1
|
de Oliveira AA, Spaans F, Graton ME, Stokes A, Kirschenman R, Quon A, Cooke CLM, Davidge ST. Aspirin Improves Uterine Artery Function in Hypercholesterolemic Preeclampsia. Hypertension 2025. [PMID: 39936305 DOI: 10.1161/hypertensionaha.124.24435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Excessive hypercholesterolemia in pregnancy increases the risk of preeclampsia, though the mechanisms remain unclear. We recently showed that uterine artery function is impaired in hypercholesterolemia-preeclampsia via activation of the TLR4 (toll-like receptor 4)/PGHS1 (prostaglandin H synthase 1) pathway. Low-dose aspirin lowers preeclampsia risk in high-risk pregnancies by inhibiting PGHS1, but its effects in hypercholesterolemia-preeclampsia pregnancies are not known. Moreover, oxidized low-density lipoprotein levels rise in hypercholesterolemia-preeclampsia, potentially activating TLR4 and LOX-1 (lectin-like oxLDL receptor-1; scavenger receptor linked to vascular dysfunction in preeclampsia). However, whether this occurs in hypercholesterolemia-preeclampsia is not known. METHODS Sprague Dawley rats received a control or high-cholesterol diet (to induce hypercholesterolemia-preeclampsia) from gestational day 6 to 20, with placebo or low-dose aspirin (1.5 mg/daily) given from gestational day 10 to 20. On gestational day 20, pregnancy outcomes and uterine artery function were assessed. RESULTS Uterine artery blood flow velocity and placental weights were higher in hypercholesterolemia-preeclampsia placebo-treated dams versus controls, but these were reduced by low-dose aspirin. Endothelium-dependent vasodilation was impaired in the uterine arteries of the hypercholesterolemia-preeclampsia placebo group versus controls and was corrected by low-dose aspirin. Ex vivo inhibition of TLR4, PGHS1, or LOX-1 also normalized endothelium-dependent vasodilation in the hypercholesterolemia-preeclampsia placebo-treated dams. Exposure to oxidized low-density lipoprotein in the bath (modeling a secondary hit) further impaired endothelium-dependent vasodilation in the uterine arteries of the hypercholesterolemia-preeclampsia placebo group, partially via TLR4 and LOX-1, which was prevented by low-dose aspirin. CONCLUSIONS Low-dose aspirin improved uterine artery endothelial function in hypercholesterolemia-preeclampsia pregnancies; likely by suppressing the TLR4/LOX-1/PGHS1 pathway.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Murilo E Graton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Angie Stokes
- Department of Biological Sciences, University of Alberta, Edmonton, Canada. (A.S.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., R.K., A.Q., C.-L.M.C., S.T.D.)
- Department of Physiology, University of Alberta, Edmonton, Canada. (S.T.D.)
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada. (A.A.d.O., F.S., M.E.G., A.S., R.K., A.Q., C.-L.M.C., S.T.D.)
| |
Collapse
|
2
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
3
|
Nagase T, Nagase M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 2024; 47:2786-2799. [PMID: 39103520 DOI: 10.1038/s41440-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.
Collapse
Affiliation(s)
- Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Konishi T, Kamiyama K, Osato T, Yoshimoto T, Aoki T, Anzai T, Tanaka S. Increased Piezo1 expression in myofibroblasts in patients with symptomatic carotid atherosclerotic plaques undergoing carotid endarterectomy: A pilot study. Vascular 2024; 32:1063-1069. [PMID: 37499697 DOI: 10.1177/17085381231192380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVES We aimed to investigate Piezo1 expression in myofibroblasts in symptomatic and asymptomatic patients undergoing carotid endarterectomy and its relationship with atherosclerotic plaque formation. METHODS This cross-sectional study analyzed carotid plaques of 17 randomly selected patients who underwent carotid endarterectomy from May 2015 to August 2017. In total, 51 sections (the most stenotic lesion, and the sections 5-mm proximal and distal) stained with hematoxylin-eosin and elastica-Masson were examined. Immunohistochemistry was performed using antibodies to Piezo1. The Piezo1 score of a section was calculated semiquantitatively, averaged across 30 randomly selected myofibroblasts in the fibrous cap of the plaque. RESULTS Of 17 patients (mean age: 74.2 ± 7.1 years), 15 were men, 9 had diabetes mellitus, and 13 had hypertension. Symptomatic patients had higher mean Piezo1 score than asymptomatic patients (1.78 ± 0.23 vs 1.34 ± 0.17, p < .001). Univariate linear regression analyses suggested an association between plaque rupture, thin-cap fibroatheroma and microcalcifications and the Piezo1 score (p = .001, .008, and 0.003, respectively). CONCLUSIONS Increased Piezo1 expression of myofibroblasts may be associated with atherosclerotic carotid plaque instability. Further study is warranted to support this finding.
Collapse
Affiliation(s)
- Takao Konishi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Kamiyama
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Toshiaki Osato
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Tetsuyuki Yoshimoto
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Takeshi Aoki
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Nicolas N, de Tilly A, Roux E. Blood shear stress during the cardiac cycle and endothelial cell orientation and polarity in the carotid artery of male and female mice. Front Physiol 2024; 15:1386151. [PMID: 39072218 PMCID: PMC11272658 DOI: 10.3389/fphys.2024.1386151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction: Blood flow produces fluid shear stress (SS), a frictional force parallel to the blood flow, on the endothelial cell (EC) layer of the lumen of the vessels. ECs themselves are sensitive to this frictional force in terms of directionality and intensity. The aim of this study was to determine the physiological shear stress value during the cardiac cycle and EC polarity and orientation from blood flow in healthy male and female mouse carotid artery. Methods: Experimentation is done on anesthetized male and female 8-week-old C5BL/6J mice. In vivo measurements of maximum blood velocity and vessel diameter in diastole and systole were performed on the right common carotid artery by Doppler ultrasound imaging. Blood viscosity (total and plasmatic) and hematocrit were determined on blood samples. For SS calculation, we developed a new method assuming heterogenous blood flow, i.e., a red cell central plug flow surrounded by a peripheral plasma sheath flow, and computing SS from vessel diameter and hemodynamical measurements (maximal blood velocity, hematocrit and plasmatic viscosity). Results: Results were compared with the classical method assuming a homogenous blood flow with constant apparent total blood viscosity. EC polarity and orientation were determined ex vivo on the carotid endothelium by confocal imaging after labeling of the EC nucleus and Golgi apparatus. Diastolic and systolic SS were 6 ± 2.5 Pa and 30 ± 6.5 Pa, respectively. Total blood and plasmatic viscosity was 4 ± 0.5 cP and 1.27 cP, respectively. ECs were polarized and significantly oriented against blood flow. No sex difference was identified.
Collapse
Affiliation(s)
- Nabil Nicolas
- Biologie des Maladies Cardiovasculaires, INSERM, U1034, University of Bordeaux, Pessac, France
| | | | - Etienne Roux
- Biologie des Maladies Cardiovasculaires, INSERM, U1034, University of Bordeaux, Pessac, France
| |
Collapse
|
6
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
7
|
Asunción-Alvarez D, Palacios J, Ybañez-Julca RO, Rodriguez-Silva CN, Nwokocha C, Cifuentes F, Greensmith DJ. Calcium signaling in endothelial and vascular smooth muscle cells: sex differences and the influence of estrogens and androgens. Am J Physiol Heart Circ Physiol 2024; 326:H950-H970. [PMID: 38334967 DOI: 10.1152/ajpheart.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.
Collapse
Affiliation(s)
- Daniel Asunción-Alvarez
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Roberto O Ybañez-Julca
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Cristhian N Rodriguez-Silva
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Kingston, Jamaica
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EphyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - David J Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, The University of Salford, Salford, United Kingdom
| |
Collapse
|
8
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Qi Y, Chang SS, Wang Y, Chen C, Baek KI, Hsiai T, Roper M. Hemodynamic regulation allows stable growth of microvascular networks. Proc Natl Acad Sci U S A 2024; 121:e2310993121. [PMID: 38386707 PMCID: PMC10907248 DOI: 10.1073/pnas.2310993121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation purely based on average shear stress have not been able to produce complex loopy networks that resemble real microvascular systems. For narrow vessels where red blood cells travel in a single file, the shear stress on vessel endothelium peaks sharply when a red blood cell passes through. We show that stable shear-stress-based adaptation is possible if vessel shear stress set points are cued to the stress peaks. Model networks that respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk microcirculation, including its adaptive trajectory when hematocrit changes or parts of the network are amputated. Our work reveals the potential for mechanotransduction alone to generate stable hydraulically tuned microvascular networks.
Collapse
Affiliation(s)
- Yujia Qi
- Department of Mechanical Engineering, University of California, Los Angeles, CA90095
| | - Shyr-Shea Chang
- Department of Mathematics, University of California, Los Angeles, CA90095
| | - Yixuan Wang
- Department of Mathematics, University of California, Los Angeles, CA90095
| | - Cynthia Chen
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Marcus Roper
- Department of Mathematics, University of California, Los Angeles, CA90095
- Department of Computational Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
10
|
Lim XR, Harraz OF. Mechanosensing by Vascular Endothelium. Annu Rev Physiol 2024; 86:71-97. [PMID: 37863105 PMCID: PMC10922104 DOI: 10.1146/annurev-physiol-042022-030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
11
|
Katoh K. Effects of Mechanical Stress on Endothelial Cells In Situ and In Vitro. Int J Mol Sci 2023; 24:16518. [PMID: 38003708 PMCID: PMC10671803 DOI: 10.3390/ijms242216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Endothelial cells lining blood vessels are essential for maintaining vascular homeostasis and mediate several pathological and physiological processes. Mechanical stresses generated by blood flow and other biomechanical factors significantly affect endothelial cell activity. Here, we review how mechanical stresses, both in situ and in vitro, affect endothelial cells. We review the basic principles underlying the cellular response to mechanical stresses. We also consider the implications of these findings for understanding the mechanisms of mechanotransducer and mechano-signal transduction systems by cytoskeletal components.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
12
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
13
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
14
|
Savadipour A, Nims RJ, Rashidi N, Garcia-Castorena JM, Tang R, Marushack GK, Oswald SJ, Liedtke WB, Guilak F. Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes. Proc Natl Acad Sci U S A 2023; 120:e2221958120. [PMID: 37459546 PMCID: PMC10372640 DOI: 10.1073/pnas.2221958120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Osteoarthritis is a chronic disease that can be initiated by altered joint loading or injury of the cartilage. The mechanically sensitive PIEZO ion channels have been shown to transduce injurious levels of biomechanical strain in articular chondrocytes and mediate cell death. However, the mechanisms of channel gating in response to high cellular deformation and the strain thresholds for activating PIEZO channels remain unclear. We coupled studies of single-cell compression using atomic force microscopy (AFM) with finite element modeling (FEM) to identify the biophysical mechanisms of PIEZO-mediated calcium (Ca2+) signaling in chondrocytes. We showed that PIEZO1 and PIEZO2 are needed for initiating Ca2+ signaling at moderately high levels of cellular deformation, but at the highest strains, PIEZO1 functions independently of PIEZO2. Biophysical factors that increase apparent chondrocyte membrane tension, including hypoosmotic prestrain, high compression magnitudes, and low deformation rates, also increased PIEZO1-driven Ca2+ signaling. Combined AFM/FEM studies showed that 50% of chondrocytes exhibit Ca2+ signaling at 80 to 85% nominal cell compression, corresponding to a threshold of apparent membrane finite principal strain of E = 1.31, which represents a membrane stretch ratio (λ) of 1.9. Both intracellular and extracellular Ca2+ are necessary for the PIEZO1-mediated Ca2+ signaling response to compression. Our results suggest that PIEZO1-induced signaling drives chondrocyte mechanical injury due to high membrane tension, and this threshold can be altered by factors that influence membrane prestress, such as cartilage hypoosmolarity, secondary to proteoglycan loss. These findings suggest that modulating PIEZO1 activation or downstream signaling may offer avenues for the prevention or treatment of osteoarthritis.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Robert J. Nims
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Jaquelin M. Garcia-Castorena
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
- Division of Biology and Biomedical Sciences, Biochemistry, Biophysics, and Structural Biology Program, Washington University in St. Louis, St. Louis, MO63110
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Gabrielle K. Marushack
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Wolfgang B. Liedtke
- Department of Neurology, Duke University, Durham, NC27705
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY10010
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO63110
- Shriners Hospitals for Children – St. Louis, St. Louis, MO63110
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO63110
- Division of Biology and Biomedical Sciences, Biochemistry, Biophysics, and Structural Biology Program, Washington University in St. Louis, St. Louis, MO63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63110
| |
Collapse
|
15
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Arishe OO, McKenzie J, Dela Justina V, Dos Anjos Moraes R, Webb RC, Priviero F. Piezo1 channels mediate vasorelaxation of uterine arteries from pseudopregnant rats. Front Physiol 2023; 14:1140989. [PMID: 37324378 PMCID: PMC10267476 DOI: 10.3389/fphys.2023.1140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy. Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS). Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent. Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.
Collapse
Affiliation(s)
- Olufunke O. Arishe
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Jaine McKenzie
- Department of General Surgery, Vanderbilt University, Nashville, TN, United States
| | - Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Goias, Brazil
| | - Raiana Dos Anjos Moraes
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, MO, United States
| | - Fernanda Priviero
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, MO, United States
| |
Collapse
|
17
|
Barnett SD, Asif H, Buxton ILO. Novel identification and modulation of the mechanosensitive Piezo1 channel in human myometrium. J Physiol 2023; 601:1675-1690. [PMID: 35941750 PMCID: PMC9905381 DOI: 10.1113/jp283299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
Approximately 10% of US births deliver preterm before 37 weeks of completed gestation. Premature infants are at risk for life-long debilitating morbidities and death, and spontaneous preterm labour explains 50% of preterm births. In all cases existing treatments are ineffective, and none are FDA approved. The mechanisms that initiate preterm labour are not well understood but may result from dysfunctional regulation of quiescence mechanisms. Human pregnancy is accompanied by large increases in blood flow, and the uterus must enlarge by orders of magnitude to accommodate the growing fetus. This mechanical strain suggests that stretch-activated channels may constitute a mechanism to explain gestational quiescence. Here we identify for the first time that Piezo1, a mechanosensitive cation channel, is present in the uterine smooth muscle and microvascular endothelium of pregnant myometrium. Piezo is downregulated during preterm labour, and stimulation of myometrial Piezo1 in an organ bath with the agonist Yoda1 relaxes the tissue in a dose-dependent fashion. Further, stimulation of Piezo1 while inhibiting protein kinase A, AKT, or endothelial nitric oxide synthase mutes the negative inotropic effects of Piezo1 activation, intimating that actions on the myocyte and endothelial nitric oxide signalling contribute to Piezo1-mediated contractile dynamics. Taken together, these data highlight the importance of stretch-activated channels in pregnancy maintenance and parturition, and identify Piezo1 as a tocolytic target of interest. KEY POINTS: Spontaneous preterm labour is a serious obstetric dilemma without a known cause or effective treatments. Piezo1 is a stretch-activated channel important to muscle contractile dynamics. Piezo1 is present in the myometrium and is dysregulated in women who experience preterm labour. Activation of Piezo1 by the agonist Yoda1 relaxes the myometrium in a dose-dependent fashion, indicating that Piezo1 modulation may have therapeutic benefits to treat preterm labour.
Collapse
Affiliation(s)
- Scott D Barnett
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Hazik Asif
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Iain L O Buxton
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
18
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
19
|
Dela Justina V, de Freitas RA, Arishe OO, Giachini FR, Webb RC, Priviero F. Piezo1 activation induces relaxation of the pudendal artery and corpus cavernosum. Front Physiol 2023; 14:998951. [PMID: 36846322 PMCID: PMC9950814 DOI: 10.3389/fphys.2023.998951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Piezo1 channel is a sensor for shear-stress in the vasculature. Piezo1 activation induces vasodilation, and its deficiency contributes to vascular disorders, such as hypertension. In this study, we aimed to determine whether Piezo1 channel has a functional role in the dilation of pudendal arteries and corpus cavernosum (CC). For this, male Wistar rats were used, and the relaxation of the pudendal artery and CC was obtained using the Piezo1 activator, Yoda1, in the presence and absence of Dooku (Yoda1 antagonist), GsMTx4 (non-selective mechanosensory channel inhibitor) and L-NAME (nitric oxide synthase inhibitor). In the CC, Yoda1 was also tested in the presence of indomethacin (non-selective COX inhibitor) and tetraethylammonium (TEA, non-selective potassium channel inhibitor). The expression of Piezo1 was confirmed by Western blotting. Our data show that Piezo1 activation leads to the relaxation of the pudendal artery and CC as the chemical activator of Piezo1, Yoda1, relaxed the pudendal artery (47%) and CC (41%). This response was impaired by L-NAME and abolished by Dooku and GsMTx4 in the pudendal artery only. Indomethacin and TEA did not affect the relaxation induced by Yoda1 in the CC. Limited tools to explore this channel prevent further investigation of its underlying mechanisms of action. In conclusion, our data demonstrate that Piezo1 is expressed and induced the relaxation of the pudendal artery and CC. Further studies are necessary to determine its role in penile erection and if erectile dysfunction is associated with Piezo1 deficiency.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Goias, Brazil
| | - Raiany Alves de Freitas
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Goias, Brazil
| | - Olufunke O. Arishe
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States,Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Goias, Brazil,Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States,Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Fernanda Priviero
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States,Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States,*Correspondence: Fernanda Priviero,
| |
Collapse
|
20
|
Dela Justina V, Dos Passos Júnior RR, Lima VV, Giachini FR. Evidence of Nitric Oxide Impairment During Hypertensive Pregnancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:99-125. [PMID: 37466771 DOI: 10.1007/978-3-031-32554-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Hypertensive disorders of pregnancy complicate up to 10% of pregnancies worldwide, and they can be classified into (1) gestational hypertension, (2) preeclampsia, (3) chronic hypertension and (4) chronic hypertension with preeclampsia. Nitric oxide (NO) plays an essential role in the haemodynamic adaptations observed during pregnancy. It has been shown that the nitric oxide pathway's dysfunction during pregnancy is associated with placental- and vascular-related diseases such as hypertensive disorders of pregnancy. This review aims to present a brief definition of hypertensive disorders of pregnancy and physiological maternal cardiovascular adaptations during pregnancy. We also detail how NO signalling is altered in the (a) systemic vasculature, (b) uterine artery/spiral arteries, (c) implantation and (d) placenta of hypertensive disorders during pregnancy. We conclude by summarizing the anti-hypertensive therapy of hypertensive disorders of pregnancy as a specific management strategy.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos Júnior
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra do Garcas, Brazil
| | - Victor Vitorino Lima
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra do Garcas, Brazil
| | - Fernanda Regina Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra do Garcas, Brazil
| |
Collapse
|
21
|
Zhao T, Parmisano S, Soroureddin Z, Zhao M, Yung L, Thistlethwaite PA, Makino A, Yuan JXJ. Mechanosensitive cation currents through TRPC6 and Piezo1 channels in human pulmonary arterial endothelial cells. Am J Physiol Cell Physiol 2022; 323:C959-C973. [PMID: 35968892 PMCID: PMC9485000 DOI: 10.1152/ajpcell.00313.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Mechanosensitive cation channels and Ca2+ influx through these channels play an important role in the regulation of endothelial cell functions. Transient receptor potential canonical channel 6 (TRPC6) is a diacylglycerol-sensitive nonselective cation channel that forms receptor-operated Ca2+ channels in a variety of cell types. Piezo1 is a mechanosensitive cation channel activated by membrane stretch and shear stress in lung endothelial cells. In this study, we report that TRPC6 and Piezo1 channels both contribute to membrane stretch-mediated cation currents and Ca2+ influx or increase in cytosolic-free Ca2+ concentration ([Ca2+]cyt) in human pulmonary arterial endothelial cells (PAECs). The membrane stretch-mediated cation currents and increase in [Ca2+]cyt in human PAECs were significantly decreased by GsMTX4, a blocker of Piezo1 channels, and by BI-749327, a selective blocker of TRPC6 channels. Extracellular application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane permeable analog of diacylglycerol, rapidly induced whole cell cation currents and increased [Ca2+]cyt in human PAECs and human embryonic kidney (HEK)-cells transiently transfected with the human TRPC6 gene. Furthermore, membrane stretch with hypo-osmotic or hypotonic solution enhances the cation currents in TRPC6-transfected HEK cells. In HEK cells transfected with the Piezo1 gene, however, OAG had little effect on the cation currents, but membrane stretch significantly enhanced the cation currents. These data indicate that, while both TRPC6 and Piezo1 are involved in generating mechanosensitive cation currents and increases in [Ca2+]cyt in human PAECs undergoing mechanical stimulation, only TRPC6 (but not Piezo1) is sensitive to the second messenger diacylglycerol. Selective blockers of these channels may help develop novel therapies for mechanotransduction-associated pulmonary vascular remodeling in patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| | - Zahra Soroureddin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| | - Lauren Yung
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, California
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| |
Collapse
|
22
|
Xu H, He Y, Hong T, Bi C, Li J, Xia M. Piezo1 in vascular remodeling of atherosclerosis and pulmonary arterial hypertension: A potential therapeutic target. Front Cardiovasc Med 2022; 9:1021540. [PMID: 36247424 PMCID: PMC9557227 DOI: 10.3389/fcvm.2022.1021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular remodeling (VR) is a structural and functional change of blood vessels to adapt to the changes of internal and external environment. It is one of the common pathological features of many vascular proliferative diseases. The process of VR is mainly manifested in the changes of vascular wall structure and function, including intimal hyperplasia, thickening or thinning of media, fibrosis of adventitia, etc. These changes are also the pathological basis of aging and various cardiovascular diseases. Mechanical force is the basis of cardiovascular biomechanics, and the newly discovered mechanical sensitive ion channel Piezo1 is widely distributed in the whole cardiovascular system. Studies have confirmed that Piezo1, a mechanically sensitive ion channel, plays an important role in cardiovascular remodeling diseases. This article reviews the molecular mechanism of Piezo1 in atherosclerosis, hypertension and pulmonary hypertension, in order to provide a theoretical basis for the further study of vascular remodeling.
Collapse
Affiliation(s)
- Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu He
- Cardiovascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Tianying Hong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jing Li
| | - Mingfeng Xia
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Mingfeng Xia
| |
Collapse
|
23
|
Huang J, Zhang K, Du R, Liu W, Zhang H, Tian T, Wang Y, Wang G, Yin T. The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation. Genes Dis 2022. [PMID: 37492728 PMCID: PMC10363580 DOI: 10.1016/j.gendis.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
In recent years, cardiovascular health problems are becoming more and more serious. At the same time, mechanical stimulation closely relates to cardiovascular health. In this context, Piezo1, which is very sensitive to mechanical stimulation, has attracted our attention. Here, we review the critical significance of Piezo1 in mechanical stimulation of endothelial cells, NO production, lipid metabolism, DNA damage protection, the development of new blood vessels and maturation, narrowing of blood vessels, blood pressure regulation, vascular permeability, insulin sensitivity, and maintenance of red blood cell function. Besides, Piezo1 may participate in the occurrence and development of atherosclerosis, diabetes, hypertension, and other cardiovascular diseases. It is worth noting that Piezo1 has dual effects on maintaining cardiovascular health. On the one hand, the function of Piezo1 is necessary to maintain cardiovascular health; on the other hand, under some extreme mechanical stimulation, the overexpression of Piezo1 may bring adverse factors such as inflammation. Therefore, this review discusses the Janus-faced role of Piezo1 in maintaining cardiovascular health and puts forward new ideas to provide references for gene therapy or nanoagents targeting Piezo1.
Collapse
|
24
|
Li X, Hu J, Zhao X, Li J, Chen Y. Piezo channels in the urinary system. Exp Mol Med 2022; 54:697-710. [PMID: 35701561 PMCID: PMC9256749 DOI: 10.1038/s12276-022-00777-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Piezo channel family, including Piezo1 and Piezo2, includes essential mechanosensitive transduction molecules in mammals. Functioning in the conversion of mechanical signals to biological signals to regulate a plethora of physiological processes, Piezo channels, which have a unique homotrimeric three-blade propeller-shaped structure, utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways. Piezo channels have a wide range of biological roles in various human systems, both in vitro and in vivo. Currently, there is a lack of comprehensive understanding of their antagonists and agonists, and therefore further investigation is needed. Remarkably, increasingly compelling evidence demonstrates that Piezo channel function in the urinary system is important. This review article systematically summarizes the existing evidence of the importance of Piezo channels, including protein structure, mechanogating mechanisms, and pharmacological characteristics, with a particular focus on their physiological and pathophysiological roles in the urinary system. Collectively, this review aims to provide a direction for future clinical applications in urinary system diseases.
Collapse
Affiliation(s)
- Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Junwei Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuedan Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Juanjuan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
25
|
Harraz OF, Klug NR, Senatore AJ, Hill-Eubanks DC, Nelson MT. Piezo1 Is a Mechanosensor Channel in Central Nervous System Capillaries. Circ Res 2022; 130:1531-1546. [PMID: 35382561 PMCID: PMC9106929 DOI: 10.1161/circresaha.122.320827] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023]
Abstract
Capillaries are equipped to sense neurovascular coupling agents released onto the outer wall of a capillary, translating these external signals into electrical/Ca2+ changes that play a crucial role in blood flow regulation and ensuring that neuronal demands are met. However, control mechanisms attributable to forces imposed onto the lumen are less clear. Here, we show that Piezo1 channels act as mechanosensors in central nervous system capillaries. Electrophysiological analyses confirmed expression and function of Piezo1 channels in brain cortical and retinal capillaries. Activation of Piezo1 channels evoked currents that were sensitive to endothelial cell-specific Piezo1 deletion. Using genetically encoded Ca2+ indicator mice and an ex vivo pressurized retina preparation, we found that activation of Piezo1 channels by mechanical forces triggered Ca2+ signals in capillary endothelial cells. Collectively, these findings indicate that Piezo1 channels are capillary mechanosensors that initiate crucial Ca2+ signals and could, therefore, have a profound impact on central nervous system blood flow control.
Collapse
Affiliation(s)
- Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Nicholas R. Klug
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Amanda J. Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - David C. Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Mark T. Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, UK
| |
Collapse
|
26
|
Chen J, Rodriguez M, Miao J, Liao J, Jain PP, Zhao M, Zhao T, Babicheva A, Wang Z, Parmisano S, Powers R, Matti M, Paquin C, Soroureddin Z, Shyy JYJ, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2022; 322:L737-L760. [PMID: 35318857 PMCID: PMC9076422 DOI: 10.1152/ajplung.00447.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023] Open
Abstract
Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jinrui Miao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ryan Powers
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Moreen Matti
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Cole Paquin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Zahra Soroureddin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
27
|
Mechanical forces on trophoblast motility and its potential role in spiral artery remodeling during pregnancy. Placenta 2022; 123:46-53. [DOI: 10.1016/j.placenta.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 11/22/2022]
|
28
|
Li H, Zhou WY, Xia YY, Zhang JX. Endothelial Mechanosensors for Atheroprone and Atheroprotective Shear Stress Signals. J Inflamm Res 2022; 15:1771-1783. [PMID: 35300215 PMCID: PMC8923682 DOI: 10.2147/jir.s355158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial cells (ECs), derived from the mesoderm, form a single layer of squamous cells that covers the inner surface of blood vessels. In addition to being regulated by chemical signals from the extracellular matrix (ECM) and blood, ECs are directly confronted to complex hemodynamic environment. These physical inputs are translated into biochemical signals, dictating multiple aspects of cell behaviour and destination, including growth, differentiation, migration, adhesion, death and survival. Mechanosensors are initial responders to changes in mechanical environments, and the overwhelming majority of them are located on the plasma membrane. Physical forces affect plasma membrane fluidity and change of protein complexes on plasma membrane, accompanied by altering intercellular connections, cell-ECM adhesion, deformation of the cytoskeleton, and consequently, transcriptional responses in shaping specific phenotypes. Among the diverse forces exerted on ECs, shear stress (SS), defined as tangential friction force exerted by blood flow, has been extensively studied, from mechanosensing to mechanotransduction, as well as corresponding phenotypes. However, the precise mechanosensors and signalling pathways that determine atheroprone and atheroprotective phenotypes of arteries remain unclear. Moreover, it is worth to mention that some established mechanosensors of atheroprotective SS, endothelial glycocalyx, for example, might be dismantled by atheroprone SS. Therefore, we provide an overview of the current knowledge on mechanosensors in ECs for SS signals. We emphasize how these ECs coordinate or differentially participate in phenotype regulation induced by atheroprone and atheroprotective SS.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Wen-Ying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Correspondence: Jun-Xia Zhang, Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China, Tel +86 15366155682, Email
| |
Collapse
|
29
|
Wang Z, Chen J, Babicheva A, Jain PP, Rodriguez M, Ayon RJ, Ravellette KS, Wu L, Balistrieri F, Tang H, Wu X, Zhao T, Black SM, Desai AA, Garcia JGN, Sun X, Shyy JYJ, Valdez-Jasso D, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C1010-C1027. [PMID: 34669509 PMCID: PMC8714987 DOI: 10.1152/ajpcell.00147.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.
Collapse
Affiliation(s)
- Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ramon J Ayon
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Keeley S Ravellette
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Linda Wu
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Haiyang Tang
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Wu
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Stephen M Black
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ankit A Desai
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Joe G N Garcia
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | | | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
30
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
31
|
Poole K. The Diverse Physiological Functions of Mechanically Activated Ion Channels in Mammals. Annu Rev Physiol 2021; 84:307-329. [PMID: 34637325 DOI: 10.1146/annurev-physiol-060721-100935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact (a) the development of mechanoresponsive structures, (b) acute mechanical sensing, and (c) mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; .,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Fancher IS. Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. CURRENT TOPICS IN MEMBRANES 2021; 87:47-95. [PMID: 34696889 DOI: 10.1016/bs.ctm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.
Collapse
Affiliation(s)
- Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
33
|
Yang Y, Wang D, Zhang C, Yang W, Li C, Gao Z, Pei K, Li Y. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation. Hum Cell 2021; 35:51-62. [PMID: 34606042 DOI: 10.1007/s13577-021-00600-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The vascular endothelium plays a key role in the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell Piezo1 mediates blood vessel formation, angiogenesis and regulation of blood pressure. However, changes of Piezo1 expression in atherosclerosis (AS) and the role of Piezo1 in the progression of atherosclerotic diseases remains obscure. Thus, the current study is to elucidate the role and mechanism of which Piezo1 mediates vascular inflammation in atherosclerotic mice and vascular endothelial inflammation induced by oxidized low density lipoprotein (ox-LDL) in vitro. Here, we have shown that the expression of Piezo1 was significantly increased in the stenotic carotid artery of ApoE-/- mice fed by high-fat diet (HFD). Pharmacological inhibition of Piezo1 (GsMTx-4) attenuated plaque formation, decreased the level of inflammation related factors (JNK, TNF-α, NF-κB, VCAM-1) of carotid plaque in atherosclerotic mice. Meanwhile, ox-LDL also upregulates Piezo1 and inflammation proteins (NF-κB, JNK and TNF-α) in endothelium cells (ECs). YAP/TAZ is activated accompanied by the enhanced Piezo1 activity in ECs induced by ox-LDL. Interference by siRNA of Piezo1 abolished the expression of YAP/TAZ and inflammation proteins (JNK, NF-κB and TNF-α). In addition, Ca2+ influx in ECs induced by ox-LDL was increased than control group, Piezo1 siRNA can reduce the calcium content. Piezo1 agonist Yoda1 increased Ca2+ influx and promote YAP nucleus translocation in ECs, genetic deletion of Piezo1 reversed it. Our results indicate that Piezo1 could mediate endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation and nuclear localization. Piezo1 may be a potential therapeutic target for atherosclerotic diseases in the future.
Collapse
Affiliation(s)
- Ying Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Danyang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chunxiao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Wenqing Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Chao Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Zichen Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Ke Pei
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Yunlun Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China.
| |
Collapse
|
34
|
Barbeau S, Gilbert G, Cardouat G, Baudrimont I, Freund-Michel V, Guibert C, Marthan R, Vacher P, Quignard JF, Ducret T. Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension. Biomolecules 2021; 11:biom11091389. [PMID: 34572602 PMCID: PMC8470538 DOI: 10.3390/biom11091389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
A variety of cell types in pulmonary arteries (endothelial cells, fibroblasts, and smooth muscle cells) are continuously exposed to mechanical stimulations such as shear stress and pulsatile blood pressure, which are altered under conditions of pulmonary hypertension (PH). Most functions of such vascular cells (e.g., contraction, migration, proliferation, production of extracellular matrix proteins, etc.) depend on a key event, i.e., the increase in intracellular calcium concentration ([Ca2+]i) which results from an influx of extracellular Ca2+ and/or a release of intracellular stored Ca2+. Calcium entry from the extracellular space is a major step in the elevation of [Ca2+]i, involving a variety of plasmalemmal Ca2+ channels including the superfamily of stretch-activated channels (SAC). A common characteristic of SAC is that their gating depends on membrane stretch. In general, SAC are non-selective Ca2+-permeable cation channels, including proteins of the TRP (Transient Receptor Potential) and Piezo channel superfamily. As membrane mechano-transducers, SAC convert physical forces into biological signals and hence into a cell response. Consequently, SAC play a major role in pulmonary arterial calcium homeostasis and, thus, appear as potential novel drug targets for a better management of PH.
Collapse
Affiliation(s)
- Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Guillaume Gilbert
- ORPHY, UFR Sciences et Techniques, University of Brest, EA 4324, F-29238 Brest, France;
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
- Correspondence:
| |
Collapse
|
35
|
Khankin EV, Ko NL, Mandalà M, Karumanchi SA, Osol G. Normalization of wall shear stress as a physiological mechanism for regulating maternal uterine artery expansive remodeling during pregnancy. FASEB Bioadv 2021; 3:702-708. [PMID: 34485839 PMCID: PMC8409555 DOI: 10.1096/fba.2021-00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Outward remodeling of the maternal uterine circulation during pregnancy is essential for normal uteroplacental perfusion and pregnancy outcome. The physiological mechanism by which this process is regulated is unknown; we hypothesized that it involved the normalization of wall shear stress (WSS). Pregnant Sprague-Dawley rats underwent unilateral ligation of the main uterine artery and vein at the cervical end of the uterus on gestational day 10, thus restricting inflow/outflow of blood into that uterine horn to a single point at the ovarian end; the contralateral sham-operated side provided an internal control. This procedure alters uterine hemodynamics by increasing WSS, since the entire uterine horn is supplied by one rather than two vessels. Arterial diameter and blood flow velocity values were measured by intravital ultrasonographic pulse-wave Doppler on gestational day 20 and used to calculate WSS. Although both ovarian artery lumen diameter and blood velocity increased, WSS was similar in both horns. These data support the concept that increased WSS secondary to hemochorial placentation is the primary physiological stimulus for uterine vascular remodeling and that its normalization may be the primary mechanism that regulates the extent of arterial circumferential growth required to maintain placental perfusion. We further hypothesize that shallow spiral artery invasion, such as occurs in preeclampsia, limits the increase in upstream shear stress and results in attenuated remodeling and placental under-perfusion.
Collapse
Affiliation(s)
- Eliyahu V. Khankin
- Department of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Vermont Larner College of MedicineBurlingtonVTUSA
| | - Maurizio Mandalà
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Vermont Larner College of MedicineBurlingtonVTUSA
- Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly
| | - S. Ananth Karumanchi
- Department of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - George Osol
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Vermont Larner College of MedicineBurlingtonVTUSA
| |
Collapse
|
36
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
37
|
Dolgorukova A, Isaeva JE, Verbitskaya E, Lyubashina OA, Giniatullin RА, Sokolov AY. Differential effects of the Piezo1 agonist Yoda1 in the trigeminovascular system: An electrophysiological and intravital microscopy study in rats. Exp Neurol 2021; 339:113634. [PMID: 33549548 DOI: 10.1016/j.expneurol.2021.113634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
Migraine is associated with the activation and sensitisation of the trigeminovascular system and is often accompanied by mechanical hyperalgesia and allodynia. The mechanisms of mechanotransduction during a migraine attack are yet unknown. We have proposed that the ion channel Piezo1 may be involved, since it is expressed in endothelial cells as well as in trigeminal ganglion neurons, and thus, may contribute to the activation of both the vascular and neuronal component of the trigeminovascular system. We took advantage of extracellular recordings from the trigeminocervical complex - a key relay centre in the migraine pain pathway, to directly assess the impact of the differently applied Piezo1 agonist Yoda1 on the sensory processing at the spinal level. At a low dose, Yoda1 slightly facilitated the ongoing firing of central trigeminovascular neurons, however, at a high dose, this substance contributed to the suppression of their activity. Using intravital microscopy, we have revealed that Yoda1 at high dose can also induce the dilation of meningeal arteries innervated by trigeminal afferents. Collectively, here we have identified both neuronal and vascular modulation via selective activation of mechanosensitive Piezo1 channels, which provide new evidence in favour of the Piezo1 role in migraine pathogenesis. We propose several mechanisms that may underlie the revealed effects of Yoda1.
Collapse
Affiliation(s)
- Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia.
| | - Julia E Isaeva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Elena Verbitskaya
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Olga A Lyubashina
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Rashid А Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
38
|
Fang XZ, Zhou T, Xu JQ, Wang YX, Sun MM, He YJ, Pan SW, Xiong W, Peng ZK, Gao XH, Shang Y. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci 2021; 11:13. [PMID: 33422128 PMCID: PMC7796548 DOI: 10.1186/s13578-020-00522-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction couples mechanical stimulation with ion flux, which is critical for normal biological processes involved in neuronal cell development, pain sensation, and red blood cell volume regulation. Although they are key mechanotransducers, mechanosensitive ion channels in mammals have remained difficult to identify. In 2010, Coste and colleagues revealed a novel family of mechanically activated cation channels in eukaryotes, consisting of Piezo1 and Piezo2 channels. These have been proposed as the long-sought-after mechanosensitive cation channels in mammals. Piezo1 and Piezo2 exhibit a unique propeller-shaped architecture and have been implicated in mechanotransduction in various critical processes, including touch sensation, balance, and cardiovascular regulation. Furthermore, several mutations in Piezo channels have been shown to cause multiple hereditary human disorders, such as autosomal recessive congenital lymphatic dysplasia. Notably, mutations that cause dehydrated hereditary xerocytosis alter the rate of Piezo channel inactivation, indicating the critical role of their kinetics in normal physiology. Given the importance of Piezo channels in understanding the mechanotransduction process, this review focuses on their structural details, kinetic properties and potential function as mechanosensors. We also briefly review the hereditary diseases caused by mutations in Piezo genes, which is key for understanding the function of these proteins.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao-Miao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hui Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Guo Y, Merten AL, Schöler U, Yu ZY, Cvetkovska J, Fatkin D, Feneley MP, Martinac B, Friedrich O. In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 159:22-33. [PMID: 32763257 DOI: 10.1016/j.pbiomolbio.2020.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.
Collapse
Affiliation(s)
- Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Anna-Lena Merten
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Muscle Research Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Schöler
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Muscle Research Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Jasmina Cvetkovska
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia; Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia; Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.
| | - Oliver Friedrich
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Muscle Research Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol 2020; 11:861. [PMID: 32848833 PMCID: PMC7396610 DOI: 10.3389/fphys.2020.00861] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Blood flow produces mechanical frictional forces, parallel to the blood flow exerted on the endothelial wall of the vessel, the so-called wall shear stress (WSS). WSS sensing is associated with several vascular pathologies, but it is first a physiological phenomenon. Endothelial cell sensitivity to WSS is involved in several developmental and physiological vascular processes such as angiogenesis and vascular morphogenesis, vascular remodeling, and vascular tone. Local conditions of blood flow determine the characteristics of WSS, i.e., intensity, direction, pulsatility, sensed by the endothelial cells that, through their effect of the vascular network, impact WSS. All these processes generate a local-global retroactive loop that determines the ability of the vascular system to ensure the perfusion of the tissues. In order to account for the physiological role of WSS, the so-called shear stress set point theory has been proposed, according to which WSS sensing acts locally on vessel remodeling so that WSS is maintained close to a set point value, with local and distant effects of vascular blood flow. The aim of this article is (1) to review the existing literature on WSS sensing involvement on the behavior of endothelial cells and its short-term (vasoreactivity) and long-term (vascular morphogenesis and remodeling) effects on vascular functioning in physiological condition; (2) to present the various hypotheses about WSS sensors and analyze the conceptual background of these representations, in particular the concept of tensional prestress or biotensegrity; and (3) to analyze the relevance, explanatory value, and limitations of the WSS set point theory, that should be viewed as dynamical, and not algorithmic, processes, acting in a self-organized way. We conclude that this dynamic set point theory and the biotensegrity concept provide a relevant explanatory framework to analyze the physiological mechanisms of WSS sensing and their possible shift toward pathological situations.
Collapse
Affiliation(s)
- Etienne Roux
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France.,UMR 8560 IHPST - Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Pauline Bougaran
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Pascale Dufourcq
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| |
Collapse
|
41
|
Mandalà M. Influence of Estrogens on Uterine Vascular Adaptation in Normal and Preeclamptic Pregnancies. Int J Mol Sci 2020; 21:ijms21072592. [PMID: 32276444 PMCID: PMC7177259 DOI: 10.3390/ijms21072592] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, the maternal cardiovascular system undergoes significant changes, including increased heart rate, cardiac output, plasma volume, and uteroplacental blood flow (UPBF) that are required for a successful pregnancy outcome. The increased UPBF is secondary to profound circumferential growth that extends from the downstream small spiral arteries to the upstream conduit main uterine artery. Although some of the mechanisms underlying uterine vascular remodeling are, in part, known, the factors that drive the remodeling are less clear. That higher circulating levels of estrogens are positively correlated with gestational uterine vascular remodeling suggests their involvement in this process. Estrogens binding to the estrogen receptors expressed in cytotrophoblast cells and in the uterine artery wall stimulate an outward hypertrophic remodeling of uterine vasculature. In preeclampsia, generally lower concentrations of estrogens limit the proper uterine remodeling, thereby reducing UPBF increases and restricting the growth of the fetus. This review aims to report estrogenic regulation of the maternal uterine circulatory adaptation in physiological and pathological pregnancy that favors vasodilation, and to consider the underlying molecular mechanisms by which estrogens regulate uteroplacental hemodynamics.
Collapse
Affiliation(s)
- Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
42
|
Xiao B. Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention. Annu Rev Pharmacol Toxicol 2020; 60:195-218. [DOI: 10.1146/annurev-pharmtox-010919-023703] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.
Collapse
Affiliation(s)
- Bailong Xiao
- State Key Laboratory of Membrane Biology; Tsinghua-Peking Joint Center for Life Sciences; IDG/McGovern Institute for Brain Research; Beijing Advanced Innovation Center for Structural Biology; and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and Uterine Blood Flow in Preeclampsia: The Role of Mechanosensing Piezo 1 Ion Channels. Am J Hypertens 2020; 33:1-9. [PMID: 31545339 PMCID: PMC7768673 DOI: 10.1093/ajh/hpz158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
There is a large increase in uterine arterial blood flow during normal pregnancy. Structural and cellular adjustments occur in the uterine vasculature during pregnancy to accommodate this increased blood flow through a complex adaptive process that is dependent on multiple coordinated and interactive influences and this process is known as "vascular remodeling." The etiology of preeclampsia involves aberrant placentation and vascular remodeling leading to reduced uteroplacental perfusion. The placental ischemia leads to development of hypertension and proteinuria in the mother, intrauterine growth restriction, and perinatal death in the fetus. However, the underlying source of the deficient vascular remodeling and the subsequent development of preeclampsia remain to be fully understood. Mechanoreceptors in the vascular system convert mechanical force (shear stress) to biochemical signals and feedback mechanisms. This review focuses on the Piezo 1 channel, a mechanosensitive channel that is sensitive to shear stress in the endothelium; it induces Ca2+ entry which is linked to endothelial nitric oxide synthase (eNOS) activation as the mechanoreceptor responsible for uterine vascular dilatation during pregnancy. Here we describe the downstream signaling pathways involved in this process and the possibility of a deficiency in expression of Piezo 1 in preeclampsia leading to the abnormal vascular dysfunction responsible for the pathophysiology of the disease. The Piezo 1 ion channel is expressed in the endothelium and vascular smooth muscle cells (VSMCs) of small-diameter arteries. It plays a role in the structural remodeling of arteries and is involved in mechanotransduction of hemodynamic shear stress by endothelial cells (ECs).
Collapse
Affiliation(s)
- Olufunke O Arishe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
44
|
Douguet D, Patel A, Xu A, Vanhoutte PM, Honoré E. Piezo Ion Channels in Cardiovascular Mechanobiology. Trends Pharmacol Sci 2019; 40:956-970. [PMID: 31704174 DOI: 10.1016/j.tips.2019.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023]
Abstract
Mechanotransduction has a key role in vascular development, physiology, and disease states. Piezo1 is a mechanosensitive (MS) nonselective cationic channel that occurs in endothelial and vascular smooth muscle cells. It is activated by shear stress associated with increases in local blood flow, as well as by cell membrane stretch upon elevation of blood pressure. Here, we briefly review the pharmacological modulators of Piezo and discuss current understanding of the role of Piezo1 in vascular mechanobiology and associated clinical disorders, such as atherosclerosis and hypertension. Ultimately, we believe that this research will help identify novel therapeutic strategies for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Dominique Douguet
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Amanda Patel
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Aimin Xu
- State Key Laboratory of Biopharmaceutical Technologies, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Biopharmaceutical Technologies, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China; Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France.
| |
Collapse
|
45
|
Beech DJ, Kalli AC. Force Sensing by Piezo Channels in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol 2019; 39:2228-2239. [PMID: 31533470 PMCID: PMC6818984 DOI: 10.1161/atvbaha.119.313348] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Mechanical forces are fundamental in cardiovascular biology, and deciphering the mechanisms by which they act remains a testing frontier in cardiovascular research. Here, we raise awareness of 2 recently discovered proteins, Piezo1 and Piezo2, which assemble as transmembrane triskelions to combine exquisite force sensing with regulated calcium influx. There is emerging evidence for their importance in endothelial shear stress sensing and secretion, NO generation, vascular tone, angiogenesis, atherosclerosis, vascular permeability and remodeling, blood pressure regulation, insulin sensitivity, exercise performance, and baroreceptor reflex, and there are early suggestions of relevance to cardiac fibroblasts and myocytes. Human genetic analysis points to significance in lymphatic disease, anemia, varicose veins, and potentially heart failure, hypertension, aneurysms, and stroke. These channels appear to be versatile force sensors, used creatively to inform various force-sensing situations. We discuss emergent concepts and controversies and suggest that the potential for new important understanding is substantial.
Collapse
Affiliation(s)
- David J. Beech
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| | - Antreas C. Kalli
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| |
Collapse
|
46
|
Morley LC, Beech DJ, Walker JJ, Simpson NAB. Emerging concepts of shear stress in placental development and function. Mol Hum Reprod 2019; 25:329-339. [PMID: 30931481 PMCID: PMC6554190 DOI: 10.1093/molehr/gaz018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/03/2019] [Indexed: 12/17/2022] Open
Abstract
Blood flow, and the force it generates, is critical to placental development and function throughout pregnancy. This mechanical stimulation of cells by the friction generated from flow is called shear stress (SS) and is a fundamental determinant of vascular homeostasis, regulating remodelling and vasomotor tone. This review describes how SS is fundamental to the establishment and regulation of the blood flow through the uteroplacental and fetoplacental circulations. Amongst the most recent findings is that alongside the endothelium, embryonic stem cells and the villous trophoblast are mechanically sensitive. A complex balance of forces is required to enable effective establishment of the uteroplacental circulation, while protecting the embryo and placental villi. SS also generates flow-mediated vasodilatation through the release of endothelial nitric oxide, a process vital for adequate placental blood flow. The identification of SS sensors and the mechanisms governing how the force is converted into biochemical signals is a fast-paced area of research, with multiple cellular components under investigation. For example, the Piezo1 ion channel is mechanosensitive in a variety of tissues including the fetoplacental endothelium. Enhanced Piezo1 activity has been demonstrated in response to the Yoda1 agonist molecule, suggesting the possibility for developing tools to manipulate these channels. Whether such agents might progress to novel therapeutics to improve blood flow through the placenta requires further consideration and research.
Collapse
Affiliation(s)
- L C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - D J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - J J Walker
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| | - N A B Simpson
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| |
Collapse
|