1
|
Sukumaran V, Mutlu O, Murtaza M, Alhalbouni R, Dubansky B, Yalcin HC. Experimental assessment of cardiovascular physiology in the chick embryo. Dev Dyn 2023; 252:1247-1268. [PMID: 37002896 DOI: 10.1002/dvdy.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 10/04/2023] Open
Abstract
High resolution assessment of cardiac functional parameters is crucial in translational animal research. The chick embryo is a historically well-used in vivo model for cardiovascular research due to its many practical advantages, and the conserved form and function of the chick and human cardiogenesis programs. This review aims to provide an overview of several different technical approaches for chick embryo cardiac assessment. Doppler echocardiography, optical coherence tomography, micromagnetic resonance imaging, microparticle image velocimetry, real-time pressure monitoring, and associated issues with the techniques will be discussed. Alongside this discussion, we also highlight recent advances in cardiac function measurements in chick embryos.
Collapse
Affiliation(s)
| | - Onur Mutlu
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Benjamin Dubansky
- Department of Biological and Agricultural Engineering, Office of Research and Economic Development, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Mousavi SE, Purser GJ, Patil JG. Embryonic Onset of Sexually Dimorphic Heart Rates in the Viviparous Fish, Gambusia holbrooki. Biomedicines 2021; 9:165. [PMID: 33567532 PMCID: PMC7915484 DOI: 10.3390/biomedicines9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
In fish, little is known about sex-specific differences in physiology and performance of the heart and whether these differences manifest during development. Here for the first time, the sex-specific heart rates during embryogenesis of Gambusia holbrooki, from the onset of the heart rates (HRs) to just prior to parturition, was investigated using light cardiogram. The genetic sex of the embryos was post-verified using a sex-specific genetic marker. Results reveal that heart rates and resting time significantly increase (p < 0.05) with progressive embryonic development. Furthermore, both ventricular and atrial frequencies of female embryos were significantly higher (p < 0.05) than those of their male sibs at the corresponding developmental stages and remained so at all later developmental stages (p < 0.05). In concurrence, the heart rate and ventricular size of the adult females were also significantly (p < 0.05) higher and larger respectively than those of males. Collectively, the results suggest that the cardiac sex-dimorphism manifests as early as late-organogenesis and persists through adulthood in this species. These findings suggest that the cardiac measurements can be employed to non-invasively sex the developing embryos, well in advance of when their phenotypic sex is discernible. In addition, G. holbrooki could serve as a better model to study comparative vertebrate cardiovascular development as well as to investigate anthropogenic and climatic impacts on heart physiology of this species, that may be sex influenced.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - G. John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Service, New Norfolk, TAS 7140, Australia
| |
Collapse
|
3
|
Salman HE, Alser M, Shekhar A, Gould RA, Benslimane FM, Butcher JT, Yalcin HC. Effect of left atrial ligation-driven altered inflow hemodynamics on embryonic heart development: clues for prenatal progression of hypoplastic left heart syndrome. Biomech Model Mechanobiol 2021; 20:733-750. [PMID: 33481120 PMCID: PMC7979615 DOI: 10.1007/s10237-020-01413-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
Congenital heart defects (CHDs) are abnormalities in the heart structure present at birth. One important condition is hypoplastic left heart syndrome (HLHS) where severely underdeveloped left ventricle (LV) cannot support systemic circulation. HLHS usually initiates as localized tissue malformations with no underlying genetic cause, suggesting that disturbed hemodynamics contribute to the embryonic development of these defects. Left atrial ligation (LAL) is a surgical procedure on embryonic chick resulting in a phenotype resembling clinical HLHS. In this study, we investigated disturbed hemodynamics and deteriorated cardiac growth following LAL to investigate possible mechanobiological mechanisms for the embryonic development of HLHS. We integrated techniques such as echocardiography, micro-CT and computational fluid dynamics (CFD) for these analyses. Specifically, LAL procedure causes an immediate flow disturbance over atrioventricular (AV) cushions. At later stages after the heart septation, it causes hemodynamic disturbances in LV. As a consequence of the LAL procedure, the left-AV canal and LV volume decrease in size, and in the opposite way, the right-AV canal and right ventricle volume increase. According to our CFD analysis, LAL results in an immediate decrease in the left AV canal WSS levels for 3.5-day (HH21) pre-septated hearts. For 7-day post-septated hearts (HH30), LAL leads to further reduction in WSS levels in the left AV canal, and relatively increased WSS levels in the right AV canal. This study demonstrates the critical importance of the disturbed hemodynamics during the heart valve and ventricle development.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Maha Alser
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Akshay Shekhar
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Russell A Gould
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
4
|
Wittig JG, Münsterberg A. The Chicken as a Model Organism to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037218. [PMID: 31767650 DOI: 10.1101/cshperspect.a037218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart development is a complex process and begins with the long-range migration of cardiac progenitor cells during gastrulation. This culminates in the formation of a simple contractile tube with multiple layers, which undergoes remodeling into a four-chambered heart. During this morphogenesis, additional cell populations become incorporated. It is important to unravel the underlying genetic and cellular mechanisms to be able to identify the embryonic origin of diseases, including congenital malformations, which impair cardiac function and may affect life expectancy or quality. Owing to the evolutionary conservation of development, observations made in nonamniote and amniote vertebrate species allow us to extrapolate to human. This review will focus on the contributions made to a better understanding of heart development through studying avian embryos-mainly the chicken but also quail embryos. We will illustrate the classic and recent approaches used in the avian system, give an overview of the important discoveries made, and summarize the early stages of cardiac development up to the establishment of the four-chambered heart.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
5
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
6
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
7
|
Lauridsen H, Gonzales S, Hedwig D, Perrin KL, Williams CJA, Wrege PH, Bertelsen MF, Pedersen M, Butcher JT. Extracting physiological information in experimental biology via Eulerian video magnification. BMC Biol 2019; 17:103. [PMID: 31831016 PMCID: PMC6907275 DOI: 10.1186/s12915-019-0716-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Videographic material of animals can contain inapparent signals, such as color changes or motion that hold information about physiological functions, such as heart and respiration rate, pulse wave velocity, and vocalization. Eulerian video magnification allows the enhancement of such signals to enable their detection. The purpose of this study is to demonstrate how signals relevant to experimental physiology can be extracted from non-contact videographic material of animals. RESULTS We applied Eulerian video magnification to detect physiological signals in a range of experimental models and in captive and free ranging wildlife. Neotenic Mexican axolotls were studied to demonstrate the extraction of heart rate signal of non-embryonic animals from dedicated videographic material. Heart rate could be acquired both in single and multiple animal setups of leucistic and normally colored animals under different physiological conditions (resting, exercised, or anesthetized) using a wide range of video qualities. Pulse wave velocity could also be measured in the low blood pressure system of the axolotl as well as in the high-pressure system of the human being. Heart rate extraction was also possible from videos of conscious, unconstrained zebrafish and from non-dedicated videographic material of sand lizard and giraffe. This technique also allowed for heart rate detection in embryonic chickens in ovo through the eggshell and in embryonic mice in utero and could be used as a gating signal to acquire two-phase volumetric micro-CT data of the beating embryonic chicken heart. Additionally, Eulerian video magnification was used to demonstrate how vocalization-induced vibrations can be detected in infrasound-producing Asian elephants. CONCLUSIONS Eulerian video magnification provides a technique to extract inapparent temporal signals from videographic material of animals. This can be applied in experimental and comparative physiology where contact-based recordings (e.g., heart rate) cannot be acquired.
Collapse
Affiliation(s)
- Henrik Lauridsen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853-7202 USA
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Selina Gonzales
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853-7202 USA
- California State University, 333 S Twin Oaks Valley Rd, San Marcos, CA 92096 USA
| | - Daniela Hedwig
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850 USA
| | - Kathryn L. Perrin
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 6, 1870 Frederiksberg C, Denmark
| | - Catherine J. A. Williams
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark
- Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Peter H. Wrege
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850 USA
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 6, 1870 Frederiksberg C, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jonathan T. Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853-7202 USA
| |
Collapse
|
8
|
Parnall M, Perdios C, Pang KL, Rochette S, Loughna S. Characterisation of the developing heart in a pressure overloaded model utilising RNA sequencing to direct functional analysis. J Anat 2019; 236:549-563. [PMID: 31724174 PMCID: PMC7018637 DOI: 10.1111/joa.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiogenesis is influenced by both environmental and genetic factors, with blood flow playing a critical role in cardiac remodelling. Perturbation of any of these factors could lead to abnormal heart development and hence the formation of congenital heart defects. Although abnormal blood flow has been associated with a number of heart defects, the effects of abnormal pressure load on the developing heart gene expression profile have to date not clearly been defined. To determine the heart transcriptional response to haemodynamic alteration during development, outflow tract (OFT) banding was employed in the chick embryo at Hamburger and Hamilton stage (HH) 21. Stereological and expression studies, including the use of global expression analysis by RNA sequencing with an optimised procedure for effective globin depletion, were subsequently performed on HH29 OFT-banded hearts and compared with sham control hearts, with further targeted expression investigations at HH35. The OFT-banded hearts were found to have an abnormal morphology with a rounded appearance and left-sided dilation in comparison with controls. Internal analysis showed they typically had a ventricular septal defect and reductions in the myocardial wall and trabeculae, with an increase in the lumen on the left side of the heart. There was also a significant reduction in apoptosis. The differentially expressed genes were found to be predominately involved in contraction, metabolism, apoptosis and neural development, suggesting a cardioprotective mechanism had been induced. Therefore, altered haemodynamics during development leads to left-sided dilation and differential expression of genes that may be associated with stress and maintaining cardiac output.
Collapse
Affiliation(s)
- Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Chrysostomos Perdios
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Sophie Rochette
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Perdios C, Parnall M, Pang KL, Loughna S. Altered haemodynamics causes aberrations in the epicardium. J Anat 2019; 234:800-814. [PMID: 30882904 PMCID: PMC6539700 DOI: 10.1111/joa.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 02/04/2023] Open
Abstract
During embryo development, the heart is the first functioning organ. Although quiescent in the adult, the epicardium is essential during development to form a normal four‐chambered heart. Epicardial‐derived cells contribute to the heart as it develops with fibroblasts and vascular smooth muscle cells. Previous studies have shown that a heartbeat is required for epicardium formation, but no study to our knowledge has shown the effects of haemodynamic changes on the epicardium. Since the aetiologies of many congenital heart defects are unknown, we suggest that an alteration in the heart's haemodynamics might provide an explanatory basis for some of them. To change the heart's haemodynamics, outflow tract (OFT) banding using a double overhang knot was performed on HH21 chick embryos, with harvesting at different developmental stages. The epicardium of the heart was phenotypically and functionally characterised using a range of techniques. Upon alteration of haemodynamics, the epicardium exhibited abnormal morphology at HH29, even though migration of epicardial cells along the surface of the heart was found to be normal between HH24 and HH28. The abnormal epicardial phenotype was exacerbated at HH35 with severe changes in the structure of the extracellular matrix (ECM). A number of genes tied to ECM production were also differentially expressed in HH29 OFT‐banded hearts, including DDR2 and collagen XII. At HH35, the differential expression of these genes was even greater with additional downregulation of collagen I and TCF21. In this study, the epicardium was found to be severely impacted by altered haemodynamics upon OFT banding. The increased volume of the epicardium at HH29, upon OFT‐banding, and the expression changes of ECM markers were the first indicative signs of aberrations in epicardial architecture; by HH35, the phenotype had progressed. The decrease in epicardial thickness at HH35 suggests an increase in tension, with a force acting perpendicular to the surface of the epicardium. Although the developing epicardium and the blood flowing through the heart are separated by the endocardium and myocardium, the data presented here demonstrate that altering the blood flow affects the structure and molecular expression of the epicardial layer. Due to the intrinsic role the epicardium in cardiogenesis, defects in epicardial formation could have a role in the formation of a wide range of congenital heart defects.
Collapse
Affiliation(s)
- Chrysostomos Perdios
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Wittig JG, Billmeier M, Lozano-Velasco E, García MR, Münsterberg AE. Cardiac injections of AntagomiRs as a novel tool for knockdown of miRNAs during heart development. Dev Biol 2018; 445:163-169. [PMID: 30496744 DOI: 10.1016/j.ydbio.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Studying microRNA networks during heart development is essential to obtain a better understanding of developmental defects and diseases associated with the heart and to identify novel opportunities for therapeutics. Here we highlight the advantages of chicken embryos as a vertebrate model for studying intermediate processes of heart development. Avians develop a four-chambered heart closely resembling human anatomy and they develop ex utero, which makes them easily accessible. Furthermore, embryos are available all year with a steady supply. RESULTS In this report we established a novel method for the knockdown of microRNA function by microinjecting AntagomiRs into the chicken heart in ovo. Our approach enables the targeted delivery of antagomirs into a locally restricted area and is not impacted by circulation. After further embryo development the successful miRNA knockdown was confirmed. Loss of function phenotypes can be evaluated rapidly, compared to more time-consuming genetic ablation experiments. The local application avoids potential systemic effects of microRNA knockdown, therefore allowing the assessment of impacts on heart development only. The method can be adjusted for different stages of chicken embryos (HH13-HH18) as well as for knockdown or targeted overexpression of coding genes. CONCLUSION In conclusion our method allows targeted and locally restricted delivery of Antagomirs to the heart leading to successful knockdown of microRNA function. This method enables rapid phenotypic assessment, for example by gene expression analysis of multiple cardiac genes.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martina Billmeier
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Estefanía Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Miguel Robles- García
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea E Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
11
|
Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:95-110. [PMID: 29772208 PMCID: PMC6109420 DOI: 10.1016/j.pbiomolbio.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The role of hemodynamics in cardiovascular development is not well understood. Indeed, it would be remarkable if it were, given the dauntingly complex array of intricately synchronized genetic, molecular, mechanical, and environmental factors at play. However, with congenital heart defects affecting around 1 in 100 human births, and numerous studies pointing to hemodynamics as a factor in cardiovascular morphogenesis, this is not an area in which we can afford to remain in the dark. This review seeks to present the case for the importance of research into the biomechanics of the developing cardiovascular system. This is accomplished by i) illustrating the basics of some of the highly complex processes involved in heart development, and discussing the known influence of hemodynamics on those processes; ii) demonstrating how altered hemodynamic environments have the potential to bring about morphological anomalies, citing studies in multiple animal models with a variety of perturbation methods; iii) providing examples of widely used technological innovations which allow for accurate measurement of hemodynamic parameters in embryos; iv) detailing the results of studies in avian embryos which point to exciting correlations between various hemodynamic manipulations in early development and phenotypic defect incidence in mature hearts; and finally, v) stressing the relevance of uncovering specific biomechanical pathways involved in cardiovascular formation and remodeling under adverse conditions, to the potential treatment of human patients. The time is ripe to unravel the contributions of hemodynamics to cardiac development, and to recognize their frequently neglected role in the occurrence of heart malformation phenotypes.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Graham Rykiel
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA.
| |
Collapse
|
12
|
Pan Q, Wang R, Reglin B, Fang L, Yan J, Cai G, Kuebler WM, Pries AR, Ning G. Pulse wave velocity in the microcirculation reflects both vascular compliance and resistance: Insights from computational approaches. Microcirculation 2018; 25:e12458. [PMID: 29729094 DOI: 10.1111/micc.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/26/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE PWV is the speed of pulse wave propagation through the circulatory system. mPWV emerges as a novel indicator of hypertension, yet it remains unclear how different vascular properties affect mPWV. We aim to identify the biomechanical determinants of mPWV. METHODS A 1D model was used to simulate PWV in a rat mesenteric microvascular network and, for comparison, in a human macrovascular arterial network. Sensitivity analysis was performed to assess the relationship between PWV and vascular compliance and resistance. RESULTS The 1D model enabled adequate simulation of PWV in both micro- and macrovascular networks. Simulated arterial PWV changed as a function of vascular compliance but not resistance, in that arterial PWV varied at a rate of 0.30 m/s and -6.18 × 10-3 m/s per 10% increase in vascular compliance and resistance, respectively. In contrast, mPWV depended on both vascular compliance and resistance, as it varied at a rate of 2.79 and -2.64 cm/s per 10% increase in the respective parameters. CONCLUSIONS The present study identifies vascular compliance and resistance in microvascular networks as critical determinants of mPWV. We anticipate that mPWV can be utilized as an effective indicator for the assessment of microvascular biomechanical properties.
Collapse
Affiliation(s)
- Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruofan Wang
- Key Laboratory of Biomedical Engineering of MOE, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Bettina Reglin
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Luping Fang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Yan
- Department of ICU, Zhejiang Hospital, Hangzhou, China
| | - Guolong Cai
- Department of ICU, Zhejiang Hospital, Hangzhou, China
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Axel R Pries
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Gangmin Ning
- Key Laboratory of Biomedical Engineering of MOE, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Rennie MY, Stovall S, Carson JP, Danilchik M, Thornburg KL, Rugonyi S. Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract. J Cardiovasc Dev Dis 2017; 4:jcdd4040024. [PMID: 29367553 PMCID: PMC5753125 DOI: 10.3390/jcdd4040024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15–60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload.
Collapse
Affiliation(s)
- Monique Y Rennie
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Stephanie Stovall
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - James P Carson
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758, USA.
| | - Michael Danilchik
- Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Kent L Thornburg
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium. Front Physiol 2017; 8:631. [PMID: 28912723 PMCID: PMC5582297 DOI: 10.3389/fphys.2017.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease (CHD). However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages). 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS). Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States.,Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science UniversityPortland, OR, United States
| | - Larry David
- Proteomics Core, Oregon Health & Science UniversityPortland, OR, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, United States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| |
Collapse
|
15
|
Ho S, Tan GXY, Foo TJ, Phan-Thien N, Yap CH. Organ Dynamics and Fluid Dynamics of the HH25 Chick Embryonic Cardiac Ventricle as Revealed by a Novel 4D High-Frequency Ultrasound Imaging Technique and Computational Flow Simulations. Ann Biomed Eng 2017; 45:2309-2323. [PMID: 28744840 DOI: 10.1007/s10439-017-1882-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Past literature has provided evidence that a normal mechanical force environment of blood flow may guide normal development while an abnormal environment can lead to congenital malformations, thus warranting further studies on embryonic cardiovascular flow dynamics. In the current study, we developed a non-invasive 4D high-frequency ultrasound technique, and use it to analyze cardiovascular organ dynamics and flow dynamics. Three chick embryos at stage HH25 were scanned with high frequency ultrasound in cine-B-mode at multiple planes spaced at 0.05 mm. 4D images of the heart and nearby arteries were generated via temporal and spatial correlation coupled with quadratic mean ensemble averaging. Dynamic mesh CFD was performed to understand the flow dynamics in the ventricle of the 2 hearts. Our imaging technique has sufficiently high resolution to enable organ dynamics quantification and CFD. Fine structures such as the aortic arches and details such as the cyclic distension of the carotid arteries were captured. The outflow tract completely collapsed during ventricular diastole, possible serving the function of a valve to prevent regurgitation. CFD showed that ventricular wall shear stress (WSS) were in the range of 0.1-0.5 Pa, and that the left side of the common ventricle experienced lower WSS than the right side. The pressure gradient from the inlet to the outlet of the ventricle was positive over most of the cardiac cycle, and minimal regurgitation flow was observed, despite the absence of heart valves. We developed a new image-based CFD method to elucidate cardiac organ dynamics and flow dynamics of embryonic hearts. The embryonic heart appeared to be optimized to generate net forward flow despite the absence of valves, and the WSS environment appeared to be side-specific.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Germaine Xin Yi Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Toon Jin Foo
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Pang KL, Parnall M, Loughna S. Effect of altered haemodynamics on the developing mitral valve in chick embryonic heart. J Mol Cell Cardiol 2017; 108:114-126. [PMID: 28576718 PMCID: PMC5529288 DOI: 10.1016/j.yjmcc.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 12/31/2022]
Abstract
Intracardiac haemodynamics is crucial for normal cardiogenesis, with recent evidence showing valvulogenesis is haemodynamically dependent and inextricably linked with shear stress. Although valve anomalies have been associated with genetic mutations, often the cause is unknown. However, altered haemodynamics have been suggested as a pathogenic contributor to bicuspid aortic valve disease. Conversely, how abnormal haemodynamics impacts mitral valve development is still poorly understood. In order to analyse altered blood flow, the outflow tract of the chick heart was constricted using a ligature to increase cardiac pressure overload. Outflow tract-banding was performed at HH21, with harvesting at crucial valve development stages (HH26, HH29 and HH35). Although normal valve morphology was found in HH26 outflow tract banded hearts, smaller and dysmorphic mitral valve primordia were seen upon altered haemodynamics in histological and stereological analysis at HH29 and HH35. A decrease in apoptosis, and aberrant expression of a shear stress responsive gene and extracellular matrix markers in the endocardial cushions were seen in the chick HH29 outflow tract banded hearts. In addition, dysregulation of extracellular matrix (ECM) proteins fibrillin-2, type III collagen and tenascin were further demonstrated in more mature primordial mitral valve leaflets at HH35, with a concomitant decrease of ECM cross-linking enzyme, transglutaminase-2. These data provide compelling evidence that normal haemodynamics are a prerequisite for normal mitral valve morphogenesis, and abnormal blood flow could be a contributing factor in mitral valve defects, with differentiation as a possible underlying mechanism.
Collapse
Affiliation(s)
- Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
17
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition. Front Physiol 2017; 8:56. [PMID: 28228731 PMCID: PMC5296359 DOI: 10.3389/fphys.2017.00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial-mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial-mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial-mesenchymal transition. Outflow tract banding enhances the endothelial-mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial-mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Claudia S López
- Biomedical Engineering, Oregon Health and Science UniversityPortland, OR, USA; Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science UniversityPortland, OR, USA
| | - Larry David
- Proteomics Core, Oregon Health and Science University Portland, OR, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
18
|
Midgett M, Thornburg K, Rugonyi S. Blood flow patterns underlie developmental heart defects. Am J Physiol Heart Circ Physiol 2017; 312:H632-H642. [PMID: 28062416 DOI: 10.1152/ajpheart.00641.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023]
Abstract
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and
| | - Kent Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sandra Rugonyi
- Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and .,Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Stovall S, Midgett M, Thornburg K, Rugonyi S. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:116003. [PMID: 27812694 PMCID: PMC5795889 DOI: 10.1117/1.jbo.21.11.116003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
Abnormal blood flow during early cardiovascular development has been identified as a key factor in the pathogenesis of congenital heart disease; however, the mechanisms by which altered hemodynamics induce cardiac malformations are poorly understood. This study used outflow tract (OFT) banding to model increased afterload, pressure, and blood flow velocities at tubular stages of heart development and characterized the immediate changes in cardiac wall motion due to banding in chicken embryo models with light microscopy-based video densitometry. Optical videos were used to acquire two-dimensional heart image sequences over the cardiac cycle, from which intensity data were extracted along the heart centerline at several locations in the heart ventricle and OFT. While no changes were observed in the synchronous contraction of the ventricle with banding, the peristaltic-like wall motion in the OFT was significantly affected. Our data provide valuable insight into early cardiac biomechanics and its characterization using a simple light microscopy-based imaging modality.
Collapse
Affiliation(s)
- Stephanie Stovall
- Oregon Health and Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
| | - Madeline Midgett
- Oregon Health and Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
| | - Kent Thornburg
- Oregon Health and Science University, Center for Developmental Health, Knight Cardiovascular Institute, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
| | - Sandra Rugonyi
- Oregon Health and Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
- Oregon Health and Science University, Center for Developmental Health, Knight Cardiovascular Institute, 3303 SW Bond Avenue, Mail Code CH13B, Portland, Oregon 97239, United States
- Address all correspondence to: Sandra Rugonyi, E-mail:
| |
Collapse
|
20
|
Midgett M, Chivukula VK, Dorn C, Wallace S, Rugonyi S. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos. J R Soc Interface 2016; 12:20150652. [PMID: 26468069 DOI: 10.1098/rsif.2015.0652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blood flow is inherently linked to embryonic cardiac development, as haemodynamic forces exerted by flow stimulate mechanotransduction mechanisms that modulate cardiac growth and remodelling. This study evaluated blood flow in the embryonic heart outflow tract (OFT) during normal development at each stage between HH13 and HH18 in chicken embryos, in order to characterize changes in haemodynamic conditions during critical cardiac looping transformations. Two-dimensional optical coherence tomography was used to simultaneously acquire both structural and Doppler flow images, in order to extract blood flow velocity and structural information and estimate haemodynamic measures. From HH13 to HH18, peak blood flow rate increased by 2.4-fold and stroke volume increased by 2.1-fold. Wall shear rate (WSR) and lumen diameter data suggest that changes in blood flow during HH13-HH18 may induce a shear-mediated vasodilation response in the OFT. Embryo-specific four-dimensional computational fluid dynamics modelling at HH13 and HH18 complemented experimental observations and indicated heterogeneous WSR distributions over the OFT. Characterizing changes in haemodynamics during cardiac looping will help us better understand the way normal blood flow impacts proper cardiac development.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Calder Dorn
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Samantha Wallace
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
21
|
Chivukula VK, Goenezen S, Liu A, Rugonyi S. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics. J Cardiovasc Dev Dis 2015; 3. [PMID: 27088080 PMCID: PMC4827265 DOI: 10.3390/jcdd3010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori. In addition to the expected increase in ventricular blood pressure, and increase blood flow velocity and, thus, wall shear stress (WSS) at the band site, the characteristic peristaltic-like motion of the OFT was altered, further affecting flow and WSS. Myocardial contractility, however, was affected only close to the band site due to the physical restriction on wall motion imposed by the band. WSS were heterogeneously distributed in both normal and banded OFTs. Our results show how banding affects cardiac mechanics and can lead, in the future, to a better understanding of mechanisms by which altered blood flow conditions affect cardiac development leading to congenital heart disease.
Collapse
Affiliation(s)
- Venkat Keshav Chivukula
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, USA;
| | - Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA;
| | - Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2145, Madison, WI 53706, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-419-9310; Fax: +1-503-418-9311
| |
Collapse
|
22
|
Goenezen S, Chivukula VK, Midgett M, Phan L, Rugonyi S. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics. Biomech Model Mechanobiol 2015; 15:723-43. [PMID: 26361767 DOI: 10.1007/s10237-015-0720-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/10/2023]
Abstract
Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Madeline Midgett
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ly Phan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
23
|
Menon V, Eberth JF, Goodwin RL, Potts JD. Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development. J Cardiovasc Dev Dis 2015; 2:108-124. [PMID: 26878022 PMCID: PMC4751060 DOI: 10.3390/jcdd2020108] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiac valve structure and function are primarily determined during early development. Consequently, abnormally-formed heart valves are the most common type of congenital heart defects. Several adult valve diseases can be backtracked to abnormal valve development, making it imperative to completely understand the process and regulation of heart valve development. Epithelial-to-mesenchymal transition (EMT) plays an important role in the development of heart valves. Though hemodynamics is vital to valve development, its role in regulating EMT is still unknown. In this study, intracardiac hemodynamics were altered by constricting the outflow tract (OFT)/ventricle junction (OVJ) of HH16–17 (Hamilton and Hamburger (HH) Stage 16–17) chicken embryos, ex ovo for 24 h. The constriction created an increase in peak and time-averaged centerline velocity along the OFT without changes to volumetric flow or heart rate. Computational fluid dynamics was used to estimate the level of increased spatially-averaged wall shear stresses on the OFT cushion from AMIRA reconstructions. OFT constriction led to a significant decrease in OFT cushion volume and the number of invaded mesenchyme in the OFT cushion. qPCR analysis revealed altered mRNA expression of a representative panel of genes, vital to valve development, in the OFT cushions from banded hearts. This study indicates the importance of hemodynamics in valve development.
Collapse
Affiliation(s)
- Vinal Menon
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; E-Mails: (V.M.); (J.F.E.)
| | - John F. Eberth
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; E-Mails: (V.M.); (J.F.E.)
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Richard L. Goodwin
- Biomedical Sciences, School of Medicine, University of South Carolina, Greenville, SC 29605, USA; E-Mail:
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; E-Mails: (V.M.); (J.F.E.)
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-803-216-3820; Fax: +1-803-216-3846
| |
Collapse
|
24
|
Midgett M, Goenezen S, Rugonyi S. Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos. J R Soc Interface 2015; 11:20140643. [PMID: 25165602 DOI: 10.1098/rsif.2014.0643] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Altered blood flow during embryonic development has been shown to cause cardiac defects; however, the mechanisms by which the resulting haemodynamic forces trigger heart malformation are unclear. This study used heart outflow tract banding to alter normal haemodynamics in a chick embryo model at HH18 and characterized the immediate blood flow response versus the degree of band tightness. Optical coherence tomography was used to acquire two-dimensional longitudinal structure and Doppler velocity images from control (n = 16) and banded (n = 25, 6-64% measured band tightness) embryos, from which structural and velocity data were extracted to estimate haemodynamic measures. Peak blood flow velocity and wall shear rate (WSR) initially increased linearly with band tightness (p < 0.01), but then velocity plateaued between 40% and 50% band tightness and started to decrease with constriction greater than 50%, whereas WSR continued to increase up to 60% constriction before it began decreasing with increased band tightness. Time of flow decreased with constriction greater than 20% (p < 0.01), while stroke volume in banded embryos remained comparable to control levels over the entire range of constriction (p > 0.1). The haemodynamic dependence on the degree of banding reveals immediate adaptations of the early embryonic cardiovascular system and could help elucidate a range of cardiac adaptations to gradually increased load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University, 3303 SW Bond Avenue, CHH 13B, Portland, OR 97239, USA
| | - Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University, 3303 SW Bond Avenue, CHH 13B, Portland, OR 97239, USA
| |
Collapse
|
25
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 PMCID: PMC4117980 DOI: 10.3389/fphys.2014.00287] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
26
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 DOI: 10.3389/fphys.2014.00287/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
27
|
Thornburg KL, Challis JR. How to build a healthy heart from scratch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:205-16. [PMID: 25015813 PMCID: PMC7556319 DOI: 10.1007/978-1-4939-1031-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By any of several measures, the health of the American population has been worsening over the last two decades. Obesity, type 2 diabetes and heart failure have risen dramatically. All the while, the average birthweight at all gestational ages has declined. The relationship between robust growth in the womb and lifelong health is now well established. Likewise, babies born at the low end of the birthweight scale are known to have highly elevated risks for ischemic heart disease, hypertension, stroke and metabolic disease. The biological mechanisms by which developmental plasticity becomes a risk for cardiovascular disease are only now being understood. Translating from animal and human studies, low birthweight babies are likely to have endothelial dysfunction, fewer nephrons, fewer pancreatic beta cells, less vascular elastin, fewer cardiomyocytes, increased sympathetic tone and liver-derived dyslipidemias. Only in the past few years, however, has it become known that maternal and placenta phenotypes are associated with adult onset cardiovascular disease. Helsinki Birth Cohort studies have been especially important in the discovery of these relationships. Sudden cardiac death is associated with a thin placenta and heart failure is associated with a small placenta in short mothers. Coronary heart disease is associated with three combinations of maternal-placental phenotypes. Because the diet is important in providing nutrients for the development of the female body before pregnancy and for providing nutrients during pregnancy, there is increasing evidence that the western diet is an underlying cause for the increase in metabolic disease in the American population. A large segment of the American population suffers from high calorie malnutrition. Scientists in this field now have a responsibility to educate the public on the topic of nutrition and health. This chapter honors Lawrence Longo for decades of work in bringing health to pregnant women and their babies.
Collapse
Affiliation(s)
- Kent L.R. Thornburg
- Oregon Health and Science University, Dept. of Medicine, Knight Cardiovascular Institute & Moore Institute for Nutrition and Wellness
| | - John R.G. Challis
- University of Toronto, Dept. of Obstetrics and Gynecology and Physiology, Simon Fraser University, Faculty of Health Sciences and Dept. of Obstetrics and Gynecology, University of Western Australia
| |
Collapse
|
28
|
Jones CM, Baker-Groberg SM, Cianchetti FA, Glynn JJ, Healy LD, Lam WY, Nelson JW, Parrish DC, Phillips KG, Scott-Drechsel DE, Tagge IJ, Zelaya JE, Hinds MT, McCarty OJT. Measurement science in the circulatory system. Cell Mol Bioeng 2013; 7:1-14. [PMID: 24563678 DOI: 10.1007/s12195-013-0317-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dynamics of the cellular and molecular constituents of the circulatory system are regulated by the biophysical properties of the heart, vasculature and blood cells and proteins. In this review, we discuss measurement techniques that have been developed to characterize the physical and mechanical parameters of the circulatory system across length scales ranging from the tissue scale (centimeter) to the molecular scale (nanometer) and time scales of years to milliseconds. We compare the utility of measurement techniques as a function of spatial resolution and penetration depth from both a diagnostic and research perspective. Together, this review provides an overview of the utility of measurement science techniques to study the spatial systems of the circulatory system in health and disease.
Collapse
Affiliation(s)
- Casey M Jones
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Department of Chemistry, Lewis & Clark College, Portland OR
| | | | - Flor A Cianchetti
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Laura D Healy
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland OR
| | - Wai Yan Lam
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Jonathan W Nelson
- Division of Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland OR
| | - Diana C Parrish
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland OR
| | - Kevin G Phillips
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | | | - Ian J Tagge
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Advanced Imaging Research Center, Oregon Health & Science University, Portland OR
| | - Jaime E Zelaya
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Department of Cell & Developmental Biology, Oregon Health & Science University, Portland OR ; Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland OR
| |
Collapse
|