1
|
Meena AS, Shukla PK, Rao R, Canelas C, Pierre JF, Rao R. TRPV6 deficiency attenuates stress and corticosterone-mediated exacerbation of alcohol-induced gut barrier dysfunction and systemic inflammation. Front Immunol 2023; 14:1093584. [PMID: 36817471 PMCID: PMC9929865 DOI: 10.3389/fimmu.2023.1093584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chronic stress is co-morbid with alcohol use disorder that feedback on one another, thus impeding recovery from both disorders. Stress and the stress hormone corticosterone aggravate alcohol-induced intestinal permeability and liver damage. However, the mechanisms involved in compounding tissue injury by stress/corticosterone and alcohol are poorly defined. Here we explored the involvement of the TRPV6 channel in stress (or corticosterone) 3and alcohol-induced intestinal epithelial permeability, microbiota dysbiosis, and systemic inflammation. Methods Chronic alcohol feeding was performed on adult wild-type and Trpv6-/- mice with or without corticosterone treatment or chronic restraint stress (CRS). The barrier function was determined by evaluating inulin permeability in vivo and assessing tight junction (TJ) and adherens junction (AJ) integrity by immunofluorescence microscopy. The gut microbiota composition was evaluated by 16S rRNA sequencing and metagenomic analyses. Systemic responses were assessed by evaluating endotoxemia, systemic inflammation, and liver damage. Results Corticosterone and CRS disrupted TJ and AJ, increased intestinal mucosal permeability, and caused endotoxemia, systemic inflammation, and liver damage in wild-type but not Trpv6-/- mice. Corticosterone and CRS synergistically potentiated the alcohol-induced breakdown of intestinal epithelial junctions, mucosal barrier impairment, endotoxemia, systemic inflammation, and liver damage in wild-type but not Trpv6-/- mice. TRPV6 deficiency also blocked the effects of CRS and CRS-mediated potentiation of alcohol-induced dysbiosis of gut microbiota. Conclusions These findings indicate an essential role of TRPV6 in stress, corticosterone, and alcohol-induced intestinal permeability, microbiota dysbiosis, endotoxemia, systemic inflammation, and liver injury. This study identifies TRPV6 as a potential therapeutic target for developing treatment strategies for stress and alcohol-associated comorbidity.
Collapse
Affiliation(s)
- Avtar S. Meena
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pradeep K. Shukla
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rupa Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Cherie Canelas
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - RadhaKrishna Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| |
Collapse
|
2
|
TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response. Cell Rep 2022; 39:110937. [PMID: 35705057 PMCID: PMC9250449 DOI: 10.1016/j.celrep.2022.110937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6−/− mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury. Meena et al. show that the mechanism of alcohol-induced gut permeability, endotoxemia, and systemic inflammation requires the TRPV6 channel. They show that ethanol activates TRPV6, induces calcium influx, and disrupts intestinal epithelial tight junctions. Furthermore, specific histidine and arginine residues at the N terminus fine-tune the alcohol-induced activation of TRPV6.
Collapse
|
3
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Xie Q, Ma R, Li H, Wang J, Guo X, Chen H. Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review). Exp Ther Med 2021; 22:881. [PMID: 34194559 PMCID: PMC8237269 DOI: 10.3892/etm.2021.10313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Stroke is a common critical disease occurring in middle-aged and elderly individuals, and is characterized by high morbidity, lethality and mortality. As such, it is of great concern to medical professionals. The aim of the present review was to investigate the effects of transient receptor potential vanilloid (TRPV) subtypes during cerebral ischemia in ischemia-reperfusion animal models, oxygen glucose deprivation and in other administration cell models in vitro to explore new avenues for stroke research and clinical treatments. TRPV1, TRPV2 and TRPV4 employ different methodologies by which they confer protection against cerebral ischemic injury. TRPV1 and TRPV4 are likely related to the inhibition of inflammatory reactions, neurotoxicity and cell apoptosis, thus promoting nerve growth and regulation of intracellular calcium ions (Ca2+). The mechanisms of neuroprotection of TRPV1 are the JNK pathway, N-methyl-D-aspartate (NMDA) receptor and therapeutic hypothermia. The mechanisms of neuroprotection of TRPV4 are the PI3K/Akt pathways, NMDA receptor and p38 MAPK pathway, amongst others. The mechanisms by which TRPV2 confers its protective effects are predominantly connected with the regulation of nerve growth factor, MAPK and JNK pathways, as well as JNK-dependent pathways. Thus, TRPVs have the potential for improving outcomes associated with cerebral ischemic or reperfusion injuries. The protection conferred by TRPV1 and TRPV4 is closely related to cellular Ca2+ influx, while TRPV2 has a different target and mode of action, possibly due to its expression sites. However, in light of certain contradictory research conclusions, further experimentation is required to clarify the mechanisms and specific pathways by which TRPVs act to alleviate nerve injuries.
Collapse
Affiliation(s)
- Qian Xie
- School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Rong Ma
- School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Hongyan Li
- School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jian Wang
- School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaoqing Guo
- School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Hai Chen
- School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
5
|
Spared Nerve Injury Causes Sexually Dimorphic Mechanical Allodynia and Differential Gene Expression in Spinal Cords and Dorsal Root Ganglia in Rats. Mol Neurobiol 2021; 58:5396-5419. [PMID: 34331199 PMCID: PMC8497331 DOI: 10.1007/s12035-021-02447-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Neuropathic pain is more prevalent in women. However, females are under-represented in animal experiments, and the mechanisms of sex differences remain inadequately understood. We used the spared nerve injury (SNI) model in rats to characterize sex differences in pain behaviour, unbiased RNA-Seq and proteomics to study the mechanisms. Male and female rats were subjected to SNI- and sham-surgery. Mechanical and cold allodynia were assessed. Ipsilateral lumbar dorsal root ganglia (DRG) and spinal cord (SC) segments were collected for RNA-seq analysis with DESeq2 on Day 7. Cerebrospinal fluid (CSF) samples for proteomic analysis and DRGs and SCs for analysis of IB-4 and CGRP, and IBA1 and GFAP, respectively, were collected on Day 21. Females developed stronger mechanical allodynia. There were no differences between the sexes in CGRP and IB-4 in the DRG or glial cell markers in the SC. No CSF protein showed change following SNI. DRG and SC showed abundant changes in gene expression. Sexually dimorphic responses were found in genes related to T-cells (cd28, ctla4, cd274, cd4, prf1), other immunological responses (dpp4, c5a, cxcr2 and il1b), neuronal transmission (hrh3, thbs4, chrna4 and pdyn), plasticity (atf3, c1qc and reg3b), and others (bhlhe22, mcpt1l, trpv6). We observed significantly stronger mechanical allodynia in females and numerous sexually dimorphic changes in gene expression following SNI in rats. Several genes have previously been linked to NP, while some are novel. Our results suggest gene targets for further studies in the development of new, possibly sex-specific, therapies for NP.
Collapse
|
6
|
Mapping the expression of transient receptor potential channels across murine placental development. Cell Mol Life Sci 2021; 78:4993-5014. [PMID: 33884443 PMCID: PMC8233283 DOI: 10.1007/s00018-021-03837-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.
Collapse
|
7
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
De Clercq K, Vriens J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1815-1829. [PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in many different steps of the reproduction process, from germ cell maturation to placental development. However, the exact function and regulation of calcium throughout subsequent reproductive events remains rather enigmatic. Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. On the one hand, endometrial cell will undergo massive changes to support an implanting embryo, including stromal cell decidualization. On the other hand, trophoblast cells from the trophectoderm surrounding the inner cell mass will differentiate and acquire new functions such as hormone secretion, invasion and migration. The need for calcium in the different gestational processes implicates the presence of specialized ion channels to regulate calcium homeostasis. The superfamily of transient receptor potential (TRP) channels is a class of calcium permeable ion channels that is involved in the transformation of extracellular stimuli into the influx of calcium, inducing and coordinating underlying signaling pathways. Although the necessity of calcium throughout reproduction cannot be negated, the expression and functionality of TRP channels throughout gestation remains elusive. This review provides an overview of the current evidence regarding the expression and function of TRP channels in reproduction.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Centre for Brain & Disease Research, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium.
| |
Collapse
|
9
|
Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr Res Rev 2015; 28:83-99. [PMID: 26466525 DOI: 10.1017/s0954422415000050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestine is the only gate for the entry of Ca to the body in humans and mammals. The entrance of Ca occurs via paracellular and intracellular pathways. All steps of the latter pathway are regulated by calcitriol and by other hormones. Dietary and pharmacological compounds also modulate the intestinal Ca absorption process. Among them, dietary Ca and P are known to alter the lipid and protein composition of the brush-border and basolateral membranes and, consequently, Ca transport. Ca intakes are below the requirements recommended by health professionals in most countries, triggering important health problems. Chronic low Ca intake has been related to illness conditions such as osteoporosis, hypertension, renal lithiasis and incidences of human cancer. Carbohydrates, mainly lactose, and prebiotics have been described as positive modulators of intestinal Ca absorption. Apparently, high meat proteins increase intestinal Ca absorption while the effect of dietary lipids remains unclear. Pharmacological compounds such as menadione, dl-butionine-S,R-sulfoximine and ursodeoxycholic acid also modify intestinal Ca absorption as a consequence of altering the redox state of the epithelial cells. The paracellular pathway of intestinal Ca absorption is poorly known and is under present study in some laboratories. Another field that needs to be explored more intensively is the influence of the gene × diet interaction on intestinal Ca absorption. Health professionals should be aware of this knowledge in order to develop nutritional or medical strategies to stimulate the efficiency of intestinal Ca absorption and to prevent diseases.
Collapse
|
10
|
Azimi I, Roberts-Thomson SJ, Monteith GR. Calcium influx pathways in breast cancer: opportunities for pharmacological intervention. Br J Pharmacol 2014; 171:945-60. [PMID: 24460676 PMCID: PMC3925034 DOI: 10.1111/bph.12486] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022] Open
Abstract
Ca(2+) influx through Ca(2+) permeable ion channels is a key trigger and regulator of a diverse set of cellular events, such as neurotransmitter release and muscle contraction. Ca(2+) influx is also a regulator of processes relevant to cancer, including cellular proliferation and migration. This review focuses on calcium influx in breast cancer cells as well as the potential for pharmacological modulators of specific Ca(2+) influx channels to represent future agents for breast cancer therapy. Altered expression of specific calcium permeable ion channels is present in some breast cancers. In some cases, such changes can be related to breast cancer subtype and even prognosis. In vitro and in vivo models have now helped identify specific Ca(2+) channels that play important roles in the proliferation and invasiveness of breast cancer cells. However, some aspects of our understanding of Ca(2+) influx in breast cancer still require further study. These include identifying the mechanisms responsible for altered expression and the most effective therapeutic strategy to target breast cancer cells through specific Ca(2+) channels. The role of Ca(2+) influx in processes beyond breast cancer cell proliferation and migration should become the focus of studies in the next decade.
Collapse
Affiliation(s)
- I Azimi
- School of Pharmacy, The University of QueenslandBrisbane, Qld, Australia
| | | | - G R Monteith
- School of Pharmacy, The University of QueenslandBrisbane, Qld, Australia
| |
Collapse
|
11
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
12
|
Kim S, An BS, Yang H, Jeung EB. Effects of octylphenol and bisphenol A on the expression of calcium transport genes in the mouse duodenum and kidney during pregnancy. Toxicology 2013; 303:99-106. [DOI: 10.1016/j.tox.2012.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
|
13
|
Amrein K, Worm HC, Schilcher G, Krisper P, Dobnig H. A challenging case of hypocalcemia supporting the concept that 25-hydroxyvitamin D status is important for intestinal calcium absorption. J Clin Endocrinol Metab 2012; 97:1842-6. [PMID: 22419730 DOI: 10.1210/jc.2012-1296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Intestinal mucosa seems to be responsive not only to circulating calcitriol but also to serum 25-hydroxyvitamin D concentrations. OBJECTIVE We report a complex patient with chronic kidney disease who presented with symptomatic hypocalcemia (ionized calcium, 0.77 mmol/liter) despite regular calcitriol and calcium supplementation. METHODS Case history, laboratory evaluation, and bone biopsies are discussed. RESULTS Only vigorous treatment with im cholecalciferol led to a significant improvement of serum calcium, a decrease in PTH levels, and histological improvement of osteomalacic bone disease. However, oral anticoagulation became necessary for advanced peripheral artery disease, which precluded further im injections. Therefore, UVB phototherapy was initiated to treat vitamin D deficiency. CONCLUSION This case is clinically relevant because it demonstrates that efficient calcium absorption is markedly reduced in profound vitamin D deficiency, even with normal active vitamin D levels. An important consequence is to stay aware of vitamin D deficiency in patients with compromised kidney function irrespective of regular calcitriol replacement. Second, when both parenteral and oral vitamin D administration are contraindicated, ineffective, or unavailable, UVB phototherapy is an effective option to treat vitamin D deficiency. Third, this case underlines the importance of obtaining regular 25-hydroxyvitamin D levels in complex clinical cases when prediction of individual response is unreliable.
Collapse
Affiliation(s)
- Karin Amrein
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | | | | | | | |
Collapse
|
14
|
Yang H, Choi KC, Hyun SH, Jeung EB. Coexpression and estrogen-mediated regulation of TRPV6 and PMCA1 in the human endometrium during the menstrual cycle. Mol Reprod Dev 2011; 78:274-82. [PMID: 21400627 DOI: 10.1002/mrd.21303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/17/2011] [Indexed: 01/03/2023]
Abstract
Maintenance of calcium balance in the uterus is essential for many of its functions, including embryo implantation. The plasma membrane Ca(2+) -pumping ATPase proteins are encoded by four genes designated PMCA1-4, and PMCA1 is expressed in the uterus of rats during the estrous cycle. Although transient receptor potential cation channel subfamily V, member 6 (TRPV6), has been detected in the human placenta, pancreas and the prostate gland, expression patterns of uterine TRPV6 and PMCA1 and their potential roles in the human endometrium remain to be elucidated. In the present study, the expression patterns of TRPV6 and PMCA1 were examined to predict their potential roles in the human endometrium during the menstrual cycle. Human classified endometrial tissues (total n = 40) were separated into three groups according to menstrual cycle phase: menstrual, proliferative (early-, mid-, late), and secretory phase (early-, mid-, late). The expression of TRPV6 and PMCA1 mRNA and protein in the uterine endometrium during the menstrual cycle increased by 1.5- to 1.8-fold at the proliferative phase (early-, mid-, and late-) in comparison to the other phases. Estrogen treatment caused a significant increase in TRPV6 and PMCA1 mRNA expression. Immunohistochemical analysis of the distribution of TRPV6 and PMCA1 in the uterus revealed that both proteins are abundantly expressed in the cytoplasm of endometrial and glandular epithelial cells during menstrual phases. Taken together, these results suggest that uterine expression of TRPV6 and PMCA1 may be involved in human reproductive function.
Collapse
Affiliation(s)
- Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | |
Collapse
|
15
|
JUNG EM, KIM JH, YANG H, HYUN SH, CHOI KC, JEUNG EB. Duodenal and Renal Transient Receptor Potential Vanilloid 6 Is Regulated by Sex Steroid Hormones, Estrogen and Progesterone, in Immature Rats. J Vet Med Sci 2011; 73:711-6. [DOI: 10.1292/jvms.10-0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eui-Man JUNG
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University
| | - Ji-Hye KIM
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University
| | - Hyun YANG
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University
| | - Sang-Hwan HYUN
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University
| | - Kyung-Chul CHOI
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University
| | - Eui-Bae JEUNG
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University
| |
Collapse
|
16
|
Dörr J, Fecher-Trost C. TRP channels in female reproductive organs and placenta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:909-28. [PMID: 21290333 DOI: 10.1007/978-94-007-0265-3_47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRP channel proteins are widely expressed in female reproductive organs. Based on studies detecting TRP transcripts and proteins in different parts of the female reproductive organs and placenta they are supposed to be involved in the transport of the oocyte or the blastocyte through the oviduct, implantation of the blastocyte, development of the placenta and transport processes across the feto-maternal barrier. Furthermore uterus contractility and physiological processes during labour and in mammary glands seem to be dependant on TRP channel expression.
Collapse
Affiliation(s)
- Janka Dörr
- Proteinfunktion Proteomics, Fachbereich Biologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | | |
Collapse
|
17
|
Abstract
The upper gastrointestinal (GI) mucosa is exposed to endogenous and exogenous chemicals, including gastric acid, CO₂ and nutrients. Mucosal chemical sensors are necessary to exert physiological responses such as secretion, digestion, absorption and motility. We propose the mucosal chemosensing system by which luminal chemicals are sensed to trigger mucosal defence mechanisms via mucosal acid sensors and taste receptors. Luminal acid/CO₂ is sensed via ecto- and cytosolic carbonic anhydrases and ion transporters in the epithelial cells and via acid sensors on the afferent nerves in the duodenum and the oesophagus. Gastric acid sensing is differentially mediated via endocrine cell acid sensors and afferent nerves. Furthermore, a luminal l-glutamate signal is mediated via epithelial l-glutamate receptors, including metabotropic glutamate receptors and taste receptor 1 family heterodimers, with activation of afferent nerves and cyclooxygenase, whereas luminal Ca²(+) is differently sensed via the calcium-sensing receptor in the duodenum. These luminal chemosensors help to activate mucosal defence mechanisms in order to maintain the mucosal integrity and physiological responses of the upper GI tract. Stimulation of luminal chemosensing in the upper GI mucosa may prevent mucosal injury, affect nutrient metabolism and modulate sensory nerve activity.
Collapse
Affiliation(s)
- Y Akiba
- Department of Medicine, University of California Los Angeles, Brentwood Biomedical Research Institute, USA.
| | | |
Collapse
|
18
|
Peng JB. TRPV5 and TRPV6 in transcellular Ca(2+) transport: regulation, gene duplication, and polymorphisms in African populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:239-75. [PMID: 21290300 DOI: 10.1007/978-94-007-0265-3_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRPV5 and TRPV6 are unique members of the TRP super family. They are highly selective for Ca(2+) ions with multiple layers of Ca(2+)-dependent inactivation mechanisms, expressed at the apical membrane of Ca(2+) transporting epithelia, and robustly responsive to 1,25-dihydroxivitamin D(3). These features are well suited for their roles as Ca(2+) entry channels in the first step of transcellular Ca(2+) transport pathways, which are involved in intestinal absorption, renal reabsorption of Ca(2+), placental transfer of Ca(2+) to fetus, and many other processes. While TRPV6 is more broadly expressed in a variety of tissues such as esophagus, stomach, small intestine, colon, kidney, placenta, pancreas, prostate, uterus, salivary gland, and sweat gland, TRPV5 expression is relatively restricted to the distal convoluted tubule and connecting tubule of the kidney. There is only one TRPV6-like gene in fish and birds in comparison to both TRPV5 and TRPV6 genes in mammals, indicating TRPV5 gene was likely generated from duplication of TRPV6 gene during the evolution of mammals to meet the needs of complex renal function. TRPV5 and TRPV6 are subjected to vigorous regulations under physiological, pathological, and therapeutic conditions. The elevated TRPV6 level in malignant tumors such as prostate and breast cancers makes it a potential therapeutic target. TRPV6, and to a lesser extent TRPV5, exhibit unusually high levels of single nucleotide polymorphisms (SNPs) in African populations as compared to other populations, indicating TRPV6 gene was under selective pressure during or after humans migrated out of Africa. The SNPs of TRPV6 and TRPV5 likely contribute to the Ca(2+) conservation mechanisms in African populations.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Lieben L, Benn BS, Ajibade D, Stockmans I, Moermans K, Hediger MA, Peng JB, Christakos S, Bouillon R, Carmeliet G. Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone 2010; 47:301-8. [PMID: 20399919 PMCID: PMC2902603 DOI: 10.1016/j.bone.2010.04.595] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/17/2010] [Accepted: 04/09/2010] [Indexed: 01/01/2023]
Abstract
Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.
Collapse
Affiliation(s)
- L Lieben
- Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, B-3000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dadon D, Minke B. Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 2010; 42:1430-45. [PMID: 20399884 DOI: 10.1016/j.biocel.2010.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 11/26/2022]
Abstract
Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca(2+). In this review we focus on the roles of these channels in: (i) cell death (ii) proliferation and differentiation and (iii) transmitter release. Cell death: Ca(2+) influx participates in apoptotic and necrotic cell death. The Ca(2+) permeability and high sensitivity of part of these channels to oxidative/metabolic stress make them important participants in cell death. Several examples are given. Transient Receptor Potential Melastatin 2 is activated by H(2)O(2), inducing cell death through an increase in cellular Ca(2+) and activation of Poly ADP-Ribose Polymerase. Exposure of cultured cortical neurons to oxygen-glucose deprivation, in vitro, causes cell death via cation influx, mediated by Transient Receptor Potential Melastatin 7. Metabolic stress constitutively activates the Ca(2+) permeable Transient Receptor Potential channels of Drosophila photoreceptor in the dark, potentially leading to retinal degeneration. Similar sensitivity to metabolic stress characterizes several mammalian Transient Receptor Potential Canonical channels. Proliferation and differentiation: The rise in cytosolic Ca(2+) induces cell growth, differentiation and proliferation via activation of several transcription factors. Activating a variety of store operated and Transient Receptor Potential channels cause a rise in cytosolic Ca(2+), making these channels components involved in proliferation and differentiation. Transmitter release: Transient Receptor Potential Melastatin 7 channels reside in synaptic vesicles and regulate neurotransmitter release by a mechanism that is not entirely clear. All the above features of Transient Receptor Potential channels make them crucial components in important, sometimes conflicting, cellular processes that still need to be explored.
Collapse
Affiliation(s)
- Daniela Dadon
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada and the Kühne Minerva Center, for Studies of Visual Transduction, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
21
|
Balesaria S, Sangha S, Walters JRF. Human duodenum responses to vitamin D metabolites of TRPV6 and other genes involved in calcium absorption. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1193-7. [PMID: 19779013 PMCID: PMC2850091 DOI: 10.1152/ajpgi.00237.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcium absorption by the intestine is necessary for bone mineralization. Much has been learned about this process and the role of vitamin D metabolites in gene transcription from animal studies, but the molecular mechanisms in humans are less well understood. We have used samples of normal human duodenal mucosa, obtained at endoscopy, to investigate the effects of the vitamin D metabolites, 1alpha-dihydroxycholecalciferol [1,25(OH)(2)D(3)] and 25-hydroxycholecalciferol (25OHD), on transcripts on genes involved in calcium absorption and vitamin D metabolism. TRPV6 transcripts were significantly higher after incubation for 6 h with 1,25(OH)(2)D(3) (10(-9) mol/l) than after control incubations (median difference 3.1-fold, P < 0.001). Unexpectedly, TRPV6 expression was also higher (2.4-fold, P < 0.02) after incubation with 25OHD (10(-7) mol/l). Transcripts for the calcium-ATPase, PMCA1, were significantly higher with 1,25(OH)(2)D(3); CYP24 transcripts were reliably detected after incubation with either metabolite, but calbindin-D9k transcripts were unaffected. The response of TRPV6 to 25OHD and the expression of transcripts for CYP27B1, the 25OHD-1alpha-hydroxylase, were significantly correlated (r = 0.82, P < 0.02). Basal duodenal expression of TRPV6 and CYP27B1 were significantly associated (r = 0.72, P < 0.001) in a separate previously reported series of subjects. Multiple regression analysis of the associations with basal duodenal TRPV6 expression identified CYP27B1 expression and serum 1,25(OH)(2)D as major factors. Expression of the CYP27B1 protein was demonstrated immunohistochemically in duodenal mucosa. This study has shown that human duodenal TRPV6, PMCA1, and CYP24 transcripts respond rapidly to 1,25(OH)(2)D(3) and provides evidence suggesting that local duodenal production of 1,25(OH)(2)D(3) by 25OHD-1alpha-hydroxylase may have a role in human calcium absorption.
Collapse
Affiliation(s)
- Sara Balesaria
- Gastroenterology Department, Imperial College Healthcare, Hammersmith Hospital and Division of Medicine, Imperial College, London, United Kingdom
| | - Sonia Sangha
- Gastroenterology Department, Imperial College Healthcare, Hammersmith Hospital and Division of Medicine, Imperial College, London, United Kingdom
| | - Julian R. F. Walters
- Gastroenterology Department, Imperial College Healthcare, Hammersmith Hospital and Division of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
22
|
Lee BM, Lee GS, Jung EM, Choi KC, Jeung EB. Uterine and placental expression of TRPV6 gene is regulated via progesterone receptor- or estrogen receptor-mediated pathways during pregnancy in rodents. Reprod Biol Endocrinol 2009; 7:49. [PMID: 19457270 PMCID: PMC2694200 DOI: 10.1186/1477-7827-7-49] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/21/2009] [Indexed: 12/22/2022] Open
Abstract
Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an epithelial Ca2+ channel protein expressed in calcium absorbing organs. In the present study, we investigated the expression and regulation of uterine and placental TRPV6 during gestation in rodents. Uterine TRPV6 peaked at pregnancy day (P) 0.5, P5.5 and, P13.5 and was detected in uterine epithelium and glands of rats, while placental TRPV6 mRNA levels increased in mid-gestation. Uterine and placental TRPV6 mRNA levels in rats appear to cyclically change during pregnancy, suggesting that TRPV6 may participate in the implantation process. In addition, uterine TRPV6 mRNA is only expressed in placenta-unattached areas of the uterus, and uterine TRPV6 immunoreactivity was observed in luminal and glandular epithelial cells. In the placenta, TRPV6 was detected in the labyrinth and spongy zone. These results may indicate that TRPV6 has at least two functions: implantation of the embryo and maintenance of pregnancy. To investigate the pathway(s) mediating TRPV6 expression in rodents, anti-steroid hormone antagonists were injected prior to maximal TRPV6 expression. In rats, TRPV6 expression was reduced by RU486 (an anti-progesterone) through progesterone receptors, and ICI 182,780 (an anti-estrogen) blocked TRPV6 expression via estrogen receptors in mice. The juxtaposition of uterine and placental TRPV6 expressed in these tissues supports the notion that TRPV6 participates in transferring calcium ions between the maternal and fetal compartments. Taken together, TRPV6 gene may function as a key element in controlling calcium transport in the uterus between the embryo and the placenta during pregnancy.
Collapse
Affiliation(s)
- Bo-Mi Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Geun-Shik Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| |
Collapse
|
23
|
Teerapornpuntakit J, Dorkkam N, Wongdee K, Krishnamra N, Charoenphandhu N. Endurance swimming stimulates transepithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats. Am J Physiol Endocrinol Metab 2009; 296:E775-86. [PMID: 19176351 DOI: 10.1152/ajpendo.90904.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endurance impact exercise, e.g., running, is known to enhance the intestinal calcium absorption. However, nonimpact exercise, e.g., swimming, is more appropriate for osteoporotic patients with cardiovascular diseases or disorders of bone and joint, but the effect of swimming on the intestinal calcium transport was unknown. This study, therefore, aimed to investigate the transepithelial calcium transport and the expression of related genes in the intestine of rats trained to swim nonstop 1 h/day, 5 days/wk for 2 wk. We found that endurance swimming stimulated calcium transport in the duodenum, proximal jejunum, and cecum, while decreasing that in the proximal colon. Swimming affected neither the transepithelial potential difference nor resistance. As demonstrated by real-time PCR, the small intestine, especially the duodenum, responded to swimming by upregulating a number of genes related to the transcellular calcium transport, i.e., TRPV5, TRPV6, calbindin-D9k, PMCA1b, and NCX1, and the paracellular calcium transport, i.e., ZO-1, ZO-2, ZO-3, cingulin, occludin, and claudins, as well as nuclear receptor of 1,25(OH)2D3. In contrast, swimming downregulated those genes in the colon. Microarray analysis showed that swimming also altered the expression of duodenal genes related to the transport of several ions and nutrients, e.g., Na+, K+, Cl-, glucose, and amino acids. In conclusion, endurance swimming enhanced intestinal calcium absorption, in part, by upregulating the calcium transporter genes. The present microarray study also provided relevant information for further investigations into the intestinal nutrient and electrolyte transport during nonimpact exercise.
Collapse
|
24
|
Irnaten M, Blanchard-Gutton N, Harvey BJ. Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells. Cell Calcium 2008; 44:441-52. [PMID: 18395250 DOI: 10.1016/j.ceca.2008.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 01/18/2008] [Accepted: 02/12/2008] [Indexed: 11/19/2022]
Abstract
The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry/signalling pathway that is sensitive to 17beta-estradiol.
Collapse
Affiliation(s)
- Mustapha Irnaten
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
25
|
Riner K, Boos A, Hässig M, Liesegang A. Vitamin D receptor distribution in intestines of domesticated sheepOvis ammon f. aries. J Morphol 2008; 269:144-52. [DOI: 10.1002/jmor.10574] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Takano Y, Matsuura T, Yoshikawa Y, Satsu H, Sato R, Shimizu M. Modulation of the intestinal Ca2+ uptake by a cheese whey protein digest. Biosci Biotechnol Biochem 2007; 71:1487-93. [PMID: 17587679 DOI: 10.1271/bbb.60721] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously constructed a system which enables the search for factors that could modulate the intestinal calcium transporter, CaT1 (TRPV6; Takano et al., Cytotechnology, 43, 113 (2003)). This system evaluates the CaT1-mediated calcium uptake by using CHO cells stably expressing human CaT1 (CHO-hCaT1 cells). We found that a cheese whey protein digest (CWP-D) increased the calcium uptake by the CHO-hCaT1 cells. CWP-D also enhanced the calcium uptake in human intestinal Caco-2 cells. The in vivo effects of CWP-D were then measured by using rats with enteral feeding. Although enteral feeding decreased the portal calcium concentration, CWP-D partially suppressed the decrease, suggesting that CWP-D could be used for food to enhance calcium absorption.
Collapse
Affiliation(s)
- Yoshihiko Takano
- Product Research & Development Department, Nippon Milk Community Co., Ltd, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Lee GS, Jeung EB. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab 2007; 293:E132-8. [PMID: 17374692 DOI: 10.1152/ajpendo.00666.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maintenance of uterine calcium balance is crucial for physiological functioning, including smooth muscle contraction and embryo implantation. Although calbindins were previously thought to act as important uterine calcium-processing genes for female reproductive function, they were not enough to attest the roles of calcium ions in the reproductive organs. Previously, we reported that rat transient receptor potential cation channel, subfamily V, member 6 (TRPV6) was expressed and regulated by hormones in the uterus. In the present study, we observed uterine TRPV6 expression in a mouse model to clarify the mutual roles of these two calcium-processing genes in female reproductive organs. We investigated uterine TRPV6 mRNA expression during the estrous cycle and pregnancy, as well as its regulation by the steroid hormones estrogen (E2) and progesterone (P4) in mice. Uterine TRPV6 mRNA levels increased at estrus and fluctuated in the uterus, placenta, and fetal membrane during pregnancy. Uterine TRPV6 mRNA increased in mid- and late pregnancy, and its expression was strongly induced in midpregnancy in the labyrinth and spongy zones of the placenta, and in the fetal membrane. E2 (17beta-estradiol) was found to regulate uterine TRPV6 expression in the luminal and glandular epitheliums. In addition, we determined that ERalpha tightly regulated uterine TRPV6 transcription. Together, these results suggest that for uterine function in normal pregnancy, TRPV6 is regulated by E2 via an ERalpha-dependent pathway.
Collapse
Affiliation(s)
- Geun-Shik Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungbuk National University Cheongju, Chungbuk 361-763, Republic of Korea
| | | |
Collapse
|
28
|
Charoenphandhu N, Krishnamra N. Prolactin is an important regulator of intestinal calcium transport. Can J Physiol Pharmacol 2007; 85:569-81. [PMID: 17823618 DOI: 10.1139/y07-041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prolactin has been shown to stimulate intestinal calcium absorption, increase bone turnover, and reduce renal calcium excretion. The small intestine, which is the sole organ supplying new calcium to the body, intensely expresses mRNAs and proteins of prolactin receptors, especially in the duodenum and jejunum, indicating the intestine as a target tissue of prolactin. A number of investigations show that prolactin is able to stimulate the intestinal calcium transport both in vitro and in vivo, whereas bromocriptine, which inhibits pituitary prolactin secretion, antagonizes its actions. In female rats, acute and long-term exposure to high prolactin levels significantly enhances the (i) transcellular active, (ii) solvent drag-induced, and (iii) passive calcium transport occurring in the small intestine. These effects are seen not only in pregnant and lactating animals, but are also observed in non-pregnant and non-lactating animals. Interestingly, young animals are more responsive to prolactin than adults. Prolactin-enhanced calcium absorption gradually diminishes with age, thus suggesting it has an age-dependent mode of action. Although prolactin's effects on calcium absorption are not directly vitamin D-dependent; a certain level of circulating vitamin D may be required for the basal expression of genes related to calcium transport. The aforementioned body of evidence supports the hypothesis that prolactin acts as a regulator of calcium homeostasis by controlling the intestinal calcium absorption. Cellular and molecular signal transductions of prolactin in the enterocytes are largely unknown, however, and still require investigation.
Collapse
Affiliation(s)
- Narattaphol Charoenphandhu
- Department of Physiology, and Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | | |
Collapse
|
29
|
Boos A, Riner K, Hässig M, Liesegang A. Immunohistochemical Demonstration of Vitamin D Receptor Distribution in Goat Intestines. Cells Tissues Organs 2007; 186:121-8. [PMID: 17489022 DOI: 10.1159/000102540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (VD) plays an important role in calcium homeostasis. 1,25-Dihydroxycholecalciferol or calcitriol modulates gene transcription via nuclear VD receptors (VDR). In the intestines, VD promotes calcium resorption via VDR. VDR has not been systematically assessed within the intestine in any species. We therefore present a semiquantitative immunohistochemical study of the distribution patterns of VDR in goat intestines. Intestinal tissue probes were collected from 5 lambs and 5 non-lactating non-pregnant dams, fixed in formalin, embedded in paraffin and assessed for VDR. Nuclear VDR immunoreaction was scored semiquantitatively. VDR exhibited a segment-specific distribution pattern. Goblet cells were always devoid of VDR. Enterocytes within the surface epithelium and the superficial crypts generally demonstrated only a weak immunoreaction along the length of the intestine, while basally and/or intermediately located crypt epithelial cells exhibited strong VDR immunoreactions in the duodenum, jejunum and colon descendens. The difference in VDR staining between deep and superficial locations was most prominent in the duodenum and less evident in the jejunum, ileum and colon descendens. Results demonstrate that VDR distribution exhibits cell type-, segment- and location-specific patterns in the goat. Data may serve as a basis for future experiments on the role of VDR in Ca metabolism.
Collapse
Affiliation(s)
- Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
30
|
Walters JRF, Balesaria S, Khair U, Sangha S, Banks L, Berry JL. The effects of Vitamin D metabolites on expression of genes for calcium transporters in human duodenum. J Steroid Biochem Mol Biol 2007; 103:509-12. [PMID: 17204416 DOI: 10.1016/j.jsbmb.2006.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Vitamin D in the regulation of calcium absorption in the intestine is well recognized but the mechanisms of the effects on human genes are surprisingly poorly understood. We have determined the expression of transcripts of the apical membrane calcium transporter TRPV6, the cytoplasmic calcium binding protein calbindin-D9k, the basolateral plasma membrane Ca(2+)-ATPase (PMCA1) and the Vitamin D receptor (VDR) in normal endoscopic duodenal mucosal biopsies using quantitative real-time RT-PCR and related baseline expression to Vitamin D metabolites. TRPV6 transcript levels have been shown to be significantly correlated with serum 1,25(OH)(2)D levels in men, but not overall in women, where negative effects of age predominate. TRPV6 and VDR expression were significantly related in both men and women, but were significantly lower in older women. Associations with bone mineral density and fractional calcium absorption were also studied. In a second series of subjects, duodenal biopsies were incubated in organ culture for 6h with Vitamin D metabolites. TRPV6 expression was significantly increased by 1,25(OH)(2)D(3) (10(-9)mol/l) as was PMCA1 to a much smaller extent. TRPV6 expression also increased with 25(OH)D(3). CYP27B1 expression was found in all samples, and CYP24 transcripts were detected after incubation with 1,25(OH)(2)D(3) or 25(OH)D(3).
Collapse
Affiliation(s)
- Julian R F Walters
- Department of Gastroenterology, Hammersmith Hospital, Imperial College London, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
31
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
32
|
Abstract
The ion channel TRPV6 is likely to function as an epithelial calcium channel in organs with high calcium transport requirements such as the intestine, kidney, and placenta. Transcriptional regulation of TRPV6 messenger RNA (mRNA) is controlled by 1,25-dihydroxyvitamin D, which is the active hormonal form of vitamin D3, and by additional calcium-dependent and vitamin D3-independent mechanisms. Under physiological conditions, the conductance of the channel itself is highly calcium-selective and underlies complex inactivation mechanisms triggered by intracellular calcium and magnesium ions. There is growing evidence that transcriptional regulation of TRPV6 in certain tissues undergoing malignant transformation, such as prostate cancer, is linked to cancer progression.
Collapse
Affiliation(s)
- U Wissenbach
- Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Universität des Saarlandes, 66421 Homburg, Germany.
| | | |
Collapse
|
33
|
Walters JRF, Balesaria S, Chavele KM, Taylor V, Berry JL, Khair U, Barley NF, van Heel DA, Field J, Hayat JO, Bhattacharjee A, Jeffery R, Poulsom R. Calcium channel TRPV6 expression in human duodenum: different relationships to the vitamin D system and aging in men and women. J Bone Miner Res 2006; 21:1770-7. [PMID: 17002582 DOI: 10.1359/jbmr.060721] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Intestinal absorption of calcium affects bone mineralization and varies greatly. In human duodenum, expression of the calcium channel TRPV6 was directly related to blood 1,25-dihydroxyvitamin D in men, but effects of age with lower median vitamin D receptor levels were more significant in women. INTRODUCTION The TRPV6 calcium channel/transporter is implicated in animal studies of intestinal calcium absorption, but in humans, its role and relationship to differences in mineral metabolism is unclear. We aimed to characterize TRPV6 expression in human intestine including defining relationships to the vitamin D endocrine system. MATERIALS AND METHODS TRPV6 transcript expression was determined in endoscopic mucosal biopsies obtained from normal duodenum. Expression was compared with that in ileum and with in situ hybridization in archival tissues and related to sequence variants in genomic DNA. TRPV6 expression was related in 33 subjects to other transcripts involved in calcium absorption including the vitamin D receptor (VDR) and to blood vitamin D metabolites including 1,25-dihydroxyvitamin D [1,25(OH)(2)D]. RESULTS TRPV6 transcripts were readily detected in duodenum but not in ileum. Expression was highest in villous epithelial cells. Sequence variants in the coding and upstream regions of the gene did not affect TRPV6 expression. The relationship between duodenal TRPV6 expression and 1,25(OH)(2)D differed in men and women. In men, linear regression showed a strong association with 1,25(OH)(2)D (r = 0.87, p < 0.01), which was unaffected by age. In women, there was no significant overall relationship with 1,25(OH)(2)D, but there was a significant decrease with age (r = -0.69, p < 0.001). Individual expression of TRPV6 and VDR was significantly correlated. The group of older women (>50) had lower median levels of both TRPV6 and VDR transcripts than younger women (p < 0.001 and 0.02, respectively). CONCLUSIONS Duodenal TRPV6 expression is vitamin D dependent in men, but not in older women, where expression of TRPV6 and VDR are both reduced. These findings can explain, at least in part, the lower fractional calcium absorption seen in older postmenopausal women.
Collapse
Affiliation(s)
- Julian R F Walters
- Gastroenterology Section, Division of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim HJ, Lee GS, Ji YK, Choi KC, Jeung EB. Differential expression of uterine calcium transporter 1 and plasma membrane Ca2+ ATPase 1b during rat estrous cycle. Am J Physiol Endocrinol Metab 2006; 291:E234-41. [PMID: 16825604 DOI: 10.1152/ajpendo.00434.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium-related proteins include the calcium transporters 1 and 2 (CaT1 and CaT2), plasma membrane Ca2+-ATPase 1b (PMCA1b), and calbindin-D9k and -D28k. The expression of CaT1 and PMCA1b and their potential roles in the uterine tissue remain to be clarified. Thus, in the present study, the expression patterns of CaT1 and PMCA1b were examined to predict their roles in rat uterus during the estrous cycle. Both CaT1 and PMCA1b mRNAs were detected in rat uterus. Uterine CaT1 mRNA was highly expressed at diestrus compared with proestrus, whereas PMCA1b expression was not altered during the estrus cycle. To evaluate the sex steroids involved in uterine CaT1 mRNA regulation, 17beta-estradiol (E2) and/or progesterone (P4) were injected into immature rats. Treatment with P4 or E2 plus P4 resulted in an increase in CaT1 mRNA, but a synergetic effect of E2 plus P4 was not detected. Uterine CaT1 mRNA was induced by P4 in a time- and dose-dependent manner, with maximal transcript detected 12 h after the final P4 injection. Treatment with RU486, a progesterone receptor (PR) antagonist, completely blocked P4-induced CaT1 mRNA, indicating that P4 regulates CaT1 mRNA expression via a PR-mediated pathway. In addition, CaT1 mRNA was expressed in uterine endometrium and glandular endometrium at diestrus in P4-treated rats. Together, these results suggest that CaT1 is regulated by P4 at diestrus via a PR-dependent pathway.
Collapse
Affiliation(s)
- Hoe-Jin Kim
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
36
|
Lafond J, Simoneau L. Calcium Homeostasis in Human Placenta: Role of Calcium‐Handling Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:109-74. [PMID: 16861065 DOI: 10.1016/s0074-7696(06)50004-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human placenta is a transitory organ, representing during pregnancy the unique connection between the mother and her fetus. The syncytiotrophoblast represents the specialized unit in the placenta that is directly involved in fetal nutrition, mainly involving essential nutrients, such as lipids, amino acids, and calcium. This ion is of particular interest since it is actively transported by the placenta throughout pregnancy and is associated with many roles during intrauterine life. At term, the human fetus has accumulated about 25-30 g of calcium. This transfer allows adequate fetal growth and development, since calcium is vital for fetal skeleton mineralization and many cellular functions, such as signal transduction, neurotransmitter release, and cellular growth. Thus, there are many proteins involved in calcium homeostasis in the human placenta.
Collapse
Affiliation(s)
- Julie Lafond
- Laboratoire de Physiologie Materno Foetale, Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada, H3C 3P8
| | | |
Collapse
|
37
|
Abstract
The frequency of hypercalciuria is increasing in western countries with an incidence of nephrolithiasis which can reach 13%. Hypercalciuria appears as an alteration of the calcium transport system (kidney, bowel, bone) which is regulated by calcitriol and parathormone. The aim of this review was to screen etiologies of hypercalciuria taking into account recent genetic advances (calcium epithelial channel and calcium sensing receptor). Hypercalciuria may be favored by nutritional causes (diet rich in calcium, sodium, carbohydrates, proteins, poor in phosphates and potassium). It may also be related to an increase in calcium absorption (vitamin D excess, primary hyperparathyroidism, sarcoidosis, lymphoma, estrogens, and certain genetic causes), an increase in osteoresorption (bone metastasis, myeloma, Paget, hyperthyroidism, immobilization, hypercortisolism and corticosteroid therapy), or a decrease of kidney tubular resorption (diuretics, Cacci and Ricci, acromegally, Bartter, familial dominant hypocalcemia, Fanconi, Dent, familial hypomagnesemia-hypercalciuria syndrome, type 1 distal tubular acidosis, pseudohypoaldosteronism, diabetes). If no cause is identified, persistence of hypercalciuria after instituting a correct diet is defined as idiopathic hypercalciuria. Treatment of the cause is essential in secondary hypercalciuria, in addition to diet (low sodium intake, normocalcic diet, hydration), associated with thiazide diuretics and biphosphonates if necessary.
Collapse
Affiliation(s)
- P Périmenis
- Clinique Endocrinologique Marc Linquette, Service d'Endocrinologie et Métabolisme 6, Rue du Pr Laguesse CHRU, 59037 Lille Cedex.
| | | | | |
Collapse
|
38
|
Renkema KY, Nijenhuis T, van der Eerden BCJ, van der Kemp AWCM, Weinans H, van Leeuwen JPTM, Bindels RJM, Hoenderop JGJ. Hypervitaminosis D Mediates Compensatory Ca2+Hyperabsorption in TRPV5 Knockout Mice. J Am Soc Nephrol 2005; 16:3188-95. [PMID: 16148038 DOI: 10.1681/asn.2005060632] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.
Collapse
Affiliation(s)
- Kirsten Y Renkema
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
40
|
Pazianas M, Butcher GP, Subhani JM, Finch PJ, Ang L, Collins C, Heaney RP, Zaidi M, Maxwell JD. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos Int 2005; 16:56-63. [PMID: 15221205 DOI: 10.1007/s00198-004-1641-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 03/29/2004] [Indexed: 01/15/2023]
Abstract
Calcium malabsorption, hypocalcemia and skeletal demineralization are well-recognized features of untreated celiac disease. This study investigates calcium absorption and bone mineral density (BMD) after a prolonged, over 4 years, treatment with a gluten-free diet. Twenty-four adult females with treated celiac disease and twenty age- and sex-matched control subjects were studied. Mean body mass index (MBI), energy intake, serum calcium, and serum 25(OH)D concentrations in treated celiacs did not differ from controls. However, while both dietary calcium and protein intake were significantly higher in celiacs (P<0.012), fractional calcium absorption was lower (mean percentage+/-SD; treated 39.8+/-12 versus controls 52.3+/-10, P<0.001). Thus, after adjusting for calcium intake, the estimated amount of calcium absorbed daily was similar in both groups. Whole body, spine and trochanter BMD were significantly lower in treated celiac patients compared with controls (P<0.05). There were significant inverse correlations between: serum parathyroid hormone (PTH) and femoral neck or total body BMD (P<0.01), PTH and duration of gluten-free diet (P=0.05), and fractional calcium absorption and alkaline phosphatase (P=0.022). Increased calcium intake could potentially compensate for the reduced fractional calcium absorption in treated adult celiac patients, but may not normalize the BMD. In addition, the inverse correlation between PTH and time following treatment is suggestive of a continuing long-term benefit of gluten withdrawal on bone metabolism in celiac patients.
Collapse
Affiliation(s)
- M Pazianas
- Department of Medicine, Ralston Penn Center, University of Pennsylvania, 3615 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Belkacemi L, Bédard I, Simoneau L, Lafond J. Calcium channels, transporters and exchangers in placenta: a review. Cell Calcium 2005; 37:1-8. [PMID: 15541458 DOI: 10.1016/j.ceca.2004.06.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 11/25/2022]
Abstract
Calcium (Ca2+) entry in cells is crucial for development and physiology of virtually all cell types. It acts as an intracellular (second) messenger to regulate a diverse array of cellular functions, from cell division and differentiation to cell death. Among candidates for Ca2+ entry in cells are-voltage-dependant Ca2+ channels (VDCCs), transient receptor potential (TRP)-related Ca2+ channels and store-operated Ca2+ (SOC) channels. Plasma membrane Ca2+-ATPases (PMCA) and Na+/Ca2+ exchanger (NCX) are mainly responsible for Ca2+ extrusion. These different Ca2+channels/transporters and exchangers exhibit specific distribution and physiological properties. During pregnancy, the syncytiotrophoblast layer of the human placenta transfers as much as 30 g of Ca2+ from the mother to the fetus, especially in late gestation where Ca2+ transport through different channels must increase in response to the demands of accelerating bone mineralization of the fetus. The identification and characterization of the different Ca2+ channels/transporters and exchangers on the brush-border membrane (BBM) facing the maternal circulation, and the basal plasma membrane (BPM) facing the fetal circulation; placental membrane of the syncytiotrophoblasts have been the focus of numerous studies. This review discusses current views in this field regarding localization and functions during transcellular Ca2+ entry and extrusion from cells particularly in the placenta.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Laboratoire de Physiologie Materno-Foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale 'Centre-Ville'Montréal, Montréal, Québec, Canada H3C 3P8
| | | | | | | |
Collapse
|
42
|
Walters JRF, Barley NF, Khanji M, Rhodes-Kendler O. Duodenal expression of the epithelial calcium transporter gene TRPV6: is there evidence for Vitamin D-dependence in humans? J Steroid Biochem Mol Biol 2004; 89-90:317-9. [PMID: 15225792 DOI: 10.1016/j.jsbmb.2004.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intestinal absorption of dietary calcium is regulated by 1,25-dihydroxycholecalciferol (1,25(OH)(2)D(3)) in humans and in experimental animals but interspecies differences in responsiveness to 1,25(OH)(2)D(3) are found, possibly due to differences in the promoters of genes for intestinal calcium transport proteins or of the Vitamin D receptor (VDR). The epithelial calcium transporter, known as ECAC2 or CAT1, the product of the TRPV6 gene expressed in proximal intestinal enterocytes, is the first step in calcium absorption and studies in mice have shown that its expression is Vitamin D-dependent. In contrast in man, we showed that duodenal TRPV6 mRNA expression was independent of blood 1,25(OH)(2)D(3), although in Caco-2 cells, 1,25(OH)(2)D(3)-dependent changes have been demonstrated. We sought to explain these findings. A consensus Vitamin D response element in the mouse gene is absent in the human gene. We re-analysed our duodenal expression data according to a CDX2-site polymorphism in the VDR promoter. Mean TRPV6 expression was the same, but there was evidence of different responsiveness to 1,25(OH)(2)D(3). In the GG genotype group, but not the AG, duodenal TRPV6 expression increased with 1,25(OH)(2)D(3). We postulate that lower levels of expression of VDR in the GG group produce greater sensitivity to 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Julian R F Walters
- Gastroenterology Section, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
| | | | | | | |
Collapse
|
43
|
Peng JB, Brown EM, Hediger MA. Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. J Physiol 2003; 551:729-40. [PMID: 12869611 PMCID: PMC2343303 DOI: 10.1113/jphysiol.2003.043349] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The recently discovered apical calcium channels CaT1 (TRPV6) and ECaC (TRPV5) belong to a family of six members called the 'TRPV family'. Unlike the other four members which are nonselective cation channels functioning as heat or osmolarity sensors in the body, CaT1 and ECaC are remarkably calcium-selective channels which serve as apical calcium entry mechanisms in absorptive and secretory tissues. CaT1 is highly expressed in the proximal intestine, placenta and exocrine tissues, whereas ECaC expression is most prominent in the distal convoluted and connecting tubules of the kidney. CaT1 in the intestine is highly responsive to 1,25-dihydroxyvitamin D3 and shows both fast and slow calcium-dependent feedback inhibition to prevent calcium overload. In contrast, ECaC only shows slow inactivation kinetics and appears to be mostly regulated by the calcium load in the kidney. Outside the calcium-transporting epithelia, CaT1 is highly expressed in exocrine tissues such as pancreas, prostate and salivary gland. In these tissues it probably mediates re-uptake of calcium following its release by secretory vesicles. CaT1 also contributes to store-operated calcium entry in Jurkat T-lymphocytes and prostate cancer LNCaP cells, possibly in conjunction with other cellular components which link CaT1 activity to the filling state of the calcium stores. Finally, CaT1 expression is upregulated in prostate cancer and other cancers of epithelial origin, highlighting its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Membrane Biology Program and Renal and Endocrine-Hypertension Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
van Abel M, Hoenderop JGJ, van der Kemp AWCM, van Leeuwen JPTM, Bindels RJM. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 2003; 285:G78-85. [PMID: 12620887 DOI: 10.1152/ajpgi.00036.2003] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The epithelial Ca2+ channels TRPV5 and TRPV6 are localized to the brush border membrane of intestinal cells and constitute the postulated rate-limiting entry step of active Ca2+ absorption. The aim of the present study was to investigate the hormonal regulation of these channels. To this end, the effect of 17beta-estradiol (17beta-E2), 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary Ca2+ on the expression of the duodenal Ca2+ transport proteins was investigated in vivo and analyzed using realtime quantitative PCR. Supplementation with 17beta-E2 increased duodenal gene expression of TRPV5 and TRPV6 but also calbindin-D9K and plasma membrane Ca2+-ATPase (PMCA1b) in ovariectomized rats. 25-Hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) knockout mice are characterized by hyperparathyroidism, rickets, hypocalcemia, and undetectable levels of 1,25(OH)2D3 and were used to study the 1,25(OH)2D3-dependency of the stimulatory effects of 17beta-E2. Treatment with 17beta-E2 upregulated mRNA levels of duodenal TRPV6 in these 1alpha-OHase knockout mice, which was accompanied by increased serum Ca2+ concentrations from 1.69 +/- 0.10 to 2.03 +/- 0.12 mM (P < 0.05). In addition, high dietary Ca2+ intake normalized serum Ca2+ in these mice and upregulated expression of genes encoding the duodenal Ca2+ transport proteins except for PMCA1b. Supplementation with 1,25(OH)2D3 resulted in increased expression of TRPV6, calbindin-D9K, and PMCA1b and normalization of serum Ca2+. Expression levels of duodenal TRPV5 mRNA are below detection limits in these 1alpha-OHase knockout mice, but supplementation with 1,25(OH)2D3 upregulated the expression to significant levels. In conclusion, TRPV5 and TRPV6 are regulated by 17beta-E2 and 1,25(OH)2D3, whereas dietary Ca2+ is positively involved in the regulation of TRPV6 only.
Collapse
Affiliation(s)
- Monique van Abel
- Department of Cell Physiology, Niujmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, P. O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Abstract
Expandable gastroretentive dosage forms (GRDFs) have been designed for the past 3 decades. They were originally created for possible veterinary use, but later the design was modified for enhanced drug therapy in humans. These GRDFs are easily swallowed and reach a significantly larger size in the stomach due to swelling or unfolding processes that prolong their gastric retention time (GRT). After drug release, their dimensions are minimized with subsequent evacuation from the stomach. Gastroretentivity is enhanced by the combination of substantial dimensions with high rigidity of the dosage form to withstand the peristalsis and mechanical contractility of the stomach. Positive results were obtained in preclinical and clinical studies evaluating GRT of expandable GRDFs. Narrow absorption window drugs compounded in such systems have improved in vivo absorption properties. These findings are an important step towards the implementation of expandable GRDFs in the clinical setting. The current review deals with expandable GRDFs reported in articles and patents, and describes the physiological basis of their design. Using the dog as a preclinical screening model prior to human studies, relevant imaging techniques and pharmacokinetic-pharmacodynamic aspects of such delivery systems are also discussed.
Collapse
Affiliation(s)
- Eytan A Klausner
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem POB 12065, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Kevin K Frick
- Department of Medicine, Nephrology Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
47
|
Moreau R, Simoneau L, Lafond J. Calcium fluxes in human trophoblast (BeWo) cells: calcium channels, calcium-ATPase, and sodium-calcium exchanger expression. Mol Reprod Dev 2003; 64:189-98. [PMID: 12506351 DOI: 10.1002/mrd.10247] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although placental transfer of maternal calcium (Ca(2+)) is a crucial process for fetal development, the biochemical mechanisms are poorly understood. In the current study, we have investigated the characteristics of Ca(2+) fluxes in relation with cell Ca(2+) homeostasis in the human placental trophoblast cell line BeWo. Time-courses of Ca(2+) uptake by BeWo cells displayed rapid initial entry (initial velocity (V(i)) of 3.42 +/- 0.35 nmol/mg protein/min) and subsequent establishment of a plateau. Ca(2+) efflux studies with (45)Ca(2+)-loaded cells also showed rapid declined of cell-associated (45)Ca(2+) with a V(i) of efflux (Ve(i)) of 3.30 +/- 0.08 nmol/mg protein/min. Further identification of membrane gates for Ca(2+) entry in BeWo cells was carried out. Expression of Ca(2+) transporter/channel CaT1 and L-type alpha(1S) subunit was showed by RT-PCR. However, mRNA for CaT2 channel and L-type alpha(1C) and alpha(1D) subunits were not revealed. Membrane systems responsible for intracellular Ca(2+) extrusion from BeWo cells were also investigated. Plasma membrane Ca(2+)-ATPases (PMCA) and Na/Ca exchangers (NCX) were detected by Western blot in BeWo cells. Expression of specific isoforms of PMCA and NCX was further investigated by RT-PCR. Messenger RNAs of four isoforms of PMCA (PMCA 1-4) were detected. The presence of messenger RNAs of two NCX isoforms (NCX1 and NCX3) was observed. Ca(2+) flux studies in Na-free incubation medium indicated that NCX played a minimal role in the cell Ca(2+) fluxes. Inorganic ions such as cadmium and manganese did not modify the Ca(2+) fluxes, however, barium increased cell-associated (45)Ca(2+) by, in part, by reducing radiolabel exit.
Collapse
Affiliation(s)
- Robert Moreau
- Laboratoire de Physiologie materno-foetale, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
48
|
Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. J Transl Med 2002; 82:1755-64. [PMID: 12480925 DOI: 10.1097/01.lab.0000043910.41414.e7] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CaT1 is a highly selective calcium entry channel that has been proposed to be responsible for apical calcium entry in the vitamin D-regulated transcellular pathway of Ca(2+) absorption; however, the lack of a CaT1 antibody suitable for immunohistochemistry has prevented the direct testing of this hypothesis by the localization of CaT1 protein in the gastrointestinal tract and other tissues. In this study, we developed two CaT1 antibodies and have used them to establish for the first time that CaT1 localizes to the apical membrane of intestinal absorptive cells, thereby providing the first direct evidence that this protein is in fact an apical entry channel in the gastrointestinal tract. In addition, we found that CaT1 protein is highly expressed in a number of exocrine organs including pancreas, prostate, and mammary gland, suggesting an, as yet, unrecognized role in secretory epithelia. Finally, we found CaT1 protein to be present at elevated levels in comparison with normal tissues in a series of prostate, breast, thyroid, colon, and ovarian carcinomas, consistent with previous reports of up-regulation of CaT1 mRNA in prostate cancer tissues. Our findings indicate that CaT1 is likely to serve as a component of transcellular calcium transport mechanisms in many tissues and epithelial cancers.
Collapse
Affiliation(s)
- Liyan Zhuang
- The Urologic Laboratory, Department of Urology, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Moreau R, Hamel A, Daoud G, Simoneau L, Lafond J. Expression of calcium channels along the differentiation of cultured trophoblast cells from human term placenta. Biol Reprod 2002; 67:1473-9. [PMID: 12390878 DOI: 10.1095/biolreprod.102.005397] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Placental transfer of maternal calcium (Ca2+) is carried out in vivo by the syncytiotrophoblast layer. Although this process is crucial for fetal development, it remains poorly understood. Cytotrophoblasts isolated from human term placenta undergo spontaneous syncytiotrophoblast-like morphological and biochemical differentiation in vitro and are thought to reflect in vivo syncytiotrophoblast. In the present study, we characterized the Ca2+ uptake potential and the expression of several Ca2+ channels by human trophoblasts during differentiation in vitro for up to 6 days. Secretion of hCG (specific differentiation marker) and uptake of Ca2+ by trophoblasts increased gradually as a function of days in culture. Both hCG secretion and Ca2+ uptake were maximal on Day 4 and declined on Days 5-6. Expression of the Ca2+ transporter proteins CaT1 and CaT2 was revealed by reverse transcription-polymerase chain reaction in cytotrophoblasts freshly isolated from human term placenta. In addition, messengers for two L-type Ca2+ channel isoforms (alpha(1C) and alpha(1D)) were also detected. Levels of CaT1, CaT2, and L-type Ca2+ channel mRNA increased gradually during culture, reaching a maximum between Days 2 and 3. In contrast to CaT1 and CaT2 expression that declined thereafter to levels observed on Day 1, L-type channel expression decreased by 50% but remained above the expression level of Day 1. Our results indicate that the pattern of CaT1 and CaT2 expression correlates with the Ca2+ uptake potential along the differentiation of cultured human trophoblasts isolated from term placenta. This correlation provides circumstantial evidence for a role of this family of channels in basal Ca2+ uptake by the syncytiotrophoblast.
Collapse
Affiliation(s)
- Robert Moreau
- Laboratoire de Physiologie materno-foetale, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | |
Collapse
|
50
|
Peng JB, Hediger MA. A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens 2002; 11:555-61. [PMID: 12187321 DOI: 10.1097/00041552-200209000-00012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Calcium is an essential intracellular messenger and a major component of the mineral phase of the skeleton. Calcium is absorbed in the intestine and reabsorbed in the kidney. The underlying transepithelial calcium transport mechanisms play crucial roles in calcium homeostasis. In this review, we present new developments in the area of calcium transport at the apical membrane, the first step in transepithelial calcium transport. RECENT FINDINGS Recently, a group of transient receptor potential (TRP)-related calcium-permeable channels has been identified. Several of these channels serve as important epithelial calcium entry mechanisms and possibly also as osmolarity sensors. SUMMARY Calcium channels in the kidney play important roles in maintaining total body calcium homeostasis. Their dysfunction may be associated with several human diseases such as hypercaliuric nephrolithiasis, certain forms of osteoporosis, Gitelman's disease and Bartter's syndrome.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|