1
|
Ravi Mythili VM, Rajendran RL, Arun R, Thasma Loganathbabu VK, Reyaz D, Nagarajan AK, Ahn BC, Gangadaran P. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Bioengineering (Basel) 2025; 12:92. [PMID: 39851366 PMCID: PMC11762151 DOI: 10.3390/bioengineering12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Critical limb ischemia (CLI) poses a substantial and intricate challenge in vascular medicine, necessitating the development of innovative therapeutic strategies to address its multifaceted pathophysiology. Conventional revascularization approaches often fail to adequately address the complexity of CLI, necessitating the identification of alternative methodologies. This review explores uncharted territory beyond traditional therapies, focusing on the potential of two distinct yet interrelated entities: cell-derived extracellular vesicles (EVs) and artificial nanovesicles. Cell-derived EVs are small membranous structures naturally released by cells, and artificial nanovesicles are artificially engineered nanosized vesicles. Both these vesicles represent promising avenues for therapeutic intervention. They act as carriers of bioactive cargo, including proteins, nucleic acids, and lipids, that can modulate intricate cellular responses associated with ischemic tissue repair and angiogenesis. This review also assesses the evolving landscape of CLI revascularization through the unique perspective of cell-derived EVs and artificial nanovesicles. The review spans the spectrum from early preclinical investigations to the latest translational advancements, providing a comprehensive overview of the current state of research in this emerging field. These groundbreaking vesicle therapies hold immense potential for revolutionizing CLI treatment paradigms.
Collapse
Affiliation(s)
- Vijay Murali Ravi Mythili
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Raksa Arun
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Vasanth Kanth Thasma Loganathbabu
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Danyal Reyaz
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - ArulJothi Kandasamy Nagarajan
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Han J, Xu K, Xu T, Song Q, Duan T, Yang J. The functional regulation between extracellular vesicles and the DNA damage responses. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108532. [PMID: 39828141 DOI: 10.1016/j.mrrev.2025.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) is a crucial regulatory mechanism for the survival of organisms, and irregularity of DDR may contribute to the development of various diseases, including tumors, making it is a prominent topic in therapeutic research. Extracellular vesicles (EVs), as important mediators of intercellular communication, have been extensively studied in recent years. Notably, an increasing number of studies have revealed a strong connection between DDR and EVs. On one hand, DNA damage affects the release of EVs and their compositional content; on the other hand, EVs can dictate cell survival or death by modulating DDR in both the parental and the recipient cells. This review outlines current progress in the inter-regulatory relationship between EVs and DDR, with special emphasis on the effects of EVs derived from various sources on DDR in recipient cells. In addition, the potential applications of EVs in research and tumor therapy are discussed.
Collapse
Affiliation(s)
- Jinyi Han
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Kexin Xu
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Ting Xu
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Qin Song
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2025; 76:5-16. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
4
|
Liu Y, Hinnant B, Chen S, Tao H, Huang Z, Qian M, Zhou M, Han Z, Han ZC, Zhang J, Li Z. Hyaluronic acid-modified extracellular vesicles for targeted doxorubicin delivery in hepatocellular carcinoma. Exp Cell Res 2024; 443:114332. [PMID: 39551341 DOI: 10.1016/j.yexcr.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Hepatocellular carcinoma (HCC), a prevalent and deadly cancer, poses a significant challenge with current treatments due to limitations such as poor stability, off-target effects, and severe side effects. Extracellular vesicles (EVs), derived from tumor cells, have the remarkable ability to home back to their cells of origin and can serve as Trojan horses for drug delivery. CD44, a cell surface glycoprotein, promotes cancer stem cell-like properties and is linked to poor prognosis and resistance to chemotherapy in HCC. Therefore, targeting CD44-expressing HCC cells is of interest in the development of novel therapeutic strategies for the treatment of HCC. In this study, we developed tumor cell-derived EVs (TEVs) functionalized with hyaluronic acid (HA) to serve as natural carriers for the precise delivery of doxorubicin (Dox), which specifically targets HCC cells expressing CD44. Our results demonstrated that HA-engineered EVs (HA-EVs) significantly enhanced Dox accumulation within HCC cells. In a mouse model, HA-EVs effectively delivered Dox to tumors, suppressing their growth and progression while minimizing systemic toxicity. This study demonstrates the potential of HA-functionalized EVs as a novel and targeted therapeutic platform for HCC, offering a valuable strategy for improving drug delivery and patient outcomes. This study presents a promising strategy to advance targeted chemotherapy for HCC and address the challenges associated with conventional treatments. Engineered HA-functionalized EVs offer a tailored and efficient approach to increase drug delivery precision, underscoring their potential as a novel therapeutic platform in the realm of HCC treatment.
Collapse
Affiliation(s)
- Yue Liu
- School of Medicine, Nankai University, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, Tianjin, China
| | - Benjamin Hinnant
- Division of Biological Sciences, University of California San Diego, USA
| | - Shang Chen
- School of Medicine, Nankai University, China
| | - Hongyan Tao
- School of Medicine, Nankai University, China
| | - Ziyu Huang
- School of Medicine, Nankai University, China
| | - Meng Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, Tianjin, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China; Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health Biotech Co., Beijing, China
| | - Zhong-Chao Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China; Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health Biotech Co., Beijing, China
| | - Jun Zhang
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China.
| | - Zongjin Li
- School of Medicine, Nankai University, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, Tianjin, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China.
| |
Collapse
|
5
|
Vasishta S, Ammankallu S, Poojary G, Gomes SM, Ganesh K, Umakanth S, Adiga P, Upadhya D, Prasad TSK, Joshi MB. High glucose induces DNA methyltransferase 1 dependent epigenetic reprogramming of the endothelial exosome proteome in type 2 diabetes. Int J Biochem Cell Biol 2024; 176:106664. [PMID: 39303850 DOI: 10.1016/j.biocel.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In response to hyperglycemia, endothelial cells (ECs) release exosomes with altered protein content and contribute to paracrine signalling, subsequently leading to vascular dysfunction in type 2 diabetes (T2D). High glucose reprograms DNA methylation patterns in various cell/tissue types, including ECs, resulting in pathologically relevant changes in cellular and extracellular proteome. However, DNA methylation-based proteome reprogramming in endothelial exosomes and associated pathological implications in T2D are not known. Hence, in the present study, we used Human umbilical vein endothelial cells (HUVECs), High Fat Diet (HFD) induced diabetic mice (C57BL/6) and clinical models to understand epigenetic basis of exosome proteome regulation in T2D pathogenesis . Exosomes were isolated by size exclusion chromatography and subjected to tandem mass tag (TMT) labelled quantitative proteomics and bioinformatics analysis. Immunoblotting was performed to validate exosome protein signature in clinically characterized individuals with T2D. We observed ECs cultured in high glucose and aortic ECs from HFD mouse expressed elevated DNA methyltransferase1 (DNMT1) levels. Quantitative proteomics of exosomes isolated from ECs treated with high glucose and overexpressing DNMT1 showed significant alterations in both protein levels and post translational modifications which were aligned to T2D associated vascular functions. Based on ontology and gene-function-disease interaction analysis, differentially expressed exosome proteins such as Thrombospondin1, Pentraxin3 and Cystatin C related to vascular complications were significantly increased in HUVECs treated with high glucose and HFD animals and T2D individuals with higher levels of glycated hemoglobin. These proteins were reduced upon treatment with 5-Aza-2'-deoxycytidine. Our study shows epigenetic regulation of exosome proteome in T2D associated vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575020, India
| | - Ganesha Poojary
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
6
|
Liu J, Liu Y, Xu Y, Ye J, Zhu Y, Li X. Plasma exosomes may mediate the development of lupus nephritis in patients with systemic lupus erythematosus. Lupus 2024:9612033241298047. [PMID: 39482904 DOI: 10.1177/09612033241298047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Lupus nephritis (LN) is the most serious complication of systemic lupus erythematosus (SLE), and plasma exosomes may serve as a bridge. MicroRNAs (miRNAs) are abundant in exosomes, so this study aimed to explore the role of exosome-derived miRNA in the development of LN. METHODS The publicly available data containing plasma exosomal miRNAs in SLE patients and healthy controls were researched, and differential expression and functional enrichment analysis of exosomal miRNA was conducted. Then, plasma exosomes from SLE patients were extracted, and the accuracy of differential expression and functional enrichment analysis was preliminarily verified. PKH26 dye was used to label exosomes to detect whether exosomes can enter HK2 cells. Evaluation of plasma exosomes impact on cell viability was done by utilizing CCK-8 assay. Flow cytometry was used to measure cell apoptosis. RESULTS Plasma exosomes were successfully extracted and identified. Through differential expression analysis of the pulbilic data and subsequent qPCR validation, we observed that miR-20b-5p is overexpressed in plasma exosomes of SLE patients, whereas miR-181a-2-3p is downregulated. Then functional enrichment analysis revealed that these differential miRNAs primarily regulate processes such as apoptosis, autophagy, and inflammation. Then, flow cytometry analysis conducted after co-incubation of plasma exosomes and peripheral blood mononuclear cells confirmed that exosomes can indeed regulate apoptosis. And plasma exosomes can successfully enter HK2 cells without affecting cell activity. In addition, plasma exosomes promote HK2 cell apoptosis and autophagy. Overexpression of miR-181a-2-3p could inhibit HK2 cells apoptosis and upregulate the expression of bcl2, and beclin1. At the same time, a trend towards increased apoptosis rates was observed in HK2 overexpressed miR-20b-5p, although the difference did not reach statistical significance. And miR-20b-5p can enhance the expression of caspase3 and becin1 while suppressing the expression of bcl2 and LC3β. CONCLUSION Our research indicates that the abundant presence of miR-20b-5p and the depletion of miR-181a-2-3p in plasma exosomes of SLE patients may mediate the promotion of apoptosis and autophagy in HK2 cells, thereby causing kidney damage and the development of LN.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanju Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinde Xu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianjun Ye
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Li
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
8
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
9
|
Iwoń Z, Krogulec E, Kierlańczyk A, Wojasiński M, Jastrzębska E. Hypoxia and re-oxygenation effects on human cardiomyocytes cultured on polycaprolactone and polyurethane nanofibrous mats. J Biol Eng 2024; 18:37. [PMID: 38844979 PMCID: PMC11157810 DOI: 10.1186/s13036-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Heart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue. Nanofibrous mats were used as scaffolds for adult primary human cardiomyocytes (HCM) and immature human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). This work focuses on understanding the effects of hypoxia and re-oxygenation on human cardiac cells cultured on polymer nanofibrous mats made of poly(ε-caprolactone) (PCL) and polyurethane (PU). The expression of selected genes and proteins in cardiomyocytes during hypoxia and re-oxygenation were evaluated. In addition, the type of cell death was analyzed. To the best of our knowledge, there are no studies on the effects of hypoxia on cardiomyocyte cells cultured on nanofibrous mats. The present study aimed to use nanofiber mats as scaffolds that structurally could mimic cardiac extracellular matrix. Understanding the impact of 3D structural properties in vitro cardiac models on different human cardiomyocytes is crucial for advancing cardiac tissue engineering and regenerative medicine. Observing how 3D scaffolds affect cardiomyocyte function under hypoxic conditions is necessary to understand the functioning of the entire human heart.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
10
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Ming L, Tang J, Qin F, Qin Y, Wang D, Huang L, Cao Y, Huang Z, Yin Y. Exosome secretion related gene signature predicts chemoresistance in patients with colorectal cancer. Pathol Res Pract 2024; 257:155313. [PMID: 38642509 DOI: 10.1016/j.prp.2024.155313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous malignancy, and patients often have different responses to treatment. In this study, the genetic characteristics related to exosome formation and secretion procedure were used to predict chemoresistance and guide the individualized treatment of patients. METHODS Firstly, seven microarray datasets in Gene Expression Omnibus (GEO) and RNA-Seq dataset from the Cancer Genome Atlas (TCGA) were used to analysis the transcriptome profiles and associated characteristics of CRC patients. Then, a predictive model based on gene features linked to exosome formation and secretion was created and validated using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning. Finally, we evaluated the model using chemoresistant/chemosensitive cells and tissues by immunofluorescence (IF), western blot (WB), quantitative real-time PCR (qRT-PCR) and immunocytochemistry (IHC) experiments, and the predictive value of integrated model in the clinical validation cohort were performed by Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) curves analyses. RESULTS We established a risk score signature based on three genes related to exosome secretion in CRC. Better Overall Survival (OS) and greater chemosensitivity were seen in the low-risk group, whereas the high-risk group exhibited chemoresistance and a subpar response to immune checkpoint blockade (ICB) therapy. Higher expression of the model genes EXOC2, EXOC3 and STX4 were observed in chemoresistant cells and specimens. The AUC of 5-year disease-free survival (DFS) was 0.804. Compared with that in the low-risk group, patients' DFS was found to be significantly worse in the high-risk group. CONCLUSIONS In summary, the gene signature related to exosome formation and secretion could reliably predict patients' chemosensitivity and ICB treatment response, which providing new independent biomarkers for the treatment of CRC.
Collapse
Affiliation(s)
- Liang Ming
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhui Tang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiyu Qin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Duo Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liuying Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Kesidou D, Bennett M, Monteiro JP, McCracken IR, Klimi E, Rodor J, Condie A, Cowan S, Caporali A, Wit JBM, Mountford JC, Brittan M, Beqqali A, Baker AH. Extracellular vesicles from differentiated stem cells contain novel proangiogenic miRNAs and induce angiogenic responses at low doses. Mol Ther 2024; 32:185-203. [PMID: 38096818 PMCID: PMC10787168 DOI: 10.1016/j.ymthe.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Extracellular vesicles (EVs) released from healthy endothelial cells (ECs) have shown potential for promoting angiogenesis, but their therapeutic efficacy remains poorly understood. We have previously shown that transplantation of a human embryonic stem cell-derived endothelial cell product (hESC-ECP), promotes new vessel formation in acute ischemic disease in mice, likely via paracrine mechanism(s). Here, we demonstrated that EVs from hESC-ECPs (hESC-eEVs) significantly increased EC tube formation and wound closure in vitro at ultralow doses, whereas higher doses were ineffective. More important, EVs isolated from the mesodermal stage of the differentiation (hESC-mEVs) had no effect. Small RNA sequencing revealed that hESC-eEVs have a unique transcriptomic profile and are enriched in known proangiogenic microRNAs (miRNAs, miRs). Moreover, an in silico analysis identified three novel hESC-eEV-miRNAs with potential proangiogenic function. Differential expression analysis suggested that two of those, miR-4496 and miR-4691-5p, are highly enriched in hESC-eEVs. Overexpression of miR-4496 or miR-4691-5p resulted in increased EC tube formation and wound closure in vitro, validating the novel proangiogenic function of these miRNAs. In summary, we demonstrated that hESC-eEVs are potent inducers of EC angiogenic response at ultralow doses and contain a unique EV-associated miRNA repertoire, including miR-4496 and miR-4691-5p, with novel proangiogenic function.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - João P Monteiro
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian R McCracken
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX3 7TY, UK
| | - Eftychia Klimi
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alison Condie
- Scottish National Blood Transfusion Service, Edinburgh EH14 4BE, UK
| | - Scott Cowan
- Scottish National Blood Transfusion Service, Edinburgh EH14 4BE, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jan B M Wit
- Mirabilis Therapeutics BV, Maastricht, the Netherlands
| | | | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; CARIM Institute, University of Maastricht, Maastricht 6229HX, the Netherlands.
| |
Collapse
|
13
|
Zhong T, Gao N, Guan Y, Liu Z, Guan J. Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS NANO 2023; 17:25157-25174. [PMID: 38063490 PMCID: PMC10790628 DOI: 10.1021/acsnano.3c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diabetic patients with critical limb ischemia face a high rate of limb amputation. Regeneration of the vasculature and skeletal muscles can salvage diseased limbs. Therapy using stem cell-derived exosomes that contain multiple proangiogenic and promyogenic factors represents a promising strategy. Yet the therapeutic efficacy is not optimal because exosomes alone cannot efficiently rescue and recruit endothelial and skeletal muscle cells and restore their functions under hyperglycemic and ischemic conditions. To address these limitations, we fabricated ischemic-limb-targeting stem cell-derived exosomes and oxygen-releasing nanoparticles and codelivered them in order to recruit endothelial and skeletal muscle cells, improve cell survival under ischemia before vasculature is established, and restore cell morphogenic function under high glucose and ischemic conditions. The exosomes and oxygen-releasing nanoparticles, delivered by intravenous injection, specifically accumulated in the ischemic limbs. Following 4 weeks of delivery, the exosomes and released oxygen synergistically stimulated angiogenesis and muscle regeneration without inducing substantial inflammation and reactive oxygen species overproduction. Our work demonstrates that codelivery of exosomes and oxygen is a promising treatment solution for saving diabetic ischemic limbs.
Collapse
Affiliation(s)
- Ting Zhong
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ning Gao
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ya Guan
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhongting Liu
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Holland A, Enrick M, Diaz A, Yin L. Is miR-21 A Therapeutic Target in Cardiovascular Disease? INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2023; 2:26-36. [PMID: 37799562 PMCID: PMC10552863 DOI: 10.53941/ijddp.0201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
microRNA-21 (miR-21) serves a multitude of functions at the molecular level through its regulation of messenger RNA. Previous research has sparked interest in the role of miR-21 as a potential therapeutic target in cardiovascular diseases. miR-21 expression contributes to the differentiation, proliferation, and maturation of many cell types, such as fibroblasts, endothelial cells, cardiomyocytes, and endothelial progenitor cells. The function of miR-21 depends upon its expression level in the specific cell types and downstream targets, which determine cell fate. Under pathological conditions, the expression level of miR-21 is altered, leading to abnormal gene regulation of downstream signaling and cardiovascular diseases such as hypertension, cardiac hypertrophy and fibrosis, atherosclerosis, and heart failure. Agomirs or antagomirs can be introduced into the respective tissue type to reverse or stop the progression of the disease. Exosomes in the extracellular vesicles, which mediate many cellular events with high biocompatibility, have a high potential of efficiently delivering miR-21 to their targeted cells. The critical role of miR-21 in cardiovascular disease (CVD) is indisputable, but there are controversial reports on the function of miR-21 in the same disease. This discrepancy sparks interest in better understanding the role of miR-21 in different tissues under different stages of various diseases and the mechanism of how miR-21 inhibitors work.
Collapse
Affiliation(s)
- Antoinette Holland
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Ohio 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Ohio 44272, USA
| | - Arianna Diaz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Ohio 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Ohio 44272, USA
| |
Collapse
|
15
|
Moeinabadi-Bidgoli K, Rezaee M, Hossein-Khannazer N, Babajani A, Aghdaei HA, Arki MK, Afaghi S, Niknejad H, Vosough M. Exosomes for angiogenesis induction in ischemic disorders. J Cell Mol Med 2023; 27:763-787. [PMID: 36786037 PMCID: PMC10003030 DOI: 10.1111/jcmm.17689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to "cure" ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100-150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Afaghi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Oporto K, Radojkovic C, Mellisho EA, Zúñiga F, Ormazábal V, Guzmán-Gutiérrez E, Nova-Lamperti E, Rodríguez-Álvarez L, Aranda M, Escudero C, Aguayo C. Adenosine promoted angiogenesis mediated by the release of small extracellular vesicles from human endothelial progenitor cells. Microvasc Res 2023; 148:104498. [PMID: 36863509 DOI: 10.1016/j.mvr.2023.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Endothelial progenitor cells (EPCs) are stem cells mainly derived from bone marrow; from where they migrate to repair and regenerate damaged tissues. eEPCs have been classified into two sub-populations, early (eEPC) and late EPCs (lEPC), depending on maturation stages in vitro. In addition, eEPC release endocrine mediators, including small extracellular vesicles (sEVs), which in turn may enhance the eEPC-mediated wound healing properties. Nevertheless, adenosine contributes to angiogenesis by recruiting eEPC at the injury site. However, whether ARs may enhance the secretome of eEPC, including sEVs, is unknown. Therefore, we aimed to investigate whether AR activation increase the release of sEVs in eEPC, which in turn has paracrine effects on recipient endothelial cells. Results shown that 5'-N-ethylcarboxamidoadenosine (NECA), a non-selective agonist, increase both the protein levels of the vascular endothelial growth factor (VEGF), and the number of sEVs released to the conditioned medium (CM) in primary culture of eEPC. Importantly, CM and EVs harvested from NECA-stimulated eEPC promote in vitro angiogenesis, without changes in cell proliferation, in recipient ECV-304 endothelial cells. This constitutes the first evidence showing that adenosine enhances sEVs release from eEPC, which has pro-angiogenic capacity on recipient endothelial cells.
Collapse
Affiliation(s)
- Katherine Oporto
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| | - Edwin A Mellisho
- Centro de Investigación en Tecnología de Embriones, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Peru.
| | - Felipe Zúñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| | - Valeska Ormazábal
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile.
| | - Enrique Guzmán-Gutiérrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| | - Estefanía Nova-Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| | - Lleretny Rodríguez-Álvarez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
| | - Mario Aranda
- Laboratorio de Investigación en Fármacos y Alimentos, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
17
|
Mendhe B, Khan MB, Dunwody D, El Baradie KBY, Smith K, Zhi W, Sharma A, Lee TJ, Hamrick MW. Lyophilized Extracellular Vesicles from Adipose-Derived Stem Cells Increase Muscle Reperfusion but Degrade Muscle Structural Proteins in a Mouse Model of Hindlimb Ischemia-Reperfusion Injury. Cells 2023; 12:cells12040557. [PMID: 36831224 PMCID: PMC9953864 DOI: 10.3390/cells12040557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a complication impacting multiple organs and tissues in clinical conditions ranging from peripheral arterial disease to musculoskeletal trauma and myocardial infarction. Stem cell-derived extracellular vesicles (EVs) may represent one therapeutic resource for preventing the tissue damage associated with I/R injury. Here we tested the hypothesis that lyophilized extracellular vesicles derived from adipose stem cells could serve as an "off-the-shelf" treatment modality for I/R injury in a mouse hindlimb ischemia model. Ischemia was induced for 90 min using a rubber band tourniquet and extracellular vesicles (0, 50, or 100 µg) administered via tail vein injection immediately prior to reperfusion. Perfusion was measured prior to, during, and after ischemia using laser Doppler imaging. Serum and tissue were collected 24 h after reperfusion. Mass spectrometry (MS)-based proteomics was used to characterize the EV cargo and proteins from the ischemic and non-ischemic hindlimb. Inflammatory cytokines were measured in muscle and serum using a multiplex array. Results indicate that EVs significantly increase reperfusion and significantly increase expression of the anti-inflammatory factor annexin a1 in skeletal muscle; however, the increased reperfusion was also associated with a marked decrease in muscle structural proteins such as dystrophin, plectin, and obscurin. Circulating inflammatory cytokines TNF-alpha and IL-6 were increased with EV treatment, and serum TNF-alpha showed a significant, positive correlation with reperfusion level. These findings suggest that, while EVs may enhance reperfusion, the increased reperfusion can negatively impact muscle tissue and possibly remote organs. Alternative approaches, such as targeting mitochondrial permeability, may be more effective at mitigating I/R injury.
Collapse
Affiliation(s)
- Bharati Mendhe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohammad B. Khan
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Damon Dunwody
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Kathryn Smith
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wenbo Zhi
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tae Jin Lee
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-1958; Fax: +706-721-6120
| |
Collapse
|
18
|
Extracellular vesicles derived from hypoxia-preconditioned bone marrow mesenchymal stem cells ameliorate lower limb ischemia by delivering miR-34c. Mol Cell Biochem 2023; 478:1645-1658. [PMID: 36729282 DOI: 10.1007/s11010-023-04666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Hypoxic mesenchymal stem cell-derived extracellular vesicles (EVs) have been suggested as a promising therapy for various diseases. This study aims to determine the effect of EVs derived from bone marrow mesenchymal stem cells (BMMSCs) under hypoxia on lower limb ischemia and the underlying mechanism. Human BMMSCs were subjected to hypoxia or normoxia followed by the isolation of EVs. Nanoparticle trafficking analysis (NTA), transmission electron microscopy (TEM), and Western Blotting using corresponding markers were performed to confirm the EVs. The EVs from BMMSCs under hypoxia condition (Hyp-EVs) or normoxia condition (Nor-EVs) were subjected to hindlimb ischemia (HI) mice. MiR-34c expression in BMMSCs and BMMSC-EVs was detected. The role of miR-34c in regulating M2 macrophage polarization, as well as the target of miR-34c, were explored. HI mice with Hyp-EV treatment, as compared to the Nor-EV or the PBS group, had better blood flow and higher capillary density. MiR-34c expression was increased in BMMSCs, BMMSC-EVs, and the adductor muscle of HI mice. Hyp-EVs promoted the M2 macrophage polarization and anti-inflammatory cytokine production, and enhanced the blood flow and capillary density in HI mice, while the knockdown of miR-34c partly reversed these effects. PTEN is a target of miR-34c, and the PTEN silencing facilitated M2 macrophage polarization, whereas the inhibition of AKT signaling partly abolished the effect. Hyp-EVs promoted M2 macrophage polarization by delivering miR-34c via PTEN/AKT pathway, which could be a promising therapeutic strategy to ameliorate lower limb ischemia.
Collapse
|
19
|
Khan SU, Khan MI, Khan MU, Khan NM, Bungau S, Hassan SSU. Applications of Extracellular Vesicles in Nervous System Disorders: An Overview of Recent Advances. Bioengineering (Basel) 2022; 10:51. [PMID: 36671622 PMCID: PMC9854809 DOI: 10.3390/bioengineering10010051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Diseases affecting the brain and spinal cord fall under the umbrella term "central nervous system disease". Most medications used to treat or prevent chronic diseases of the central nervous system cannot cross the blood-brain barrier (BBB) and hence cannot reach their intended target. Exosomes facilitate cellular material movement and signal transmission. Exosomes can pass the blood-brain barrier because of their tiny size, high delivery efficiency, minimal immunogenicity, and good biocompatibility. They enter brain endothelial cells via normal endocytosis and reverse endocytosis. Exosome bioengineering may be a method to produce consistent and repeatable isolation for clinical usage. Because of their tiny size, stable composition, non-immunogenicity, non-toxicity, and capacity to carry a wide range of substances, exosomes are indispensable transporters for targeted drug administration. Bioengineering has the potential to improve these aspects of exosomes significantly. Future research into exosome vectors must focus on redesigning the membrane to produce vesicles with targeting abilities to increase exosome targeting. To better understand exosomes and their potential as therapeutic vectors for central nervous system diseases, this article explores their basic biological properties, engineering modifications, and promising applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022; 12:5015-5033. [PMID: 35836800 PMCID: PMC9274744 DOI: 10.7150/thno.74785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease (PAD) poses a great challenge to society, with a growing prevalence in the upcoming years. Patients in the severe stages of PAD are prone to amputation and death, leading to poor quality of life and a great socioeconomic burden. Furthermore, PAD is one of the major complications of diabetic patients, who have higher risk to develop critical limb ischemia, the most severe manifestation of PAD, and thus have a poor prognosis. Hence, there is an urgent need to develop an effective therapeutic strategy to treat this disease. Therapeutic angiogenesis has raised concerns for more than two decades as a potential strategy for treating PAD, especially in patients without option for surgery-based therapies. Since the discovery of gene-based therapy for therapeutic angiogenesis, several approaches have been developed, including cell-, protein-, and small molecule drug-based therapeutic strategies, some of which have progressed into the clinical trial phase. Despite its promising potential, efforts are still needed to improve the efficacy of this strategy, reduce its cost, and promote its worldwide application. In this review, we highlight the current progress of therapeutic angiogenesis and the issues that need to be overcome prior to its clinical application.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| |
Collapse
|
21
|
Fan Y, Chen Z, Zhang M. Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. Lab Invest 2022; 20:291. [PMID: 35761337 PMCID: PMC9235237 DOI: 10.1186/s12967-022-03493-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022]
Abstract
Central nervous system (CNS) diseases, such as multiple sclerosis, Alzheimer's disease (AD), and Parkinson’s disease (PD), affect millions of people around the world. Great efforts were put in disease related research, but few breakthroughs have been made in the diagnostic and therapeutic approaches. Exosomes are cell-derived extracellular vesicles containing diverse biologically active molecules secreted by their cell of origin. These contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred between different cells, tissues, or organs, regulating various intercellular cross-organ communications and normal and pathogenic processes. Considering that cellular environment and cell state strongly impact the content and uptake efficiency of exosomes, their detection in biological fluids and content composition analysis potentially offer a multicomponent diagnostic readout of several human diseases. Recently, studies have found that aberrant secretion and content of exosomes are closely related to the pathogenesis of CNS diseases. Besides, loading natural cargoes, exosomes can deliver drugs cross the blood brain barrier, making them emerging candidates of biomarkers and therapeutics for CNS diseases. In this review, we summarize and discuss the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation. Moreover, we propose the therapeutic strategies of applying exosomes to the diagnosis, early detection, and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Ren H, Guo Z, Liu Y, Song C. Stem Cell-derived Exosomal MicroRNA as Therapy for Vascular Age-related Diseases. Aging Dis 2022; 13:852-867. [PMID: 35656114 PMCID: PMC9116915 DOI: 10.14336/ad.2021.1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular age-related diseases describe a group of age-related chronic diseases that result in a considerable healthcare burden to society. Vascular aging includes structural changes and dysfunctions of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Compared with conventional treatment for vascular age-related diseases, stem cell (SC) therapy elicits better anti-aging effects viathe inhibition/delay ECs and SMCs from entering senescence. Exosomal noncoding RNA (ncRNAs) in vascular aging and stem cell-derived exosomal microRNAs (SCEV-miRNAs), especially in mesenchymal stem cells, have an important role in the development of age-related diseases. This review summarizes SCEV-miRNAs of diverse origins that may play a vital role in treating subclinical and clinical stages of vascular age-related disorders. We further explored possible age-related pathways and molecular targets of SCEV-miRNA, which are associated with dysfunctions of ECs and SMCs in the senescent stage. Moreover, the perspectives and difficulties of SCEV-miRNA clinical translation are discussed. This review aims to provide greater understanding of the biology of vascular aging and to identify critical therapeutic targets for SCEV-miRNAs. Though still in its infancy, the potential value of SCEV-miRNAs for vascular age-related diseases is clear.
Collapse
Affiliation(s)
- Hang Ren
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Niu H, Gao N, Dang Y, Guan Y, Guan J. Delivery of VEGF and delta-like 4 to synergistically regenerate capillaries and arterioles in ischemic limbs. Acta Biomater 2022; 143:295-309. [PMID: 35301145 PMCID: PMC9926495 DOI: 10.1016/j.actbio.2022.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Vascularization of the poorly vascularized limbs affected by critical limb ischemia (CLI) is necessary to salvage the limbs and avoid amputation. Effective vascularization requires forming not only capillaries, but also arterioles and vessel branching. These processes rely on the survival, migration and morphogenesis of endothelial cells in the ischemic limbs. Yet endothelial cell functions are impaired by the upregulated TGFβ. Herein, we developed an injectable hydrogel-based drug release system capable of delivering both VEGF and Dll4 to synergistically restore endothelial cellular functions, leading to accelerated formation of capillaries, arterioles and vessel branching. In vitro, the Dll4 and VEGF synergistically promoted the human arterial endothelial cell (HAEC) survival, migration, and formation of filopodial structure, lumens, and branches under the elevated TGFβ1 condition mimicking that of the ischemic limbs. The synergistic effect was resulted from activating VEGFR2, Notch-1 and Erk1/2 signaling pathways. After delivering the Dll4 and VEGF via an injectable and thermosensitive hydrogel to the ischemic mouse hindlimbs, 95% of blood perfusion was restored at day 14, significantly higher than delivery of Dll4 or VEGF only. The released Dll4 and VEGF significantly increased density of capillaries and arterioles, vessel branching point density, and proliferating cell density. Besides, the delivery of Dll4 and VEGF stimulated skeletal muscle regeneration and improved muscle function. Overall, the developed hydrogel-based Dll4 and VEGF delivery system promoted ischemic limb vascularization and muscle regeneration. STATEMENT OF SIGNIFICANCE: Effective vascularization of the poorly vascularized limbs affected by critical limb ischemia (CLI) requires forming not only capillaries, but also arterioles and vessel branching. These processes rely on the survival, migration and morphogenesis of endothelial cells. Yet endothelial cell functions are impaired by the upregulated TGFβ in the ischemic limbs. Herein, we developed an injectable hydrogel-based drug release system capable of delivering both VEGF and Dll4 to synergistically restore endothelial cell functions, leading to accelerated formation of capillaries, arterioles and vessel branching.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Center of Regenerative Medicine, Washington University in St. Louis. St. Louis, MO, 63130, United States; Department of Materials Science and Engineering, Ohio State University. Columbus, OH, 43210, United States
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Center of Regenerative Medicine, Washington University in St. Louis. St. Louis, MO, 63130, United States; Department of Materials Science and Engineering, Ohio State University. Columbus, OH, 43210, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States.
| |
Collapse
|
24
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
25
|
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073869. [PMID: 35409228 PMCID: PMC8998690 DOI: 10.3390/ijms23073869] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30-140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.
Collapse
Affiliation(s)
- Rou Wan
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Arif Hussain
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
26
|
Stratman AN, Crewe C, Stahl PD. The microenvironment‐ a general hypothesis on the homeostatic function of extracellular vesicles. FASEB Bioadv 2022; 4:284-297. [PMID: 35520390 PMCID: PMC9065581 DOI: 10.1096/fba.2021-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs), exosomes and microvesicles, is a burgeoning field of biological and biomedical research that may change our understanding of cell communication in plants and animals while holding great promise for the diagnosis of disease and the development of therapeutics. However, the challenge remains to develop a general hypothesis about the role of EVs in physiological homeostasis and pathobiology across kingdoms. While they can act systemically, EVs are often seen to operate locally within a microenvironment. This microenvironment is built as a collection of microunits comprised of cells that interact with each other via EV exchange, EV signaling, EV seeding, and EV disposal. We propose that microunits are part of a larger matrix at the tissue level that collectively communicates with the surrounding environment, including other end‐organ systems. Herein, we offer a working model that encompasses the various facets of EV function in the context of the cell biology and physiology of multicellular organisms.
Collapse
Affiliation(s)
- Amber N Stratman
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Clair Crewe
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
- Department of Internal Medicine Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Philip D Stahl
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| |
Collapse
|
27
|
Fan D, Liu C, Guo Z, Huang K, Peng M, Li N, Luo H, Wang T, Cen Z, Cai W, Gu L, Chen S, Li Z. Resveratrol Promotes Angiogenesis in a FoxO1-Dependent Manner in Hind Limb Ischemia in Mice. Molecules 2021; 26:molecules26247528. [PMID: 34946610 PMCID: PMC8707225 DOI: 10.3390/molecules26247528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe form of peripheral artery diseases (PAD) and seriously endangers the health of people. Therapeutic angiogenesis represents an important treatment strategy for CLI; various methods have been applied to enhance collateral circulation. However, the current development drug therapy to promote angiogenesis is limited. Resveratrol (RSV), a polyphenol compound extracted from plants, has various properties such as anti-oxidative, anti-inflammatory and anti-cancer effects. Whether RSV exerts protective effects on CLI remains elusive. In the current study, we demonstrated that oral intake of RSV significantly improved hind limb ischemia in mice, and increased the expression of phosphorylated Forkhead box class-O1 (FoxO1). RSV treatment in human umbilical vein endothelial cells (HUVECs) could increase the phosphorylation of FoxO1 and its cytoplasmic re-localization to promote angiogenesis. Then we manipulated FoxO1 in HUVECs to further verify that the effect of RSV on angiogenesis is in a FoxO1-dependent manner. Furthermore, we performed metabolomics to screen the metabolic pathways altered upon RSV intervention. We found that the pathways of pyrimidine metabolism, purine metabolism, as well as alanine, aspartate and glutamate metabolism, were highly correlated with the beneficial effects of RSV on the ischemic muscle. This study provides a novel direction for the medical therapy to CLI.
Collapse
Affiliation(s)
- Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Zeling Guo
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Hengli Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA;
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany;
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Correspondence: (S.C.); (Z.L.)
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (S.C.); (Z.L.)
| |
Collapse
|
28
|
Rimamskep SG, Favour M, Demilade SA, Charles AC, Olaseni BM, Bob-Manuel T. Peripheral Artery Disease: A comprehensive updated review. Curr Probl Cardiol 2021; 47:101082. [PMID: 34906615 DOI: 10.1016/j.cpcardiol.2021.101082] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
Peripheral arterial disease is estimated to affect more than 200 million people worldwide. Although more than 50% of those affected are asymptomatic, it accounts for 3-4% of amputations and a crude five-year death rate of 82.4 deaths per 1000 patient-years when adjusted for duration of follow-up. Additionally, peripheral artery disease is often an indicator of obstructive atherosclerotic disease involvement of cerebral and coronary vessels, consequently increasing the risk of stroke, cardiovascular death, and myocardial infarction in these patient populations. The management of peripheral arterial disease includes conservative therapies, pharmacological treatments, interventional and surgical revascularization of blood vessels. Percutaneous transluminal angioplasty with balloons and stents has improved clinical outcomes compared to medical treatment alone. Despite these advances, the prevalence of peripheral arterial disease remains high. This review article aims to provide focused, up-to-date information on the clinical course, diagnosis, medical and interventional approach of the management of peripheral artery disease.
Collapse
Affiliation(s)
| | - Markson Favour
- Department of Internal Medicine, Lincoln Medical Centre NY, USA
| | | | | | | | | |
Collapse
|
29
|
Cardiac microvascular functions improved by MSC-derived exosomes attenuate cardiac fibrosis after ischemia-reperfusion via PDGFR-β modulation. Int J Cardiol 2021; 344:13-24. [PMID: 34534604 DOI: 10.1016/j.ijcard.2021.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023]
Abstract
Microvascular dysfunction caused by cardiac ischemia-reperfusion (I/R) leads to multiple severe cardiac adverse events, such as heart failure and ventricular modeling, which plays a critical role in outcomes. Though marrow mesenchymal stem cell (MSC) therapy has been proven effective for attenuating I/R injury, the limitations of clinical feasibility cannot be ignored. Since exosomes are recognized as the main vehicles for MSCs paracrine effects, we assumed that MSC-derived exosomes could prevent microvascular dysfunction and further protect cardiac function. By establishing a rat cardiac I/R model in vivo and a cardiac microvascular endothelial cells (CMECs) hypoxia-reperfusion (H/R) model in vitro, we demonstrated that MSC-derived exosomes enhanced microvascular regeneration under stress, inhibited fibrosis development, and eventually improved cardiac function through platelet-derived growth factor receptor-β (PDGFR-β) modulation. Furthermore, we found that MSC-derived exosomes possessed better therapeutic effects than MSCs themselves.
Collapse
|
30
|
Kadbhane A, Patel M, Srivastava S, Singh PK, Madan J, Singh SB, Khatri DK. Perspective insights and application of exosomes as a novel tool against neurodegenerative disorders: An expository appraisal. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
32
|
Andrade AC, Wolf M, Binder HM, Gomes FG, Manstein F, Ebner-Peking P, Poupardin R, Zweigerdt R, Schallmoser K, Strunk D. Hypoxic Conditions Promote the Angiogenic Potential of Human Induced Pluripotent Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22083890. [PMID: 33918735 PMCID: PMC8070165 DOI: 10.3390/ijms22083890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.
Collapse
Affiliation(s)
- André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Heide-Marie Binder
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Fausto Gueths Gomes
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (K.S.)
| | - Felix Manstein
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625 Hannover, Germany; (F.M.); (R.Z.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625 Hannover, Germany; (F.M.); (R.Z.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (K.S.)
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
- Correspondence:
| |
Collapse
|
33
|
Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Am J Cancer Res 2021; 11:4436-4451. [PMID: 33754070 PMCID: PMC7977448 DOI: 10.7150/thno.54004] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasome is a complex of multiple proteins found in cytoplasm of the cells activated by infectious and/or non-infectious stimuli. This complex involves caspase-1 activation, leading to unconventional secretion of interleukin-1β (IL-1β) and IL-18 and inflammatory cascade. Exosome is the nanoscale membrane-bound extracellular vesicle that plays significant roles in intercellular communications by carrying bioactive molecules, e.g., proteins, RNAs, microRNAs (miRNAs), DNAs, from one cell to the others. In this review, we provide the update information on the crosstalk between exosome and inflammasome and their roles in inflammatory responses. The effects of inflammasome activation on exosomal secretion are summarized. On the other hand, the (dual) effects of exosomes on inhibiting and promoting inflammasome activation are discussed. Finally, perspectives on therapeutic roles of exosomes in human diseases and future direction of the research on exosome-inflammasome crosstalk are provided.
Collapse
|
34
|
Yang X, Cai S, Shu Y, Deng X, Zhang Y, He N, Wan L, Chen X, Qu Y, Yu S. Exosomal miR-487a derived from m2 macrophage promotes the progression of gastric cancer. Cell Cycle 2021; 20:434-444. [PMID: 33522393 DOI: 10.1080/15384101.2021.1878326] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages contribute to cell growth, development, and metastasis in various cancers. However, the underlying mechanisms of M2 macrophage that modulate the progression of gastric cancer (GC) remain largely unknown. In this study, we detected the ratio of macrophages in GC tissues and found that the proportion of M2 macrophages was increased in GC tissues. We then co-cultured GC cells with M1 and M2 macrophages, respectively, and then assessed cell proliferation and tumorigenicity of GC cells by MTT and colony formation assay. The results indicated that M2 macrophages promoted the proliferation of GC cells, but M1 not. Besides, GW4869, an exosomes inhibitor, reduced the effects induced by M2 macrophage. Then, we isolated and identified exosomes derived from M1 and M2 macrophage, and confirmed that the exosomes could be taken up by GC cells. We demonstrated that M2 macrophage-exosomes could induce the proliferation and tumorigenesis in vitro and in vivo. Moreover, miR-487a was enriched in M2 macrophage-exosomes and further determined that miR-487a exert the functions by targeting TIA1. In conclusion, exosomal miR-487a derived from M2 macrophage promotes the proliferation and tumorigenesis in gastric cancer, and the novel findings might be helpful to the development of novel diagnostic and therapeutic methods in GC.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University , Zunyi, China.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Shuang Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Yue Shu
- Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University , Zunyi, China
| | - Xun Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Yuanwei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Nian He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Lei Wan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Xu Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Yan Qu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University , Zunyi, China
| | - Shouyang Yu
- Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University , Zunyi, China
| |
Collapse
|
35
|
Park JJ, Kwon YW, Kim JW, Park GT, Yoon JW, Kim YS, Kim DS, Kwon SM, Bae SS, Ko K, Kim CS, Kim JH. Coadministration of endothelial and smooth muscle cells derived from human induced pluripotent stem cells as a therapy for critical limb ischemia. Stem Cells Transl Med 2020; 10:414-426. [PMID: 33174379 PMCID: PMC7900584 DOI: 10.1002/sctm.20-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Critical limb ischemia is a condition in which tissue necrosis occurs due to arterial occlusion, resulting in limb amputation in severe cases. Both endothelial cells (ECs) and vascular smooth muscle cells (SMCs) are needed for the regeneration of peripheral arteries in ischemic tissues. However, it is difficult to isolate and cultivate primary EC and SMC from patients for therapeutic angiogenesis. Induced pluripotent stem cells (iPSCs) are regarded as useful stem cells due to their pluripotent differentiation potential. In this study, we explored the therapeutic efficacy of human iPSC‐derived EC and iPSC‐derived SMC in peripheral artery disease model. After the induction of mesodermal differentiation of iPSC, CD34+ progenitor cells were isolated by magnetic‐activated cell sorting. Cultivation of the CD34+ progenitor cells in endothelial culture medium induced the expression of endothelial markers and phenotypes. Moreover, the CD34+ cells could be differentiated into SMC by cultivation in SMC culture medium. In a murine hindlimb ischemia model, cotransplantation of EC with SMC improved blood perfusion and increased the limb salvage rate in ischemic limbs compared to transplantation of either EC or SMC alone. Moreover, cotransplantation of EC and SMC stimulated angiogenesis and led to the formation of capillaries and arteries/arterioles in vivo. Conditioned medium derived from SMC stimulated the migration, proliferation, and tubulation of EC in vitro, and these effects were recapitulated by exosomes isolated from the SMC‐conditioned medium. Together, these results suggest that iPSC‐derived SMC enhance the therapeutic efficacy of iPSC‐derived EC in peripheral artery disease via an exosome‐mediated paracrine mechanism.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Won Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ye Seul Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Da Sol Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sang Mo Kwon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sun Sik Bae
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
36
|
Secreted Factors from Stem Cells of Human Exfoliated Deciduous Teeth Directly Activate Endothelial Cells to Promote All Processes of Angiogenesis. Cells 2020; 9:cells9112385. [PMID: 33142678 PMCID: PMC7693657 DOI: 10.3390/cells9112385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a major risk factor for atherosclerosis and ischemic vascular diseases. Recently, regenerative medicine is expected to be a novel therapy for ischemic diseases. Our previous studies have reported that transplantation of stem cells promoted therapeutic angiogenesis for diabetic neuropathy and ischemic vascular disease in a paracrine manner, but the precise mechanism is unclear. Therefore, we examined whether secreted factors from stem cells had direct beneficial effects on endothelial cells to promote angiogenesis. The soluble factors were collected as conditioned medium (CM) 48 h after culturing stem cells from human exfoliated deciduous teeth (SHED) in serum-free DMEM. SHED-CM significantly increased cell viability of human umbilical vein endothelial cells (HUVECs) in MTT assays and accelerated HUVECs migration in wound healing and Boyden chamber assays. In a Matrigel plug assay of mice, the migrated number of primary endothelial cells was markedly increased in the plug containing SHED-CM or SHED suspension. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. Furthermore, SHED-CM significantly increased neovascularization from the primary rat aorta, indicating that SHED-CM stimulated primary endothelial cells to promote comprehensive angiogenesis processes. The angiogenic effects of SHED-CM were the same or greater than the effective concentration of VEGF. In conclusion, SHED-CM directly stimulates vascular endothelial cells to promote angiogenesis and is promising for future clinical application.
Collapse
|
37
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Xing Z, Zhao C, Liu H, Fan Y. Endothelial Progenitor Cell-Derived Extracellular Vesicles: A Novel Candidate for Regenerative Medicine and Disease Treatment. Adv Healthc Mater 2020; 9:e2000255. [PMID: 32378361 DOI: 10.1002/adhm.202000255] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/12/2020] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membranous structures, which can be secreted by most cell types. As a product of paracrine secretion, EVs are considered to be a regulatory mediator for intercellular communication. There are many bioactive cargos in EVs, such as proteins, lipids, and nucleic acids. As the precursor cell of vascular endothelial cells (ECs), endothelial progenitor cells (EPCs) are first discovered in peripheral blood. With the development of studies about the functions of EPCs, an increasing number of researchers focus on EPC-derived EVs (EPC-EVs). EPC-EVs exert key functions for promoting angiogenesis in regenerative medicine and show significant therapeutic effects on a variety of diseases such as circulatory diseases, kidney diseases, diabetes, bone diseases, and tissue/organ damages. This article reviews the current knowledge on the role of EPC-EVs in regenerative medicine and disease treatment, discussing the main challenges and future directions in this field.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
| | - Chen Zhao
- School of Pharmaceutical SciencesTsinghua University Beijing 100084 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
- National Research Center for Rehabilitation Technical Aids Beijing 100176 P. R. China
| |
Collapse
|
39
|
Abstract
Peripheral artery disease is a common disorder and a major cause of morbidity and mortality worldwide. Therapy is directed at reducing the risk of major adverse cardiovascular events and at ameliorating symptoms. Medical therapy is effective at reducing the incidence of myocardial infarction and stroke to which these patients are prone but is inadequate in relieving limb-related symptoms, such as intermittent claudication, rest pain, and ischemic ulceration. Limb-related morbidity is best addressed with surgical and endovascular interventions that restore perfusion. Current medical therapies have only modest effects on limb blood flow. Accordingly, there is an opportunity to develop medical approaches to restore limb perfusion. Vascular regeneration to enhance limb blood flow includes methods to enhance angiogenesis, arteriogenesis, and vasculogenesis using angiogenic cytokines and cell therapies. We review the molecular mechanisms of these processes; briefly discuss what we have learned from the clinical trials of angiogenic and cell therapies; and conclude with an overview of a potential new approach based upon transdifferentiation to enhance vascular regeneration in peripheral artery disease.
Collapse
Affiliation(s)
- John P Cooke
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - Shu Meng
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| |
Collapse
|
40
|
Zhu D, Johnson TK, Wang Y, Thomas M, Huynh K, Yang Q, Bond VC, Chen YE, Liu D. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb. Stem Cell Res Ther 2020; 11:162. [PMID: 32321589 PMCID: PMC7178595 DOI: 10.1186/s13287-020-01669-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND M2 macrophages and exosomes from adipose-derived stem cells (ASCs) are both reported to promote angiogenesis. However, the possible synergistic effects between exogenous exosomes and endogenous M2 macrophages are poorly understood. METHODS Exosomes were isolated from conditioned medium of normoxic and hypoxic ASCs using the combined techniques of ultrafiltration and size-exclusion chromatography and were identified with nanoparticle tracking analysis and immunoblotting for exosomal markers. Macrophages were collected from the mouse peritoneal cavity. M1 and M2 macrophages were detected by immunoblotting for the intracellular markers inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) and by flow cytometry for the surface markers F4/80, CD86, and CD206. Murine models of Matrigel plug and hindlimb ischemia were employed as in vivo angiogenic assays. RESULTS When M1 macrophages were treated with exosomes from normoxic ASCs (Nor/Exo), and particularly from hypoxic ASCs (Hyp/Exo), the expression of the M1 marker iNOS decreased, and the M2 marker Arg-1 increased in a time- and dose-dependent manner. Additionally, a decrease in the M1 surface marker CD86 and an increase in the M2 surface marker CD206 were observed, which suggested that M1 macrophages were polarized to an M2-like phenotype. Conditioned medium from these M2-like macrophages presented lower levels of proinflammatory cytokines and higher levels of proangiogenic factors and promoted endothelial cell proliferation, migration, and tube formation. Furthermore, M2 polarization and angiogenesis were induced upon the administration of exosomes in mouse Matrigel plug and hindlimb ischemia (HLI) models. Interestingly, these exosomal effects were attenuated by using a colony stimulating factor 1 receptor (CSF-1R) inhibitor, BLZ945, in vitro and in vivo. Downregulation of microRNA-21 (miR-21) in hypoxic ASCs reduced the exosomal effects on M2 polarization, Akt phosphorylation, and CSF-1 secretion. A similar reduction in exosomal activity was also observed when exosomes were administered along with BLZ945. CONCLUSION Our findings provide evidence that exosomes from ASCs polarize macrophages toward an M2-like phenotype, which further enhances the exosomal proangiogenic effects. Exosomal delivery of miR-21 and positive feedback of secreted CSF-1 may be involved in macrophage polarization.
Collapse
Affiliation(s)
- Dihan Zhu
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Takerra K Johnson
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, USA
| | - Yang Wang
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Miracle Thomas
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Ky Huynh
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Qinglin Yang
- Department of Pharmacology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA. .,Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Baruah J, Wary KK. Exosomes in the Regulation of Vascular Endothelial Cell Regeneration. Front Cell Dev Biol 2020; 7:353. [PMID: 31998716 PMCID: PMC6962177 DOI: 10.3389/fcell.2019.00353] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes have been described as nanoscale membranous extracellular vesicles that emerge from a variety of cells and tissues and are enriched with biologically active genomic and non-genomic biomolecules capable of transducing cell to cell communication. Exosome release, and exosome mediated signaling and cross-talks have been reported in several pathophysiological states. Therefore, exosomes have the potential to become suitable for the diagnosis, prognosis and treatment of specific diseases, including endothelial cell (EC) dysfunction and regeneration. The role of EC-derived exosomes in the mechanisms of cardiovascular tissue regenerative processes represents currently an area of intense research activity. Recent studies have described the potential of exosomes to influence the pathophysiology of immune signaling, tumor metastasis, and angiogenesis. In this review, we briefly discuss progress made in our understanding of the composition and the roles of exosomes in relation to EC regeneration as well as revascularization of ischemic tissues.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Kishore K Wary
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|