1
|
Feng J, Huang Y, Huang L, Zhao X, Li X, Xin A, Wang C, Zhang Y, Zhang J. Association between RDW-SD and prognosis across glycemic status in patients with dilated cardiomyopathy. BMJ Open Diabetes Res Care 2024; 12:e004478. [PMID: 39542527 DOI: 10.1136/bmjdrc-2024-004478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION The prognostic significance of red cell distribution width-SD (RDW-SD) as a promising inflammatory biomarker in individuals with non-ischemic dilated cardiomyopathy (DCM) and varying glycemic status remains unexplored. RESEARCH DESIGN AND METHODS Patients hospitalized for DCM in Fuwai Hospital from 2006 to 2021 were retrospectively included. The primary outcome encompassed all-cause mortality and heart transplantations. The multivariable Cox regression was used to evaluate the association between RDW-SD and outcomes in the overall DCM population, and among patients with normoglycemia (NG), pre-diabetes mellitus (pre-DM) and DM. RESULTS Among 1,102 patients with DCM, the median age was 48 years and 23.5% were women. In the overall DCM cohort, the RDW-SD was independently associated with the primary outcome (adjusted HR 1.29, 95% CI 1.15 to 1.45, p<0.001, per SD increase). When stratifying patients with glycemic status, the RDW-SD exhibited an independent association with outcome in patients with DCM with pre-DM and DM, the adjusted HRs were 1.48 (95% CI 1.21 to 1.79, p<0.001) and 1.30 (95% CI 1.06 to 1.60, p=0.011) per SD increase, respectively. However, in patients with DCM and NG, the prognostic value of RDW-SD was insignificant, with an adjusted HR of 1.20 per SD increase (95% CI: 0.97 to 1.48, p=0.101). CONCLUSIONS RDW-SD was independently associated with the outcome in patients with DCM with pre-DM and DM, suggesting potential individualized therapeutic targets for this subset of patients with DCM.
Collapse
Affiliation(s)
- Jiayu Feng
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Yani Huang
- Department of Epidemiology, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Liyan Huang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Xuemei Zhao
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Xinqing Li
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Anran Xin
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Chengyi Wang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Yuhui Zhang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Jian Zhang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| |
Collapse
|
2
|
Guo Z, Tian Y, Liu N, Chen Y, Chen X, Yuan G, Chang A, Chang X, Wu J, Zhou H. Mitochondrial Stress as a Central Player in the Pathogenesis of Hypoxia-Related Myocardial Dysfunction: New Insights. Int J Med Sci 2024; 21:2502-2509. [PMID: 39439461 PMCID: PMC11492880 DOI: 10.7150/ijms.99359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Hypoxic injury is a critical pathological factor in the development of various cardiovascular diseases, such as congenital heart disease, myocardial infarction, and heart failure. Mitochondrial quality control is essential for protecting cardiomyocytes from hypoxic damage. Under hypoxic conditions, disruptions in mitochondrial homeostasis result in excessive reactive oxygen species (ROS) production, imbalances in mitochondrial dynamics, and initiate pathological processes including oxidative stress, inflammatory responses, and apoptosis. Targeted interventions to enhance mitochondrial quality control, such as coenzyme Q10 and statins, have shown promise in mitigating hypoxia-induced mitochondrial dysfunction. These treatments offer potential therapeutic strategies for hypoxia-related cardiovascular diseases by regulating mitochondrial fission and fusion, restoring mitochondrial biogenesis, reducing ROS production, and promoting mitophagy.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guoxing Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - An Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
3
|
Zhao X, Zhang J, Xu F, Shang L, Liu Q, Shen C. TAK-242 alleviates diabetic cardiomyopathy via inhibiting pyroptosis and TLR4/CaMKII/NLRP3 pathway. Open Life Sci 2024; 19:20220957. [PMID: 39290498 PMCID: PMC11406225 DOI: 10.1515/biol-2022-0957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is identified as a progressive disease that may lead to irreparable heart failure. Toll-like receptor (TLR) signaling is believed to be implicated in the pathogenesis of DCM. This study intended to explore the potential impact of Toll-like receptor 4 (TLR4) on DCM in vitro and in vivo. Streptozotocin and HG medium were utilized to induce diabetes in animal and cell models, respectively. Selective TLR4 inhibitor TAK-242 and calcium/calmodulin-dependent protein kinase-II (CaMKII) inhibitor KN-93 were employed to explore the involvement of TLR4/CaMKII in DCM. TLR4 expression was increased in DCM hearts, while inhibition of TLR4 activation by TAK-242 improved cardiac function, attenuated heart hypertrophy, and fibrosis, as well as reduced oxidative stress and proinflammatory cytokine levels in rats, which were confirmed by Doppler echocardiography, hematoxylin and eosin staining, and Masson Trichome staining and specific enzyme-linked immunosorbent assay kits. Besides, the expression of hypertrophy-related molecules and oxidative stress damage were also inhibited by TAK-242. Furthermore, TAK-242 treatment reduced CaMKII phosphorylation accompanied by decreased expression of NOD-like pyrin domain-containing protein 3, gasdermin D (GSDMD), The N-terminal domain of Gasdermin D (GSDMD-N), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and Caspase-1 both in vivo and in vitro. Similar positive impacts on HG-induced pyroptosis were also observed with KN-93 treatment, and this was achieved without affecting TLR4 expression. Collectively, our work suggested that TAK-242 demonstrated substantial benefits against DCM both in vivo and in vitro, potentially attributed to the suppression of the TLR4-mediated CaMKII/NLRP3 pathway activity.
Collapse
Affiliation(s)
- Xiaolong Zhao
- School of Graduates, Dalian Medical University, Dalian, China
| | - Jing Zhang
- Medical Department, The Second Hospital of Dalian Medical University, Dalian City, China
| | - Feng Xu
- School of Graduates, Dalian Medical University, Dalian, China
| | - Longqi Shang
- Department of Nursing, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, China
| | - Qingquan Liu
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Shenyang, 110000, Liaoning, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Shenyang, 110000, Liaoning, China
| |
Collapse
|
4
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: mechanisms to clinical impact. Matrix Biol 2024:S0945-053X(24)00110-0. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
5
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
6
|
Wang D, Yu X, Gao K, Li F, Li X, Pu H, Zhang P, Guo S, Wang W. Sweroside alleviates pressure overload-induced heart failure through targeting CaMKⅡδ to inhibit ROS-mediated NF-κB/NLRP3 in cardiomyocytes. Redox Biol 2024; 74:103223. [PMID: 38851078 PMCID: PMC11219961 DOI: 10.1016/j.redox.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Ongoing inflammation in the heart is positively correlated with adverse remodeling, characterized by elevated levels of cytokines that stimulate activation of cardiac fibroblasts. It was found that CaMKIIδ response to Ang II or TAC triggers the accumulation of ROS in cardiomyocytes, which subsequently stimulates NF-κB/NLRP3 and leads to an increase in IL-6, IL-1β, and IL-18. This is an important causative factor in the occurrence of adverse remodeling in heart failure. Sweroside is a biologically active natural iridoids extracted from Lonicerae Japonicae Flos. It shows potent anti-inflammatory and antioxidant activity in various cardiovascular diseases. In this study, we found that sweroside inhibited ROS-mediated NF-κB/NLRP3 in Ang II-treated cardiomyocytes by directly binding to CaMKIIδ. Knockdown of CaMKⅡδ abrogated the effect of sweroside regulation on NF-κB/NLRP3 in cardiomyocytes. AAV-CaMKⅡδ induced high expression of CaMKⅡδ in the myocardium of TAC/Ang II-mice, and the inhibitory effect of sweroside on TAC/Ang Ⅱ-induced elevation of NF-κB/NLRP3 was impeded. Sweroside showed significant inhibitory effects on CaMKIIδ/NF-κB/NLRP3 in cardiomyocytes from TAC/Ang Ⅱ-induced mice. This would be able to mitigate the adverse events of myocardial remodeling and contractile dysfunction at 8 weeks after the onset of the inflammatory response. Taken together, our findings have revealed the direct protein targets and molecular mechanisms by which sweroside improves heart failure, thereby supporting the further development of sweroside as a therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Dong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kuo Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fanghe Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haiyin Pu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peng Zhang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
7
|
Zhang X, Zhang L, Gao Y, Liu Z, Gong K. Identification of hub glycolysis-related genes in acute myocardial infarction and their correlation with immune infiltration using bioinformatics analysis. BMC Cardiovasc Disord 2024; 24:349. [PMID: 38987688 PMCID: PMC11234719 DOI: 10.1186/s12872-024-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE Glycolysis and immune metabolism play important roles in acute myocardial infarction (AMI). Therefore, this study aimed to identify and experimentally validate the glycolysis-related hub genes in AMI as diagnostic biomarkers, and further explore the association between hub genes and immune infiltration. METHODS Differentially expressed genes (DEGs) from AMI peripheral blood mononuclear cells (PBMCs) were analyzed using R software. Glycolysis-related DEGs (GRDEGs) were identified and analyzed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) for functional enrichment. A protein-protein interaction network was constructed using the STRING database and visualized using Cytoscape software. Immune infiltration analysis between patients with AMI and stable coronary artery disease (SCAD) controls was performed using CIBERSORT, and correlation analysis between GRDEGs and immune cell infiltration was performed. We also plotted nomograms and receiver operating characteristic (ROC) curves to assess the predictive accuracy of GRDEGs for AMI occurrence. Finally, key genes were experimentally validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting using PBMCs. RESULTS A total of 132 GRDEGs and 56 GRDEGs were identified on the first day and 4-6 days after AMI, respectively. Enrichment analysis indicated that these GRDEGs were mainly clustered in the glycolysis/gluconeogenesis and metabolic pathways. Five hub genes (HK2, PFKL, PKM, G6PD, and ALDOA) were selected using the cytoHubba plugin. The link between immune cells and hub genes indicated that HK2, PFKL, PKM, and ALDOA were significantly positively correlated with monocytes and neutrophils, whereas G6PD was significantly positively correlated with neutrophils. The calibration curve, decision curve analysis, and ROC curves indicated that the five hub GRDEGs exhibited high predictive value for AMI. Furthermore, the five hub GRDEGs were validated by RT-qPCR and western blotting. CONCLUSION We concluded that HK2, PFKL, PKM, G6PD, and ALDOA are hub GRDEGs in AMI and play important roles in AMI progression. This study provides a novel potential immunotherapeutic method for the treatment of AMI.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- School of Medicine, Yangzhou University, No. 136, Jiang yang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Lina Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Ya Gao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhangyu Liu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Kaizheng Gong
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China.
| |
Collapse
|
8
|
Wu Q, Rafatian N, Wagner KT, Blamer J, Smith J, Okhovatian S, Aggarwal P, Wang EY, Banerjee A, Zhao Y, Nash TR, Lu RXZ, Portillo-Esquivel LE, Li CY, Kuzmanov U, Mandla S, Virlee E, Landau S, Lai BF, Gramolini AO, Liu C, Fleischer S, Veres T, Vunjak-Novakovic G, Zhang B, Mossman K, Broeckel U, Radisic M. SARS-CoV-2 pathogenesis in an angiotensin II-induced heart-on-a-chip disease model and extracellular vesicle screening. Proc Natl Acad Sci U S A 2024; 121:e2403581121. [PMID: 38968108 PMCID: PMC11253010 DOI: 10.1073/pnas.2403581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.
Collapse
Affiliation(s)
- Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Jacob Blamer
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Jacob Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Erika Yan Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Arinjay Banerjee
- Department of Medicine, McMaster University, Toronto, ONL8S 4L8, Canada
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKS7N 5E3, Canada
| | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Trevor R. Nash
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | | | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Uros Kuzmanov
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Serena Mandla
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Elizabeth Virlee
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Anthony O. Gramolini
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ONM5S 3E1, Canada
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Teodor Veres
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ONM5S 3G8, Canada
- Medical Devices Research Center, Life Sciences Division, National Research Council Canada, Montreal, QCH4P 2R2, Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Department of Medicine, Columbia University, New York, NY10032
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ONL8S 4L8, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Toronto, ONL8S 4L8, Canada
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ONM5S 3E1, Canada
| |
Collapse
|
9
|
Parletta AC, Cerri GC, Gasparini CRB, Panico K, Vieira-Junior DN, Zacarias-Rodrigues LM, Senger N, de Almeida Silva A, Fevereiro M, Diniz GP, Irigoyen MCC, Barreto-Chaves MLM. Cardiac hypertrophy that affects hyperthyroidism occurs independently of the NLRP3 inflammasome. Pflugers Arch 2024; 476:1065-1075. [PMID: 38679646 DOI: 10.1007/s00424-024-02965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Cardiac hypertrophy (CH) is an adaptive response to maintain cardiac function; however, persistent stress responses lead to contractile dysfunction and heart failure. Although inflammation is involved in these processes, the mechanisms that control cardiac inflammation and hypertrophy still need to be clarified. The NLRP3 inflammasome is a cytosolic multiprotein complex that mediates IL-1β production. The priming step of NLRP3 is essential for increasing the expression of its components and occurs following NF-κB activation. Hyperthyroidism triggers CH, which can progress to maladaptive CH and even heart failure. We have shown in a previous study that thyroid hormone (TH)-induced CH is linked to the upregulation of S100A8, leading to NF-κB activation. Therefore, we aimed to investigate whether the NLRP3 inflammasome is involved in TH-induced CH and its potential role in CH pathophysiology. Hyperthyroidism was induced in NLRP3 knockout (NLRP3-KO), Caspase-1-KO and Wild Type (WT) male mice of the C57Bl/6J strain, aged 8-12 weeks, by triiodothyronine (7 μg/100 g BW, i.p.) administered daily for 14 days. Morphological and cardiac functional analysis besides molecular assays showed, for the first time, that TH-induced CH is accompanied by reduced NLRP3 expression in the heart and that it occurs independently of the NLRP3 inflammasome and caspase 1-related pathways. However, NLRP3 is important for the maintenance of basal cardiac function since NLRP3-KO mice had impaired diastolic function and reduced heart rate, ejection fraction, and fractional shortening compared with WT mice.
Collapse
Affiliation(s)
- Aline Cristina Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Gabriela Cavazza Cerri
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Claudia Ribeiro Borba Gasparini
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Karine Panico
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Denival Nascimento Vieira-Junior
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Larissa Maria Zacarias-Rodrigues
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Amanda de Almeida Silva
- Department of Cardiopneumology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Gabriela Placoná Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Maria Cláudia Costa Irigoyen
- Department of Cardiopneumology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
10
|
Cohen MV, Downey JM. Initial Despair and Current Hope of Identifying a Clinically Useful Treatment of Myocardial Reperfusion Injury: Insights Derived from Studies of Platelet P2Y 12 Antagonists and Interference with Inflammation and NLRP3 Assembly. Int J Mol Sci 2024; 25:5477. [PMID: 38791515 PMCID: PMC11122283 DOI: 10.3390/ijms25105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Myocardial necrosis following the successful reperfusion of a coronary artery occluded by thrombus in a patient presenting with ST-elevation myocardial infarction (STEMI) continues to be a serious problem, despite the multiple attempts to attenuate the necrosis with agents that have shown promise in pre-clinical investigations. Possible reasons include confounding clinical risk factors, the delayed application of protective agents, poorly designed pre-clinical investigations, the possible effects of routinely administered agents that might unknowingly already have protected the myocardium or that might have blocked protection, and the biological differences of the myocardium in humans and experimental animals. A better understanding of the pathobiology of myocardial infarction is needed to stem this reperfusion injury. P2Y12 receptor antagonists minimize platelet aggregation and are currently part of the standard treatment to prevent thrombus formation and propagation in STEMI protocols. Serendipitously, these P2Y12 antagonists also dramatically attenuate reperfusion injury in experimental animals and are presumed to provide a similar protection in STEMI patients. However, additional protective agents are needed to further diminish reperfusion injury. It is possible to achieve additive protection if the added intervention protects by a mechanism different from that of P2Y12 antagonists. Inflammation is now recognized to be a critical factor in the complex intracellular response to ischemia and reperfusion that leads to tissue necrosis. Interference with cardiomyocyte inflammasome assembly and activation has shown great promise in attenuating reperfusion injury in pre-clinical animal models. And the blockade of the executioner protease caspase-1, indeed, supplements the protection already seen after the administration of P2Y12 antagonists. Importantly, protective interventions must be applied in the first minutes of reperfusion, if protection is to be achieved. The promise of such a combination of protective strategies provides hope that the successful attenuation of reperfusion injury is attainable.
Collapse
Affiliation(s)
- Michael V. Cohen
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
- The Departments of Medicine, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA
| | - James M. Downey
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
| |
Collapse
|
11
|
Selgrade DF, Fullenkamp DE, Chychula IA, Li B, Dellefave-Castillo L, Dubash AD, Ohiri J, Monroe TO, Blancard M, Tomar G, Holgren C, Burridge PW, George AL, Demonbreun AR, Puckelwartz MJ, George SA, Efimov IR, Green KJ, McNally EM. Susceptibility to innate immune activation in genetically mediated myocarditis. J Clin Invest 2024; 134:e180254. [PMID: 38768074 PMCID: PMC11213508 DOI: 10.1172/jci180254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Myocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment is often supportive. Mutations in DSP, a gene encoding the desmosomal protein desmoplakin, have been increasingly implicated in myocarditis. To model DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues (EHTs) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with heterozygous DSP truncating variants (DSPtvs) and a gene-edited homozygous deletion cell line (DSP-/-). At baseline, DSP-/- EHTs displayed a transcriptomic signature of innate immune activation, which was mirrored by cytokine release. Importantly, DSP-/- EHTs were hypersensitive to Toll-like receptor (TLR) stimulation, demonstrating more contractile dysfunction compared with isogenic controls. Relative to DSP-/- EHTs, heterozygous DSPtv EHTs had less functional impairment. DSPtv EHTs displayed heightened sensitivity to TLR stimulation, and when subjected to strain, DSPtv EHTs developed functional deficits, indicating reduced contractile reserve compared with healthy controls. Colchicine or NF-κB inhibitors improved strain-induced force deficits in DSPtv EHTs. Genomic correction of DSP p.R1951X using adenine base editing reduced inflammatory biomarker release from EHTs. Thus, EHTs replicate electrical and contractile phenotypes seen in human myocarditis, implicating cytokine release as a key part of the myogenic susceptibility to inflammation. The heightened innate immune activation and sensitivity are targets for clinical intervention.
Collapse
Affiliation(s)
| | - Dominic E. Fullenkamp
- Center for Genetic Medicine and
- Bluhm Cardiovascular Institute, Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Binjie Li
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine and
- Bluhm Cardiovascular Institute, Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adi D. Dubash
- Department of Biology, Furman University, Greenville, South Carolina, USA
- Department of Pathology
| | | | | | | | | | | | | | | | | | | | - Sharon A. George
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Kathleen J. Green
- Department of Pathology
- Department of Dermatology, and
- R.H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine and
- Bluhm Cardiovascular Institute, Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Hu Y, Dai S, Zhao L, Zhao L. Research progress on the improvement of cardiovascular diseases through the autonomic nervous system regulation of the NLRP3 inflammasome pathway. Front Cardiovasc Med 2024; 11:1369343. [PMID: 38650918 PMCID: PMC11034522 DOI: 10.3389/fcvm.2024.1369343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Cardiovascular disease stands as a leading global cause of mortality. Nucleotide-binding Oligomerization Domain-like Receptor Protein 3 (NLRP3) inflammasome is widely acknowledged as pivotal factor in specific cardiovascular disease progression, such as myocardial infarction, heart failure. Recent investigations underscore a close interconnection between autonomic nervous system (ANS) dysfunction and cardiac inflammation. It has been substantiated that sympathetic nervous system activation and vagus nerve stimulation (VNS) assumes critical roles withinNLRP3 inflammasome pathway regulation, thereby contributing to the amelioration of cardiac injury and enhancement of prognosis in heart diseases. This article reviews the nexus between NLRP3 inflammasome and cardiovascular disorders, elucidating the modulatory functions of the sympathetic and vagus nerves within the ANS with regard to NLRP3 inflammasome. Furthermore, it delves into the potential therapeutic utility of NLRP3 inflammasome to be targeted by VNS. This review serves as a valuable reference for further exploration into the potential mechanisms underlying VNS in the modulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
| | | | - Lulu Zhao
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Sharma D, Sharma S, Mandal V, Dhobi M. Unveiling the anti-inflammatory potential of Acalypha indica L. and analyzing its research trend: digging deep to learn deep. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1935-1956. [PMID: 37796311 DOI: 10.1007/s00210-023-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The plant Acalypha indica L. is a well-known traditional plant belonging to the family Euphorbiaceae. Traditional practices of the plant claim to treat asthma, pneumonia, wound healing, rheumatoid arthritis, bronchitis, and skin disorders. The major phytochemicals reported are cyanogenic glucosides, tannins, coumarins, flavonoid glycosides, fatty acids, and volatile oils. To summarize the anti-inflammatory potential of Acalypha indica extract and its phytochemicals through preclinical studies. The search terms include anti-inflammatory, Acalypha indica, and Acalypha indica extract independently or in combination with pro-inflammatory markers using various databases, including Scopus, Web of Science, PubMed, ProQuest, and Google Scholar. The results of preclinical studies confirm that Acalypha indica exhibits strong anti-inflammatory activity. Most of the experimental studies that have been conducted on plant extract are protein denaturation, human red blood cell membrane stabilization assay, and carrageenan-induced inflammation models. However, the molecular mechanism in these studies is still unclear to demonstrate its anti-inflammatory effects. Acalypha indica possesses anti-inflammatory effects that may be due to the presence of phenolic compounds especially flavonoids present in the Acalypha indica. Thus, further research is needed, to understand mechanistic insights of the plant phytochemicals to represent anti-inflammatory properties.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Vivekananda Mandal
- Division of Pharmacognosy, Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chattisgarh, 495009, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India.
| |
Collapse
|
14
|
Zhang Y, Song M, Yang Z, Huang X, Lin Y, Yang H. Healthy lifestyles, systemic inflammation and breast cancer risk: a mediation analysis. BMC Cancer 2024; 24:208. [PMID: 38360584 PMCID: PMC10868083 DOI: 10.1186/s12885-024-11931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Despite the known association between healthy lifestyles and reduced risk of breast cancer, it remains unclear whether systemic inflammation, as a consequence of unhealthy lifestyles, may mediate the association. METHODS A cohort study of 259,435 female participants in the UK Biobank was conducted to estimate hazard ratio (HR) for breast cancer according to 9 inflammation markers using Cox regression models. We further estimated the percentage of total association between healthy lifestyle index (HLI) and breast cancer that is mediated by these inflammation markers. RESULTS During 2,738,705 person-years of follow-up, 8,889 cases of breast cancer were diagnosed among 259,435 women in the UK Biobank cohort. Higher level of C-reactive protein (CRP), systemic immune-inflammation index (SII), CRP-to-albumin Ratio (CAR), CRP-to-lymphocyte Ratio (CLR), monocyte-to-HDL-c ratio (MHR), and neutrophil-to-HDL-c ratio (NHR) were associated with increased breast cancer risk, while a higher lymphocyte-to-monocyte ratio (LMR) was associated with a lower risk. The inverse association between HLI and breast cancer was weakly mediated by CRP (8.5%), SII (1.71%), CAR (8.66%), CLR (6.91%), MHR (6.27%), and NHR (7.33%). When considering individual lifestyle factors, CRP and CAR each mediated 16.58% and 17.20%, respectively, of the associations between diet score and breast cancer risk, while the proportion mediated for physical activity and breast cancer were 12.13% and 11.48%, respectively. Furthermore, MHR was found to mediate 13.84% and 12.01% of the associations between BMI, waist circumference, and breast cancer. CONCLUSION The association of HLI and breast cancer is weakly mediated by the level of inflammation, particularly by CRP and CAR. Systemic inflammatory status may be an intermediate in the biological pathway of breast cancer development.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Xue Yuan Road 1, University Town, 350122, Fuzhou, China
| | - Mengjie Song
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Xue Yuan Road 1, University Town, 350122, Fuzhou, China
| | - Zixuan Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Xue Yuan Road 1, University Town, 350122, Fuzhou, China
| | - Xiaoxi Huang
- Department of Breast, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, China.
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Xue Yuan Road 1, University Town, 350122, Fuzhou, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.
| |
Collapse
|
15
|
Liang R, Qi X, Cai Q, Niu L, Huang X, Zhang D, Ling J, Wu Y, Chen Y, Yang P, Liu J, Zhang J, Yu P. The role of NLRP3 inflammasome in aging and age-related diseases. Immun Ageing 2024; 21:14. [PMID: 38317229 PMCID: PMC10840156 DOI: 10.1186/s12979-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
The gradual aging of the global population has led to a surge in age-related diseases, which seriously threaten human health. Researchers are dedicated to understanding and coping with the complexities of aging, constantly uncovering the substances and mechanism related to aging like chronic low-grade inflammation. The NOD-like receptor protein 3 (NLRP3), a key regulator of the innate immune response, recognizes molecular patterns associated with pathogens and injury, initiating an intrinsic inflammatory immune response. Dysfunctional NLRP3 is linked to the onset of related diseases, particularly in the context of aging. Therefore, a profound comprehension of the regulatory mechanisms of the NLRP3 inflammasome in aging-related diseases holds the potential to enhance treatment strategies for these conditions. In this article, we review the significance of the NLRP3 inflammasome in the initiation and progression of diverse aging-related diseases. Furthermore, we explore preventive and therapeutic strategies for aging and related diseases by manipulating the NLRP3 inflammasome, along with its upstream and downstream mechanisms.
Collapse
Affiliation(s)
- Ruikai Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Xinrui Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Qi Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Liyan Niu
- Huan Kui College of Nanchang University, Nanchang, China
| | - Xi Huang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China.
| |
Collapse
|
16
|
Wang G, Ma TY, Huang K, Zhong JH, Lu SJ, Li JJ. Role of pyroptosis in diabetic cardiomyopathy: an updated review. Front Endocrinol (Lausanne) 2024; 14:1322907. [PMID: 38250736 PMCID: PMC10796545 DOI: 10.3389/fendo.2023.1322907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the common complications of diabetes, presents as a specific cardiomyopathy with anomalies in the structure and function of the heart. With the increasing prevalence of diabetes, DCM has a high morbidity and mortality worldwide. Recent studies have found that pyroptosis, as a programmed cell death accompanied by an inflammatory response, exacerbates the growth and genesis of DCM. These studies provide a theoretical basis for exploring the potential treatment of DCM. Therefore, this review aims to summarise the possible mechanisms by which pyroptosis promotes the development of DCM as well as the relevant studies targeting pyroptosis for the possible treatment of DCM, focusing on the molecular mechanisms of NLRP3 inflammasome-mediated pyroptosis, different cellular pyroptosis pathways associated with DCM, the effects of pyroptosis occurring in different cells on DCM, and the relevant drugs targeting NLRP3 inflammasome/pyroptosis for the treatment of DCM. This review might provide a fresh perspective and foundation for the development of therapeutic agents for DCM.
Collapse
Affiliation(s)
- Gan Wang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Tian-Yi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Jiang-Hua Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Shi-Juan Lu
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Li X, Zhou W, Guo D, Hu Y, Zhou H, Chen Y. Roles of MDA-LDL/OX-LDL/LOX-1 and TNF-α/TLR4/NF-κB Signaling Pathways in Myocardial Damage by Implantations of Cardiac Pacemakers in Elderly Patients. Curr Vasc Pharmacol 2024; 22:251-265. [PMID: 38920075 DOI: 10.2174/0115701611260215231221072709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Permanent pacemakers are an established treatment for sick sinus syndrome and high-grade atrioventricular block. Permanent cardiac pacemaker implantations may damage the myocardium. OBJECTIVE This study evaluated markers of myocardial injury, oxidative stress and inflammation in elderly patients with permanent pacemaker implantations. METHODS Various markers were measured at 1, 2, 3 and 4 months after permanent pacemaker implantations in elderly patients. RESULTS The levels of high-sensitivity troponin T (hsTnT), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), malondialdehyde-modified low-density lipoprotein (MDA-LDL), oxidized low-density lipoprotein (OX-LDL), tumour necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) were increased in 2-month group compared with control and 1- month groups (P<0.001), and were further increased at 4-month group compared with 2- and 3- month groups after pacemaker implantations (P<0.001). Patients with dual-chamber pacemakers had higher levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB than patients with single chamber pacemakers (P<0.001). Patients who underwent the pacemakers with the active fixation leads had raised levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB compared patients with pacemakers using the passive fixation leads (P<0.001). Myocardial blood flows in 3-month and 4-month groups were lower than 1-month and 2-month groups (P<0.001). CONCLUSION Levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB were elevated in elderly patients with permanent pacemaker implantations and the activations of oxidative stress and pro-inflammatory signalling pathways may be associated with myocardial damages and ischemia after pacemaker implantations in elderly patients.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Wenhang Zhou
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| |
Collapse
|
18
|
Zeng GG, Tang SS, Jiang WL, Yu J, Nie GY, Tang CK. Apelin-13: A Protective Role in Vascular Diseases. Curr Probl Cardiol 2024; 49:102088. [PMID: 37716542 DOI: 10.1016/j.cpcardiol.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Shang-Shu Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Liu H, Hu Q, Ren K, Wu P, Wang Y, Lv C. ALDH2 mitigates LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING pathway. Mol Med 2023; 29:171. [PMID: 38124089 PMCID: PMC10731778 DOI: 10.1186/s10020-023-00769-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Sepsis is a severe syndrome of organ dysfunction that often leads to cardiac dysfunction and endangers life. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in LPS-induced myocardial injury is unclear. The purpose of this study was to assess the role of ALDH2 in lipopolysaccharide (LPS)-induced myocardial injury and the regulatory mechanism and to identify potential therapeutic strategies for treating this condition. METHODS An in vivo model was established by 12 h of LPS (10 mg/kg, intraperitoneal injection) stimulation, and an in vitro model was generated by stimulating H9C2 cells with LPS (10 μg/ml) for 12 h. We then used the ALDH2 activator Alda-1 and the ALDH2 inhibitor daidzin to assess their effects on LPS-induced cardiac injury. Cardiac function in mice was evaluated by using cardiac ultrasound. We used various methods to evaluate inflammation, apoptosis, and oxidative stress, including ELISA, flow cytometry, JC-1 staining, Western blotting, and DCFH-DA staining. Additionally, we used a small interfering RNA (siRNA) to knock down cyclic GMP-AMP synthase (cGAS) to further investigate the relationship between ALDH2 and cGAS in LPS-induced cardiac injury. RESULTS LPS-induced cardiac dysfunction and increased the levels of the cardiac injury markers creatine kinase-MB (CKMB) and lactate dehydrogenase (LDH) in vivo. This change was accompanied by an increase in reactive oxygen species (ROS) levels, which exacerbated the oxidative stress response and regulated apoptosis through cleaved caspase-3, BAX, BCL-2. The expression of inflammatory cytokines such as IL-6/IL-1β/TNF-α was also upregulated. However, these effects were reversed by pretreatment with Alda-1 via the inhibition of cGAS/stimulator of interferon genes (STING) signaling pathway. Interestingly, LPS, Alda-1 and daidzin altered the activity of ALDH2 but did not regulate its protein expression. Knocking down cGAS in H9C2 cardiomyocytes alleviated LPS-induced cardiac inflammation, apoptosis, and ROS production and weakened the synergistic effect of daidzin. CONCLUSION We demonstrated that ALDH2 alleviated LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING signaling pathway, thereby protecting against LPS-induced cardiac injury. This study identifies a novel therapeutic approach for treating sepsis-induced cardiomyopathy (SIC).
Collapse
Affiliation(s)
- Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ke Ren
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengxin Wu
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China.
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China.
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
20
|
Li X, You J, Dai F, Wang S, Yang FH, Wang X, Ding Z, Huang J, Chen L, Abudureyimu M, Tang H, Yang X, Xiang Y, Backx PH, Ren J, Ge J, Zou Y, Wu J. TAK1 Activation by NLRP3 Deficiency Confers Cardioprotection Against Pressure Overload-Induced Cardiomyocyte Pyroptosis and Hypertrophy. JACC Basic Transl Sci 2023; 8:1555-1573. [PMID: 38205342 PMCID: PMC10774584 DOI: 10.1016/j.jacbts.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 01/12/2024]
Abstract
A comprehensive view of the role of NLRP3/caspase-1/GSDMD-mediated pyroptosis in pressure overload cardiac hypertrophy is presented in this study. Furthermore, mitigation of NLRP3 deficiency-induced pyroptosis confers cardioprotection against pressure overload through activation of TAK1, whereas this salutary effect is abolished by inhibition of TAK1 activity, highlighting a previously unrecognized reciprocally regulatory role of NLRP3-TAK1 governing inflammation-induced cell death and hypertrophic growth. Translationally, this study advocates strategies based on inflammation-induced cell death might be exploited therapeutically in other inflammatory and mechanical overload disorders, such as myocardial infarction and mitral regurgitation.
Collapse
Affiliation(s)
- Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jieyun You
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Hua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Province Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Xingxu Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayuan Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Province Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
23
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Urazova O, Trofimenko A, Navarsdyan G, Jndoyan Z, Abgaryan K, Fogacci F, Galli M, Agati L, Kobalava Z, Shafie D, Marzilli M, Gogiashvili L, Sarrafzadegan N. HIV-Related Atherosclerosis: State-of-the-Art-Review. Curr Probl Cardiol 2023; 48:101783. [PMID: 37172874 DOI: 10.1016/j.cpcardiol.2023.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The infection caused by the Human Immunodeficiency Virus (HIV) has spread rapidly across the globe, assuming the characteristics of an epidemic in some regions. Thanks to the introduction of antiretroviral therapy into routine clinical practice, there was a considerable breakthrough in the treatment of HIV, that is now HIV is potentially well-controlled even in low-income countries. To date, HIV infection has moved from the group of life-threatening conditions to the group of chronic and well controlled ones and the quality of life and life expectancy of HIV+ people, with an undetectable viral load is closer to that of an HIV- people. However, unsolved issues still persist. For example: people living with HIV are more prone to the age-related diseases, especially atherosclerosis. For this reason, a better understanding of the mechanisms of HIV-associated destabilization of vascular homeostasis seems to be an urgent duty, that may lead to the development of new protocols, bringing the possibilities of pathogenetic therapies to a new level. The purpose of the article was to evaluate the pathological aspects of HIV-induced atherosclerosis.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Assistant Professor, Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Professor, Deputy of General Director for Science and Preventive Cardiology, National Medical Research Centre of Cardiology after E. Chazov, Moscow, Russia
| | - Lev Kakturskiy
- Professor, Scientific Director, Research Institute of Human Morphology FSBI «Petrovskiy NRCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Olga Urazova
- Professor, Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Artem Trofimenko
- Associate Professor, Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | - Grizelda Navarsdyan
- Professor, Pathophysiology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zinaida Jndoyan
- Professor, Head of Internal Diseases Propedeutics Department, Yerevan State Medical University after M. Heratsi, Armenia
| | - Kristina Abgaryan
- Associate Professor, Medical Microbiology Department, Yerevan State Medical University after M.Heratsi, Armenia
| | - Federica Fogacci
- Research Fellow, Atherosclerosis and Metabolic Disorders Research Unit, University of Bologna, Bologna, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Luciano Agati
- Professor of Cardiology Department, Head of Cardiology Unit Azienda Policlinico Umberto II, Sapienza University, Rome, Italy
| | - Zhanna Kobalava
- Professor, Head of Internal Disease, Cardiology and Clinical Pharmacology Department, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Davood Shafie
- Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Mario Marzilli
- Professor, Head of Cardiovascular Medicine Division, University of Pisa, Pisa, Italy
| | - Liana Gogiashvili
- Professor, Head of Experimental and Clinical Pathology Department, Al. Natishvili Institute of Experimental Morphology, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nizal Sarrafzadegan
- Professor, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Feng J, Zhao X, Huang B, Huang L, Wu Y, Wang J, Guan J, Li X, Zhang Y, Zhang J. Incorporating inflammatory biomarkers into a prognostic risk score in patients with non-ischemic heart failure: a machine learning approach. Front Immunol 2023; 14:1228018. [PMID: 37649485 PMCID: PMC10463734 DOI: 10.3389/fimmu.2023.1228018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Inflammation is involved in the mechanisms of non-ischemic heart failure (NIHF). We aimed to investigate the prognostic value of 21 inflammatory biomarkers and construct a biomarker risk score to improve risk prediction for patients with NIHF. Methods Patients diagnosed with NIHF without infection during hospitalization were included. The primary outcome was defined as all-cause mortality and heart transplantations. We used elastic net Cox regression with cross-validation to select inflammatory biomarkers and construct the best biomarker risk score model. Discrimination, calibration, and reclassification were evaluated to assess the predictive value of the biomarker risk score. Results Of 1,250 patients included (median age, 53 years, 31.9% women), 436 patients (34.9%) experienced the primary outcome during a median of 2.8 years of follow-up. The final biomarker risk score included high-sensitivity C-reactive protein-to-albumin ratio (CAR) and red blood cell distribution width-standard deviation (RDW-SD), both of which were 100% selected in 1,000 times cross-validation folds. Incorporating the biomarker risk score into the best basic model improved the discrimination (ΔC-index = 0.012, 95% CI 0.003-0.018) and reclassification (IDI, 2.3%, 95% CI 0.7%-4.9%; NRI, 17.3% 95% CI 6.4%-32.3%) in risk identification. In the cross-validation sets, the mean time-dependent AUC ranged from 0.670 to 0.724 for the biomarker risk score and 0.705 to 0.804 for the basic model with a biomarker risk score, from 1 to 8 years. In multivariable Cox regression, the biomarker risk score was independently associated with the outcome in patients with NIHF (HR 1.76, 95% CI 1.49-2.08, p < 0.001, per 1 score increase). Conclusions An inflammatory biomarker-derived risk score significantly improved prognosis prediction and risk stratification, providing potential individualized therapeutic targets for NIHF patients.
Collapse
Affiliation(s)
- Jiayu Feng
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Zhao
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boping Huang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Huang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihang Wu
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyuan Guan
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinqing Li
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Clinical Research for Cardiovascular Medications, National Health Committee, Beijing, China
| |
Collapse
|
25
|
Nawata J, Yamamoto T, Tanaka S, Yano Y, Uchida T, Fujii S, Nakamura Y, Suetomi T, Uchinoumi H, Oda T, Kobayashi S, Yano M. Dantrolene improves left ventricular diastolic property in mineralcorticoid-salt-induced hypertensive rats. Biochem Biophys Rep 2023; 34:101449. [PMID: 36926278 PMCID: PMC10011190 DOI: 10.1016/j.bbrep.2023.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Left ventricular (LV) diastolic dysfunction is increasingly common in heart failure with preserved ejection fraction (HFpEF), and new drug therapy is desired. We recently reported that dantrolene (DAN) attenuates pressure-overload induced hypertrophic signaling through stabilization of tetrameric structure of cardiac ryanodine receptor (RyR2). Because cardiac hypertrophy substantially affects LV diastolic properties, we investigated the effect of DAN on LV diastolic properties in mineralocorticoid-salt-induced hypertensive rat model exhibiting the HFpEF phenotype. Male Sprague-Dawley (SD) rats (8 weeks old) received an uninephrectomy (UNX), subcutaneous implantation of a 200 mg pellet of deoxycorticosterone acetate (DOCA), and 0.9% NaCl water (UNX + DOCA-salt). UNX, a control pellet, and water without NaCl served as controls (UNX control). The effect of oral administration of 100 mg/kg/d DAN was examined in UNX control and UNX + DOCA-salt groups (UNX + DAN and UNX + DOCA-salt + DAN). UNX + DOCA-salt treatment resulted in mild hypertension. Chronic administration of DAN to UNX + DOCA-salt rats (UNX + DOCA-salt + DAN) did not affect blood pressure. DAN treatment increased the mitral annular early relaxation velocity in the UNX + DOCA-salt group. The size of cardiomyocytes increased in the UNX + DOCA-salt group, whereas the increase was suppressed by DAN treatment. LV fibrotic area was significantly smaller in the UNX + DOCA-salt + DAN group than in the UNX + DOCA-salt group (2.0 ± 0.2% vs 4.0 ± 0.4%). The LV chamber stiffness significantly increased in the UNX + DOCA-salt group, whereas the increase was suppressed by DAN treatment. DAN treatment normalized the CaM-RyR2 interaction and inhibited aberrant Ca2+ release. DAN improved left ventricular diastolic properties with respect to both myocardial relaxation and chamber stiffness. DAN may be a new treatment option for HFpEF.
Collapse
Affiliation(s)
- Junya Nawata
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Yamamoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinji Tanaka
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasutake Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tomoyuki Uchida
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shohei Fujii
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Suetomi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
26
|
Zhu Y, Song F, Gu J, Wu L, Wu W, Ji G. Paroxetine induced larva zebrafish cardiotoxicity through inflammation response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115096. [PMID: 37269614 DOI: 10.1016/j.ecoenv.2023.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Paroxetine (PRX) is a common antidepressant drug which widely existence in natural environment. Numerous studies in the past few decades have focused on the beneficial effects of PRX on depression, however, the toxic properties and the potential mechanisms remain unclear. In this study, zebrafish embryos were exposed to 1.0, 5.0, 10 and 20 mg/L of PRX from 4 to 120-hour-post-fertilization (hpf), and it showed that PRX exposure caused adverse effects in zebrafish embryos, including decreased body length, blood flow velocity, cardiac frequency, cardiac output and increased burst activity and atria area. Meanwhile, the Tg (myl7: EGFP) and Tg (lyz: DsRed) transgenic zebrafish were used to detect the cardiotoxicity and inflammation response of PRX. Moreover, the heart development associated genes (vmhc, amhc, hand2, nkx2.5, ta, tbx6, tbx16 and tbx20) and inflammatory genes (IL-10, IL-1β, IL-8 and TNF-α) were up-regulated after PRX challenge. In addition, Aspirin was used to alleviate the PRX-induced heart development disorder. In conclusion, our study verified the PRX induced inflammatory related cardiotoxicity in larva zebrafish. Meanwhile, the current study shown the toxic effects of PRX in aquatic organism, and provide for the environmental safety of PRX.
Collapse
Affiliation(s)
- Yuanhui Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Feifei Song
- Department of Neurology, Zhongshan hospital, Fudan University, 20032 Shanghai, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Wenzhu Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
27
|
Smith S, Ascione R. Targeting neuro-immune systems to achieve cardiac tissue repair following myocardial infarction: A review of therapeutic approaches from in-vivo preclinical to clinical studies. Pharmacol Ther 2023; 245:108397. [PMID: 36996910 PMCID: PMC7616359 DOI: 10.1016/j.pharmthera.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Myocardial healing following myocardial infarction (MI) toward either functional tissue repair or excessive scarring/heart failure, may depend on a complex interplay between nervous and immune system responses, myocardial ischemia/reperfusion injury factors, as well as genetic and epidemiological factors. Hence, enhancing cardiac repair post MI may require a more patient-specific approach targeting this complex interplay and not just the heart, bearing in mind that the dysregulation or modulation of just one of these systems or some of their mechanisms may determine the outcome either toward functional repair or toward heart failure. In this review we have elected to focus on existing preclinical and clinical in-vivo studies aimed at testing novel therapeutic approaches targeting the nervous and immune systems to trigger myocardial healing toward functional tissue repair. To this end, we have only selected clinical and preclinical in-vivo studies reporting on novel treatments targeting neuro-immune systems to ultimately treat MI. Next, we have grouped and reported treatments under each neuro-immune system. Finally, for each treatment we have assessed and reported the results of each clinical/preclinical study and then discussed their results collectively. This structured approach has been followed for each treatment discussed. To keep this review focused, we have deliberately omitted to cover other important and related research areas such as myocardial ischemia/reperfusion injury, cell and gene therapies as well as any ex-vivo and in-vitro studies. The review indicates that some of the treatments targeting the neuro-immune/inflammatory systems appear to induce beneficial effects remotely on the healing heart post MI, warranting further validation. These remote effects on the heart also indicates the presence of an overarching synergic response occurring across the nervous and immune systems in response to acute MI, which appear to influence cardiac tissue repair in different ways depending on age and timing of treatment delivery following MI. The cumulative evidence arising from this review allows also to make informed considerations on safe as opposed to detrimental treatments, and within the safe treatments to ascertain those associated with conflicting or supporting preclinical data, and those warranting further validation.
Collapse
Affiliation(s)
- Sarah Smith
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK.
| |
Collapse
|
28
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
29
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
30
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
32
|
Calcium-Sensing Receptor (CaSR)-Mediated Intracellular Communication in Cardiovascular Diseases. Cells 2022; 11:cells11193075. [PMID: 36231037 PMCID: PMC9562006 DOI: 10.3390/cells11193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR), is a cell-surface-located receptor that can induce highly diffusible messengers (IP3, Ca2+, cAMP) in the cytoplasm to activate various cellular responses. Recently, it has also been suggested that the CaSR mediates the intracellular communications between the endoplasmic reticulum (ER), mitochondria, nucleus, protease/proteasome, and autophagy-lysosome, which are involved in related cardiovascular diseases. The complex intracellular signaling of this receptor challenges it as a valuable therapeutic target. It is, therefore, necessary to understand the mechanisms behind the signaling characteristics of this receptor in intracellular communication. This review provides an overview of the recent research progress on the various regulatory mechanisms of the CaSR in related cardiovascular diseases and the heart-kidney interaction; the associated common causes are also discussed.
Collapse
|
33
|
Liu X, Lu F, Chen X. Examination of the role of necroptotic damage-associated molecular patterns in tissue fibrosis. Front Immunol 2022; 13:886374. [PMID: 36110858 PMCID: PMC9468929 DOI: 10.3389/fimmu.2022.886374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is defined as the abnormal and excessive deposition of extracellular matrix (ECM) components, which leads to tissue or organ dysfunction and failure. However, the pathological mechanisms underlying fibrosis remain unclear. The inflammatory response induced by tissue injury is closely associated with tissue fibrosis. Recently, an increasing number of studies have linked necroptosis to inflammation and fibrosis. Necroptosis is a type of preprogrammed death caused by death receptors, interferons, Toll-like receptors, intracellular RNA and DNA sensors, and other mediators. These activate receptor-interacting protein kinase (RIPK) 1, which recruits and phosphorylates RIPK3. RIPK3 then phosphorylates a mixed lineage kinase domain-like protein and causes its oligomerization, leading to rapid plasma membrane permeabilization, the release of cellular contents, and exposure of damage-associated molecular patterns (DAMPs). DAMPs, as inflammatory mediators, are involved in the loss of balance between extensive inflammation and tissue regeneration, leading to remodeling, the hallmark of fibrosis. In this review, we discuss the role of necroptotic DAMPs in tissue fibrosis and highlight the inflammatory responses induced by DAMPs in tissue ECM remodeling. By summarizing the existing literature on this topic, we underscore the gaps in the current research, providing a framework for future investigations into the relationship among necroptosis, DAMPs, and fibrosis, as well as a reference for later transformation into clinical treatment.
Collapse
Affiliation(s)
| | - Feng Lu
- *Correspondence: Feng Lu, ; Xihang Chen,
| | | |
Collapse
|
34
|
Zou Y, Zhang M, Wu Q, Zhao N, Chen M, Yang C, Du Y, Han B. Activation of transient receptor potential vanilloid 4 is involved in pressure overload-induced cardiac hypertrophy. eLife 2022; 11:e74519. [PMID: 35731090 PMCID: PMC9224988 DOI: 10.7554/elife.74519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies, including our own, have demonstrated that transient receptor potential vanilloid 4 (TRPV4) is expressed in hearts and implicated in cardiac remodeling and dysfunction. However, the effects of TRPV4 on pressure overload-induced cardiac hypertrophy remain unclear. In this study, we found that TRPV4 expression was significantly increased in mouse hypertrophic hearts, human failing hearts, and neurohormone-induced hypertrophic cardiomyocytes. Deletion of TRPV4 attenuated transverse aortic constriction (TAC)-induced cardiac hypertrophy, cardiac dysfunction, fibrosis, inflammation, and the activation of NFκB - NOD - like receptor pyrin domain-containing protein 3 (NLRP3) in mice. Furthermore, the TRPV4 antagonist GSK2193874 (GSK3874) inhibited cardiac remodeling and dysfunction induced by TAC. In vitro, pretreatment with GSK3874 reduced the neurohormone-induced cardiomyocyte hypertrophy and intracellular Ca2+ concentration elevation. The specific TRPV4 agonist GSK1016790A (GSK790A) triggered Ca2+ influx and evoked the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). But these effects were abolished by removing extracellular Ca2+ or GSK3874. More importantly, TAC or neurohormone stimulation-induced CaMKII phosphorylation was significantly blocked by TRPV4 inhibition. Finally, we show that CaMKII inhibition significantly prevented the phosphorylation of NFκB induced by GSK790A. Our results suggest that TRPV4 activation contributes to pressure overload-induced cardiac hypertrophy and dysfunction. This effect is associated with upregulated Ca2+/CaMKII mediated activation of NFκB-NLRP3. Thus, TRPV4 may represent a potential therapeutic drug target for cardiac hypertrophy and dysfunction after pressure overload.
Collapse
Affiliation(s)
- Yan Zou
- Department of Cardiology, Xuzhou Central HospitalXuzhouChina
- Xuzhou Institute of Cardiovascular Disease, Xuzhou Central HospitalXuzhouChina
| | - Miaomiao Zhang
- Department of Cardiology, Xuzhou Central HospitalXuzhouChina
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Minwei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bing Han
- Department of Cardiology, Xuzhou Central HospitalXuzhouChina
| |
Collapse
|
35
|
Li Y, Karim MR, Wang B, Peng J. Effects of Green Tea (-)-Epigallocatechin-3-Gallate (EGCG) on Cardiac Function - A Review of the Therapeutic Mechanism and Potentials. Mini Rev Med Chem 2022; 22:2371-2382. [PMID: 35345998 DOI: 10.2174/1389557522666220328161826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Heart disease, the leading cause of death globally, refers to various illnesses that affect heart structure and function. Specific abnormalities affecting cardiac muscle contractility and remodeling and common factors including oxidative stress, inflammation, and apoptosis underlie the pathogenesis of heart diseases. Epidemiology studies have associated green tea consumption with lower morbidity and mortality of cardiovascular diseases, including heart and blood vessel dysfunction. Among the various compounds found in green tea, catechins are believed to play a significant role in producing benefits to cardiovascular health. Comprehensive literature reviews have been published to summarize the tea catechins' antioxidative, anti-inflammatory, and anti-apoptosis effects in the context of various diseases, such as cardiovascular diseases, cancers, and metabolic diseases. However, recent studies on tea catechins, especially the most abundant (-)-Epigallocatechin-3-Gallate (EGCG), revealed their capabilities in regulating cardiac muscle contraction by directly altering myofilament Ca2+ sensitivity on force development and Ca2+ ion handling in cardiomyocytes under both physiological and pathological conditions. In vitro and in vivo data also demonstrated that green tea extract or EGCG protected or rescued cardiac function, independent of their well-known effects against oxidative stress and inflammation. This minireview will focus on the specific effects of tea catechins on heart muscle contractility at the molecular and cellular level, revisit their effects on oxidative stress and inflammation in a variety of heart diseases, and discuss EGCG's potential as one of the lead compounds for new drug discovery for heart diseases.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Biology, Morgan State University, Baltimore
| | | | - Buheng Wang
- Department of Biology, Morgan State University, Baltimore
| | - Jiangnan Peng
- Department of Biology, Morgan State University, Baltimore
- Department of Chemistry, Morgan State University, Baltimore
| |
Collapse
|
36
|
Liu M, Wu Y. Role of Mitophagy in Coronary Heart Disease: Targeting the Mitochondrial Dysfunction and Inflammatory Regulation. Front Cardiovasc Med 2022; 9:819454. [PMID: 35187131 PMCID: PMC8854491 DOI: 10.3389/fcvm.2022.819454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary heart disease (CHD) is one of the main causes of death worldwide. In the past few decades, several in-depth research on the pathological mechanisms and effective treatment methods for CHD have been conducted. At present, the intervention of a variety of therapeutic drugs and treatment technologies have greatly reduced the burden on global public health. However, severe arrhythmia and myocardial fibrosis accompanying CHD in the later stages need to be addressed urgently. Mitochondria are important structural components for energy production and the main sites for aerobic respiration in cells. Mitochondria are involved in arrhythmia, myocardial fibrosis, and acute CHD and play a crucial role in regulating myocardial ischemia/hypoxia. Mitochondrial dysfunction or mitophagy disorders (including receptor-dependent mitophagy and receptor-independent mitophagy) play an important role in the pathogenesis of CHD, especially mitophagy. Mitophagy acts as a “mediator” in the inflammatory damage of cardiomyocytes or vascular endothelial cells and can clear mitochondria or organelles damaged by inflammation under normal conditions. We reviewed experimental advances providing evidence that mitochondrial homeostasis or mitochondrial quality control are important in the pathological mechanism of CHD. Further, we reviewed and summarized relevant regulatory drugs that target mitochondrial function and quality control.
Collapse
|
37
|
Sauer F, Riou M, Charles AL, Meyer A, Andres E, Geny B, Talha S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J Clin Med 2022; 11:jcm11030741. [PMID: 35160190 PMCID: PMC8836880 DOI: 10.3390/jcm11030741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a leading cause of hospitalization in patients aged more than 65 years and is associated with high mortality rates. A better comprehension of its physiopathology is still needed, and, in addition to neurohormonal systems and sodium glucose co-transporter 2 modulations, recent studies focus on the mitochondrial respiration of peripheral blood circulating cells (PBMCs). Thus, cardiovascular metabolic risk factors and cellular switch with an increased neutrophil/lymphocytes ratio might favor the decreased PBMC mitochondrial respiration observed in relation with HF severity. PBMCs are implicated in the immune system function and mitochondrial dysfunction of PBMC, potentially induced by their passage through a damaged heart and by circulating mitoDAMPs, which can lead to a vicious circle, thus sustaining negative cardiac remodeling during HF. This new approach of HF complex pathophysiology appears to be a promising field of research, and further studies on acute and chronic HF with reduced or preserved LVEF are warranted to better understand whether circulating PBMC mitochondrial function and mitoDAMPs follow-ups in HF patients might show diagnosis, prognosis or therapeutic usefulness.
Collapse
Affiliation(s)
- François Sauer
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Marianne Riou
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Anne-Laure Charles
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Emmanuel Andres
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
- Correspondence:
| | - Samy Talha
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| |
Collapse
|
38
|
NLRP3 Inflammasome in Diabetic Cardiomyopathy and Exercise Intervention. Int J Mol Sci 2021; 22:ijms222413228. [PMID: 34948026 PMCID: PMC8707657 DOI: 10.3390/ijms222413228] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), as a common complication of diabetes, is characterized by chronic low-grade inflammation. The NLRP3 inflammasome is a key sensor mediating innate immune and inflammatory responses. However, the mechanisms initiating and promoting NLRP3 inflammasome activation in DCM is largely unexplored. The aim of the present review is to describe the link between NLRP3 inflammasome and DCM, and to provide evidence highlighting the importance of exercise training in DCM intervention. Collectively, this evidence suggests that DCM is an inflammatory disease aggravated by NLRP3 inflammasome-mediated release of IL-1β and IL-18. In addition, chronic exercise intervention is an effective preventive and therapeutic method to alleviate DCM via modulating the NLRP3 inflammasome.
Collapse
|
39
|
CaMK II Inhibition Attenuates ROS Dependent Necroptosis in Acinar Cells and Protects against Acute Pancreatitis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4187398. [PMID: 34840668 PMCID: PMC8612788 DOI: 10.1155/2021/4187398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
As a calcium-regulated protein, CaMK II is closely related to cell death, and it participates in the development of pathological processes such as reperfusion injury, myocardial infarction, and oligodendrocyte death. The function of CaMK II activation in acute pancreatitis (AP) remains unclear. In our study, we confirmed that the expression of p-CaMK II was increased significantly and consistently in injured pancreatic tissues after caerulein-induced AP. Then, we found that KN93, an inhibitor of CaMK II, could mitigate the histopathological manifestations in pancreatic tissues, reduce serum levels of enzymology, and decrease oxidative stress products. Accordingly, we elucidated the effect of KN93 in vitro and found that KN93 had a protective effect on the pancreatic acinar cell necroptosis pathway by inhibiting the production of ROS and decreasing the expression of RIP3 and p-MLKL. In addition, we identified the protective effect of KN93 on AP through another mouse model induced by pancreatic duct ligation (PDL). Together, these data demonstrated that CaMK II participates in the development of AP and that inhibiting CaMK II activation could protect against AP by reducing acinar cell necroptosis, which may provide a new idea target for the prevention and treatment of AP in the clinic.
Collapse
|
40
|
Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells 2021; 10:cells10123330. [PMID: 34943839 PMCID: PMC8699551 DOI: 10.3390/cells10123330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide, and ischemic heart disease is the most common cause of heart failure (HF). The heart is a high-energy demanding organ, and myocardial energy reserves are limited. Mitochondria are the powerhouses of the cell, but under stress conditions, they become damaged, release necrotic and apoptotic factors, and contribute to cell death. Loss of cardiomyocytes plays a significant role in ischemic heart disease. In response to stress, protective signaling pathways are activated to limit mitochondrial deterioration and protect the heart. To prevent mitochondrial death pathways, damaged mitochondria are removed by mitochondrial autophagy (mitophagy). Mitochondrial quality control mediated by mitophagy is functionally linked to mitochondrial dynamics. This review provides a current understanding of the signaling mechanisms by which the integrity of mitochondria is preserved in the heart against ischemic stress.
Collapse
|
41
|
Chien LH, Wu CT, Deng JS, Jiang WP, Huang WC, Huang GJ. Salvianolic Acid C Protects against Cisplatin-Induced Acute Kidney Injury through Attenuation of Inflammation, Oxidative Stress and Apoptotic Effects and Activation of the CaMKK-AMPK-Sirt1-Associated Signaling Pathway in Mouse Models. Antioxidants (Basel) 2021; 10:antiox10101620. [PMID: 34679755 PMCID: PMC8533075 DOI: 10.3390/antiox10101620] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden reduction in kidney activity and has a high mortality rate. Salvianolic acid C (SAC), one of the main polyphenolic components of Salvia miltiorrhiza, displays significant pharmacologically active effects. An animal model of cisplatin-induced kidney injury was used to study the potential of SAC to improve AKI. First, SAC was administered intraperitoneally in mice for 10 consecutive days, and then cisplatin was administered intraperitoneally on day 7 to establish a nephrotoxicity mouse model. SAC mitigated renal histological changes, blood creatinine (CRE) and blood urea nitrogen (BUN) production and the levels of inflammatory mediators in the cisplatin-induced AKI. Furthermore, malondialdehyde (MDA) levels were reduced and glutathione (GSH) was increased after intraperitoneal injection (i.p.) administration of SAC. In addition, based on Western blot data, SAC reduced the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in mouse renal tissues. Finally, SAC diminished the level of TLR-4 expression and enhanced the production of several antioxidative enzymes (superoxidase dismutase (SOD1), glutathione peroxidase (GPx3), catalase, nuclear-factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1)), Sirtuin 1 (Sirt1), p-AMP-activated protein kinase (AMPK) and p-Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). In addition, Sirt1 inhibition (EX 527) inverted the effect of SAC against cisplatin-induced nephrotoxicity. Collectively, SAC provides a therapeutic target with promising clinical potential after cisplatin treatment by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Chien-Ta Wu
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan;
- International Master’s Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5508)
| |
Collapse
|
42
|
Lin HB, Li FX, Zhang JY, You ZJ, Xu SY, Liang WB, Zhang HF. Cerebral-Cardiac Syndrome and Diabetes: Cardiac Damage After Ischemic Stroke in Diabetic State. Front Immunol 2021; 12:737170. [PMID: 34512671 PMCID: PMC8430028 DOI: 10.3389/fimmu.2021.737170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral-cardiac syndrome (CCS) refers to cardiac dysfunction following varying brain injuries. Ischemic stroke is strongly evidenced to induce CCS characterizing as arrhythmia, myocardial damage, and heart failure. CCS is attributed to be the second leading cause of death in the post-stroke stage; however, the responsible mechanisms are obscure. Studies indicated the possible mechanisms including insular cortex injury, autonomic imbalance, catecholamine surge, immune response, and systemic inflammation. Of note, the characteristics of the stroke population reveal a common comorbidity with diabetes. The close and causative correlation of diabetes and stroke directs the involvement of diabetes in CCS. Nevertheless, the role of diabetes and its corresponding molecular mechanisms in CCS have not been clarified. Here we conclude the features of CCS and the potential role of diabetes in CCS. Diabetes drives establish a “primed” inflammatory microenvironment and further induces severe systemic inflammation after stroke. The boosted inflammation is suspected to provoke cardiac pathological changes and hence exacerbate CCS. Importantly, as the key element of inflammation, NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is indicated to play an important role in diabetes, stroke, and the sequential CCS. Overall, we characterize the corresponding role of diabetes in CCS and speculate a link of NLRP3 inflammasome between them.
Collapse
Affiliation(s)
- Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jin-Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jian You
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bin Liang
- University of Ottawa Heart Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Activation of Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII) with Lidocaine Provokes Pyroptosis of Glioblastoma Cells. Bull Exp Biol Med 2021; 171:297-304. [PMID: 34302204 DOI: 10.1007/s10517-021-05216-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 10/20/2022]
Abstract
The study examines the problem whether pyroptosis of U87-MG glioblastoma cells can result from activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) by a local anesthetic. Glioblastoma cells exposed to various concentrations of typical local anesthetic lidocaine demonstrated augmented cytosolic flux of Ca2+, while suppression of CaMKII expression with the corresponding siRNA significantly inhibited this effect in cells treated with 2 mM lidocaine. Lidocaine up-regulated the expression of mRNA caspase-3 and gasdermin GSDME proteins, whereas silencing of CaMKII gene with siRNA significantly moderated this effect. In addition, lidocaine inhibited proliferation of U87-MG cells, and this effect was prevented by silencing CaMKII gene. Thus, lidocaine activated protein kinase CaMKII, which phosphorylated TRPV1 ion channels and induced calcium overload of U87-MG glioblastoma cells, thereby provoking their pyroptosis.
Collapse
|
44
|
Insight into the Pro-inflammatory and Profibrotic Role of Macrophage in Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2021; 76:276-285. [PMID: 32501838 DOI: 10.1097/fjc.0000000000000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of heart failure (HF) with preserved ejection fraction (HFpEF) is higher than that of HF with reduced/midrange ejection fraction (HFrEF/HFmrEF). However, no evidence-based guidelines for managing HFpEF have been generated. The current body of knowledge indicates that fibrosis and inflammation are important components of the cardiac remodeling process in HFpEF. In addition, macrophages potentially play an important role in pro-inflammatory and profibrotic processes in HFpEF patients, whereas HFpEF comorbidities could be a driving force for systemic microvascular inflammation and endothelial dysfunction. Under such circumstances, macrophages reportedly contribute to inflammation and fibrosis through 3 phases namely, inflammation, repair, and resolution. Signal transduction pathway-targeted therapies using animal experiments have generated important discoveries and breakthroughs for understanding the underlying mechanisms of HFpEF. However, only a handful of studies have reported promising results using human trials. Further investigations are therefore needed to elucidate the exact mechanisms underlying HFpEF and immune-pathogenesis of cardiac fibrosis.
Collapse
|
45
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
46
|
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400-423. [PMID: 33432192 PMCID: PMC8574228 DOI: 10.1038/s41569-020-00480-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) affects half of all patients with heart failure worldwide, is increasing in prevalence, confers substantial morbidity and mortality, and has very few effective treatments. HFpEF is arguably the greatest unmet medical need in cardiovascular disease. Although HFpEF was initially considered to be a haemodynamic disorder characterized by hypertension, cardiac hypertrophy and diastolic dysfunction, the pandemics of obesity and diabetes mellitus have modified the HFpEF syndrome, which is now recognized to be a multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose tissue, vascular system, and immune and inflammatory signalling. This multiorgan involvement makes HFpEF difficult to model in experimental animals because the condition is not simply cardiac hypertrophy and hypertension with abnormal myocardial relaxation. However, new animal models involving both haemodynamic and metabolic disease, and increasing efforts to examine human pathophysiology, are revealing new signalling pathways and potential therapeutic targets. In this Review, we discuss the cellular and molecular pathobiology of HFpEF, with the major focus being on mechanisms relevant to the heart, because most research has focused on this organ. We also highlight the involvement of other important organ systems, including the lungs, kidneys and skeletal muscle, efforts to characterize patients with the use of systemic biomarkers, and ongoing therapeutic efforts. Our objective is to provide a roadmap of the signalling pathways and mechanisms of HFpEF that are being characterized and which might lead to more patient-specific therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,
| |
Collapse
|
47
|
Mitochondrial Dysfunction in Atrial Fibrillation-Mechanisms and Pharmacological Interventions. J Clin Med 2021; 10:jcm10112385. [PMID: 34071563 PMCID: PMC8199309 DOI: 10.3390/jcm10112385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the enormous progress in the treatment of atrial fibrillation, mainly with the use of invasive techniques, many questions remain unanswered regarding the pathomechanism of the arrhythmia and its prevention methods. The development of atrial fibrillation requires functional changes in the myocardium that result from disturbed ionic fluxes and altered electrophysiology of the cardiomyocyte. Electrical instability and electrical remodeling underlying the arrhythmia may result from a cellular energy deficit and oxidative stress, which are caused by mitochondrial dysfunction. The significance of mitochondrial dysfunction in the pathogenesis of atrial fibrillation remains not fully elucidated; however, it is emphasized by the reduction of atrial fibrillation burden after therapeutic interventions improving the mitochondrial welfare. This review summarizes the mechanisms of mitochondrial dysfunction related to atrial fibrillation and current pharmacological treatment options targeting mitochondria to prevent or improve the outcome of atrial fibrillation.
Collapse
|
48
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
49
|
Ninh VK, Brown JH. The contribution of the cardiomyocyte to tissue inflammation in cardiomyopathies. CURRENT OPINION IN PHYSIOLOGY 2021; 19:129-134. [DOI: 10.1016/j.cophys.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 2021; 163:56-68. [PMID: 33310138 DOI: 10.1016/j.freeradbiomed.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Physiological reactive oxygen species (ROS) play an important role in cellular signal transduction. However, excessive ROS is an important pathological mechanism in most cardiovascular diseases (CVDs), such as myocardial aging, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction) and heart failure. Programmed cell death, hypertrophy and fibrosis may be due to oxidative stress. Sestrin 2 (Sesn2), a stress-inducible protein associated with various stress conditions, is a potential antioxidant. Sesn2 can suppress the process of heart damage caused by oxidative stress, promote cell survival and play a key role in a variety of CVDs. This review discusses the effect of Sesn2 on the redox signal, mainly via participation in the signaling pathway of nuclear factor erythroid 2-related factor 2, activation of adenosine monophosphate-activated protein kinase and inhibition of mammalian target of rapamycin complex 1. It also discusses the effect of Sesn2's antioxidant activity on different CVDs. We speculate that Sesn2 plays an important role in CVDs by stimulating the process of antioxidation and promoting the adaptation of cells to stress conditions and/or the environment, opening a new avenue for related therapeutic strategies.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Meina Li
- Department of Infection Control, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|