1
|
Warren M, Poelzing S. The calcium transient coupled to the L-type calcium current attenuates cardiac alternans. Front Physiol 2024; 15:1404886. [PMID: 39397855 PMCID: PMC11466891 DOI: 10.3389/fphys.2024.1404886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024] Open
Abstract
Cardiac action potential (AP) alternans have been linked to the development of arrhythmia. AP alternans may be driven by AP instabilities, Ca2+ transient (CaT) instabilities, or both. The mechanisms underlying CaT driven AP alternans is well-supported experimentally, but the ionic mechanism underlying alternans driven by AP instabilities remain incompletely understood. Here we used the Ca2+ buffer BAPTA to remove the CaT and generate a model of AP alternans driven primarily by AP instabilities. In isolated rabbit ventricle myocytes, AP alternans induced by rapid pacing were either critically damped and persisted over time, overdamped and ceased over seconds, or underdamped progressing to 2:1 capture. Control cells predominantly exhibited critically damped alternans. In contrast, removing CaT with BAPTA destabilized alternans formation in a concentration dependent manner. Importantly, alternans were easier to induce in CaT free cells as evidenced by a higher alternans threshold relative to control cells. While the L-type Ca2+ channel agonist Bay K 8644 had a minor effect on alternans formation in myocytes with conserved CaT, combining the agonist with BAPTA markedly promoted the formation of underdamped alternans and increased the alternans threshold more than four-fold as compared to controls. Our data support a mechanistic model in which AP alternans are a primary self-sustained event in which the CaT serves as a dampening cue that curbs alternans development, likely via a canonical negative feedback process involving Ca2+ induced inhibition of L-type Ca2+ current.
Collapse
Affiliation(s)
- Mark Warren
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics at Virginia Tech, Blacksburg, VA, United States
- Department of Internal Medicine at Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
2
|
Xiang Y, Shi K, Li Y, Xue J, Tong Z, Li H, Li Z, Teng C, Fang J, Hu N. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording. NANO-MICRO LETTERS 2024; 16:132. [PMID: 38411852 PMCID: PMC10899154 DOI: 10.1007/s40820-024-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024]
Abstract
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China
| | - Zhicheng Tong
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Huiming Li
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China.
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China.
| | - Chong Teng
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China.
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
3
|
Warren M, Poelzing S. The Calcium Transient Coupled to the L-Type Calcium Current Attenuates Action Potential Alternans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538350. [PMID: 37163125 PMCID: PMC10168326 DOI: 10.1101/2023.04.25.538350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Action potential (AP) alternans are linked to increased arrhythmogenesis. It is suggested that calcium (Ca 2+ ) transient (CaT) alternans cause AP alternans through bi-directional coupling feedback mechanisms because CaT alternans can precede AP alternans and develop in AP alternans free conditions. However, the CaT is an emergent response to intracellular Ca 2+ handling, and the mechanisms linking AP and CaT alternans are still a topic of investigation. This study investigated the development of AP alternans in the absence of CaT. Methods AP (patch clamp) and intracellular Ca 2+ (Fluo-4 epifluorescence) were recorded simultaneously from isolated rabbit ventricle myocytes perfused with the intracellular Ca 2+ buffer BAPTA (10-20 mM) to abolish CaT and/or the L-type Ca2+ channel activator Bay K 8644 (25 nM). Results After a rate change, alternans were critically damped and stable, overdamped and ceased over seconds, underdamped with longer scale harmonics, or unstably underdamped progressing to 2:1 capture. Alternans in control cells were predominantly critically damped, but after CaT ablation with 10 or 20 mM BAPTA, exhibited respectively increased overdamping or increased underdamping. Alternans were easier to induce in CaT free cells as evidenced by a higher alternans threshold (ALT-TH: at least 7 pairs of alternating beats) relative to control cells. Alternans in Bay K 8644 treated cells were often underdamped, but the ALT-TH was similar to control. In CaT ablated cells, Bay K 8644 prolonged AP duration (APD) leading predominantly to unstably underdamped alternans. Conclusions AP alternans occur more readily in the absence of CaT suggesting that the CaT dampens the development of AP alternans. The data further demonstrate that agonizing the L-type calcium current without the negative feedback of the CaT leads to unstable alternans. This negative feedback mechanism may be important for understanding treatments aimed at reducing CaT or its dynamic response to prevent arrhythmias.
Collapse
|
4
|
Lachaud Q, Aziz MHN, Burton FL, Macquaide N, Myles RC, Simitev RD, Smith GL. Electrophysiological heterogeneity in large populations of rabbit ventricular cardiomyocytes. Cardiovasc Res 2022; 118:3112-3125. [PMID: 35020837 PMCID: PMC9732512 DOI: 10.1093/cvr/cvab375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/07/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS Cardiac electrophysiological heterogeneity includes: (i) regional differences in action potential (AP) waveform, (ii) AP waveform differences in cells isolated from a single region, (iii) variability of the contribution of individual ion currents in cells with similar AP durations (APDs). The aim of this study is to assess intra-regional AP waveform differences, to quantify the contribution of specific ion channels to the APD via drug responses and to generate a population of mathematical models to investigate the mechanisms underlying heterogeneity in rabbit ventricular cells. METHODS AND RESULTS APD in ∼50 isolated cells from subregions of the LV free wall of rabbit hearts were measured using a voltage-sensitive dye. When stimulated at 2 Hz, average APD90 value in cells from the basal epicardial region was 254 ± 25 ms (mean ± standard deviation) in 17 hearts with a mean interquartile range (IQR) of 53 ± 17 ms. Endo-epicardial and apical-basal APD90 differences accounted for ∼10% of the IQR value. Highly variable changes in APD occurred after IK(r) or ICa(L) block that included a sub-population of cells (HR) with an exaggerated (hyper) response to IK(r) inhibition. A set of 4471 AP models matching the experimental APD90 distribution was generated from a larger population of models created by random variation of the maximum conductances (Gmax) of 8 key ion channels/exchangers/pumps. This set reproduced the pattern of cell-specific responses to ICa(L) and IK(r) block, including the HR sub-population. The models exhibited a wide range of Gmax values with constrained relationships linking ICa(L) with IK(r), ICl, INCX, and INaK. CONCLUSION Modelling the measured range of inter-cell APDs required a larger range of key Gmax values indicating that ventricular tissue has considerable inter-cell variation in channel/pump/exchanger activity. AP morphology is retained by relationships linking specific ionic conductances. These interrelationships are necessary for stable repolarization despite large inter-cell variation of individual conductances and this explains the variable sensitivity to ion channel block.
Collapse
Affiliation(s)
- Quentin Lachaud
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Muhamad Hifzhudin Noor Aziz
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Niall Macquaide
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Radostin D Simitev
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Xu D, Fang J, Yadid M, Zhang M, Wang H, Xia Q, Li H, Cao N, Dvir T, Hu N. A universal, multimodal cell-based biosensing platform for optimal intracellular action potential recording. Biosens Bioelectron 2022; 206:114122. [PMID: 35245868 DOI: 10.1016/j.bios.2022.114122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/16/2022]
Abstract
Intracellular recording of action potentials is an essential mean for studying disease mechanisms, and for electrophysiological studies, particularly in excitable cells as cardiomyocytes or neurons. Current strategies to obtain intracellular recordings include three-dimensional (3D) nanoelectrodes that can effectively penetrate the cell membrane and achieve high-quality intracellular recordings in a minimally invasive manner, or transient electroporation of the membrane that can yield temporary intracellular access. However, the former strategy requires a complicated and costly fabrication process, and the latter strategy suffers from high dependency on the method of application of electroporation, yielding inconsistent, suboptimal recordings. These factors hinder the high throughput use of these strategies in electrophysiological studies. In this work, we propose an advanced cell-based biosensing platform that relies on electroporation to produce consistent, high-quality intracellular recordings. The suggested universal system can be integrated with any electrode array, and it enables tunable electroporation with controllable pulse parameters, while the recorded potentials can be analyzed in real time to provide instantaneous feedback on the electroporation effectiveness. This integrated system enables the user to perform electroporation, record and assess the obtained signals in a facile manner, to ultimately achieve stable, reliable, intracellular recording. Moreover, the proposed platform relies on microelectrode arrays which are suited for large-scale production, and additional modules that are low-cost. Using this platform, we demonstrate the tuning of electroporation pulse width, pulse number, and amplitude, to achieve effective electroporation and high-quality intracellular recordings. This integrated platform has the potential to enable larger scale, repeatable, convenient, and low-cost electrophysiological studies.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Moran Yadid
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mingyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qijian Xia
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tal Dvir
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel; Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel; The Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
6
|
Xu D, Fang J, Zhang M, Wang H, Zhang T, Hang T, Xie X, Hu N. Synchronized intracellular and extracellular recording of action potentials by three-dimensional nanoroded electroporation. Biosens Bioelectron 2021; 192:113501. [PMID: 34273736 DOI: 10.1016/j.bios.2021.113501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/26/2021] [Accepted: 07/10/2021] [Indexed: 01/08/2023]
Abstract
Electrophysiological study is an essential and significant strategy to explore the biological mechanism of electrogenic cells. Current advanced nanodevices can achieve the high-fidelity intracellular electrophysiological recordings, and most of detection systems record the extracellular and intracellular action potentials (EAPs and IAPs) in an asynchronous or isolated manner, so it is demanded to develop the platform to reveal correlation between EAP and IAP recording. Here, we establish a utility strategy to achieve synchronized intracellular and extracellular recording of neonatal rat cardiomyocytes by low-voltage three-dimensional (3D) nanoroded electroporation. By integrating the advantages of nanodevice and microdevice, 3D nanoroded microdevice is developed to achieve the high-throughput large-scale synchronous intracellular and extracellular electrophysiological study. By applying low-voltage electroporation, intracellular and extracellular signals can be synchronously acquired from intracellular access and extracellular coupling, respectively. Recorded synchronized signals contain both typical EAPs and IAPs, which have good synchronicity in spatiotemporal dimensions at each recording site. Moreover, correlation between both signals is further bridged in experimental and simulated way. This intracellular electrophysiological platform presents unique advantages over the conventional system to achieve the synchronized intracellular and extracellular electrophysiological study at membrane voltage level.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mingyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tian Hang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
7
|
Xu D, Mo J, Xie X, Hu N. In-Cell Nanoelectronics: Opening the Door to Intracellular Electrophysiology. NANO-MICRO LETTERS 2021; 13:127. [PMID: 34138366 PMCID: PMC8124030 DOI: 10.1007/s40820-021-00655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 05/07/2023]
Abstract
Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research. Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings, but the signal attenuation limits these extracellular devices to record subthreshold activities. In recent decade, in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysiology. With the unique three-dimensional nanotopography and advanced penetration strategies, high-throughput and high-fidelity action potential like signal recordings is expected to be realized. This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces, penetration strategies, active/passive nanodevices, systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals. Further, the opportunities, challenges and broad prospects of in-cell nanoelectronics are prospected, expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
8
|
Acker CD, Yan P, Loew LM. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:3-10. [PMID: 31474387 PMCID: PMC7048644 DOI: 10.1016/j.pbiomolbio.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The first workshop on Novel Optics-based approaches for Cardiac Electrophysiology (NOtiCE) was held in Florence Italy in 2018. Here, we learned how optical approaches have shaped our basic understanding of cardiac electrophysiology and how new technologies and approaches are being developed and validated to advance the field. Several technologies are being developed that may one day allow for new clinical approaches for diagnosing cardiac disorders and possibly intervening to treat human patients. In this review, we discuss several technologies and approaches to optical voltage imaging with voltage-sensitive dyes. We highlight the development and application of fluorinated and long wavelength voltage-sensitive dyes. These optical voltage sensors have now been applied and well validated in several different assays from cultured human stem cell-derived cardiomyocytes to whole hearts in-vivo. Imaging concepts such as dual wavelength ratiometric techniques, which are crucial to maximizing the information from optical sensors by increasing the useful signal and eliminating noise and artifacts, are presented. Finally, novel voltage sensors including photoacoustic voltage-sensitive dyes, their current capabilities and potential advantages, are introduced.
Collapse
Affiliation(s)
- Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
9
|
Zoccoler M, de Oliveira PX. METROID: an automated method for robust quantification of subcellular fluorescence events at low SNR. BMC Bioinformatics 2020; 21:332. [PMID: 32709217 PMCID: PMC7379836 DOI: 10.1186/s12859-020-03661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. As an example, voltage sensitive dyes (VSD) have been used to measure membrane potentials. Yet, even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP). This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Signal processing techniques like blind source separation (BSS) are designed to separate a multichannel mixture of signals into uncorrelated or independent sources, whose potential to separate ROI signal from noise has been poorly explored. Our aims are to develop a method capable of retrieving subcellular events with minimal a priori information from noisy cell fluorescence images and to provide it as a computational tool to be readily employed by the scientific community. Results In this paper, we have developed METROID (Morphological Extraction of Transmembrane potential from Regions Of Interest Device), a new computational tool to filter fluorescence signals from multiple ROIs, whose code and graphical interface are freely available. In this tool, we developed a new ROI definition procedure to automatically generate similar-area ROIs that follow cell shape. In addition, simulations and real data analysis were performed to recover AP and electroporation signals contaminated by noise by means of four types of BSS: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT). All these strategies allowed for signal extraction at low SNR (− 10 dB) without apparent signal distortion. Conclusions We demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments. We provide this novel biomedical application with a graphical user interface at 10.6084/m9.figshare.11344046.v1, and its code and datasets are available in GitHub at https://github.com/zoccoler/metroid.
Collapse
Affiliation(s)
- Marcelo Zoccoler
- Department of Biomedical Engineering (DEB), School of Electrical and Computer Engineering, University of Campinas, 400, Albert Einstein Avenue, Campinas, SP, 13083-852, Brazil.
| | - Pedro X de Oliveira
- Department of Biomedical Engineering (DEB), School of Electrical and Computer Engineering, University of Campinas, 400, Albert Einstein Avenue, Campinas, SP, 13083-852, Brazil.,Center for Biomedical Engineering (CEB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
10
|
O'Shea C, Pavlovic D, Rajpoot K, Winter J. Examination of the Effects of Conduction Slowing on the Upstroke of Optically Recorded Action Potentials. Front Physiol 2019; 10:1295. [PMID: 31681008 PMCID: PMC6798176 DOI: 10.3389/fphys.2019.01295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/26/2019] [Indexed: 01/27/2023] Open
Abstract
Introduction The upstroke of optical action potentials (APs) recorded from intact hearts are generally recognized to be slower than those recorded with microelectrodes. This is thought to reflect spatial signal averaging within the volume of tissue that makes up the optical signal. However, to date, there has been no direct experimental study on the relationship between conduction velocity (CV) and optical AP upstroke morphology in the intact heart. Notably, it is known that sodium channel block and gap junction inhibition, which both slow CV, exert differential effects on the upstroke velocity of microelectrode-recorded APs. Whether such differences are evident in optical APs is not known. The present study sought to determine the relationship between tissue CV and optical AP upstroke velocity in intact mouse hearts. Materials and Methods Isolated, perfused mouse hearts were stained with the potentiometric dye Rh-237. Fluorescent signals were recorded from across the anterior surface of the left and right ventricles during constant pacing. Maximum rate of change in fluorescence (dF/dtmax) and tissue CV were assessed in control conditions, during an acute period of low-flow ischemia, and following perfusion of flecainide (1–3 μmol/L), a sodium channel blocker, or carbenoxolone (10–50 μmol/L), a gap junction inhibitor. Results During epicardial pacing, an anisotropic pattern was observed in both activation and dF/dtmax maps, with more rapid optical AP upstroke velocities orientated along the fastest conduction paths (and vice versa). Low-flow ischemia resulted in a time-dependent slowing of ventricular CV, which was accompanied by a concomitant reduction in optical AP upstroke velocity. All values returned to baseline on tissue reperfusion. Both flecainide and carbenoxolone were associated with a concentration-dependent reduction in CV and decrease in optical AP upstroke velocity, despite distinct mechanisms of action. Similar responses to carbenoxolone were observed for low- (156 μm pixel with) and high- (20 μm pixel width) magnification recordings. Comparison of data from all interventions revealed a linear relationship between CV and upstroke dF/dt. Conclusion In intact mouse hearts, slowing of optical AP upstroke velocity is directly proportional to the change in CV associated with low-flow ischemia, sodium channel block, and gap junction inhibition.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,EPSRC Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Fernández-Morales JC, Hua W, Yao Y, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in cardiomyocytes derived from human induced pluripotent stem cells. Cell Calcium 2018; 78:1-14. [PMID: 30579812 DOI: 10.1016/j.ceca.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
AIMS The effects of acute (100 s) hypoxia and/or acidosis on Ca2+ signaling parameters of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are explored here for the first time. METHODS AND RESULTS 1) hiPSC-CMs express two cell populations: rapidly-inactivating ICa myocytes (τi<40 ms, in 4-5 day cultures) and slowly-inactivating ICa (τi ≥ 40 ms, in 6-8 day cultures). 2) Hypoxia suppressed ICa by 10-20% in rapidly- and 40-55% in slowly-inactivating ICa cells. 3) Isoproterenol enhanced ICa in hiPSC-CMs, but either enhanced or did not alter the hypoxic suppression. 4) Hypoxia had no differential suppressive effects in the two cell-types when Ba2+ was the charge carrier through the calcium channels, implicating Ca2+-dependent inactivation in O2 sensing. 5) Acidosis suppressed ICa by ∼35% and ∼25% in rapidly and slowly inactivating ICa cells, respectively. 6) Hypoxia and acidosis suppressive effects on Ca-transients depended on whether global or RyR2-microdomain were measured: with acidosis suppression was ∼25% in global and ∼37% in RyR2 Ca2+-microdomains in either cell type, whereas with hypoxia suppression was ∼20% and ∼25% respectively in global and RyR2-microdomaine in rapidly and ∼35% and ∼45% respectively in global and RyR2-microdomaine in slowly-inactivating cells. CONCLUSIONS Variability in ICa inactivation kinetics rather than cellular ancestry seems to underlie the action potential morphology differences generally attributed to mixed atrial and ventricular cell populations in hiPSC-CMs cultures. The differential hypoxic regulation of Ca2+-signaling in the two-cell types arises from differential Ca2+-dependent inactivation of the Ca2+-channel caused by proximity of Ca2+-release stores to the Ca2+ channels.
Collapse
Affiliation(s)
| | - Wei Hua
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Yuyu Yao
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology,Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
12
|
Warren M, Sciuto KJ, Taylor TG, Garg V, Torres NS, Shibayama J, Spitzer KW, Zaitsev AV. Blockade of CaMKII depresses conduction preferentially in the right ventricular outflow tract and promotes ischemic ventricular fibrillation in the rabbit heart. Am J Physiol Heart Circ Physiol 2017; 312:H752-H767. [PMID: 28130334 DOI: 10.1152/ajpheart.00347.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 11/22/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 μM) and its inactive analog KN92 (2.75 μM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 μM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 μM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 μM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.
Collapse
Affiliation(s)
- Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Katie J Sciuto
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Tyson G Taylor
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Vivek Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
13
|
Bedut S, Seminatore-Nole C, Lamamy V, Caignard S, Boutin JA, Nosjean O, Stephan JP, Coge F. High-throughput drug profiling with voltage- and calcium-sensitive fluorescent probes in human iPSC-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2016; 311:H44-53. [DOI: 10.1152/ajpheart.00793.2015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 11/22/2022]
Abstract
Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety.
Collapse
Affiliation(s)
- Stephane Bedut
- Laboratoire SERVIER de Chemogénétique, Institut du Cerveau et de la Moelle, Hôpital de la Salpétrière, Paris, France
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Christine Seminatore-Nole
- Laboratoire SERVIER de Chemogénétique, Institut du Cerveau et de la Moelle, Hôpital de la Salpétrière, Paris, France
| | - Veronique Lamamy
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Sarah Caignard
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A. Boutin
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean-Philippe Stephan
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Francis Coge
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| |
Collapse
|
14
|
Den Hartogh SC, Passier R. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity. Stem Cells 2015; 34:13-26. [DOI: 10.1002/stem.2196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sabine C. Den Hartogh
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
- Department of Applied Stem cell Technologies. MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente, P.O.Box 217; Enschede The Netherlands
| |
Collapse
|
15
|
Mačianskienė R, Martišienė I, Navalinskas A, Vosyliūtė R, Treinys R, Vaidelytė B, Benetis R, Jurevičius J. Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings. PLoS One 2015; 10:e0123050. [PMID: 25881157 PMCID: PMC4400155 DOI: 10.1371/journal.pone.0123050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Because of the optical features of heart tissue, optical and electrical action potentials are only moderately associated, especially when near-infrared dyes are used in optical mapping (OM) studies. Objective By simultaneously recording transmural electrical action potentials (APs) and optical action potentials (OAPs), we aimed to evaluate the contributions of both electrical and optical influences to the shape of the OAP upstroke. Methods and Results A standard glass microelectrode and OM, using an near-infrared fluorescent dye (di-4-ANBDQBS), were used to simultaneously record transmural APs and OAPs in a Langendorff-perfused rabbit heart during atrial, endocardial, and epicardial pacing. The actual profile of the transmural AP upstroke across the LV wall, together with the OAP upstroke, allowed for calculations of the probing-depth constant (k ~2.1 mm, n = 24) of the fluorescence measurements. In addition, the transmural AP recordings aided the quantitative evaluation of the influences of depth-weighted and lateral-scattering components on the OAP upstroke. These components correspond to the components of the propagating electrical wave that are transmural and parallel to the epicardium. The calculated mean values for the depth-weighted and lateral-scattering components, whose sum comprises the OAP upstroke, were (in ms) 10.18 ± 0.62 and 0.0 ± 0.56 for atrial stimulation, 9.37 ± 1.12 and 3.01 ± 1.30 for endocardial stimulation, and 6.09 ± 0.79 and 8.16 ± 0.98 for epicardial stimulation; (n = 8 for each). For this dye, 90% of the collected fluorescence originated up to 4.83 ± 0.18 mm (n = 24) from the epicardium. Conclusions The co-registration of OM and transmural microelectrode APs enabled the probing depth of fluorescence measurements to be calculated and the OAP upstroke to be divided into two components (depth-weighted and lateral-scattering), and it also allowed the relative strengths of their effects on the shape of the OAP upstroke to be evaluated.
Collapse
Affiliation(s)
- Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Irma Martišienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Navalinskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Vosyliūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Birutė Vaidelytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Benetis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
Loew LM. Design and Use of Organic Voltage Sensitive Dyes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:27-53. [PMID: 26238048 DOI: 10.1007/978-3-319-17641-3_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chemistry and the physics of voltage sensitive dyes (VSDs) should be understood and appreciated as a prerequisite for their optimal application to problems in neuroscience cardiology. This chapter provides a basic understanding of the properties of the large variety of available organic VSDs. The mechanisms by which the dyes respond to voltage guides the best set up of the optics for recording or imaging electrophysiological activity. The physical and chemical properties of the dyes can be tuned to optimize delivery to and staining of the cells in different experimental preparations. The aim of this chapter is to arm the experimentalists who use the dyes with enough information and data to be able to intelligently choose the best dye for their specific requirements.
Collapse
Affiliation(s)
- Leslie M Loew
- Department of Cell Biology, R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, 06030-6406, USA,
| |
Collapse
|
17
|
Pfeiffer ER, Wright AT, Edwards AG, Stowe JC, McNall K, Tan J, Niesman I, Patel HH, Roth DM, Omens JH, McCulloch AD. Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 2014; 76:265-74. [PMID: 25257915 DOI: 10.1016/j.yjmcc.2014.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 09/13/2014] [Indexed: 12/23/2022]
Abstract
Mechanical stretch of cardiac muscle modulates action potential propagation velocity, causing potentially arrhythmogenic conduction slowing. The mechanisms by which stretch alters cardiac conduction remain unknown, but previous studies suggest that stretch can affect the conformation of caveolae in myocytes and other cell types. We tested the hypothesis that slowing of action potential conduction due to cardiac myocyte stretch is dependent on caveolae. Cardiac action potential propagation velocities, measured by optical mapping in isolated mouse hearts and in micropatterned mouse cardiomyocyte cultures, decreased reversibly with volume loading or stretch, respectively (by 19±5% and 26±4%). Stretch-dependent conduction slowing was not altered by stretch-activated channel blockade with gadolinium or by GsMTx-4 peptide, but was inhibited when caveolae were disrupted via genetic deletion of caveolin-3 (Cav3 KO) or membrane cholesterol depletion by methyl-β-cyclodextrin. In wild-type mouse hearts, stretch coincided with recruitment of caveolae to the sarcolemma, as observed by electron microscopy. In myocytes from wild-type but not Cav3 KO mice, stretch significantly increased cell membrane capacitance (by 98±64%), electrical time constant (by 285±149%), and lipid recruitment to the bilayer (by 84±39%). Recruitment of caveolae to the sarcolemma during physiologic cardiomyocyte stretch slows ventricular action potential propagation by increasing cell membrane capacitance.
Collapse
Affiliation(s)
- E R Pfeiffer
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - A T Wright
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - A G Edwards
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - J C Stowe
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - K McNall
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - J Tan
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - I Niesman
- Department of Anesthesiology, VA San Diego Healthcare System, and University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-9125, USA
| | - H H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, and University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-9125, USA
| | - D M Roth
- Department of Anesthesiology, VA San Diego Healthcare System, and University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-9125, USA
| | - J H Omens
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613, USA
| | - A D McCulloch
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613, USA.
| |
Collapse
|
18
|
Lopez-Izquierdo A, Warren M, Riedel M, Cho S, Lai S, Lux RL, Spitzer KW, Benjamin IJ, Tristani-Firouzi M, Jou CJ. A near-infrared fluorescent voltage-sensitive dye allows for moderate-throughput electrophysiological analyses of human induced pluripotent stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2014; 307:H1370-7. [PMID: 25172899 DOI: 10.1152/ajpheart.00344.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM)-based assays are emerging as a promising tool for the in vitro preclinical screening of QT interval-prolonging side effects of drugs in development. A major impediment to the widespread use of human iPSC-CM assays is the low throughput of the currently available electrophysiological tools. To test the precision and applicability of the near-infrared fluorescent voltage-sensitive dye 1-(4-sulfanatobutyl)-4-{β[2-(di-n-butylamino)-6-naphthyl]butadienyl}quinolinium betaine (di-4-ANBDQBS) for moderate-throughput electrophysiological analyses, we compared simultaneous transmembrane voltage and optical action potential (AP) recordings in human iPSC-CM loaded with di-4-ANBDQBS. Optical AP recordings tracked transmembrane voltage with high precision, generating nearly identical values for AP duration (AP durations at 10%, 50%, and 90% repolarization). Human iPSC-CMs tolerated repeated laser exposure, with stable optical AP parameters recorded over a 30-min study period. Optical AP recordings appropriately tracked changes in repolarization induced by pharmacological manipulation. Finally, di-4-ANBDQBS allowed for moderate-throughput analyses, increasing throughput >10-fold over the traditional patch-clamp technique. We conclude that the voltage-sensitive dye di-4-ANBDQBS allows for high-precision optical AP measurements that markedly increase the throughput for electrophysiological characterization of human iPSC-CMs.
Collapse
Affiliation(s)
- Angelica Lopez-Izquierdo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael Riedel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Scott Cho
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Robert L Lux
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah; Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Chuanchau J Jou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah; Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
19
|
Leyton-Mange J, Mills R, Macri V, Jang M, Butte F, Ellinor P, Milan D. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor. Stem Cell Reports 2014; 2:163-70. [PMID: 24527390 PMCID: PMC3923221 DOI: 10.1016/j.stemcr.2014.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023] Open
Abstract
In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. Genetic introduction of a fluorescent voltage sensor into hESC-derived cardiomyocytes High-throughput electrophysiological analysis of hESC-derived cardiomyocytes Demonstration of potential of a fluorescent voltage reporter in drug screening assays
Collapse
Affiliation(s)
- Jordan S. Leyton-Mange
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Robert W. Mills
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Vincenzo S. Macri
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Min Young Jang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Faraz N. Butte
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - David J. Milan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Corresponding author
| |
Collapse
|
20
|
Abstract
RATIONALE Fibroblast growth factor (FGF) homologous factors (FHFs; FGF11-14) are intracellular modulators of voltage-gated Na+ channels, but their cellular distribution in cardiomyocytes indicated that they performed other functions. OBJECTIVE We aimed to uncover novel roles for FHFs in cardiomyocytes, starting with a proteomic approach to identify novel interacting proteins. METHODS AND RESULTS Affinity purification of FGF13 from rodent ventricular lysates followed by mass spectroscopy revealed an interaction with junctophilin-2, a protein that organizes the close apposition of the L-type Ca2+ channel CaV1.2 and the ryanodine receptor 2 in the dyad. Immunocytochemical analysis revealed that overall T-tubule structure and localization of ryanodine receptor 2 were unaffected by FGF13 knockdown in adult ventricular cardiomyocytes but localization of CaV1.2 was affected. FGF13 knockdown decreased CaV1.2 current density and reduced the amount of CaV1.2 at the surface as a result of aberrant localization of the channels. CaV1.2 current density and channel localization were rescued by expression of an shRNA-insensitive FGF13, indicating a specific role for FGF13. Consistent with these newly discovered effects on CaV1.2, we demonstrated that FGF13 also regulated Ca(2+)-induced Ca2+ release, indicated by a smaller Ca2+ transient after FGF13 knockdown. Furthermore, FGF13 knockdown caused a profound decrease in the cardiac action potential half-width. CONCLUSIONS This study demonstrates that FHFs not only are potent modulators of voltage-gated Na+ channels but also affect Ca2+ channels and their function. We predict that FHF loss-of-function mutations would adversely affect currents through both Na+ and Ca2+ channels, suggesting that FHFs may be arrhythmogenic loci, leading to arrhythmias through a novel, dual-ion channel mechanism.
Collapse
Affiliation(s)
- Jessica A Hennessey
- Department of Medicine/Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
21
|
Shibayama J, Taylor TG, Venable PW, Rhodes NL, Gil RB, Warren M, Wende AR, Abel ED, Cox J, Spitzer KW, Zaitsev AV. Metabolic determinants of electrical failure in ex-vivo canine model of cardiac arrest: evidence for the protective role of inorganic pyrophosphate. PLoS One 2013; 8:e57821. [PMID: 23520482 PMCID: PMC3592894 DOI: 10.1371/journal.pone.0057821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/26/2013] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Deterioration of ventricular fibrillation (VF) into asystole or severe bradycardia (electrical failure) heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown. OBJECTIVE To determine metabolic factors of early electrical failure in an ex-vivo canine model of cardiac arrest (VF+global ischemia). METHODS AND RESULTS Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys), while 5/9 hearts maintained VF for at least 19.7 min (late-asys). As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05). Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi) than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ) during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05). CONCLUSIONS High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.
Collapse
Affiliation(s)
- Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Tyson G. Taylor
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Paul W. Venable
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Nathaniel L. Rhodes
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan B. Gil
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Adam R. Wende
- School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - E. Dale Abel
- School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - James Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Kenneth W. Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Alexey V. Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kanaporis G, Martišienė I, Jurevičius J, Vosyliūtė R, Navalinskas A, Treinys R, Matiukas A, Pertsov AM. Optical mapping at increased illumination intensities. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:96007-1. [PMID: 23085908 PMCID: PMC3602814 DOI: 10.1117/1.jbo.17.9.096007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 05/25/2023]
Abstract
Voltage-sensitive fluorescent dyes have become a major tool in cardiac and neuro-electrophysiology. Achieving high signal-to-noise ratios requires increased illumination intensities, which may cause photobleaching and phototoxicity. The optimal range of illumination intensities varies for different dyes and must be evaluated individually. We evaluate two dyes: di-4-ANBDQBS (excitation 660 nm) and di-4-ANEPPS (excitation 532 nm) in the guinea pig heart. The light intensity varies from 0.1 to 5 mW/mm2, with the upper limit at 5 to 10 times above values reported in the literature. The duration of illumination was 60 s, which in guinea pigs corresponds to 300 beats at a normal heart rate. Within the identified duration and intensity range, neither dye shows significant photobleaching or detectable phototoxic effects. However, light absorption at higher intensities causes noticeable tissue heating, which affects the electrophysiological parameters. The most pronounced effect is a shortening of the action potential duration, which, in the case of 532-nm excitation, can reach ∼30%. At 660-nm excitation, the effect is ∼10%. These findings may have important implications for the design of optical mapping protocols in biomedical applications.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Irma Martišienė
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Jonas Jurevičius
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Rūta Vosyliūtė
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Antanas Navalinskas
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Rimantas Treinys
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
| | - Arvydas Matiukas
- SUNY Upstate Medical University, Department of Pharmacology, 750 East Adams Street, Syracuse, New York 13210
| | - Arkady M. Pertsov
- Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukilėlių pr, Kaunas 50161, Lithuania
- SUNY Upstate Medical University, Department of Pharmacology, 750 East Adams Street, Syracuse, New York 13210
| |
Collapse
|
23
|
Abstract
Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well-documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here, we review technological and scientific developments during the past several years and look toward the future. First, we explore key components of a modern optical mapping set-up, focusing on: (1) new camera technologies; (2) powerful light-emitting-diodes (from ultraviolet to red) for illumination; (3) improved optical filter technology; (4) new synthetic and optogenetic fluorescent probes; (5) optical mapping with motion and contraction; (6) new multiparametric optical mapping techniques; and (7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria, and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances.
Collapse
Affiliation(s)
- Todd J Herron
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA
| | | | | |
Collapse
|
24
|
Stein W, Städele C, Andras P. Single-sweep voltage-sensitive dye imaging of interacting identified neurons. J Neurosci Methods 2010; 194:224-34. [PMID: 20969892 DOI: 10.1016/j.jneumeth.2010.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/24/2022]
Abstract
The simultaneous recording of many individual neurons is fundamental to understanding the integral functionality of neural systems. Imaging with voltage-sensitive dyes (VSDs) is a key approach to achieve this goal and a promising technique to supplement electrophysiological recordings. However, the lack of connectivity maps between imaged neurons and the requirement of averaging over repeated trials impede functional interpretations. Here we demonstrate fast, high resolution and single-sweep VSD imaging of identified and synaptically interacting neurons. We show for the first time the optical recording of individual action potentials and mutual inhibitory synaptic input of two key players in the well-characterized pyloric central pattern generator in the crab stomatogastric ganglion (STG). We also demonstrate the presence of individual synaptic potentials from other identified circuit neurons. We argue that imaging of neural networks with identifiable neurons with well-known connectivity, like in the STG, is crucial for the understanding of emergence of network functionality.
Collapse
Affiliation(s)
- Wolfgang Stein
- Institute of Neurobiology, Ulm University, D-89069 Ulm, Germany
| | | | | |
Collapse
|