1
|
Wearing OH, Chesler NC, Colebank MJ, Hacker TA, Lorenz JN, Simpson JA, West CR. Guidelines for assessing ventricular pressure-volume relationships in rodents. Am J Physiol Heart Circ Physiol 2025; 328:H120-H140. [PMID: 39625460 DOI: 10.1152/ajpheart.00434.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Ventricular catheterization with a pressure-volume (PV) catheter is the gold-standard method for assessing in vivo cardiac function in animal studies, providing valuable "load-independent" indices of systolic and diastolic heart performance. PV studies are commonly performed to elucidate mechanistic insights into cardiovascular disease using surgical and genetically engineered rat and mouse models, but there is considerable heterogeneity in how these studies are performed. Wide variation in protocol design, volume calibration, anesthesia, manipulation of cardiac loading conditions, how load-independent indices of cardiac function are derived, as well as in data analysis and reporting is constraining reliability and reproducibility in the field. The purpose of this manuscript is to combine our collective expertise in performing open- and closed-chest left and right ventricle PV studies in rodents to provide consensus guidelines on how to perform, analyze, and interpret these studies using either conductance or admittance PV catheters. We first review recent methodological reporting in rodent PV studies in this journal and discuss important details required to improve reproducibility within and across PV studies. We then recommend steps to obtain high-quality PV data, from volume calibration to choice of anesthetic agent and acquiring load-independent indices of both systolic and diastolic function. We also consider between- and within-animal variation and recommend how to perform data analysis and visualization. We hope that this consensus paper guides those performing PV studies in rodents and helps align the field with best practices in surgical/analytical methodologies and reporting, facilitating better reliability and reproducibility in the PV field.
Collapse
Affiliation(s)
- Oliver H Wearing
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, California, United States
| | - Mitchel J Colebank
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - John N Lorenz
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, Ohio, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Christopher R West
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Xu H, Chen X, Luo S, Jiang J, Pan X, He Y, Deng B, Liu S, Wan R, Lin L, Tan Q, Chen X, Yao Y, He B, An Y, Li J. Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis. Redox Biol 2024; 79:103471. [PMID: 39740362 DOI: 10.1016/j.redox.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.
Collapse
Affiliation(s)
- Honglin Xu
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shangfei Luo
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jintao Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianmei Pan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yu He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Silin Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rentao Wan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liwen Lin
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiaorui Tan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoting Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Youfen Yao
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bin He
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yajuan An
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Fukuma N, Tokiwa H, Numata G, Ueda K, Liu PY, Tajima M, Otsu Y, Kariya T, Hiroi Y, Liao JK, Komuro I, Takimoto E. Endothelial oestrogen-myocardial cyclic guanosine monophosphate axis critically determines angiogenesis and cardiac performance during pressure overload. Cardiovasc Res 2024; 120:1884-1897. [PMID: 39259833 PMCID: PMC11630045 DOI: 10.1093/cvr/cvae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/11/2024] [Accepted: 06/22/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS Oestrogen exerts beneficial cardiovascular effects by binding to specific receptors on various cells to activate nuclear and non-nuclear actions. Oestrogen receptor α (ERα) non-nuclear signalling confers protection against heart failure remodelling, involving myocardial cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase G (PKG) activation; however, its tissue-specific role remains elusive. Herein, we examine the cell type-specific role of ERα non-nuclear signalling in oestrogen-conferred protection against heart failure. METHODS AND RESULTS We first assessed the tissue-specific impacts of ERα on the cardiac benefits derived from oestrogen, utilizing endothelial ERα deletion (ERαf/f/Tie2Cre+) and myocyte ERα deletion (ERαf/f/αMHCCre+) female mice. Female mice were ovariectomized and the effect of estradiol (E2) was assessed in hearts exposed to 3 weeks of pressure overload [transverse aortic constriction (TAC)]. E2 failed to improve cardiac function in ERαf/f/Tie2Cre+ TAC hearts but provided benefits in ERαf/f/αMHCCre+ TAC hearts, indicating that endothelial ERα is essential. We next assessed the role of non-nuclear signalling in endothelial cells (ECs), employing animals with endothelial-specific inactivation of ERα non-nuclear signalling (ERαKI/KI/Tie2Cre+). Female ovariectomized mice were supplemented with E2 and subjected to 3-week TAC. ERαKI/KI/Tie2Cre+TAC hearts revealed exacerbated cardiac dysfunction and reduced myocardial PKG activity as compared to littermate TAC hearts, which were associated with attenuated myocardial induction of vascular endothelial growth factor (VEGF) and angiogenesis as assessed by CD31-stained capillary density. This phenotype of ERαKI/KI/Tie2Cre+was rescued by myocardial PKG activation from chronic treatment with a soluble guanylate cyclase (sGC) stimulator. We performed co-culture experiments to determine endothelial-cardiomyocyte interactions. VEGF induction by E2 in cardiac myocytes required a co-existence of intact endothelial ERα signalling in a nitric oxide synthase-dependent manner. On the other hand, VEGF was induced in myocytes directly with an sGC stimulator in the absence of ECs. CONCLUSION An endothelial oestrogen-myocardial cGMP axis stimulates angiogenic response and improves cardiac performance during pressure overload.
Collapse
Affiliation(s)
- Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Pang-Yen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Miyu Tajima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yu Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Hiroi
- Department of Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - James K Liao
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Kass DA. Assessing and interpreting diastolic function in animal models of heart disease. J Mol Cell Cardiol 2024; 197:1-4. [PMID: 39368650 PMCID: PMC11588505 DOI: 10.1016/j.yjmcc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Increasing interest in identifying the causes of and treatments for heart failure with preserved ejection fraction and cardiac fibrosis has spawned a focus on measures of cardiac diastolic function. The methods, their underlying principals and mechanics, and caveats to their measurement were largely worked out decades ago, but some of this seems a bit forgotten as scientists working in the field now have backgrounds more in molecular and cellular biology. This perspective was spawned by seeing the growing number of studies where diastolic function analysis is a key parameter used to justify a given pre-clinical model or to show the consequences of a particular genetic or pharmacological therapy. The goals are to discuss what comprises and influences diastolic function, how it is measured, what the parameters mean and what their limitations are, and what comprises evidence for pathophysiologically meaningful diastolic dysfunction.
Collapse
Affiliation(s)
- David A Kass
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Su S, Chen Z, Ke Q, Kocher O, Krieger M, Kang PM. Nanoparticle-Directed Antioxidant Therapy Can Ameliorate Disease Progression in a Novel, Diet-Inducible Model of Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2024; 44:2476-2488. [PMID: 39417229 PMCID: PMC11602363 DOI: 10.1161/atvbaha.124.321030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the pathogenesis of coronary artery disease. In cardiovascular research using murine models, the generation and maintenance of models with robust coronary arterial atherosclerosis has been challenging. METHODS We characterized a new mouse model in which the last 3 amino acids of the carboxyl terminus of the HDL (high-density lipoprotein) receptor (SR-B1 [scavenger receptor, class B, type 1]) were deleted in a low-density lipoprotein receptor knockout (LDLR-/-) mouse model (SR-B1ΔCT/LDLR-/-) fed an atherogenic diet. We also tested the therapeutic effects of an oxidative stress-targeted nanoparticle in atherogenic diet-fed SR-B1ΔCT/LDLR-/- mice. RESULTS The SR-B1ΔCT/LDLR-/- mice fed an atherogenic diet had occlusive coronary artery atherosclerosis, impaired cardiac function, and a dramatically lower survival rate, compared with LDLR-/- mice fed the same diet. As SR-B1ΔCT/LDLR-/- mice do not exhibit female infertility or low pup yield, they are far easier and less costly to use than the previously described SR-B1-based models of coronary artery disease. We found that treatment with the targeted nanoparticles improved the cardiac functions and corrected hematologic abnormalities caused by the atherogenic diet in SR-B1ΔCT/LDLR-/- mice but did not alter the distinctive plasma lipid levels. CONCLUSIONS The SR-B1ΔCT/LDLR-/- mice developed diet-inducible, fatal atherosclerotic coronary artery disease, which could be ameliorated by targeted nanoparticle therapy. Our study provides new tools for the development of cardiovascular therapies.
Collapse
Affiliation(s)
- Shi Su
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhifen Chen
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Lema DA, Jakobsson G, Daoud A, Elias D, Talor MV, Rattik S, Grönberg C, Kalinoski H, Jaensson Gyllenbäck E, Wang N, Liberg D, Schiopu A, Čiháková D. IL1RAP Blockade With a Monoclonal Antibody Reduces Cardiac Inflammation and Preserves Heart Function in Viral and Autoimmune Myocarditis. Circ Heart Fail 2024; 17:e011729. [PMID: 39513273 PMCID: PMC11643131 DOI: 10.1161/circheartfailure.124.011729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Currently, there are no therapies targeting specific pathogenic pathways in myocarditis. IL (interleukin)-1 blockade has shown promise in preclinical studies and case reports. We hypothesized that blockade of IL1RAP (IL-1 receptor accessory protein), a shared subunit of the IL-1, IL-33, and IL-36 receptors, could be more efficient than IL-1 blockade alone. METHODS We induced coxsackievirus B3 (CVB3)-mediated or experimental autoimmune myocarditis (EAM) in BALB/c mice, followed by treatment with an Fc (fragment crystallizable)-modified mIgG2a mouse anti-mouse IL1RAP monoclonal antibody (mCAN10). Myocarditis severity and immune infiltration were assessed by histology and flow cytometry. Cardiac function was measured by echocardiography. We used spatial transcriptomics (Visium 10× Genomics) to compare the gene expression landscape in the hearts of mCAN10-treated versus control mice. RESULTS IL1RAP blockade reduced CVB3 and EAM severity. In EAM, the treatment prevented deterioration of cardiac function, measured on day 42 post-disease induction (left ventricular ejection fraction: 56.5% versus 51.0% in isotype controls [P=0.002] and versus 51.4% in mice treated with anti-IL-1β antibodies alone [P=0.003]; n=10-11 mice per group). In the CVB3 model, mCAN10 did not impede viral clearance from the heart and significantly lowered the numbers of CD4+ (cluster of differentiation 4) T cells (P=0.025), inflammatory Ly6C+CCR2+ (lymphocyte antigen 6 complex, locus C/C-C motif chemokine receptor 2) monocytes (P=0.038), neutrophils (P=0.001) and eosinophils (P<0.001) infiltrating the myocardium. The spatial transcriptomic analysis revealed reduced canonical IL-1 signaling and chemokine expression in cardiac immune foci in CVB3-infected mice treated with IL1RAP blockade. CONCLUSIONS Blocking IL1RAP reduces acute CVB3 myocarditis and EAM severity and preserves cardiac function in EAM. We conclude that IL1RAP blockade is a potential therapeutic strategy in viral and autoimmune myocarditis.
Collapse
Affiliation(s)
- Diego A. Lema
- Department of Pathology, School of Medicine (D.A.L., D.E., M.V.T., D.Č.), Johns Hopkins University, Baltimore, MD
| | - Gabriel Jakobsson
- Department of Translational Medicine, Lund University, Malmö, Sweden (G.J., A.S.)
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health (A.D., H.K., D.Č.), Johns Hopkins University, Baltimore, MD
| | - David Elias
- Department of Pathology, School of Medicine (D.A.L., D.E., M.V.T., D.Č.), Johns Hopkins University, Baltimore, MD
| | - Monica V. Talor
- Department of Pathology, School of Medicine (D.A.L., D.E., M.V.T., D.Č.), Johns Hopkins University, Baltimore, MD
| | - Sara Rattik
- Cantargia AB, Lund, Sweden (S.R., C.G., E.J.G., D.L.)
| | | | - Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health (A.D., H.K., D.Č.), Johns Hopkins University, Baltimore, MD
| | | | - Nadan Wang
- Department of Cardiology, School of Medicine (N.W.), Johns Hopkins University, Baltimore, MD
| | - David Liberg
- Cantargia AB, Lund, Sweden (S.R., C.G., E.J.G., D.L.)
| | - Alexandru Schiopu
- Department of Translational Medicine, Lund University, Malmö, Sweden (G.J., A.S.)
- Internal Medicine Clinic, Skåne University Hospital, Lund, Sweden (A.S.)
- “Nicolae Simionescu” Institute of Cellular Biology and Pathology, Bucharest, Romania (A.S.)
| | - Daniela Čiháková
- Department of Pathology, School of Medicine (D.A.L., D.E., M.V.T., D.Č.), Johns Hopkins University, Baltimore, MD
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health (A.D., H.K., D.Č.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
7
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD + activates renal metabolism and protects from chronic kidney disease in a model of Alport syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.580911. [PMID: 38464264 PMCID: PMC10925224 DOI: 10.1101/2024.02.26.580911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor alpha signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in proximal tubule cells. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. In summary, we identify a nephroprotective mechanism of NAD + supplementation in CKD, and we demonstrate that the proximal tubule cells substantially contribute to this benefit.
Collapse
|
8
|
Verra C, Paulmann MK, Wegener J, Marzani E, Ferreira Alves G, Collino M, Coldewey SM, Thiemermann C. Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure. Front Immunol 2024; 15:1447901. [PMID: 39559354 PMCID: PMC11570271 DOI: 10.3389/fimmu.2024.1447901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kerstin Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Pavlek LR, Heyob KM, Jacob NR, Korada S, Khuhro Z, Khan AQ, Shaffer TA, Conroy S, Velten M, Rogers LK. Perinatal Inflammation Results in Sex-Dependent Cardiac Dysfunction. J Cardiovasc Dev Dis 2024; 11:346. [PMID: 39590189 PMCID: PMC11594672 DOI: 10.3390/jcdd11110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND An increased incidence of adult-onset heart failure is seen in individuals born preterm or affected by fetal growth restriction. An adverse maternal environment is associated with both preterm birth and poor fetal development, and postnatal oxygen therapy is frequently required to sustain oxygenation of vulnerable tissues due to lung immaturity. METHODS Studies using our murine model of maternal inflammation (LPS) and neonatal hyperoxia exposure (O2) observed pathological changes in cardiac structural proteins and functional analysis with sex dependent differences in pathologies at 10 months of age. Using our previous model, the current investigations tested the hypothesis that early-life perturbations in cardiac structural proteins might predict adult cardiac dysfunction in a sex dependent manner. RESULTS LPS-exposed females had lower αMHC mRNA and protein at P0 and P7 relative to the saline-exposed females, but these changes did not persist. Male mice exposed to LPS/O2 had normal expression of αMHC mRNA and protein compared to saline/room air controls though P56, when they dramatically increased. Correlative changes were observed in left ventricular function with a more severe phenotype in the males indicating sex-based differences in cardiac adaptation. CONCLUSIONS Our findings demonstrate that early changes in contractile proteins temporally correlate with deficits in cardiac contractility, with a more severe phenotype in males. Our data suggest that similar findings in humans may predict risk for disease in growth-restricted infants.
Collapse
Affiliation(s)
- Leeann R. Pavlek
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43215, USA
| | - Kathryn M. Heyob
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
| | - Nitya R. Jacob
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
| | - Saichidroopi Korada
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
| | - Zahra Khuhro
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
| | - Terri A. Shaffer
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
| | - Sara Conroy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
- Biostatistics Resource at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43215, USA
| | - Markus Velten
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Lynette K. Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA; (K.M.H.); (T.A.S.); (S.C.); (L.K.R.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43215, USA
| |
Collapse
|
10
|
Luisetto R, Scarpa M, Villano G, Martini A, Quarta S, Ruvoletto M, Guerra P, Scarpa M, Chinellato M, Biasiolo A, Campigotto E, Basso D, Fassan M, Pontisso P. 1-Piperidine Propionic Acid Protects from Septic Shock Through Protease Receptor 2 Inhibition. Int J Mol Sci 2024; 25:11662. [PMID: 39519216 PMCID: PMC11547144 DOI: 10.3390/ijms252111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Sepsis is a complex disorder caused by a dysregulated host response to infection, with high levels of morbidity and mortality. Treatment aimed to modulate immune response and maintain vascular function is still one of the major clinical challenges. This study was designed to test the effect of the small molecule 1-Piperidine Propionic Acid (1-PPA) as molecular targeted agent to block protease-activated receptor 2 (PAR2), one of the major modulators of inflammatory response in LPS-induced experimental endotoxemia. In the THP-1 cell line, LPS-induced cytokine expression was inhibited by 1-PPA in a dose-dependent manner. In LPS-injected mice, treatment with 1-PPA was effective in reducing mortality and sepsis-related symptoms and improved cardiac function parameters. After 6 h from LPS injection, a significant decrease in IL-6, IL-1β, and IL-10 was observed in the lung tissue of 1-PPA-treated mice, compared to controls. In these mice, a significant decrease in vasoactive molecules, especially kininogen-1, was also observed, mainly in the liver. Histopathological analysis confirmed typical features of sepsis in different organs and these findings were markedly reduced in mice treated with 1-PPA. These data demonstrate the effectiveness of 1-PPA in protecting the whole organism from sepsis-induced damage.
Collapse
Affiliation(s)
- Roberto Luisetto
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (R.L.); (M.S.); (G.V.)
| | - Marco Scarpa
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (R.L.); (M.S.); (G.V.)
| | - Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (R.L.); (M.S.); (G.V.)
| | - Andrea Martini
- Department of Medicine, Azienda Ospedaliera-Università Padova, Via Giustiniani 2, 35128 Padova, Italy; (A.M.); (E.C.)
| | - Santina Quarta
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| | - Mariagrazia Ruvoletto
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| | - Pietro Guerra
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| | - Melania Scarpa
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padova, Italy;
| | - Monica Chinellato
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| | - Edoardo Campigotto
- Department of Medicine, Azienda Ospedaliera-Università Padova, Via Giustiniani 2, 35128 Padova, Italy; (A.M.); (E.C.)
| | - Daniela Basso
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| | - Matteo Fassan
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
- Veneto Institute of Oncology, IOV-IRCCS, Via Gattamelata, 64, 35128 Padova, Italy
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (S.Q.); (M.R.); (P.G.); (M.C.); (A.B.); (D.B.); (M.F.)
| |
Collapse
|
11
|
Ding Z, Liu X, Jiang H, Zhao J, Temme S, Bouvain P, Alter C, Rafii P, Scheller J, Flögel U, Zhu H, Ding Z. A refined TTC assay precisely detects cardiac injury and cellular viability in the infarcted mouse heart. Sci Rep 2024; 14:25214. [PMID: 39448689 PMCID: PMC11502796 DOI: 10.1038/s41598-024-76414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Histological analysis with 2,3,5-triphenyltetrazolium chloride (TTC) staining is the most frequently used tool to detect myocardial ischemia/reperfusion injury. However, its practicality is often challenged by poor image quality in gross histology, leading to an equivocal infarct-boundary delineation and potentially compromised measurement accuracy. Here, we introduce several crucial refinements in staining protocol and sample processing, which enable TTC images to be analyzed with light microscopy. The refined protocol involves a two-step TTC staining process (perfusion and immersion) and subsequent Zamboni fixation to differentiate myocardial viability and necrosis, and use of Coomassie brilliant blue to label area-at-risk. After the duo-staining steps were completed, the heart sample was embedded and sliced transversally by a cryostat into a series of thin sections (50 µm) for microscopic analysis. The refined TTC (redTTC) assay yielded remarkably high-quality images with striking color intensity and sharply defined boundaries, permitting unambiguous and reliable delineation of the infarct and area-at-risk. In the same animals, the redTTC assay showed good agreement with the in-vivo gold standard measurements (LGE and MEMRI). Meanwhile, redTTC imaging allows tracking of viable cardiomyocytes at cellular resolution, and with this enhanced capability, we convincingly demonstrated the pro-survival action of stem cells based-therapy. Therefore, the redTTC assay represents a significant technical advance that permits precise detection of the true extent of cardiac injury and cardiomyocyte viability. This approach is cost-effective and may be adapted for use in diverse applications, making it highly appealing to many laboratories performing ischemia/reperfusion injury experiments.
Collapse
Affiliation(s)
- Zheheng Ding
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Xueqing Liu
- Department of Cardiology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, West Xinmin Rd. 2, Danyang, 212300, China
| | - Hongyan Jiang
- Department of Cardiology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, West Xinmin Rd. 2, Danyang, 212300, China
| | - Jianfeng Zhao
- Department of Cardiology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, West Xinmin Rd. 2, Danyang, 212300, China
| | - Sebastian Temme
- Institute of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Pascal Bouvain
- Institute of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christina Alter
- Institute of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Institute of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Hongtao Zhu
- Department of Cardiology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, West Xinmin Rd. 2, Danyang, 212300, China.
| | - Zhaoping Ding
- Institute of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Ji DN, Jin SD, Jiang Y, Xu FY, Fan SW, Zhao YL, Liu XQ, Sun H, Cheng WZ, Zhang XY, Guan XX, Zhang BW, Du ZM, Wang Y, Wang N, Zhang R, Zhang MY, Xu CQ. CircNSD1 promotes cardiac fibrosis through targeting the miR-429-3p/SULF1/Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2024; 45:2092-2106. [PMID: 38760544 PMCID: PMC11420342 DOI: 10.1038/s41401-024-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-β1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/β-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.
Collapse
Affiliation(s)
- Dong-Ni Ji
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Sai-di Jin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Yuan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Fei-Yong Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Shu-Wei Fan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Lin Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Qi Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Hao Sun
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Wen-Zheng Cheng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yue Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Xiang Guan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhi-Min Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ning Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Rong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Ming-Yu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Chao-Qian Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
13
|
Blank HM, Hammer SE, Boatright L, Roberts C, Heyden KE, Nagarajan A, Tsuchiya M, Brun M, Johnson CD, Stover PJ, Sitcheran R, Kennedy BK, Adams LG, Kaeberlein M, Field MS, Threadgill DW, Andrews-Polymenis HL, Polymenis M. Late-life dietary folate restriction reduces biosynthesis without compromising healthspan in mice. Life Sci Alliance 2024; 7:e202402868. [PMID: 39043420 PMCID: PMC11266815 DOI: 10.26508/lsa.202402868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Staci E Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Laurel Boatright
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Courtney Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marcel Brun
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Charles D Johnson
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Patrick J Stover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, TX, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Optispan, Inc., Seattle, WA, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - David W Threadgill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Helene L Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Köhler D, Leiss V, Beichert L, Killinger S, Grothe D, Kushwaha R, Schröter A, Roslan A, Eggstein C, Focken J, Granja T, Devanathan V, Schittek B, Lukowski R, Weigelin B, Rosenberger P, Nürnberg B, Beer-Hammer S. Targeting Gα i2 in neutrophils protects from myocardial ischemia reperfusion injury. Basic Res Cardiol 2024; 119:717-732. [PMID: 38811421 PMCID: PMC11461587 DOI: 10.1007/s00395-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.
Collapse
Affiliation(s)
- David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Lukas Beichert
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Simon Killinger
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Daniela Grothe
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Ragini Kushwaha
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Agnes Schröter
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Anna Roslan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Jule Focken
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Tiago Granja
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Vasudharani Devanathan
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Multiscale Immunoimaging, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
15
|
Buncha V, Fopiano KA, Lang L, Ilatovskaya DV, Verin A, Bagi Z. Phosphodiesterase 9A inhibition improves aging-related increase in pulmonary vascular resistance in mice. GeroScience 2024; 46:5191-5202. [PMID: 38980632 PMCID: PMC11335997 DOI: 10.1007/s11357-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
As individuals age, there is a gradual decline in cardiopulmonary function, often accompanied by cardiac pump dysfunction leading to increased pulmonary vascular resistance (PVR). Our study aims to investigate the changes in cardiac and pulmonary vascular function associated with aging. Additionally, we aim to explore the impact of phosphodiesterase 9A (PDE9A) inhibition, which has shown promise in treating cardiometabolic diseases, on addressing left ventricle (LV) dysfunction and elevated PVR in aging individuals. Young (3 months old) and aged (32 months old) male C57BL/6 mice were used. Aged mice were treated with the selective PDE9A inhibitor PF04447943 (1 mg/kg/day) through intraperitoneal injections for 10 days. LV function was evaluated using cardiac ultrasound, and PVR was assessed in isolated, ventilated lungs perfused under a constant flow condition. Additionally, changes in PVR were measured in response to perfusion of the endothelium-dependent agonist bradykinin or to nitric oxide (NO) donor sodium nitroprusside (SNP). PDE9A protein expression was measured by Western blots. Our results demonstrate the development of LV diastolic dysfunction and increased PVR in aged mice. The aged mice exhibited diminished decreases in PVR in response to both bradykinin and SNP compared to the young mice. Moreover, the lungs of aged mice showed an increase in PDE9A protein expression. Treatment of aged mice with PF04447943 had no significant effect on LV systolic or diastolic function. However, PF04447943 treatment normalized PVR and SNP-induced responses, though it did not affect the bradykinin response. These data demonstrate a development of LV diastolic dysfunction and increase in PVR in aged mice. We propose that inhibitors of PDE9A could represent a novel therapeutic approach to specifically prevent aging-related pulmonary dysfunction.
Collapse
Affiliation(s)
- Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Alexander Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Silva J, Azevedo T, Ginja M, Oliveira PA, Duarte JA, Faustino-Rocha AI. Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination. J Imaging 2024; 10:219. [PMID: 39330439 PMCID: PMC11433567 DOI: 10.3390/jimaging10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Echocardiography is a reliable and non-invasive method for assessing cardiac structure and function in both clinical and experimental settings, offering valuable insights into disease progression and treatment efficacy. The successful application of echocardiography in murine models of disease has enabled the evaluation of disease severity, drug testing, and continuous monitoring of cardiac function in these animals. However, there is insufficient standardization of echocardiographic measurements for smaller animals. This article aims to address this gap by providing a guide and practical tips for the appropriate acquisition and analysis of echocardiographic parameters in adult rats, which may also be applicable in other small rodents used for scientific purposes, like mice. With advancements in technology, such as ultrahigh-frequency ultrasonic transducers, echocardiography has become a highly sophisticated imaging modality, offering high temporal and spatial resolution imaging, thereby allowing for real-time monitoring of cardiac function throughout the lifespan of small animals. Moreover, it allows the assessment of cardiac complications associated with aging, cancer, diabetes, and obesity, as well as the monitoring of cardiotoxicity induced by therapeutic interventions in preclinical models, providing important information for translational research. Finally, this paper discusses the future directions of cardiac preclinical ultrasound, highlighting the need for continued standardization to advance research and improve clinical outcomes to facilitate early disease detection and the translation of findings into clinical practice.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mário Ginja
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory (1H-TOXRUN), University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7004-516 Évora, Portugal
| |
Collapse
|
17
|
d'Escamard V, Kadian-Dodov D, Ma L, Lu S, King A, Xu Y, Peng S, V Gangula B, Zhou Y, Thomas A, Michelis KC, Bander E, Bouchareb R, Georges A, Nomura-Kitabayashi A, Wiener RJ, Costa KD, Chepurko E, Chepurko V, Fava M, Barwari T, Anyanwu A, Filsoufi F, Florman S, Bouatia-Naji N, Schmidt LE, Mayr M, Katz MG, Hao K, Weiser-Evans MCM, Björkegren JLM, Olin JW, Kovacic JC. Integrative gene regulatory network analysis discloses key driver genes of fibromuscular dysplasia. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1098-1122. [PMID: 39271816 DOI: 10.1038/s44161-024-00533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
Fibromuscular dysplasia (FMD) is a poorly understood disease affecting 3-5% of adult females. The pathobiology of FMD involves arterial lesions of stenosis, dissection, tortuosity, dilation and aneurysm, which can lead to hypertension, stroke, myocardial infarction and even death. Currently, there are no animal models for FMD and few insights as to its pathobiology. In this study, by integrating DNA genotype and RNA sequence data from primary fibroblasts of 83 patients with FMD and 71 matched healthy controls, we inferred 18 gene regulatory co-expression networks, four of which were found to act together as an FMD-associated supernetwork in the arterial wall. After in vivo perturbation of this co-expression supernetwork by selective knockout of a top network key driver, mice developed arterial dilation, a hallmark of FMD. Molecular studies indicated that this supernetwork governs multiple aspects of vascular cell physiology and functionality, including collagen/matrix production. These studies illuminate the complex causal mechanisms of FMD and suggest a potential therapeutic avenue for this challenging disease.
Collapse
Affiliation(s)
- Valentina d'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lijiang Ma
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annette King
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shouneng Peng
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhargravi V Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Zhou
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison Thomas
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine C Michelis
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emir Bander
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rihab Bouchareb
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrien Georges
- INSERM, UMR970 Paris Cardiovascular Research Center (PARCC), Paris, France
- Paris-Descartes University, Sorbonne Paris Cité, Paris, France
| | - Aya Nomura-Kitabayashi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marika Fava
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Temo Barwari
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Anelechi Anyanwu
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farzan Filsoufi
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander Florman
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nabila Bouatia-Naji
- INSERM, UMR970 Paris Cardiovascular Research Center (PARCC), Paris, France
- Paris-Descartes University, Sorbonne Paris Cité, Paris, France
| | - Lukas E Schmidt
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Manuel Mayr
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Michael G Katz
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, Anschutz Medical Campus, Aurora, CO, USA
| | - Johan L M Björkegren
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
Zwijnen AW, Watzema L, Ridwan Y, van Der Pluijm I, Smal I, Essers J. Self-adaptive deep learning-based segmentation for universal and functional clinical and preclinical CT image analysis. Comput Biol Med 2024; 179:108853. [PMID: 39013341 DOI: 10.1016/j.compbiomed.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Methods to monitor cardiac functioning non-invasively can accelerate preclinical and clinical research into novel treatment options for heart failure. However, manual image analysis of cardiac substructures is resource-intensive and error-prone. While automated methods exist for clinical CT images, translating these to preclinical μCT data is challenging. We employed deep learning to automate the extraction of quantitative data from both CT and μCT images. METHODS We collected a public dataset of cardiac CT images of human patients, as well as acquired μCT images of wild-type and accelerated aging mice. The left ventricle, myocardium, and right ventricle were manually segmented in the μCT training set. After template-based heart detection, two separate segmentation neural networks were trained using the nnU-Net framework. RESULTS The mean Dice score of the CT segmentation results (0.925 ± 0.019, n = 40) was superior to those achieved by state-of-the-art algorithms. Automated and manual segmentations of the μCT training set were nearly identical. The estimated median Dice score (0.940) of the test set results was comparable to existing methods. The automated volume metrics were similar to manual expert observations. In aging mice, ejection fractions had significantly decreased, and myocardial volume increased by age 24 weeks. CONCLUSIONS With further optimization, automated data extraction expands the application of (μ)CT imaging, while reducing subjectivity and workload. The proposed method efficiently measures the left and right ventricular ejection fraction and myocardial mass. With uniform translation between image types, cardiac functioning in diastolic and systolic phases can be monitored in both animals and humans.
Collapse
Affiliation(s)
- Anne-Wietje Zwijnen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Yanto Ridwan
- AMIE Core Facility, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ingrid van Der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
19
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
20
|
Shafaati T, Gopal K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13193. [PMID: 39206323 PMCID: PMC11349536 DOI: 10.3389/jpps.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Stecker IR, Bdaiwi AS, Niedbalski PJ, Chatterjee N, Hossain MM, Cleveland ZI. Impact of undersampling on preclinical lung T 2* mapping with 3D radial UTE MRI at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107741. [PMID: 39089222 PMCID: PMC11357708 DOI: 10.1016/j.jmr.2024.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
Lung diseases are almost invariably heterogeneous and progressive, making it imperative to capture temporally and spatially explicit information to understand the disease initiation and progression. Imaging the lung with MRI-particularly in the preclinical setting-has historically been challenging because of relatively low lung tissue density, rapid cardiac and respiratory motion, and rapid transverse (T2*) relaxation. These limitations can largely be mitigated using ultrashort-echo-time (UTE) sequences, which are intrinsically robust to motion and avoid significant T2* decay. A significant disadvantage of common radial UTE sequences is that they require inefficient, center-out k-space sampling, resulting in long acquisition times relative to conventional Cartesian sequences. Therefore, pulmonary images acquired with radial UTE are often undersampled to reduce acquisition time. However, undersampling reduces image SNR, introduces image artifacts, and degrades true image resolution. The level of undersampling is further increased if offline gating techniques like retrospective gating are employed, because only a portion (∼40-50%) of the data is used in the final image reconstruction. Here, we explore the impact of undersampling on SNR and T2* mapping in mouse lung imaging using simulation and in-vivo data. Increased scatter in both metrics was noticeable at around 50% sampling. Parenchymal apparent SNR only decreased slightly (average decrease ∼ 1.4) with as little as 10% sampling. Apparent T2* remained similar across undersampling levels, but it became significantly increased (p < 0.05) below 80% sampling. These trends suggest that undersampling can generate quantifiable, but moderate changes in the apparent value of T2*. Moreover, these approaches to assess the impact of undersampling are straightforward to implement and can readily be expanded to assess the quantitative impact of other MR acquisition and reconstruction parameters.
Collapse
Affiliation(s)
- Ian R Stecker
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Abdullah S Bdaiwi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Peter J Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Neelakshi Chatterjee
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Md M Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Zackary I Cleveland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
22
|
Gonzalez K, Merlin AC, Roye E, Ju B, Lee Y, Chicco AJ, Chung E. Voluntary Wheel Running Reduces Cardiometabolic Risks in Female Offspring Exposed to Lifelong High-Fat, High-Sucrose Diet. Med Sci Sports Exerc 2024; 56:1378-1389. [PMID: 38595204 PMCID: PMC11250925 DOI: 10.1249/mss.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet. METHODS Dams were fed either an HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 wk before pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 wk of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed ( n = 10), LFLS/Ex ( n = 5), HFHS/Sed ( n = 6), HFHS/Ex ( n = 5). Cardiac function was assessed at 25 wk, with tissue collection at 26 wk for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA. RESULTS Although maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding postweaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring. CONCLUSIONS Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.
Collapse
Affiliation(s)
- Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Andrea Chiñas Merlin
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
- Biomedical Engineering, Tecnologico de Monterrey, Campus Monterrey, MEXICO
| | - Erin Roye
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Beomsoo Ju
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
23
|
Luque GC, Picchio ML, Daou B, Lasa-Fernandez H, Criado-Gonzalez M, Querejeta R, Filgueiras-Ramas D, Prato M, Mecerreyes D, Ruiz-Cabello J, Alegret N. Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34467-34479. [PMID: 38936818 DOI: 10.1021/acsami.4c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.
Collapse
Affiliation(s)
- Gisela C Luque
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Matías L Picchio
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Bahaa Daou
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICET, Güemes 3450, Santa Fe 3000, Argentina
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, San Sebastian 20014, Spain
| | - Haizpea Lasa-Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Ramon Querejeta
- Servicio de Cardiología, Hospital Universitario Donostia, San Sebastián, Gipuzkoa 20014, España
| | - David Filgueiras-Ramas
- Centro Nacional de Investigaciones Cardiovasculares; CIBER de Enfermedades Cardiovasculares, Hospital Clínico Universitario San Carlos, Madrid 28029, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain
- NMR and Imaging in Biomedicine Group, Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, University Complutense Madrid, Madrid 28040, Spain
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, San Sebastian 20014, Spain
| |
Collapse
|
24
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
25
|
Guruji V, Zhou YQ, Tang M, Mirzaei Z, Ding Y, Elbatarny M, Latifi N, Simmons CA. Identification of congenital aortic valve malformations in juvenile natriuretic peptide receptor 2-deficient mice using high-frequency ultrasound. Am J Physiol Heart Circ Physiol 2024; 327:H56-H66. [PMID: 38758128 PMCID: PMC11381018 DOI: 10.1152/ajpheart.00769.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Mouse models of congenital aortic valve malformations are useful for studying disease pathobiology, but most models have incomplete penetrance [e.g., ∼2 to 77% prevalence of bicuspid aortic valves (BAVs) across multiple models]. For longitudinal studies of pathologies associated with BAVs and other congenital valve malformations, which manifest over months in mice, it is operationally inefficient, economically burdensome, and ethically challenging to enroll large numbers of mice in studies without first identifying those with valvular abnormalities. To address this need, we established and validated a novel in vivo high-frequency (30 MHz) ultrasound imaging protocol capable of detecting aortic valvular malformations in juvenile mice. Fifty natriuretic peptide receptor 2 heterozygous mice on a low-density lipoprotein receptor-deficient background (Npr2+/-;Ldlr-/-; 32 males and 18 females) were imaged at 4 and 8 wk of age. Fourteen percent of the Npr2+/-;Ldlr-/- mice exhibited features associated with aortic valve malformations, including 1) abnormal transaortic flow patterns on color Doppler (recirculation and regurgitation), 2) peak systolic flow velocities distal to the aortic valves reaching or surpassing ∼1,250 mm/s by pulsed-wave Doppler, and 3) putative fusion of cusps along commissures and abnormal movement elucidated by two-dimensional (2-D) imaging with ultrahigh temporal resolution. Valves with these features were confirmed by ex vivo gross anatomy and histological visualization to have thickened cusps, partial fusions, or Sievers type-0 bicuspid valves. This ultrasound imaging protocol will enable efficient, cost effective, and humane implementation of studies of congenital aortic valvular abnormalities and associated pathologies in a wide range of mouse models.NEW & NOTEWORTHY We developed a high-frequency ultrasound imaging protocol for diagnosing congenital aortic valve structural abnormalities in 4-wk-old mice. Our protocol defines specific criteria to distinguish mice with abnormal aortic valves from those with normal tricuspid valves using color Doppler, pulsed-wave Doppler, and two-dimensional (2-D) imaging with ultrahigh temporal resolution. This approach enables early identification of valvular abnormalities for efficient and ethical experimental design of longitudinal studies of congenital valve diseases and associated pathologies in mice.
Collapse
Affiliation(s)
- Vrushali Guruji
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Mingyi Tang
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Mirzaei
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Ding
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Malak Elbatarny
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neda Latifi
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Engineering, University of South Florida, Tampa, Florida, United States
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Masjoan Juncos JX, Nadeem F, Shakil S, El-Husari M, Zafar I, Louch WE, Halade GV, Zaky A, Ahmad A, Ahmad S. Myocardial SERCA2 Protects Against Cardiac Damage and Dysfunction Caused by Inhaled Bromine. J Pharmacol Exp Ther 2024; 390:146-158. [PMID: 38772719 PMCID: PMC11192580 DOI: 10.1124/jpet.123.002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Myocardial sarcoendoplasmic reticulum calcium ATPase 2 (SERCA2) activity is critical for heart function. We have demonstrated that inhaled halogen (chlorine or bromine) gases inactivate SERCA2, impair calcium homeostasis, increase proteolysis, and damage the myocardium ultimately leading to cardiac dysfunction. To further elucidate the mechanistic role of SERCA2 in halogen-induced myocardial damage, we used bromine-exposed cardiac-specific SERCA2 knockout (KO) mice [tamoxifen-administered SERCA2 (flox/flox) Tg (αMHC-MerCreMer) mice] and compared them to the oil-administered controls. We performed echocardiography and hemodynamic analysis to investigate cardiac function 24 hours after bromine (600 ppm for 30 minutes) exposure and measured cardiac injury markers in plasma and proteolytic activity in cardiac tissue and performed electron microscopy of the left ventricle (LV). Cardiac-specific SERCA2 knockout mice demonstrated enhanced toxicity to bromine. Bromine exposure increased ultrastructural damage, perturbed LV shape geometry, and demonstrated acutely increased phosphorylation of phospholamban in the KO mice. Bromine-exposed KO mice revealed significantly enhanced mean arterial pressure and sphericity index and decreased LV end diastolic diameter and LV end systolic pressure when compared with the bromine-exposed control FF mice. Strain analysis showed loss of synchronicity, evidenced by an irregular endocardial shape in systole and irregular vector orientation of contractile motion across different segments of the LV in KO mice, both at baseline and after bromine exposure. These studies underscore the critical role of myocardial SERCA2 in preserving cardiac ultrastructure and function during toxic halogen gas exposures. SIGNIFICANCE STATEMENT: Due to their increased industrial production and transportation, halogens such as chlorine and bromine pose an enhanced risk of exposure to the public. Our studies have demonstrated that inhalation of these halogens leads to the inactivation of cardiopulmonary SERCA2 and results in calcium overload. Using cardiac-specific SERCA2 KO mice, these studies further validated the role of SERCA2 in bromine-induced myocardial injury. These studies highlight the increased susceptibility of individuals with pathological loss of cardiac SERCA2 to the effects of bromine.
Collapse
Affiliation(s)
- Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Fahad Nadeem
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Malik El-Husari
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - William E Louch
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Ganesh V Halade
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| |
Collapse
|
27
|
Pan Y, Wang C, Zhou W, Shi Y, Meng X, Muhammad Y, Hammer RD, Jia B, Zheng H, Li DP, Liu Z, Hildebrandt G, Kang X. Inhibiting AGTR1 reduces AML burden and protects the heart from cardiotoxicity in mouse models. Sci Transl Med 2024; 16:eadl5931. [PMID: 38896605 PMCID: PMC11250918 DOI: 10.1126/scitranslmed.adl5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Amyloid Precursor Protein Secretases/metabolism
- Cardiotoxicity/metabolism
- Cardiotoxicity/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Heart/drug effects
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - WenXuan Zhou
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yao Shi
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - XiaDuo Meng
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yasir Muhammad
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Bei Jia
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong Zheng
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Gerhard Hildebrandt
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
28
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
29
|
Hatami M, Özbek A, Deán‐Ben XL, Gutierrez J, Schill A, Razansky D, Larin KV. Noninvasive Tracking of Embryonic Cardiac Dynamics and Development with Volumetric Optoacoustic Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400089. [PMID: 38526147 PMCID: PMC11165471 DOI: 10.1002/advs.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Noninvasive monitoring of cardiac development can potentially prevent cardiac anomalies in adulthood. Mouse models provide unique opportunities to study cardiac development and disease in mammals. However, high-resolution noninvasive functional analyses of murine embryonic cardiac models are challenging because of the small size and fast volumetric motion of the embryonic heart, which is deeply embedded inside the uterus. In this study, a real time volumetric optoacoustic spectroscopy (VOS) platform for whole-heart visualization with high spatial (100 µm) and temporal (10 ms) resolutions is developed. Embryonic heart development on gestational days (GDs) 14.5-17.5 and quantify cardiac dynamics using time-lapse-4D image data of the heart is followed. Additionally, spectroscopic recordings enable the quantification of the blood oxygenation status in heart chambers in a label-free and noninvasive manner. This technology introduces new possibilities for high-resolution quantification of embryonic heart function at different gestational stages in mammalian models, offering an invaluable noninvasive method for developmental biology.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Ali Özbek
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Xosé Luís Deán‐Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Jessica Gutierrez
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Alexander Schill
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Kirill V. Larin
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
- Department of Integrative PhysiologyBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
30
|
Pizzo E, Cervantes DO, Ketkar H, Ripa V, Nassal DM, Buck B, Parambath SP, Di Stefano V, Singh K, Thompson CI, Mohler PJ, Hund TJ, Jacobson JT, Jain S, Rota M. Phosphorylation of cardiac sodium channel at Ser571 anticipates manifestations of the aging myopathy. Am J Physiol Heart Circ Physiol 2024; 326:H1424-H1445. [PMID: 38639742 DOI: 10.1152/ajpheart.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Daniel O Cervantes
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Benjamin Buck
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
31
|
Wakeley ME, Denning NL, Jiang J, De Paepe ME, Chung CS, Wang P, Ayala A. Herpes virus entry mediator signaling blockade produces mortality in neonatal sepsis through induced cardiac dysfunction. Front Immunol 2024; 15:1365174. [PMID: 38774873 PMCID: PMC11106455 DOI: 10.3389/fimmu.2024.1365174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jihong Jiang
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
32
|
Heather LC, Gopal K, Srnic N, Ussher JR. Redefining Diabetic Cardiomyopathy: Perturbations in Substrate Metabolism at the Heart of Its Pathology. Diabetes 2024; 73:659-670. [PMID: 38387045 PMCID: PMC11043056 DOI: 10.2337/dbi23-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease represents the leading cause of death in people with diabetes, most notably from macrovascular diseases such as myocardial infarction or heart failure. Diabetes also increases the risk of a specific form of cardiomyopathy, referred to as diabetic cardiomyopathy (DbCM), originally defined as ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. Herein, we provide an overview on the key mediators of DbCM, with an emphasis on the role for perturbations in cardiac substrate metabolism. We discuss key mechanisms regulating metabolic dysfunction in DbCM, with additional focus on the role of metabolites as signaling molecules within the diabetic heart. Furthermore, we discuss the preclinical approaches to target these perturbations to alleviate DbCM. With several advancements in our understanding, we propose the following as a new definition for, or approach to classify, DbCM: "diastolic dysfunction in the presence of altered myocardial metabolism in a person with diabetes but absence of other known causes of cardiomyopathy and/or hypertension." However, we recognize that no definition can fully explain the complexity of why some individuals with DbCM exhibit diastolic dysfunction, whereas others develop systolic dysfunction. Due to DbCM sharing pathological features with heart failure with preserved ejection fraction (HFpEF), the latter of which is more prevalent in the population with diabetes, it is imperative to determine whether effective management of DbCM decreases HFpEF prevalence. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lisa C. Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nikola Srnic
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Li Y, Yan J, Sun H, Liang Y, Zhao Q, Yu S, Zhang Y. Ferroptosis inhibitor alleviates sorafenib-induced cardiotoxicity by attenuating KLF11-mediated FSP1-dependent ferroptosis. Int J Biol Sci 2024; 20:2622-2639. [PMID: 38725840 PMCID: PMC11077382 DOI: 10.7150/ijbs.86479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Sorafenib is a standard first-line drug for advanced hepatocellular carcinoma, but the serious cardiotoxic effects restrict its therapeutic applicability. Here, we show that iron-dependent ferroptosis plays a vital role in sorafenib-induced cardiotoxicity. Remarkably, our in vivo and in vitro experiments demonstrated that ferroptosis inhibitor application neutralized sorafenib-induced heart injury. By analyzing transcriptome profiles of adult human sorafenib-treated cardiomyocytes, we found that Krüppel-like transcription factor 11 (KLF11) expression significantly increased after sorafenib stimulation. Mechanistically, KLF11 promoted ferroptosis by suppressing transcription of ferroptosis suppressor protein 1 (FSP1), a seminal breakthrough due to its ferroptosis-repressing properties. Moreover, FSP1 knockdown showed equivalent results to glutathione peroxidase 4 (GPX4) knockdown, and FSP1 overexpression counteracted GPX4 inhibition-induced ferroptosis to a substantial extent. Cardiac-specific overexpression of FSP1 and silencing KLF11 by an adeno-associated virus serotype 9 markedly improved cardiac dysfunction in sorafenib-treated mice. In summary, FSP1-mediated ferroptosis is a crucial mechanism for sorafenib-provoked cardiotoxicity, and targeting ferroptosis may be a promising therapeutic strategy for alleviating sorafenib-induced cardiac damage.
Collapse
Affiliation(s)
- Yilan Li
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Jingru Yan
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yating Liang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Qianqian Zhao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
34
|
Qasim H, Rajaei M, Xu Y, Reyes-Alcaraz A, Abdelnasser HY, Stewart MD, Lahiri SK, Wehrens XHT, McConnell BK. AKAP12 Upregulation Associates With PDE8A to Accelerate Cardiac Dysfunction. Circ Res 2024; 134:1006-1022. [PMID: 38506047 DOI: 10.1161/circresaha.123.323655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND In heart failure, signaling downstream the β2-adrenergic receptor is critical. Sympathetic stimulation of β2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind β2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS cAMP accumulation in real time downstream of the β2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Ying Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Hala Y Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - M David Stewart
- Department of Biology and Biochemistry (M.D.S.), University of Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| |
Collapse
|
35
|
Thakore P, Clark JE, Aubdool AA, Thapa D, Starr A, Fraser PA, Farrell-Dillon K, Fernandes ES, McFadzean I, Brain SD. Transient Receptor Potential Canonical 5 (TRPC5): Regulation of Heart Rate and Protection against Pathological Cardiac Hypertrophy. Biomolecules 2024; 14:442. [PMID: 38672459 PMCID: PMC11047837 DOI: 10.3390/biom14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
TRPC5 is a non-selective cation channel that is expressed in cardiomyocytes, but there is a lack of knowledge of its (patho)physiological role in vivo. Here, we examine the role of TRPC5 on cardiac function under basal conditions and during cardiac hypertrophy. Cardiovascular parameters were assessed in wild-type (WT) and global TRPC5 knockout (KO) mice. Despite no difference in blood pressure or activity, heart rate was significantly reduced in TRPC5 KO mice. Echocardiography imaging revealed an increase in stroke volume, but cardiac contractility was unaffected. The reduced heart rate persisted in isolated TRPC5 KO hearts, suggesting changes in basal cardiac pacing. Heart rate was further investigated by evaluating the reflex change following drug-induced pressure changes. The reflex bradycardic response following phenylephrine was greater in TRPC5 KO mice but the tachycardic response to SNP was unchanged, indicating an enhancement in the parasympathetic control of the heart rate. Moreover, the reduction in heart rate to carbachol was greater in isolated TRPC5 KO hearts. To evaluate the role of TRPC5 in cardiac pathology, mice were subjected to abdominal aortic banding (AAB). An exaggerated cardiac hypertrophy response to AAB was observed in TRPC5 KO mice, with an increased expression of hypertrophy markers, fibrosis, reactive oxygen species, and angiogenesis. This study provides novel evidence for a direct effect of TRPC5 on cardiac function. We propose that (1) TRPC5 is required for maintaining heart rate by regulating basal cardiac pacing and in response to pressure lowering, and (2) TRPC5 protects against pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pratish Thakore
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - James E. Clark
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Aisah A. Aubdool
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Dibesh Thapa
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Anna Starr
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Paul A. Fraser
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Keith Farrell-Dillon
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Elizabeth S. Fernandes
- Programa de Pós-Graduação, em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80230-020, PR, Brazil;
| | - Ian McFadzean
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- School of Bioscience Education, Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK
| | - Susan D. Brain
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| |
Collapse
|
36
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
37
|
Pinckard KM, Félix-Soriano E, Hamilton S, Terentyeva R, Baer LA, Wright KR, Nassal D, Esteves JV, Abay E, Shettigar VK, Ziolo MT, Hund TJ, Wold LE, Terentyev D, Stanford KI. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol Metab 2024; 82:101914. [PMID: 38479548 PMCID: PMC10965826 DOI: 10.1016/j.molmet.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Drew Nassal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
38
|
Zoladz JA, Grandys M, Smeda M, Kij A, Kurpinska A, Kwiatkowski G, Karasinski J, Hendgen-Cotta U, Chlopicki S, Majerczak J. Myoglobin deficiency impairs maximal oxygen uptake and exercise performance: a lesson from Mb -/- mice. J Physiol 2024; 602:855-873. [PMID: 38376957 DOI: 10.1113/jp285067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001).V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1 kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairsV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance forV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.
Collapse
Affiliation(s)
- Jerzy A Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Janusz Karasinski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ulrike Hendgen-Cotta
- Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
39
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Brooks HL, de Castro Brás LE, Brunt KR, Sylvester MA, Parvatiyar MS, Sirish P, Bansal SS, Sule R, Eadie AL, Knepper MA, Fenton RA, Lindsey ML, DeLeon-Pennell KY, Gomes AV. Guidelines on antibody use in physiology research. Am J Physiol Renal Physiol 2024; 326:F511-F533. [PMID: 38234298 PMCID: PMC11208033 DOI: 10.1152/ajprenal.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Antibodies are one of the most used reagents in scientific laboratories and are critical components for a multitude of experiments in physiology research. Over the past decade, concerns about many biological methods, including those that use antibodies, have arisen as several laboratories were unable to reproduce the scientific data obtained in other laboratories. The lack of reproducibility could be largely attributed to inadequate reporting of detailed methods, no or limited verification by authors, and the production and use of unvalidated antibodies. The goal of this guideline article is to review best practices concerning commonly used techniques involving antibodies, including immunoblotting, immunohistochemistry, and flow cytometry. Awareness and integration of best practices will increase the rigor and reproducibility of these techniques and elevate the quality of physiology research.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | | | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Megan A Sylvester
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States
| | - Shyam S Bansal
- Department of Cellular and Molecular Physiology, Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Rasheed Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States
| | - Ashley L Eadie
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States
| |
Collapse
|
41
|
Stone CR, Harris DD, Broadwin M, Kanuparthy M, Sabe SA, Xu C, Feng J, Abid MR, Sellke FW. Crafting a Rigorous, Clinically Relevant Large Animal Model of Chronic Myocardial Ischemia: What Have We Learned in 20 Years? Methods Protoc 2024; 7:17. [PMID: 38392691 PMCID: PMC10891802 DOI: 10.3390/mps7010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation. It is the purpose of this paper to review our porcine model of chronic myocardial ischemia using ameroid constriction and the subsequent myriad of physiological and molecular-biological insights it has allowed our lab to attain and describe. We hope that, by depicting our methods and the insight they have yielded clearly and completely-drawing for this purpose on comprehensive videographic illustration-other research teams will be empowered to carry our work forward, drawing on our experience to refine their own investigations into the pathogenesis and eradication of cardiovascular disease.
Collapse
Affiliation(s)
- Christopher R. Stone
- Department of Cardiothoracic Surgery, The Warren Alpert School of Medicine at Brown University, Providence, RI 02903, USA; (D.D.H.); (M.B.); (M.K.); (S.A.S.); (C.X.); (J.F.); (M.R.A.); (F.W.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hall LG, Czeczor JK, Connor T, Botella J, De Jong KA, Renton MC, Genders AJ, Venardos K, Martin SD, Bond ST, Aston-Mourney K, Howlett KF, Campbell JA, Collier GR, Walder KR, McKenzie M, Ziemann M, McGee SL. Amyloid beta 42 alters cardiac metabolism and impairs cardiac function in male mice with obesity. Nat Commun 2024; 15:258. [PMID: 38225272 PMCID: PMC10789867 DOI: 10.1038/s41467-023-44520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aβ42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aβ42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aβ42. Increasing circulating Aβ42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aβ40 isoform does not have these same effects on the heart. Administration of an Aβ-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aβ-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aβ42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aβ42 inhibits mitochondrial complex I. These data reveal a role for systemic Aβ42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.
Collapse
Affiliation(s)
- Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Juliane K Czeczor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Becton Dickinson GmbH, Medical Affairs, 69126, Heidelberg, Germany
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Amanda J Genders
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences and Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Kylie Venardos
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Simon T Bond
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Ken R Walder
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Mark Ziemann
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
- Ambetex Pty Ltd, Geelong, Australia.
| |
Collapse
|
43
|
Blank HM, Hammer SE, Boatright L, Roberts C, Heyden KE, Nagarajan A, Tsuchiya M, Brun M, Johnson CD, Stover PJ, Sitcheran R, Kennedy BK, Adams LG, Kaeberlein M, Field MS, Threadgill DW, Andrews-Polymenis HL, Polymenis M. Late-life dietary folate restriction reduces biosynthetic processes without compromising healthspan in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575290. [PMID: 38260683 PMCID: PMC10802571 DOI: 10.1101/2024.01.12.575290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.
Collapse
Affiliation(s)
- Heidi M. Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Staci E. Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Laurel Boatright
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
| | - Courtney Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Katarina E. Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
| | - Marcel Brun
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, United States
| | - Charles D. Johnson
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, United States
| | - Patrick J. Stover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Institute for Advancing Health through Agriculture, Texas A&M University, College Station, United States
- Department of Nutrition, Texas A&M University, College Station, United States
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
| | - Brian K. Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore, Singapore
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, Texas, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
- Optispan, Inc., Seattle, United States
| | - Martha S. Field
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - David W. Threadgill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
- Department of Nutrition, Texas A&M University, College Station, United States
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, United States
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
- Institute for Advancing Health through Agriculture, Texas A&M University, College Station, United States
| |
Collapse
|
44
|
Siddiqui SH, Rossi NF. Acute Intake of Fructose Increases Arterial Pressure in Humans: A Meta-Analysis and Systematic Review. Nutrients 2024; 16:219. [PMID: 38257112 PMCID: PMC10818414 DOI: 10.3390/nu16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hypertension is a major cardiac risk factor. Higher blood pressures are becoming more prevalent due to changing dietary habits. Here, we evaluated the impact on blood pressure in human subjects after acutely ingesting fructose using meta-analysis. A total of 89 studies were collected from four different electronic databases from 1 January 2008 to 1 August 2023. Of these studies, 10 were selected that fulfilled all the criteria for this meta-analysis. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), and blood glucose level were analyzed using the Cohen's d analysis or standardized mean difference at a confidence interval (CI) of 95%. The SBP, DBP, and MAP showed medium effect size; HR and glucose level displayed small effect size. The standardized mean difference of normal diet groups and fructose diet groups showed a significant increase in SBP (p = 0.04, REM = 2.30), and DBP (p = 0.03, REM = 1.48) with heterogeneity of 57% and 62%, respectively. Acute fructose ingestion contributes to an increase in arterial pressure in humans. The different parameters of arterial pressure in humans correlated with each other. These findings support further rigorous investigation, retrospective of necessity, into the effect of chronic dietary of fructose in humans in order to better understand the impact on long term arterial pressure.
Collapse
Affiliation(s)
| | - Noreen F. Rossi
- Department of Physiology, Wayne State University, 540 E. Canfield Ave. Scott 5473, Detroit, MI 48201, USA;
| |
Collapse
|
45
|
Hanrahan J, Steeves KL, Locke DP, O'Brien TM, Maekawa AS, Amiri R, Macgowan CK, Baschat AA, Kingdom JC, Simpson AJ, Simpson MJ, Sled JG, Jobst KJ, Cahill LS. Maternal exposure to polyethylene micro- and nanoplastics impairs umbilical blood flow but not fetal growth in pregnant mice. Sci Rep 2024; 14:399. [PMID: 38172192 PMCID: PMC10764924 DOI: 10.1038/s41598-023-50781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
While microplastics have been recently detected in human blood and the placenta, their impact on human health is not well understood. Using a mouse model of environmental exposure during pregnancy, our group has previously reported that exposure to polystyrene micro- and nanoplastics throughout gestation results in fetal growth restriction. While polystyrene is environmentally relevant, polyethylene is the most widely produced plastic and amongst the most commonly detected microplastic in drinking water and human blood. In this study, we investigated the effect of maternal exposure to polyethylene micro- and nanoplastics on fetal growth and placental function. Healthy, pregnant CD-1 dams were divided into three groups: 106 ng/L of 740-4990 nm polyethylene with surfactant in drinking water (n = 12), surfactant alone in drinking water (n = 12) or regular filtered drinking water (n = 11). At embryonic day 17.5, high-frequency ultrasound was used to investigate the placental and fetal hemodynamic responses following exposure. While maternal exposure to polyethylene did not impact fetal growth, there was a significant effect on placental function with a 43% increase in umbilical artery blood flow in the polyethylene group compared to controls (p < 0.01). These results suggest polyethylene has the potential to cause adverse pregnancy outcomes through abnormal placental function.
Collapse
Affiliation(s)
- Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Drew P Locke
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Thomas M O'Brien
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Alexandre S Maekawa
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Roshanak Amiri
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ahmet A Baschat
- Department of Gynecology and Obstetrics, Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - John C Kingdom
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, M5G 1E2, Canada
- Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - John G Sled
- Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, M5G 1E2, Canada
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue, St. John's, NL, A1C 5S7, Canada.
- Discipline of Radiology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
46
|
Chen YC, Zheng G, Donner DG, Wright DK, Greenwood JP, Marwick TH, McMullen JR. Cardiovascular magnetic resonance imaging for sequential assessment of cardiac fibrosis in mice: technical advancements and reverse translation. Am J Physiol Heart Circ Physiol 2024; 326:H1-H24. [PMID: 37921664 PMCID: PMC11213480 DOI: 10.1152/ajpheart.00437.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging has become an essential technique for the assessment of cardiac function and morphology, and is now routinely used to monitor disease progression and intervention efficacy in the clinic. Cardiac fibrosis is a common characteristic of numerous cardiovascular diseases and often precedes cardiac dysfunction and heart failure. Hence, the detection of cardiac fibrosis is important for both early diagnosis and the provision of guidance for interventions/therapies. Experimental mouse models with genetically and/or surgically induced disease have been widely used to understand mechanisms underlying cardiac fibrosis and to assess new treatment strategies. Improving the appropriate applications of CMR to mouse studies of cardiac fibrosis has the potential to generate new knowledge, and more accurately examine the safety and efficacy of antifibrotic therapies. In this review, we provide 1) a brief overview of different types of cardiac fibrosis, 2) general background on magnetic resonance imaging (MRI), 3) a summary of different CMR techniques used in mice for the assessment of cardiac fibrosis including experimental and technical considerations (contrast agents and pulse sequences), and 4) provide an overview of mouse studies that have serially monitored cardiac fibrosis during disease progression and/or therapeutic interventions. Clinically established CMR protocols have advanced mouse CMR for the detection of cardiac fibrosis, and there is hope that discovery studies in mice will identify new antifibrotic therapies for patients, highlighting the value of both reverse translation and bench-to-bedside research.
Collapse
Affiliation(s)
- Yi Ching Chen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - John P Greenwood
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Department of Cardiology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
47
|
Young MS, Kelly JC, Anderson SR, Riffle LA, Spears SL, Kalen JD, Suess-Radford E, Gulani J. Subcutaneous Alfaxalone-XylazineBuprenorphine for Surgical Anesthesia and Echocardiographic Evaluation of Mice ( Mus musculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:49-56. [PMID: 38191146 PMCID: PMC10844737 DOI: 10.30802/aalas-jaalas-23-000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Alfaxalone is a commonly used injectable anesthetic in dogs and cats due to its minimal cardiovascular side effects. Data for its use in mice are limited and demonstrate strain- and sex-associated differences in dose-response relationships. We performed a dose-comparison study of alfaxalone-xylazine-buprenorphine (AXB) in Crl: CFW (SW) mice. Subcutaneous injection of 50 mg/kg alfaxalone-10 mg/kg xylazine-0.1 mg/kg buprenorphine HCl consistently achieved a surgical plane of anesthesia (loss of toe pinch) for 48.6 ± 4.7 and 60.8 ± 9.6 min in females and males, respectively. The same dose and route of AXB induced a surgical plane of anesthesia in C57Bl/6NCrl (females: 42.3 ± 11.2 min; males: 51.6 ± 12.3 min), NCr-Foxn1nu (females: 76.8 ± 32.5 min; males: 80.0 ± 1.2 min), and NOD. Cg-Prkdc SCID Il2rg tm1Wjl /SzJCr (females: 56.0 ± 37.2 min and males: 61.2 ± 10.2 min) mice. We found no significant difference in the duration of the surgical plane of anesthesia between males and females within the mouse strains Crl: CFW (SW), C57Bl/6NCrl, NCr-Foxn1nu, and NOD. Cg-PrkdcSCID Il2rgtm1Wjl /SzJCr. We next performed an echocardiography study (n = 5 per group) of Crl: CFW (SW) mice ( n = 5 per group) to compare subcutaneous AXB anesthesia with that produced by intraperitoneal injection of 100 mg/kg ketamine and 10 mg/kg xylazine (KX). AXB induced significantly less bradycardia (295.4 ± 29 bpm) than KX (185.8 ± 38.9 bpm) did, with no significant differences in cardiac output, ejection fraction, end-diastolic volume, end-systolic volume, or fractional shortening. These results suggest that subcutaneous administration of AXB is a viable alternative to KX for inducing a surgical plane of anesthesia in Crl: CFW (SW), C57Bl/6NCrl, NCr-Foxn1nu, and NOD. Cg-PrkdcSCID Il2rgtm1Wjl /SzJCr mice, regardless of sex. AXB may also be a better injectable anesthetic option as compared with KX for avoiding adverse cardiac effects in mice.
Collapse
Affiliation(s)
- Mina S Young
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | - Jackie C Kelly
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | - Staci R Anderson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | - Lisa A Riffle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | - Stella L Spears
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | - Joseph D Kalen
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | | | - Jatinder Gulani
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| |
Collapse
|
48
|
Bai W, Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y. Skin-inspired, sensory robots for electronic implants. RESEARCH SQUARE 2023:rs.3.rs-3665801. [PMID: 38196588 PMCID: PMC10775366 DOI: 10.21203/rs.3.rs-3665801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Wubin Bai
- University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | | | | | | | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Salvas JP, Leyba KA, Schepers LE, Paiyabhroma N, Goergen CJ, Sicard P. Neurovascular Hypoxia Trajectories Assessed by Photoacoustic Imaging in a Murine Model of Cardiac Arrest and Resuscitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1661-1670. [PMID: 37043326 DOI: 10.1109/tuffc.2023.3265800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cardiac arrest is a common cause of death annually mainly due to postcardiac arrest syndrome that leads to multiple organ global hypoxia and dysfunction after resuscitation. The ability to quantify vasculature changes and tissue oxygenation is crucial to adapt patient treatment in order to minimize major outcomes after resuscitation. For the first time, we applied high-resolution ultrasound associated with photoacoustic imaging (PAI) to track neurovascular oxygenation and cardiac function trajectories in a murine model of cardiac arrest and resuscitation. We report the preservation of brain oxygenation is greater compared to that in peripheral tissues during the arrest. Furthermore, distinct patterns of cerebral oxygen decay may relate to the support of vital brain functions. In addition, we followed trajectories of cerebral perfusion and cardiac function longitudinally after induced cardiac arrest and resuscitation. Volumetric cerebral oxygen saturation (sO2) decreased 24 h postarrest, but these levels rebounded at one week. However, systolic and diastolic cardiac dysfunction persisted throughout and correlated with cerebral hypoxia. Pathophysiologic biomarker trends, identified via cerebral PAI in preclinical models, could provide new insights into understanding the pathophysiology of cardiac arrest and resuscitation.
Collapse
|
50
|
Liu Z, Ulrich vonBargen R, Kendricks AL, Wheeler K, Leão AC, Sankaranarayanan K, Dean DA, Kane SS, Hossain E, Pollet J, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Localized cardiac small molecule trajectories and persistent chemical sequelae in experimental Chagas disease. Nat Commun 2023; 14:6769. [PMID: 37880260 PMCID: PMC10600178 DOI: 10.1038/s41467-023-42247-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Rebecca Ulrich vonBargen
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | | | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Ana Carolina Leão
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Danya A Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Shelley S Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jeroen Pollet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn M Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA.
| |
Collapse
|