1
|
Kim JU, Ko J, Kim YS, Jung M, Jang MH, An YH, Hwang NS. Electrical Stimulating Redox Membrane Incorporated with PVA/Gelatin Nanofiber for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400170. [PMID: 38989721 DOI: 10.1002/adhm.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Chronic wounds adversely affect the quality of life. Although electrical stimulation has been utilized to treat chronic wounds, there are still limitations to practicing it due to the complicated power system. Herein, an electrostimulating membrane incorporated with electrospun nanofiber (M-sheet) to treat diabetic wounds is developed. Through the screen printing method, the various alternate patterns of both Zn and AgCl on a polyurethane substrate, generating redox-mediated electrical fields are introduced. The antibacterial ability of the patterned membrane against both E. coli and S. aureus is confirmed. Furthermore, the poly(vinyl alcohol) (PVA)/gelatin electrospun fiber is incorporated into the patterned membrane to enhance biocompatibility and maintain the wet condition in the wound environment. The M-sheet can improve cell proliferation and migration in vitro and has an immune regulatory effect by inducing the polarization of macrophage to the M2 phenotype. Finally, when applied to a diabetic skin wound model, the M-sheet displays an accelerated wound healing rate and enhances re-epithelialization, collagen synthesis, and angiogenesis. It suggests that the M-sheet is a simple and portable system for the spontaneous generation of electrical stimulation and has great potential to be used in the practical wound and other tissue engineering applications.
Collapse
Affiliation(s)
- Jeong-Uk Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoong Jung
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myoung-Hoon Jang
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Yin J, Fu X, Luo Y, Leng Y, Ao L, Xie C. A Narrative Review of Diabetic Macroangiopathy: From Molecular Mechanism to Therapeutic Approaches. Diabetes Ther 2024; 15:585-609. [PMID: 38302838 PMCID: PMC10942953 DOI: 10.1007/s13300-024-01532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic macroangiopathy, a prevalent and severe complication of diabetes mellitus, significantly contributes to the increased morbidity and mortality rates among affected individuals. This complex disorder involves multifaceted molecular mechanisms that lead to the dysfunction and damage of large blood vessels, including atherosclerosis (AS) and peripheral arterial disease. Understanding the intricate pathways underlying the development and progression of diabetic macroangiopathy is crucial for the development of effective therapeutic interventions. This review aims to shed light on the molecular mechanism implicated in the pathogenesis of diabetic macroangiopathy. We delve into the intricate interplay of chronic inflammation, oxidative stress, endothelial dysfunction, and dysregulated angiogenesis, all of which contribute to the vascular complications observed in this disorder. By exploring the molecular mechanism involved in the disease we provide insight into potential therapeutic targets and strategies. Moreover, we discuss the current therapeutic approaches used for treating diabetic macroangiopathy, including glycemic control, lipid-lowering agents, and vascular interventions.
Collapse
Affiliation(s)
- Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yuling Leng
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
3
|
Suh SB, Suh JY, Cho SB. Analyzing secretory proteins in human dermal fibroblast-conditioned medium for angiogenesis: A bioinformatic approach. Skin Res Technol 2024; 30:e13568. [PMID: 38200622 PMCID: PMC10781896 DOI: 10.1111/srt.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The conditioned medium from human dermal fibroblasts (dermal fibroblast-conditioned medium; DFCM) contains a diverse array of secretory proteins, including growth factors and wound repair-promoting proteins. Angiogenesis, a crucial process that facilitates the infiltration of inflammatory cells during wound repair, is induced by a hypoxic environment and inflammatory cytokines. METHODS In this study, we conducted a comprehensive bioinformatic analysis of 337 proteins identified through proteomics analysis of DFCM. We specifically focused on 64 DFCM proteins with potential involvement in angiogenesis. These proteins were further classified based on their characteristics, and we conducted a detailed analysis of their protein-protein interactions. RESULTS Gene Ontology protein classification categorized these 64 DFCM proteins into various classes, including metabolite interconversion enzymes (N = 11), protein modifying enzymes (N = 10), protein-binding activity modulators (N = 9), cell adhesion molecules (N = 6), extracellular matrix proteins (N = 6), transfer/carrier proteins (N = 3), calcium-binding proteins (N = 2), chaperones (N = 2), cytoskeletal proteins (N = 2), RNA metabolism proteins (N = 1), intercellular signal molecules (N = 1), transporters (N = 1), scaffold/adaptor proteins (N = 1), and unclassified proteins (N = 9). Furthermore, our protein-protein interaction network analysis of DFCM proteins revealed two distinct networks: one with medium confidence level interaction scores, consisting of 60 proteins with significant connections, and another at a high confidence level, comprising 52 proteins with significant interactions. CONCLUSIONS Our bioinformatic analysis highlights the presence of a multitude of secretory proteins in DFCM that form significant protein-protein interaction networks crucial for regulating angiogenesis. These findings underscore the critical roles played by DFCM proteins in various stages of angiogenesis during the wound repair process.
Collapse
Affiliation(s)
| | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
4
|
Xu L, Chen Y, Feng S, Liu Z, Ye Y, Zhou R, Liu L. PEDF inhibits LPS-induced acute lung injury in rats and promotes lung epithelial cell survival by upregulating PPAR-γ. BMC Pulm Med 2023; 23:359. [PMID: 37740176 PMCID: PMC10517507 DOI: 10.1186/s12890-023-02666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The progression of acute lung injury (ALI) involves numerous pathological factors and complex mechanisms, and cause the destruction of epithelial and endothelial barriers. Pigment epithelium-derived factor (PEDF) is an angiogenesis inhibitor and a potential anti-inflammatory factor. The purpose of this study was to investigate the effect of PEDF on lipopolysaccharide (LPS)-induced ALI in rats. METHODS In vivo, pathological and injury related factors examination were performed on rat lung to investigate the effect of PEDF on ALI. In vitro, the effect of PEDF on inflammatory injury and apoptosis of lung epithelial type II RLE-6TN cell was evaluated, and the expression of inflammatory factors and related pathway proteins and PPAR-γ (in the presence or absence of PPAR-γ inhibitors) were analyzed. RESULTS In vivo results showed that PEDF inhibited the inflammatory factor expression (TNF-α, IL-6 and IL-1β) and progression of ALI and reduced lung cell apoptosis in rats. In vitro results showed that PEDF could effectively inhibit LPS-stimulated inflammatory damage and apoptosis of RLE-6TN cells. PEDF inhibited the RLE-6TN cell injury by enhancing the expression of PPAR-γ. CONCLUSIONS PEDF is an anti-inflammatory factor, which can inhibit apoptosis of lung epithelial cells by upregulating the expression of PPAR-γ and reducing LPS-induced ALI in rats.
Collapse
Affiliation(s)
- Lei Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yifei Chen
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shoujie Feng
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
- Department of Thoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zeyan Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ying Ye
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ranran Zhou
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lijun Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
5
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Han C, Leonardo TR, Romana-Souza B, Shi J, Keiser S, Yuan H, Altakriti M, Ranzer MJ, Ferri-Borgogno S, Mok SC, Koh TJ, Hong SJ, Chen L, DiPietro LA. Microfibril-associated protein 5 and the regulation of skin scar formation. Sci Rep 2023; 13:8728. [PMID: 37253753 PMCID: PMC10229580 DOI: 10.1038/s41598-023-35558-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
Many factors regulate scar formation, which yields a modified extracellular matrix (ECM). Among ECM components, microfibril-associated proteins have been minimally explored in the context of skin wound repair. Microfibril-associated protein 5 (MFAP5), a small 25 kD serine and threonine rich microfibril-associated protein, influences microfibril function and modulates major extracellular signaling pathways. Though known to be associated with fibrosis and angiogenesis in certain pathologies, MFAP5's role in wound healing is unknown. Using a murine model of skin wound repair, we found that MFAP5 is significantly expressed during the proliferative and remodeling phases of healing. Analysis of existing single-cell RNA-sequencing data from mouse skin wounds identified two fibroblast subpopulations as the main expressors of MFAP5 during wound healing. Furthermore, neutralization of MFAP5 in healing mouse wounds decreased collagen deposition and refined angiogenesis without altering wound closure. In vitro, recombinant MFAP5 significantly enhanced dermal fibroblast migration, collagen contractility, and expression of pro-fibrotic genes. Additionally, TGF-ß1 increased MFAP5 expression and production in dermal fibroblasts. Our findings suggest that MFAP5 regulates fibroblast function and influences scar formation in healing wounds. Our work demonstrates a previously undescribed role for MFAP5 and suggests that microfibril-associated proteins may be significant modulators of wound healing outcomes and scarring.
Collapse
Affiliation(s)
- Chen Han
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
| | - Trevor R Leonardo
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Junhe Shi
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shalyn Keiser
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
| | - Heidi Yuan
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
| | - Mohamad Altakriti
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
| | - Matthew J Ranzer
- Department of Surgery, University of Illinois Chicago, Chicago, IL, USA
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Seok Jong Hong
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL, USA
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA.
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Lyttle BD, Vaughn AE, Bardill JR, Apte A, Gallagher LT, Zgheib C, Liechty KW. Effects of microRNAs on angiogenesis in diabetic wounds. Front Med (Lausanne) 2023; 10:1140979. [PMID: 37020673 PMCID: PMC10067680 DOI: 10.3389/fmed.2023.1140979] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetes mellitus is a morbid condition affecting a growing number of the world population, and approximately one third of diabetic patients are afflicted with diabetic foot ulcers (DFU), which are chronic non-healing wounds that frequently progress to require amputation. The treatments currently used for DFU focus on reducing pressure on the wound, staving off infection, and maintaining a moist environment, but the impaired wound healing that occurs in diabetes is a constant obstacle that must be faced. Aberrant angiogenesis is a major contributor to poor wound healing in diabetes and surgical intervention is often necessary to establish peripheral blood flow necessary for healing wounds. Over recent years, microRNAs (miRNAs) have been implicated in the dysregulation of angiogenesis in multiple pathologies including diabetes. This review explores the pathways of angiogenesis that become dysregulated in diabetes, focusing on miRNAs that have been identified and the mechanisms by which they affect angiogenesis.
Collapse
Affiliation(s)
- Bailey D. Lyttle
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Bailey D. Lyttle,
| | - Alyssa E. Vaughn
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - James R. Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Lauren T. Gallagher
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| |
Collapse
|
9
|
Feng F, Zhong YX, Huang JH, Lin FX, Zhao PP, Mai Y, Wei W, Zhu HC, Xu ZP. Identifying stage-associated hub genes in bladder cancer via weighted gene co-expression network and robust rank aggregation analyses. Medicine (Baltimore) 2022; 101:e32318. [PMID: 36595851 PMCID: PMC9794320 DOI: 10.1097/md.0000000000032318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most frequent cancers globally. Although substantial efforts have been put to understand its pathogenesis, its underlying molecular mechanisms have not been fully elucidated. METHODS The robust rank aggregation approach was adopted to integrate 4 eligible bladder urothelial carcinoma microarray datasets from the Gene Expression Omnibus. Differentially expressed gene sets were identified between tumor samples and equivalent healthy samples. We constructed gene co-expression networks using weighted gene co-expression network to explore the alleged relationship between BC clinical characteristics and gene sets, as well as to identify hub genes. We also incorporated the weighted gene co-expression network and robust rank aggregation to screen differentially expressed genes. RESULTS CDH11, COL6A3, EDNRA, and SERPINF1 were selected from the key module and validated. Based on the results, significant downregulation of the hub genes occurred during the early stages of BC. Moreover, receiver operating characteristics curves and Kaplan-Meier plots showed that the genes exhibited favorable diagnostic and prognostic value for BC. Based on gene set enrichment analysis for single hub gene, all the genes were closely linked to BC cell proliferation. CONCLUSIONS These results offer unique insight into the pathogenesis of BC and recognize CDH11, COL6A3, EDNRA, and SERPINF1 as potential biomarkers with diagnostic and prognostic roles in BC.
Collapse
Affiliation(s)
- Fu Feng
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yu-Xiang Zhong
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jian-Hua Huang
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Fu-Xiang Lin
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Peng-Peng Zhao
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yuan Mai
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Wei Wei
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Hua-Cai Zhu
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Zhan-Ping Xu
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| |
Collapse
|
10
|
Han C, Barakat M, DiPietro LA. Angiogenesis in Wound Repair: Too Much of a Good Thing? Cold Spring Harb Perspect Biol 2022; 14:a041225. [PMID: 35667793 PMCID: PMC9524283 DOI: 10.1101/cshperspect.a041225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Angiogenesis, or the growth of new blood vessels from the preexisting vasculature, is a visible and important component of wound repair. When tissue damage occurs, disruption of the vasculature structure leads to hypoxia. The restoration of normoxia is essential for appropriate and durable tissue repair. Angiogenesis in wounds is regulated by endogenous proangiogenic mediators, which cause rapid growth of a new vascular bed that is much denser than that of normal tissue. Such rapid growth of the capillary bed results in capillaries that are abnormal, and the newly formed vessels are tortuous, dilated, and immature. During wound resolution, this substantial neocapillary bed is pruned back to normal density with attendant maturation. Many poorly healing wounds, including nonhealing ulcers and scars, exhibit an aberrant angiogenic response. The fine-tuning of capillary regrowth in wounds is an area of significant therapeutic potential.
Collapse
Affiliation(s)
- Chen Han
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
11
|
Qin X, Jia C, Liang J, Chen J, Liu X, Chao Z, Qin H, Yuan Y, Liu Z, Zhang Z, Dong H, Zhang H. PEDF is an antifibrosis factor that inhibits the activation of fibroblasts in a bleomycin-induced pulmonary fibrosis rat model. Respir Res 2022; 23:100. [PMID: 35459189 PMCID: PMC9027047 DOI: 10.1186/s12931-022-02027-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous and fatal lung disease. In addition to dense fibrous tissue, abnormal angiogenesis is also an important feature of IPF. Pigment epithelium-derived factor (PEDF) is an angiogenesis inhibitor and a potential anti-fibrous factor. The purpose of this experiment is to observe the effect of PEDF on bleomycin (BLM)-induced pulmonary fibrosis in rats. Methods In vivo, pathological examination and detection of related factors were performed on pulmonary fibrosis induced by BLM in rats, and the temporal and spatial distribution of PEDF was investigated. Furthermore, lung gene delivery (PEDF-adeno-associated virus) was performed to investigate the effect of PEDF on pulmonary fibrosis. In vitro, lentiviral vectors were used to construct PEDF over-expression or knock out primary rat lung (PRL) fibroblasts. The effect of PEDF on fibroblast activation under TGF-β1 stimulation was evaluated, and the activation of TGF-β1/smad pathway and PPAR-γ expression (in the presence or absence of PPAR-γ inhibitors) were analyzed. Results In vivo results showed that PEDF expression decreased during the inflammatory phase and increased during the fibrotic phase. PEDF could inhibit the progression of pulmonary fibrosis in rats. In vitro results showed that PEDF could effectively inhibit TGF-β1-stimulated fibroblast activation and reduce the production of α-SMA and collagen-I. PEDF could inhibit the TGF-β1/smad pathway by up-regulating the activity of PPAR-γ. Conclusions PEDF can act as an anti-fibrotic factor, inhibit fibroblast activation by upregulating PPAR-γ activity and reduce BLM-induced pulmonary fibrosis in rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02027-4.
Collapse
Affiliation(s)
- Xichun Qin
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.,Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Caili Jia
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Jingtian Liang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Jiali Chen
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Zhixiang Chao
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Hao Qin
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Zhiwei Liu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhongming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Hao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
12
|
Kita A, Saito Y, Miura N, Miyajima M, Yamamoto S, Sato T, Yotsuyanagi T, Fujimiya M, Chikenji TS. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5:310. [PMID: 35383267 PMCID: PMC8983691 DOI: 10.1038/s42003-022-03266-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Pathologic diabetic wound healing is caused by sequential and progressive deterioration of hemostasis, inflammation, proliferation, and resolution/remodeling. Cellular senescence promotes wound healing; however, diabetic wounds exhibit low levels of senescent factors and accumulate senescent cells, which impair the healing process. Here we show that the number of p15INK4B + PDGFRα + senescent mesenchymal cells in adipose tissue increases transiently during early phases of wound healing in both non-diabetic mice and humans. Transplantation of adipose tissue from diabetic mice into non-diabetic mice results in impaired wound healing and an altered cellular senescence–associated secretory phenotype (SASP), suggesting that insufficient induction of adipose tissue senescence after injury is a pathological mechanism of diabetic wound healing. These results provide insight into how regulation of senescence in adipose tissue contributes to wound healing and could constitute a basis for developing therapeutic treatment for wound healing impairment in diabetes. Type-2 diabetic adipose tissue impairs transient senescence during wound healing with expression of different components of the senescence-associated secretory phenotype (SASP), and this is associated with deteriorated wound healing.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takatoshi Yotsuyanagi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan. .,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
14
|
Zhang Y, Yu Z, Lei L, Song Y, Liu S, Cui J, Dong C, Ding J, Cheng X, Su Y, Ma X. Secreted PEDF modulates fibroblast collagen synthesis through M1 macrophage polarization under expanded condition. Biomed Pharmacother 2021; 142:111951. [PMID: 34333290 DOI: 10.1016/j.biopha.2021.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Tissue expansion is widely used to obtain new skin tissue for repairing defects in the clinical practice of plastic surgery. One major complication can be dermal thinning during expansion, which usually leads to skin rupture. Collagen synthesis can determine dermal thickness and can be influenced by macrophage polarization during expansion. The aim of the study was to test whether pigment epithelium-derived factor (PEDF) could be a modulator of collagen synthesis in fibroblasts by regulating macrophage polarization during skin expansion. Our results showed that PEDF mRNA expression was increased in expanded human and mouse epidermis. PEDF protein levels were elevated in the subcutaneous exudates of a rat skin expansion model. Increased PEDF mRNA expression was accompanied by dermal thinning during a three-week expansion protocol. Subcutaneous injection of PEDF in vivo further resulted in dermal thinning and cell number increase of M1 macrophage in the expanded skin. PEDF also promoted macrophage polarization in vitro to the M1 subtype under hypoxic conditions. PEDF did not influence collagen gene expression in fibroblasts directly, but attenuated collagen synthesis in a macrophage-mediated manner. Additionally, blockage of PEDF receptors on macrophages with inhibitors rescued collagen synthesis in fibroblasts. Our research demonstrated PEDF elevation in expanded skin leads to dermal thinning through M1 macrophage-mediated collagen synthesis inhibition in fibroblasts. Our results could form a basis for the development of novel strategies to improve skin integrity in expanded skin by using PEDF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Lei Lei
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Shiqiang Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Jiangbo Cui
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Jianke Ding
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Xiaoxi Cheng
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China.
| | - Xianjie Ma
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China.
| |
Collapse
|
15
|
Zhu HJ, Fan M, Gao W. Identification of potential hub genes associated with skin wound healing based on time course bioinformatic analyses. BMC Surg 2021; 21:303. [PMID: 34193119 PMCID: PMC8243612 DOI: 10.1186/s12893-021-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background The skin is the largest organ of the body and has multiple functions. Wounds remain a significant healthcare problem due to the large number of traumatic and pathophysiological conditions patients suffer. Methods Gene expression profiles of 37 biopsies collected from patients undergoing split-thickness skin grafts at five different time points were downloaded from two datasets (GSE28914 and GSE50425) in the Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) was applied to classify samples into different phases. Subsequently, differentially expressed genes (DEGs) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment analyses were performed, and protein–protein interaction (PPI) networks created for each phase. Furthermore, based on the results of the PPI, hub genes in each phase were identified by molecular complex detection combined with the ClueGO algorithm. Results Using principal component analysis, the collected samples were divided into four phases, namely intact phase, acute wound phase, inflammatory and proliferation phase, and remodeling phase. Intact samples were used as control group. In the acute wound phase, a total of 1 upregulated and 100 downregulated DEGs were identified. Tyrosinase (TYR), tyrosinase Related Protein 1 (TYRP1) and dopachrome tautomerase (DCT) were considered as hub genes and enriched in tyrosine metabolism which dominate the process of melanogenesis. In the inflammatory and proliferation phase, a total of 85 upregulated and 164 downregulated DEGs were identified. CHEK1, CCNB1 and CDK1 were considered as hub genes and enriched in cell cycle and P53 signaling pathway. In the remodeling phase, a total of 121 upregulated and 49 downregulated DEGs were identified. COL4A1, COL4A2, and COL6A1 were considered as hub genes and enriched in protein digestion and absorption, and ECM-receptor interaction. Conclusion This comprehensive bioinformatic re-analysis of GEO data provides new insights into the molecular pathogenesis of wound healing and the potential identification of therapeutic targets for the treatment of wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12893-021-01298-w.
Collapse
Affiliation(s)
- Hai-Jun Zhu
- The 4th People's Hospital of Shenyang, No. 20 Huanghenan Street, Huanggu District, Shenyang, 110031, China
| | - Meng Fan
- The 4th People's Hospital of Shenyang, No. 20 Huanghenan Street, Huanggu District, Shenyang, 110031, China
| | - Wei Gao
- The 4th People's Hospital of Shenyang, No. 20 Huanghenan Street, Huanggu District, Shenyang, 110031, China.
| |
Collapse
|
16
|
Rosanto YB, Hasan CY, Rahardjo R, Pangestiningsih TW. Effect of snail mucus on angiogenesis during wound healing. F1000Res 2021; 10:181. [PMID: 38912381 PMCID: PMC11190653 DOI: 10.12688/f1000research.51297.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 06/25/2024] Open
Abstract
Background: Angiogenesis is the process through which new blood vessels are formed from existing ones. This process plays an important role in supplying the oxygen and nutrients needed for cellular metabolism and eliminating cell debris during wound healing. Snail mucus can bind to several factors that stimulate angiogenesis, including vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor. The aim of this study is to observe changes in angiogenesis during the healing of wounds topically applied with snail mucus. Methods: Punch biopsy was performed on the back of male Wistar rats to obtain four wounds, and different concentrations of snail mucus were applied to each of these wounds. The animals were sacrificed on days 2, 4, and 7 to observe the extent of angiogenesis during wound healing by microscopy. Results: Two-way ANOVA showed differences in number of blood vessels formed (p = 0.00) and day of observation (p = 0.00) between groups. Post hoc Tukey's HSD test showed that 24% snail mucus treatment does not significantly affect wound healing (p = 0.488); by contrast, treatment with 48% and 96% snail mucus demonstrated significant effects on angiogenesis (p = 0.01). Spearman's test showed interactive effects between snail mucus concentration and day of observation on the extent of angiogenesis (p = 0.001, R = 0.946). Conclusion: Topical application of snail mucus gel can increase angiogenesis during wound healing in Wistar rat skin.
Collapse
Affiliation(s)
- Yosaphat Bayu Rosanto
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Cahya Yustisia Hasan
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Rahardjo Rahardjo
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Tri Wahyu Pangestiningsih
- Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| |
Collapse
|
17
|
Klasan A, Gerber F, Schermuksnies A, Putnis SE, Neri T, Heyse TJ. Blood loss after revision knee arthroplasty is 1.38- to 2.17-fold higher than after primary knee arthroplasty: A retrospective analysis of 898 cases. Orthop Traumatol Surg Res 2021; 107:102856. [PMID: 33588093 DOI: 10.1016/j.otsr.2021.102856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND There are a number of factors that influence blood loss during and after primary total knee arthroplasty (TKA) and revision TKA (rTKA). The purpose of this study was to provide a factorial assessment that would aid surgeons in managing expected blood loss in rTKA, when compared to TKA. The first question asked was the blood loss and transfusions between TKA and rTKA and the second question was risk factors for blood loss after rTKA. HYPOTHESIS Blood loss in any rTKA is higher than in TKA by a factor of 2. PATIENTS AND METHODS A retrospective single-centre consecutive series of rTKA between 2006 and 2018 was performed. Based on the rTKA types identified in joint registries, 4 rTKA cohorts were created: aseptic minor rTKA, aseptic major rTKA, 1st stage, and 2nd stage septic rTKA. A consecutive TKA cohort from the same study period was used to create a propensity score matched cohort with the aseptic major rTKA cohort. RESULT A total of 622 rTKA were identified. Aseptic major rTKA had double the median blood loss than TKA. The lowest blood loss was observed in the TKA group followed by aseptic minor rTKA, and the highest in 2nd stage septic rTKA. The median total blood loss was higher in all rTKA by a factor ranging between 1.38 and 2.17. Higher age, female gender, lower preoperative hemoglobin, chronic heart disease and history of myocardial infarction were risk factors for increased blood loss. The type of rTKA performed was not predictive of blood loss in the linear regression analysis. DISCUSSION Blood loss after rTKA is 1.38 to 2.17-fold higher than after TKA. The blood loss observed in 2nd stage septic rTKA and aseptic major rTKA was the highest. Older female patients, with a low preoperative hemoglobin, were identified to be at the highest risk of blood loss after rTKA. Strategies for further blood loss reductions need to be utilised to the fullest extent for these procedures. LEVEL OF EVIDENCE III; retrospective prognostic study.
Collapse
Affiliation(s)
- Antonio Klasan
- North Shore hospital, Auckland, New Zealand; University hospital of Marburg, Marburg, Germany.
| | | | | | | | - Thomas Neri
- Department of orthopaedic surgery, University hospital centre of Saint-Étienne, Saint-Étienne, France; EA 7424 - Inter-university laboratory of human movement science, University of Lyon - University Jean-Monnet, Saint-Étienne, France
| | | |
Collapse
|
18
|
Romana-Souza B, Chen L, Leonardo TR, Chen Z, DiPietro LA. Dermal fibroblast phagocytosis of apoptotic cells: A novel pathway for wound resolution. FASEB J 2021; 35:e21443. [PMID: 33749877 PMCID: PMC8670562 DOI: 10.1096/fj.202002078r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/23/2023]
Abstract
The effective clearance of apoptotic cells is an essential step in the resolution of healing wounds. In particular, blood vessel regression during wound resolution produces a significant number of apoptotic endothelial cells (ApoEC) that must be cleared. In considering the fate of ApoEC and the presence of fibroblasts during wound resolution, we hypothesized that fibroblasts might serve as phagocytes involved in endothelial cell removal. The current study investigated whether dermal fibroblasts engulf ApoEC, whether this uptake alters the phenotype of dermal fibroblasts, and the biological molecules involved. In both in vitro and in vivo studies, following ApoEC engulfment, fibroblasts acquired a pro-healing phenotype (increased cell migration, contractility, α-smooth muscle actin expression, and collagen deposition). In addition, fibroblast uptake of ApoEC was shown to be mediated in part by the milk fat globule-EGF factor 8 protein/integrin αv β5 pathway. Our study demonstrates a novel function of fibroblasts in the clearance of ApoEC and suggests that this capability has significant implications for tissue repair and fibrosis.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Tissue Repair Laboratory, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trevor R. Leonardo
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Laiva AL, O’Brien FJ, Keogh MB. SDF-1α Gene-Activated Collagen Scaffold Restores Pro-Angiogenic Wound Healing Features in Human Diabetic Adipose-Derived Stem Cells. Biomedicines 2021; 9:biomedicines9020160. [PMID: 33562165 PMCID: PMC7914837 DOI: 10.3390/biomedicines9020160] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) can lead to leg amputation in diabetic patients. Autologous stem cell therapy holds some potential to solve this problem; however, diabetic stem cells are relatively dysfunctional and restrictive in their wound healing abilities. This study sought to explore if a novel collagen-chondroitin sulfate (coll-CS) scaffold, functionalized with polyplex nanoparticles carrying the gene encoding for stromal-derived factor-1 alpha (SDF-1α gene-activated scaffold), can enhance the regenerative functionality of human diabetic adipose-derived stem cells (ADSCs). We assessed the impact of the gene-activated scaffold on diabetic ADSCs by comparing their response against healthy ADSCs cultured on a gene-free scaffold over two weeks. Overall, we found that the gene-activated scaffold could restore the pro-angiogenic regenerative response in the human diabetic ADSCs similar to the healthy ADSCs on the gene-free scaffold. Gene and protein expression analysis revealed that the gene-activated scaffold induced the overexpression of SDF-1α in diabetic ADSCs and engaged the receptor CXCR7, causing downstream β-arrestin signaling, as effectively as the transfected healthy ADSCs. The transfected diabetic ADSCs also exhibited pro-wound healing features characterized by active matrix remodeling of the provisional fibronectin matrix and basement membrane protein collagen IV. The gene-activated scaffold also induced a controlled pro-healing response in the healthy ADSCs by disabling early developmental factors signaling while promoting the expression of tissue remodeling components. Conclusively, we show that the SDF-1α gene-activated scaffold can overcome the deficiencies associated with diabetic ADSCs, paving the way for autologous stem cell therapies combined with novel biomaterials to treat DFUs.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
- Correspondence: ; Tel.: +973-17351450
| |
Collapse
|
20
|
Xu M, Chen Z, Chen K, Ma D, Chen L, DiPietro LA. Phagocytosis of apoptotic endothelial cells reprograms macrophages in skin wounds. ACTA ACUST UNITED AC 2021; 12. [PMID: 33796800 DOI: 10.1016/j.regen.2021.100038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In healing wounds, the regression of blood vessels during the resolution phase creates a significant number of apoptotic endothelial cells (ApoECs). Surprisingly few studies have investigated the fate of apoECs in wounds, or the consequence of their removal. The current study employed both in vitro and in vivo models to investigate if macrophages ingest apoECs and to determine if such phagocytosis alters macrophage phenotype. To examine the capability of macrophages to ingest apoECs in in vivo wounds, pHrodo green labeled apoECs were injected into skin wounds 6 days after injury. The results demonstrated that 2.2% of macrophages in the wounds had engulfed apoECs 24 hours after injection. Macrophages that had engulfed apoECs expressed the markers CD80 (100%), CD86 (93.8%), and CD163 (22.8%), while no expression of CD206 marker was observed. In in vitro studies, 76.1% and 81.1% of PMA differentiated THP-1 macrophages engulfed apoECs at 6 and 24 hours, respectively. mRNA expression levels of IL-1β, iNOS, and TGF-β1 decreased in THP-1 macrophages after exposure to apoECs, while the expression of IL-6 increased. THP-1 macrophages that were incubated with apoECs for 6hours expressed CD80 (30.2%), CD163 (62.9%), and CD206 (45.3%), while expression levels in untreated group were 0.5%, 45.0%, and 2.4%, respectively. Taken together, our studies showed that macrophages phagocytize dermal apoECs both in vitro and in vivo. The engulfment of apoECs leads to a unique macrophage phenotype, which has characteristics of both M1 and M2 macrophage phenotypes. These findings provide a new mechanism by which macrophage phenotypes can be modified during wound resolution.
Collapse
Affiliation(s)
- Mingyuan Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenlong Chen
- Departments of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Kevin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, USA
| | - Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Guanghua School of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
21
|
Ma D, Chen L, Shi J, Zhao Y, Vasani S, Chen K, Romana‐Souza B, Henkin J, DiPietro LA. Pigment epithelium‐derived factor attenuates angiogenesis and collagen deposition in hypertrophic scars. Wound Repair Regen 2020; 28:684-695. [DOI: 10.1111/wrr.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital Guanghua School of Stomatology, SunYat‐sen University Guangzhou Guangdong China
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Shruti Vasani
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Kevin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Bruna Romana‐Souza
- Tissue Repair Laboratory State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Jack Henkin
- Center for Developmental Therapeutics and Department of Chemistry Northwestern University Evanston Illinois USA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
22
|
Leong J, Hong YT, Wu YF, Ko E, Dvoretskiy S, Teo JY, Kim BS, Kim K, Jeon H, Boppart M, Yang YY, Kong H. Surface Tethering of Inflammation-Modulatory Nanostimulators to Stem Cells for Ischemic Muscle Repair. ACS NANO 2020; 14:5298-5313. [PMID: 32243129 PMCID: PMC8274413 DOI: 10.1021/acsnano.9b04926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stem cell transplantation has been a promising treatment for peripheral arterial diseases in the past decade. Stem cells act as living bioreactors of paracrine factors that orchestrate tissue regeneration. Prestimulated adipose-derived stem cells (ADSCs) have been proposed as potential candidates but have been met with challenges in activating their secretory activities for clinical use. Here, we propose that tethering the ADSC surface with nanoparticles releasing tumor necrosis factor α (TNFα), named nanostimulator, would stimulate cellular secretory activity in situ. We examined this hypothesis by complexing octadecylamine-grafted hyaluronic acid onto a liposomal carrier of TNFα. Hyaluronic acid increased the liposomal stability and association to CD44 on ADSC surface. ADSCs tethered with these TNFα carriers exhibited up-regulated secretion of proangiogenic vascular endothelial growth factor and immunomodulatory prosteoglandin E2 (PGE2) while decreasing secretion of antiangiogenic pigment epithelium-derived factors. Accordingly, ADSCs tethered with nanostimulators promoted vascularization in a 3D microvascular chip and enhanced recovery of perfusion, walking, and muscle mass in a murine ischemic hindlimb compared to untreated ADSCs. We propose that this surface tethering strategy for in situ stimulation of stem cells would replace the costly and cumbersome preconditioning process and expedite clinical use of stem cells for improved treatments of various injuries and diseases.
Collapse
Affiliation(s)
- Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-Fu Wu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jye Yng Teo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Byoung Soo Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyeongsoo Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Spatiotemporal regulation of PEDF signaling by type I collagen remodeling. Proc Natl Acad Sci U S A 2020; 117:11450-11458. [PMID: 32385162 DOI: 10.1073/pnas.2004034117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix affects many cellular processes, either directly or indirectly, through the regulation of soluble ligands; however, the mechanistic details of this process remain largely unknown. Here we propose that type I collagen remodeling regulates the receptor-binding activity of pigment epithelium-derived factor (PEDF), a widely expressed secreted glycoprotein that has multiple important biological functions in tissue and organ homeostasis. We determined the crystal structure of PEDF in complex with a disulfide cross-linked heterotrimeric collagen peptide, in which the α(I) chain segments-each containing the respective PEDF-binding region (residues 930 to 938)-are assembled with an α2α1α1 staggered configuration. The complex structure revealed that PEDF specifically interacts with a unique amphiphilic sequence, KGHRGFSGL, of the type I collagen α1 chain, with its proposed receptor-binding sites buried extensively. Molecular docking demonstrated that the PEDF-binding surface of type I collagen contains the cross-link-susceptible Lys930 residue of the α1 chain and provides a good foothold for stable docking with the α1(I) N-telopeptide of an adjacent triple helix in the fibril. Therefore, the binding surface is completely inaccessible if intermolecular crosslinking between two crosslink-susceptible lysyl residues, Lys9 in the N-telopeptide and Lys930, is present. These structural analyses demonstrate that PEDF molecules, once sequestered around newly synthesized pericellular collagen fibrils, are gradually liberated as collagen crosslinking increases, making them accessible for interaction with their target cell surface receptors in a spatiotemporally regulated manner.
Collapse
|
24
|
Okonkwo UA, Chen L, Ma D, Haywood VA, Barakat M, Urao N, DiPietro LA. Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS One 2020; 15:e0231962. [PMID: 32324828 PMCID: PMC7179900 DOI: 10.1371/journal.pone.0231962] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular deficits are a fundamental contributing factor of diabetes-associated diseases. Although previous studies have demonstrated that the pro-angiogenic phase of wound healing is blunted in diabetes, a comprehensive understanding of the mechanisms that regulate skin revascularization and capillary stabilization in diabetic wounds is lacking. Using a mouse model of diabetic wound healing, we performed microCT analysis of the 3-dimensional architecture of the capillary bed. As compared to wild type, vessel surface area, branch junction number, total vessel length, and total branch number were significantly decreased in wounds of diabetic mice as compared to WT mice. Diabetic mouse wounds also had significantly increased capillary permeability and decreased pericyte coverage of capillaries. Diabetic wounds exhibited significant perturbations in the expression of factors that affect vascular regrowth, maturation and stability. Specifically, the expression of VEGF-A, Sprouty2, PEDF, LRP6, Thrombospondin 1, CXCL10, CXCR3, PDGFR-β, HB-EGF, EGFR, TGF-β1, Semaphorin3a, Neuropilin 1, angiopoietin 2, NG2, and RGS5 were down-regulated in diabetic wounds. Together, these studies provide novel information about the complexity of the perturbation of angiogenesis in diabetic wounds. Targeting factors responsible for wound resolution and vascular pruning, as well those that affect pericyte recruitment, maturation, and stability may have the potential to improve diabetic skin wound healing.
Collapse
Affiliation(s)
- Uzoagu A. Okonkwo
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Guanghua School of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
| | - Veronica A. Haywood
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Norifumi Urao
- Department of Pharmacology, Upstate Medical University, Syracuse, NY, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
25
|
Michalczyk ER, Chen L, Maia MB, DiPietro LA. A Role for Low-Density Lipoprotein Receptor-Related Protein 6 in Blood Vessel Regression in Wound Healing. Adv Wound Care (New Rochelle) 2020; 9:1-8. [PMID: 31871825 PMCID: PMC6918844 DOI: 10.1089/wound.2019.1019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
Objective: The healing of skin wounds is typified by a pattern of robust angiogenesis followed by vascular regression. Pigment epithelium-derived factor (PEDF), a recognized endogenous antiangiogenic protein, regulates vascular regression in resolving wounds through an unknown receptor. Among the multiple receptors for PEDF that have been identified, low-density lipoprotein receptor-related protein 6 (Lrp6) has been described as a regulator of angiogenesis in multiple systems. The purpose of the current study was to determine if the Lrp6 receptor plays a role in vessel regression in wounds. Approach: Excisional skin wounds were prepared on C57BL/6 mice. RT-PCR and immunoblots were performed to measure Lrp6 expression over a time course of wound healing. Immunohistochemistry was performed to localize Lrp6 in both recombinant PEDF (rPEDF)-treated and control wounds. To examine whether Lrp6 is critical to the regulation of capillary regression in vivo, wounds were treated with Lrp6 siRNA to minimize its presence in wounds. Immunohistochemistry for CD31 was performed to quantify blood vessel density. Results: PCR and immunoblots revealed significant increases in Lrp6 expression during the vascular regression phase of wound healing. Lrp6 was found to colocalize with CD31+ endothelial cells in wounds. The addition of rPEDF to wounds caused an increase in Lrp6-CD31+ endothelial cell colocalization. Inhibition of Lrp6 by siRNA impeded the vascular regression phase of healing. Innovation: This study is the first to demonstrate an association between Lrp6 and vessel regression in wound healing. Conclusion: Lrp6 is expressed in wounds in a temporal and spatial manner that suggests it may be a receptor for PEDF during vascular regression. PEDF increases Lrp6 expression in the wound vasculature, and inhibition of Lrp6 blocked vascular regression in wounds. The results suggest that Lrp6 is important to vascular regression in wounds, possibly through direct interaction with PEDF.
Collapse
Affiliation(s)
- Elizabeth R. Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Mariana B. Maia
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Bläsius FM, Link BC, Beeres FJP, Iselin LD, Leu BM, Gueorguiev B, Klos K, Ganse B, Nebelung S, Modabber A, Eschbach D, Weber CD, Horst K, Knobe M. Impact of surgical procedures on soft tissue microcirculation in calcaneal fractures: A prospective longitudinal cohort study. Injury 2019; 50:2332-2338. [PMID: 31630780 DOI: 10.1016/j.injury.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Wound healing complications are a major concern after open reduction and internal fixation (ORIF) in patients with calcaneal fractures. Microcirculation is known to play a key role in bone and soft tissue healing. The present study aimed to characterize and contrast the dynamics of changes in microcirculation comparing two different surgical procedures: A) ORIF and B) a minimally invasive approach (MIA). METHODS Blood flow (BF[AU]), oxygen saturation (sO2[%]) and relative amount of haemoglobin (rHb[AU]) were measured at two depths (2 mm and 8 mm) non-invasively by spectrophotometry (Micro-Lightguide O2C®, LEA Medizintechnik, Giessen, Germany) before surgery and every 24 h after surgery for a duration of six days. A linear mixed model (LMM) was used to analyse longitudinal data and repeated measurements. RESULTS Nineteen patients (44 years, range 21.9-71.0 years) were enrolled in the study. Surgical treatment consisted of ORIF (n = =15) and MIA (n = =9). The postoperative BF and sO2 at the 2 mm and 8 mm depths were higher in the ORIF group (BF: p < 0.001, p = =0.003; sO2: p = =0.001, p = =0.011). The BF at the 2 mm and 8 mm depths increased after surgery (2 mm: p = =0.003, 8 mm: p = =0.001) in both groups. This increase did not correlate with the surgical technique. sO2 and rHb values at the 8 mm depth decreased after surgery (sO2: p = =0.008, rHb: p < 0.001) in both groups, whereas sO2 at the 2 mm depth increased after surgery (p = =0.003). Furthermore, the surgical technique correlated with the postsurgical course of sO2 values at the 2 mm depth (p = =0.042). CONCLUSIONS The spectrophotometry results were in line with the generally accepted phases of soft tissue wound healing. Postsurgical changes in microcirculation are predominantly independent of surgical techniques and may be primarily determined by wound and fracture healing. Future studies should focus on the potential of spectrophotometry to monitor wound healing after surgery. Moreover, studies with longer observation periods are needed in order to examine the changes in microcirculation during all wound-healing phases.
Collapse
Affiliation(s)
- Felix M Bläsius
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | - Björn-Christian Link
- Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Switzerland.
| | - Frank J P Beeres
- Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Switzerland.
| | - Lukas D Iselin
- Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Switzerland.
| | - Benjamin Moritz Leu
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | | | - Kajetan Klos
- Department of Foot and Ankle Surgery, Catholic Hospital Mainz, Germany.
| | - Bergita Ganse
- Research Centre for Musculoskeletal Science & Sports Medicine, Faculty of Science and Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom.
| | - Sven Nebelung
- Department of Radiology, University Hospital RWTH Aachen, Germany.
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Germany.
| | - Daphne Eschbach
- Center for Orthopaedics and Trauma Surgery, University Hospital Giessen and Marburg GmbH, Germany.
| | - Christian David Weber
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | - Klemens Horst
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | - Matthias Knobe
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany; Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Switzerland.
| |
Collapse
|
27
|
Ud-Din S, Foden P, Mazhari M, Al-Habba S, Baguneid M, Bulfone-Paus S, McGeorge D, Bayat A. A Double-Blind, Randomized Trial Shows the Role of Zonal Priming and Direct Topical Application of Epigallocatechin-3-Gallate in the Modulation of Cutaneous Scarring in Human Skin. J Invest Dermatol 2019; 139:1680-1690.e16. [DOI: 10.1016/j.jid.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/19/2023]
|
28
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
29
|
Nagaraja S, Chen L, DiPietro LA, Reifman J, Mitrophanov AY. Predictive Approach Identifies Molecular Targets and Interventions to Restore Angiogenesis in Wounds With Delayed Healing. Front Physiol 2019; 10:636. [PMID: 31191342 PMCID: PMC6547939 DOI: 10.3389/fphys.2019.00636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/06/2019] [Indexed: 12/29/2022] Open
Abstract
Impaired angiogenesis is a hallmark of wounds with delayed healing, and currently used therapies to restore angiogenesis have limited efficacy. Here, we employ a computational simulation-based approach to identify influential molecular and cellular processes, as well as protein targets, whose modulation may stimulate angiogenesis in wounds. We developed a mathematical model that captures the time courses for platelets, 9 cell types, 29 proteins, and oxygen, which are involved in inflammation, proliferation, and angiogenesis during wound healing. We validated our model using previously published experimental data. By performing global sensitivity analysis on thousands of simulated wound-healing scenarios, we identified six processes (among the 133 modeled in total) whose modulation may improve angiogenesis in wounds. By simulating knockouts of 25 modeled proteins and by simulating different wound-oxygenation levels, we identified four proteins [namely, transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and angiopoietin-2 (ANG-2)], as well as oxygen, as therapeutic targets for stimulating angiogenesis in wounds. Our modeling results indicated that simultaneous inhibition of TGF-β and supplementation of either FGF-2 or ANG-2 could be more effective in stimulating wound angiogenesis than the modulation of either protein alone. Our findings suggest experimentally testable intervention strategies to restore angiogenesis in wounds with delayed healing.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Alexander Y Mitrophanov
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
30
|
Li S, Li L, Zeng Q, Liu J, Yang Y, Ren D. Quantitative differences in whey proteins among Murrah, Nili-Ravi and Mediterranean buffaloes using a TMT proteomic approach. Food Chem 2018; 269:228-235. [DOI: 10.1016/j.foodchem.2018.06.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/18/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
|
31
|
Dolan CP, Yan M, Zimmel K, Yang TJ, Leininger E, Dawson LA, Muneoka K. Axonal regrowth is impaired during digit tip regeneration in mice. Dev Biol 2018; 445:237-244. [PMID: 30458171 DOI: 10.1016/j.ydbio.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for β-III-tubulin (β3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Tae-Jung Yang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Eric Leininger
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
32
|
Eslani M, Putra I, Shen X, Hamouie J, Tadepalli A, Anwar KN, Kink JA, Ghassemi S, Agnihotri G, Reshetylo S, Mashaghi A, Dana R, Hematti P, Djalilian AR. Cornea-Derived Mesenchymal Stromal Cells Therapeutically Modulate Macrophage Immunophenotype and Angiogenic Function. Stem Cells 2018; 36:775-784. [PMID: 29341332 DOI: 10.1002/stem.2781] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Macrophages are crucial drivers of inflammatory corneal neovascularization and thus are potential targets for immunomodulatory therapies. We hypothesized that therapeutic use of cornea-derived mesenchymal stromal cells (cMSCs) may alter the function of macrophages. We found that cMSCs can modulate the phenotype and angiogenic function of macrophages. In vitro, cMSCs induce apoptosis of macrophages while preferentially promoting a distinct CD14hi CD16hi CD163hi CD206hi immunophenotype that has significantly reduced angiogenic effects based on in vitro angiogenesis assays. In vivo, application of cMSCs to murine corneas after injury leads to reduced macrophage infiltration and higher expression of CD206 in macrophages. Macrophages cocultured ("educated") by cMSCs express significantly higher levels of anti-angiogenic and anti-inflammatory factors compared with control macrophages. In vivo, injured corneas treated with cMSC-educated macrophages demonstrate significantly less neovascularization compared with corneas treated with control macrophages. Knocking down the expression of pigment epithelial derived factor (PEDF) in cMSCs significantly abrogates its modulating effects on macrophages, as shown by the reduced rate of apoptosis, decreased expression of sFLT-1/PEDF, and increased expression of vascular endothelial growth factor-A in the cocultured macrophages. Similarly, cMSCs isolated from PEDF knockout mice are less effective compared with wild-type cMSCs at inhibiting macrophage infiltration when applied to wild-type corneas after injury. Overall, these results demonstrate that cMSCs therapeutically suppress the angiogenic capacity of macrophages and highlight the role of cMSC secreted PEDF in the modulation of macrophage phenotype and function. Stem Cells 2018;36:775-784.
Collapse
Affiliation(s)
- Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Judy Hamouie
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Asha Tadepalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - John A Kink
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Samaneh Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gaurav Agnihotri
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sofiya Reshetylo
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alireza Mashaghi
- Faculty of Mathematics and Natural Sciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
The blastema and epimorphic regeneration in mammals. Dev Biol 2017; 433:190-199. [PMID: 29291973 DOI: 10.1016/j.ydbio.2017.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 01/02/2023]
Abstract
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.
Collapse
|
34
|
Eslani M, Putra I, Shen X, Hamouie J, Afsharkhamseh N, Besharat S, Rosenblatt MI, Dana R, Hematti P, Djalilian AR. Corneal Mesenchymal Stromal Cells Are Directly Antiangiogenic via PEDF and sFLT-1. Invest Ophthalmol Vis Sci 2017; 58:5507-5517. [PMID: 29075761 PMCID: PMC5661382 DOI: 10.1167/iovs.17-22680] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To evaluate the angiogenic properties of corneal derived mesenchymal stromal cells (Co-MSC). Methods Co-MSCs were extracted from human cadaver, and wild-type (C57BL/6J) and SERPINF1−/− mice corneas. The MSC secretome was collected in a serum-free medium. Human umbilical vein endothelial cell (HUVEC) tube formation and fibrin gel bead assay (FIBA) sprout formation were used to assess the angiogenic properties of Co-MSC secretome. Complete corneal epithelial debridement was used to induce corneal neovascularization in wild-type mice. Co-MSCs embedded in fibrin gel was applied over the debrided cornea to evaluate the angiogenic effects of Co-MSCs in vivo. Immunoprecipitation was used to remove soluble fms-like tyrosine kinase-1 (sFLT-1) and pigment epithelium-derived factor (PEDF, SERPINF1 gene) from the Co-MSC secretome. Results Co-MSC secretome significantly inhibited HUVECs tube and sprout formation. Co-MSCs from different donors consistently contained high levels of antiangiogenic factors including sFLT-1 and PEDF; and low levels of the angiogenic factor VEGF-A. In vivo, application of Co-MSCs to mouse corneas after injury prevented the development of corneal neovascularization. Removing PEDF or sFLT-1 from the secretome significantly diminished the antiangiogenic effects of Co-MSCs. Co-MSCs isolated from SERPINF1−/− mice had significantly reduced antiangiogenic effects compared to SERPINF1+/+ (wild-type) Co-MSCs. Conclusions These results illustrate the direct antiangiogenic properties of Co-MSCs, the importance of sFLT-1 and PEDF, and their potential clinical application for preventing pathologic corneal neovascularization.
Collapse
Affiliation(s)
- Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Judy Hamouie
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Soroush Besharat
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
35
|
Okonkwo UA, DiPietro LA. Diabetes and Wound Angiogenesis. Int J Mol Sci 2017; 18:E1419. [PMID: 28671607 PMCID: PMC5535911 DOI: 10.3390/ijms18071419] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/10/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes.
Collapse
Affiliation(s)
- Uzoagu A Okonkwo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA.
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA.
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Xu B, Li J, Liu X, Li C, Chang X. TXNDC5 is a cervical tumor susceptibility gene that stimulates cell migration, vasculogenic mimicry and angiogenesis by down-regulating SERPINF1 and TRAF1 expression. Oncotarget 2017; 8:91009-91024. [PMID: 29207620 PMCID: PMC5710901 DOI: 10.18632/oncotarget.18857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/10/2017] [Indexed: 12/16/2022] Open
Abstract
TXNDC5 (thioredoxin domain-containing protein 5) catalyzes disulfide bond formation, isomerization and reduction. Studies have reported that TXNDC5 expression is increased in some tumor tissues and that its increased expression can predict a poor prognosis. However, the tumorigenic mechanism has not been well characterized. In this study, we detected a significant association between the rs408014 and rs7771314 SNPs at the TXNDC5 locus and cervical carcinoma using the Taqman genotyping method. We also detected a significantly increased expression of TXNDC5 in cervical tumor tissues using immunohistochemistry and Western blot analysis. Additionally, inhibition of TXNDC5 expression using siRNA prevented tube-like structure formation, an experimental indicator of vasculogenic mimicry and metastasis, in HeLa cervical tumor cells. Inhibiting TXNDC5 expression simultaneously led to the increased expression of SERPINF1 (serpin peptidase inhibitor, clade F) and TRAF1 (TNF receptor-associated factor 1), which have been reported to inhibit angiogenesis and metastasis as well as induce apoptosis. This finding was confirmed in Caski and C-33A cervical tumor cell lines. The ability to form tube-like structures was rescued in HeLa cells simultaneously treated with anti-TXNDC5, SERPINF1 and TRAF1 siRNAs. Furthermore, the inhibition of TXNDC5 expression significantly attenuated endothelial tube formation, a marker of angiogenesis, in human umbilical vein endothelial cells. The present study suggests that TXNDC5 is a susceptibility gene in cervical cancer, and high expression of this gene contributes to abnormal angiogenesis, vasculogenic mimicry and metastasis by down-regulating SERPINF1 and TRAF1 expression.
Collapse
Affiliation(s)
- Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Jian Li
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaoxin Liu
- Blood Transfusion Department of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chang Li
- Pathology Department of Tengzhou Central People's Hospital, Tengzhou, P. R. China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
37
|
Mukai K, Zhu W, Nakajima Y, Kobayashi M, Nakatani T. Non-invasive longitudinal monitoring of angiogenesis in a murine full-thickness cutaneous wound healing model using high-resolution three-dimensional ultrasound imaging. Skin Res Technol 2017; 23:581-587. [DOI: 10.1111/srt.12374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- K. Mukai
- Faculty of Health Sciences; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - W. Zhu
- Department of Quantum Medical Technology; Graduate Course of Medical Science and Technology; Division of Health Sciences; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - Y. Nakajima
- Department of Clinical Nursing; Graduate Course of Nursing Science; Division of Health Sciences; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - M. Kobayashi
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - T. Nakatani
- Faculty of Health Sciences; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| |
Collapse
|
38
|
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res 2016; 58:81-94. [PMID: 27974711 DOI: 10.1159/000454919] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. METHODS For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. RESULTS The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. CONCLUSION Although wound healing mechanisms and specific cell functions in wound repair have been delineated in part, many underlying pathophysiological processes are still unknown. The purpose of the following update on skin wound healing is to focus on the different phases and to brief the reader on the current knowledge and new insights. Skin wound healing is a complex process, which is dependent on many cell types and mediators interacting in a highly sophisticated temporal sequence. Although some interactions during the healing process are crucial, redundancy is high and other cells or mediators can adopt functions or signaling without major complications.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
39
|
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 2016; 100:979-984. [PMID: 27406995 DOI: 10.1189/jlb.4mr0316-102r] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Collapse
Affiliation(s)
- Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Pigment Epithelium-Derived Factor (PEDF) is a Determinant of Stem Cell Fate: Lessons from an Ultra-Rare Disease. J Dev Biol 2015; 3:112-128. [PMID: 27239449 PMCID: PMC4883593 DOI: 10.3390/jdb3040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PEDF is a secreted glycoprotein that is widely expressed by multiple organs. Numerous functional contributions have been attributed to PEDF with antiangiogenic, antitumor, anti-inflammatory, and neurotrophic properties among the most prominent. The discovery that null mutations in the PEDF gene results in Osteogenesis Imperfecta Type VI, a rare autosomal recessive bone disease characterized by multiple fractures, highlights a critical developmental function for this protein. This ultra-rare orphan disease has provided biological insights into previous studies that noted PEDF’s effects on various stem cell populations. In addition to bone development, PEDF modulates resident stem cell populations in the brain, muscle, and eye. Functional effects on human embryonic stem cells have also been demonstrated. An overview of recent advances in our understanding by which PEDF regulates stem cells and their potential clinical applications will be evaluated in this review.
Collapse
|