein and a rat gastric mucosa (RGM1) cell line as molecular tools to study the phosphorylation state of NPRC in vitro and in vivo, respectively. We utilize a previously characterized polyclonal antibody against NPRC to probe for total NPRC protein and various phosphospecific and substrate motif antibodies to probe for phosphorylation of NPRC. Phosphoprotein staining reagents were used with a phosphoprotein control set to detect phosphorylation of NPRC at serine and threonine residues. Recombinant GST-NPRC fusion protein was phosphorylated in vitro by RGM1 lysate in the presence of adenosine-5'-triphosphate (ATP). Western blot analysis using a monoclonal phospho-Thr antibody, which exclusively detects phosphorylated threonine residues, and does not cross-react with phosphorylated serine residues revealed NPRC immunoprecipitated from RGM1 lysate is phosphorylated on a threonine residue. Global analysis of the entire rat NPRC sequence using a protein kinase A (PKA) prediction algorithm, identified five putative PKA phosphorylation sites containing a serine residue and one containing a threonine residue, Thr 505. Taken together, the data presented here suggest that rat NPRC is a substrate for PKA and Thr 505 located within the intracellular domain of NPRC is a likely candidate site for the phosphorylation.
Collapse
Affiliation(s)
- Abdel A Alli
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida 33612, USA
| | | |
Collapse
|
36
|
Caniffi C, Elesgaray R, Gironacci M, Arranz C, Costa MA. C-type natriuretic peptide effects on cardiovascular nitric oxide system in spontaneously hypertensive rats. Peptides 2010; 31:1309-18. [PMID: 20363270 DOI: 10.1016/j.peptides.2010.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
Abstract
The aim was to study the effects of C-type natriuretic peptide (CNP) on mean arterial pressure (MAP) and the cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHR), and to investigate the signaling pathways involved in this interaction. SHR and WKY rats were infused with saline or CNP. MAP and nitrites and nitrates excretion (NO(x)) were determined. Catalytic NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible NOS (iNOS) were measured in the heart and aorta artery. NOS activity induced by CNP was determined in presence of: iNOS or nNOS inhibitors, NPR-A/B natriuretic peptide receptors blocker and Gi protein and calmodulin inhibitors. CNP diminished MAP and increased NO(x) in both groups. Cardiovascular NOS activity was higher in SHR than in WKY. CNP increased NOS activity, but this activation was lower in SHR. CNP had no effect on NOS isoforms expression. iNOS and nNOS inhibitors did not modify CNP-induced NOS activity. NPR-A/B blockade induced no changes in NOS stimulation via CNP in both tissues. Cardiovascular NOS response to CNP was reduced by Gi protein and calmodulin inhibitors in both groups. CNP interacts with NPR-C receptors, activating Ca-calmodulin eNOS via Gi protein. NOS response to CNP is impaired in the heart and aorta of SHR. Alterations in the interaction between CNP and NO would be involved in the maintenance of high blood pressure in this model of hypertension.
Collapse
Affiliation(s)
- Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco, CONICET, Junín 956, Piso 7, 1113 Ciudad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
37
|
Prado J, Baltrons MA, Pifarré P, García A. Glial cells as sources and targets of natriuretic peptides. Neurochem Int 2010; 57:367-74. [PMID: 20302900 DOI: 10.1016/j.neuint.2010.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/10/2010] [Indexed: 11/19/2022]
Abstract
Natriuretic peptides and their receptors are widely expressed in mammalian CNS and increasing evidence implicates them in the regulation of neural development, synaptic transmission and processing of information, and neuroprotection. Although the peptides have been mainly localized in neuronal populations they are also produced in glial cells. Astroglia and microglia also express functional natriuretic peptide receptors that can regulate important physiological responses. In this article we review evidence on the localization of natriuretic peptides and their receptors in astroglial and microglial cells and summarize data supporting the participation of this signalling system in neuron-glia and glia-brain blood vessel communication relevant to CNS function.
Collapse
Affiliation(s)
- Judith Prado
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Alli AA, Gower WR. The C type natriuretic peptide receptor tethers AHNAK1 at the plasma membrane to potentiate arachidonic acid-induced calcium mobilization. Am J Physiol Cell Physiol 2009; 297:C1157-67. [PMID: 19710363 DOI: 10.1152/ajpcell.00219.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arachidonic acid (AA) liberated from membrane phospholipids is known to activate phospholipase C gamma1 (PLCgamma1) concurrently with AHNAK in nonneuronal cells. The recruitment of AHNAK from the nucleus is required for it to activate PLCgamma1 at the plasma membrane. Here, we identify the C-type natriuretic peptide receptor (NPR-C), an atypical G protein-coupled receptor, as a protein binding partner for AHNAK1 in various cell types. Mass spectrometry and MASCOT analysis of excised bands from NPR-C immunoprecipitation studies revealed multiple signature peptides corresponding to AHNAK1. Glutathione S-transferase (GST) pulldown assays using GST- AHNAK1 fusion proteins corresponding to each of the distinct domains of AHNAK1 showed the C1 domain of AHNAK1 associates with NPR-C. The role of NPR-C in mediating AA-dependent AHNAK1 calcium signaling was explored in various cell types, including 3T3-L1 preadipocytes during the early stages of differentiation. Sucrose density gradient centrifugation studies showed AHNAK1 resides in the nucleus, cytoplasm, and at the plasma membrane, but small interfering RNA (siRNA)-mediated knockdown of NPR-C resulted in AHNAK1 accumulation in the nucleus. Overexpression of a portion of AHNAK1 resulted in augmentation of intracellular calcium mobilization, whereas siRNA-mediated knockdown of NPR-C or AHNAK1 protein resulted in attenuation of intracellular calcium mobilization in response to phorbol 12-myristate 13-acetate. We characterize the novel association between AHNAK1 and NPR-C and provide evidence that this association potentiates the AA-induced mobilization of intracellular calcium. We address the role of intracellular calcium in the various cell types that AHNAK1 and NPR-C were found to associate.
Collapse
Affiliation(s)
- Abdel A Alli
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida 33612, USA
| | | |
Collapse
|
39
|
Burgess MD, Moore KD, Carter GM, Alli AA, Granda CS, Ichii H, Ricordi C, Gower WR. C-type natriuretic peptide receptor expression in pancreatic alpha cells. Histochem Cell Biol 2009; 132:95-103. [PMID: 19352691 DOI: 10.1007/s00418-009-0591-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2009] [Indexed: 11/26/2022]
Abstract
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 +/- 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4-23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.
Collapse
Affiliation(s)
- Matthew D Burgess
- Surgery and Research & Development Services, James A. Haley VA Hospital, Research Service (151), 13000 Bruce B. Downs Boulevard, Tampa, FL 33612-4745, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Natriuretic peptides as regulatory mediators of secretory activity in the digestive system. ACTA ACUST UNITED AC 2009; 154:5-15. [PMID: 19233231 DOI: 10.1016/j.regpep.2009.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 11/22/2022]
Abstract
Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are members of the natriuretic peptide family best known for their role in blood pressure regulation. However, in recent years all the natriuretic peptides and their receptors have been described in the gastrointestinal tract, digestive glands and central nervous system, as well as implicated in the regulation of digestive gland functions. The current review highlights the regulatory role of ANP and CNP in pancreatic and other digestive secretions. ANP and CNP stimulate basal as well as induced pancreatic secretion and modify bicarbonate and chloride secretions. Whereas ANP and CNP exert effects directly on pancreatic cells, CNP also acts through a vago-vagal reflex. At high doses both peptides attenuate pancreatic secretion induced by high doses of secretin through the PLC/PKC pathway. With regards to other digestive secretions, ANP and CNP decrease bile secretion in the rat. ANP does not induce salivation by itself but enhances stimulated salivary secretion and modifies salivary composition in rat parotid as well as submandibular glands. In rat pancreatic, hepatic, parotid and submandibular tissues, the NPR-C receptor mediates mostly peripheral responses whereas NPR-A and NPR-B receptors, which are coupled to guanylate cyclase, likely mediate the central response. In addition, ANP modulates gastric acid secretion via a vagal-dependent mechanism. In the intestine, ANP and CNP decrease water and sodium chloride absorption through an increase in cGMP levels. Overall, these findings indicate that ANP and CNP are members of the large group of regulatory peptides affecting digestive secretions.
Collapse
|
41
|
Schreier B, Börner S, Völker K, Gambaryan S, Schäfer SC, Kuhlencordt P, Gassner B, Kuhn M. The heart communicates with the endothelium through the guanylyl cyclase-A receptor: acute handling of intravascular volume in response to volume expansion. Endocrinology 2008; 149:4193-9. [PMID: 18450968 PMCID: PMC2488219 DOI: 10.1210/en.2008-0212] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atrial natriuretic peptide (ANP) regulates arterial blood pressure and volume. Its guanylyl cyclase-A (GC-A) receptor is expressed in vascular endothelium and mediates increases in cGMP, but the functional relevance is controversial. Notably, mice with endothelial-restricted GC-A deletion [EC GC-A knockout (KO) mice] exhibit significant chronic hypervolemic hypertension. The present study aimed to characterize the endothelial effects of ANP and their relevance for the acute regulation of intravascular fluid volume. We studied the effect of ANP on microvascular permeability to fluorescein isothiocyanate-labeled albumin (BSA) using intravital microscopy on mouse dorsal skinfold chambers. Local superfusion of ANP (100 nm) increased microvascular fluorescein isothiocyanate-BSA extravasation in control but not EC GC-A KO mice. Intravenous infusion of synthetic ANP (500 ng/kg x min) caused immediate increases in hematocrit in control mice, indicating intravascular volume contraction. In EC GC-A KO mice, the hematocrit responses were not only abolished but even reversed. Furthermore, acute vascular volume expansion, which caused release of endogenous cardiac ANP, did not affect resting central venous pressure of control mice but rapidly and significantly increased central venous pressure of EC GC-A KO mice. In cultured lung endothelial cells, ANP provoked cGMP-dependent protein kinase I-mediated phosphorylation of vasodilator-stimulated phosphoprotein. We conclude that ANP, via GC-A, enhances microvascular endothelial macromolecule permeability in vivo. This effect might be mediated by cGMP-dependent protein kinase I-dependent phosphorylation of vasodilator-stimulated phosphoprotein. Modulation of transcapillary protein and fluid transport may represent one of the most important hypovolemic actions of ANP.
Collapse
Affiliation(s)
- Barbara Schreier
- Institutes of Physiology, University of Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Atrial natriuretic factor intracellular signaling in the rat submandibular gland. ACTA ACUST UNITED AC 2008; 150:43-9. [PMID: 18455250 DOI: 10.1016/j.regpep.2008.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/16/2008] [Accepted: 03/14/2008] [Indexed: 11/23/2022]
Abstract
We previously reported that intravenously administered atrial natriuretic factor (ANF) induced no salivation but enhanced agonist-evoked secretion in submandibular glands. The gene expression of ANF and natriuretic peptide receptors (NPR) was later reported in the glands. In the present study we sought to establish the intracellular signalling mechanisms underlying ANF modulation of salivary secretion. Fasted rats were prepared with submandibular duct and femoral cannulation. Dose-response curves to methacholine (MC) and norepinephrine (NE) were performed in the presence of cANP (4-23 amide) (selective NPR-C agonist) and ANF. Local injection of the agonist or ANF-induced no salivation, but enhanced MC and NE-evoked secretion. ANF and cANP (4-23 amide) enhanced phosphoinositide turnover being the effect abolished by U73122 (PLC inhibitor). Further ANF and cANP (4-23 amide) decreased basal cAMP content but failed to affect isoproterenol or forskolin-evoked cAMP. ANF response was inhibited by pertussis toxin and mimicked by cANP (4-23 amide) strongly supporting NPR-C activation. ANF-induced cAMP reduction was abolished by PLC and PKC inhibitors. The content of cGMP was dose dependently stimulated by ANF but not modified by cANP (4-23 amide). These findings support that ANF through NPR-C receptors coupled to PLC activation and adenylyl cyclase inhibition interacts with sialogogic agonists in the submandibular gland to potentiate salivation.
Collapse
|
43
|
Hawkes C, Amritraj A, Macdonald RG, Jhamandas JH, Kar S. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Mol Neurobiol 2008; 35:329-45. [PMID: 17917122 DOI: 10.1007/s12035-007-0021-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/30/1999] [Accepted: 04/02/2007] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor's structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.
Collapse
Affiliation(s)
- C Hawkes
- Department of Psychiatry, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | | | | | | | | |
Collapse
|
44
|
Natriuretic peptides in vascular physiology and pathology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:59-93. [PMID: 18703404 DOI: 10.1016/s1937-6448(08)00803-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four major natriuretic peptides have been isolated: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and Dendroaspis-type natriuretic peptide (DNP). Natriuretic peptides play an important role in the regulation of cardiovascular homeostasis maintaining blood pressure and extracellular fluid volume. The classical endocrine effects of natriuretic peptides to modulate fluid and electrolyte balance and vascular smooth muscle tone are complemented by autocrine and paracrine actions that include regulation of coronary blood flow and, therefore, myocardial perfusion; modulation of proliferative responses during myocardial and vascular remodeling; and cytoprotective anti-ischemic effects. The actions of natriuretic peptides are mediated by the specific binding of these peptides to three cell surface receptors: type A natriuretic peptide receptor (NPR-A), type B natriuretic peptide receptor (NPR-B), and type C natriuretic peptide receptor (NPR-C). NPR-A and NPR-B are guanylyl cyclase receptors that increase intracellular cGMP concentration and activate cGMP-dependent protein kinases. NPR-C has been presented as a clearance receptor and its activation also results in inhibition of adenylyl cyclase activity. The wide range of effects of natriuretic peptides might be the base for the development of new therapeutic strategies of great benefit in patients with cardiovascular problems including coronary artery disease or heart failure. This review summarizes current literature concerning natriuretic peptides, their receptors and their effects on fluid/electrolyte balance, and vascular and cardiac physiology and pathology, including primary hypertension and myocardial infarction. In addition, we will attempt to provide an update on important issues regarding natriuretic peptides in congestive heart failure.
Collapse
|
45
|
Cao LH, Yang XL. Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol 2007; 84:234-48. [PMID: 18215455 DOI: 10.1016/j.pneurobio.2007.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/05/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type NPs, are a family of structurally related but genetically distinct peptides. These peptides, along with their receptors (NPRs), are long known to be involved in the regulation of various physiological functions, such as diuresis, natriuresis, and blood flow. Recently, abundant evidence shows that NPs and NPRs are widely distributed in the central nervous system (CNS), suggesting possible roles of NPs in modulating physiological functions of the CNS. This review starts with a brief summary of relevant background information, such as molecular structures of NPs and NPRs and general intracellular mechanisms after activation of NPRs. We then provide a detailed description of the expression profiles of NPs and NPRs in the CNS and an in-depth discussion of how NPs are involved in neural development, neurotransmitter release, synaptic transmission and neuroprotection through activation of NPRs.
Collapse
Affiliation(s)
- Li-Hui Cao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | |
Collapse
|
46
|
Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol 2007; 586:353-66. [PMID: 18006579 DOI: 10.1113/jphysiol.2007.144253] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type natriuretic peptides (ANP, BNP and CNP), bind two classes of cell surface receptors: the guanylyl cyclase-linked A and B receptors (NPR-A and NPR-B) and the C receptor (NPR-C). The biological effects of NPs have been mainly attributed to changes in intracellular cGMP following their binding to NPR-A and NPR-B. NPR-C does not include a guanylyl cyclase domain. It has been denoted as a clearance receptor and is thought to bind and internalize NPs for ultimate degradation. However, a substantial body of biochemical work has demonstrated the ability of NPR-C to couple to inhibitory G proteins (Gi) and cause inhibition of adenylyl cyclase and activation of phospholipase-C. Recently, novel physiological effects of NPs, mediated specifically by NPR-C, have been discovered in the heart and vasculature. We have described the ability of CNP, acting via NPR-C, to selectively inhibit L-type calcium currents in atrial and ventricular myocytes, as well as in pacemaker cells (sinoatrial node myocytes). In contrast, our studies of the electrophysiological effects of CNP on cardiac fibroblasts demonstrated an NPR-C-Gi-phospholipase-C-dependent activation of a non-selective cation current mediated by transient receptor potential (TRP) channels. It is also known that CNP and BNP have important anti-proliferative effects in cardiac fibroblasts that appear to involve NPR-C. In the mammalian resistance vessels, including mesenteric and coronary arteries, CNP has been found to function as an NPR-C-dependent endothelium-derived hyperpolarizing factor that regulates local blood flow and systemic blood pressure by hyperpolarizing smooth muscle cells. In this review we highlight the role of NPR-C in mediating these NP effects in myocytes and fibroblasts from the heart as well as in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Robert A Rose
- Departments of Physiology, Heart and Stroke/Richard Lewar Centre, University of Toronto and University Health Network, Toronto, Ontario, Canada M5S 3E2.
| | | |
Collapse
|
47
|
Sabbatini ME, Rodríguez M, di Carlo MB, Davio CA, Vatta MS, Bianciotti LG. C-type natriuretic peptide enhances amylase release through NPR-C receptors in the exocrine pancreas. Am J Physiol Gastrointest Liver Physiol 2007; 293:G987-94. [PMID: 17702953 DOI: 10.1152/ajpgi.00268.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several studies show that C-type natriuretic peptide (CNP) has a modulatory role in the digestive system. CNP administration reduces both jejunal fluid and bile secretion in the rat. In the present study we evaluated the effect of CNP on amylase release in isolated pancreatic acini as well as the receptors and intracellular pathways involved. Results showed that all natriuretic peptide receptors were expressed not only in the whole pancreas but also in isolated pancreatic acini. CNP stimulated amylase secretion with a concentration-dependent biphasic response; maximum release was observed at 1 pM CNP, whereas higher concentrations gradually attenuated it. The response was mimicked by a selective natriuretic peptide receptor (NPR-C) agonist and inhibited by pertussis toxin, strongly supporting NPR-C receptor activation. CNP-evoked amylase release was abolished by U-73122 (PLC inhibitor) and 2-aminoethoxydiphenyl borate (2-APB) [an inositol 1,4,5-triphosphate (IP(3)) receptor antagonist], partially inhibited by GF-109203X (PKC inhibitor), and unaltered by ryanodine or protein kinase A (PKA) and protein kinase G (PKG) inhibitors. Phosphoinositide hydrolysis was enhanced by CNP at all concentrations and abolished by U-73122. At 1 and 10 pM, CNP did not affect cAMP or guanosine 3',5'-cyclic monophosphate (cGMP) levels, but at higher concentrations it increased cGMP and diminished cAMP content. Present findings show that CNP stimulated amylase release through the activation of NPR-C receptors coupled to the PLC pathway and downstream effectors involved in exocytosis. The attenuation of amylase release was likely related to cAMP reduction. The augmentation in cGMP supports activation of NPR-A/NPR-B receptors probably involved in calcium influx. Present findings give evidence that CNP is a potential direct regulator of pancreatic function.
Collapse
Affiliation(s)
- María E Sabbatini
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
48
|
Sabbatini ME, Rodríguez MR, Dabas P, Vatta MS, Bianciotti LG. C-type natriuretic peptide stimulates pancreatic exocrine secretion in the rat: role of vagal afferent and efferent pathways. Eur J Pharmacol 2007; 577:192-202. [PMID: 17900562 DOI: 10.1016/j.ejphar.2007.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
We previously reported that C-type natriuretic peptide (CNP) increases amylase release in isolated pancreatic acini through natriuretic peptide receptor C activation and enhances pancreatic exocrine secretion via vagal pathways when applied to the brain. In the present study we sought to establish whether CNP was involved in the peripheral regulation of pancreatic secretion. Anesthetized rats were prepared with pancreatic duct cannulation, pyloric ligation and bile diversion into the duodenum. CNP dose-dependently enhanced pancreatic flow, chloride and protein excretion but did not modify bicarbonate output. A selective natriuretic peptide receptor C agonist enhanced pancreatic flow and mimicked CNP-evoked protein output but failed to modify chloride secretion. Truncal vagotomy, perivagal application of capsaicin and hexamethonium reduced CNP-evoked pancreatic flow and abolished chloride excretion but did not affect protein output. Furthermore, pre-treatment with atropine reduced both CNP-stimulated pancreatic flow and chloride excretion but failed to modify protein excretion. Partial muscarinic blockade of CNP-evoked chloride output suggested that mediators other than acetylcholine were involved. However, CNP response was unaltered by cholecystokinin and vasoactive intestinal peptide receptor blockade or by nitric oxide synthase inhibition. In conclusion, CNP-stimulated pancreatic flow through the activation of the natriuretic peptide receptor C and the vago-vagal reflex but it increased protein output only by natriuretic peptide receptor C activation and chloride excretion by vago-vagal reflexes. Present results suggest that CNP may play a role as a local regulator of the exocrine pancreas.
Collapse
Affiliation(s)
- María E Sabbatini
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
49
|
Lelievre V, Favrais G, Abad C, Adle-Biassette H, Lu Y, Germano PM, Cheung-Lau G, Pisegna JR, Gressens P, Lawson G, Waschek JA. Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschsprung's disease. Peptides 2007; 28:1688-99. [PMID: 17606312 PMCID: PMC2042583 DOI: 10.1016/j.peptides.2007.05.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/08/2007] [Accepted: 05/11/2007] [Indexed: 12/22/2022]
Abstract
In 1970, Drs. Said and Mutt isolated a novel peptide from porcine intestinal extracts with powerful vasoactive properties, and named it vasoactive intestinal peptide (VIP). Since then, the biological actions of VIP in the gut as well as its signal transduction pathways have been extensively studied. A variety of in vitro and in vivo studies have indicated that VIP, expressed in intrinsic non-adrenergic non-cholinergic (NANC) neurons, is a potent regulator of gastrointestinal (GI) motility, water absorption and ion flux, mucus secretion and immune homeostasis. These VIP actions are believed to be mediated mainly by interactions with highly expressed VPAC(1) receptors and the production of nitric oxide (NO). Furthermore, VIP has been implicated in numerous physiopathological conditions affecting the human gut, including pancreatic endocrine tumors secreting VIP (VIPomas), insulin-dependent diabetes, Hirschsprung's disease, and inflammatory bowel syndromes such as Crohn's disease and ulcerative colitis. To further understand the physiological roles of VIP on the GI tract, we have begun to analyze the anatomical and physiological phenotype of C57BL/6 mice lacking the VIP gene. Herein, we demonstrate that the overall intestinal morphology and light microscopic structure is significantly altered in VIP(-/-) mice. Macroscopically there is an overall increase in weight, and decrease in length of the bowel compared to wild type (WT) controls. Microscopically, the phenotype was characterized by thickening of smooth muscle layers, increased villi length, and higher abundance of goblet cells. Alcian blue staining indicated that the latter cells were deficient in mucus secretion in VIP(-/-) mice. The differences became more pronounced from the duodenum to the distal jejunum or ileum of the small bowel but, became much less apparent or absent in the colon with the exception of mucus secretion defects. Further examination of the small intestine revealed larger axonal trunks and unusual unstained patches in myenteric plexus. Physiologically, the VIP(-/-) mice showed an impairment in intestinal transit. Moreover, unlike WT C57BL/6 mice, a significant percentage of VIP(-/-) mice died in the first postnatal year with overt stenosis of the gut.
Collapse
|
50
|
Muller JM, Debaigt C, Goursaud S, Montoni A, Pineau N, Meunier AC, Janet T. Unconventional binding sites and receptors for VIP and related peptides PACAP and PHI/PHM: an update. Peptides 2007; 28:1655-66. [PMID: 17555844 DOI: 10.1016/j.peptides.2007.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 03/23/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
The 28-amino-acid neuropeptide VIP and related peptides PACAP and PHI/PHM modulate virtually all of the vital functions in the body. These peptides are also commonly recognized as major regulators of cell growth and differentiation. Through their trophic and cytoprotective functions, they appear to play major roles in embryonic development, neurogenesis and the progression of a number of cancer types. These peptides bind to three well-characterized subtypes of G-protein coupled receptors: VPAC1 and VPAC2 share a common high affinity in the nanomolar range for VIP and PACAP; a third receptor type, PAC1, has been characterized for its high affinity for PACAP but its low affinity for VIP. Complex effects and pharmacological behaviors of these peptides suggest that multiple subtypes of binding sites may cooperate to mediate their function in target cells and tissues. In this complex response, some of these binding sites correspond to the definition of the conventional receptors cited above, while others display unexpected pharmacological and functional properties. Here we present potential clues that may lead investigators to further characterize the molecular nature and functions of these atypical binding species.
Collapse
Affiliation(s)
- Jean-Marc Muller
- Institut de Physiologie et Biologie Cellulaires, UMR CNRS 6187, Université de Poitiers, Pôle Biologie-Santé, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | | | | | | | | | |
Collapse
|