1
|
Shooshtarian AK, O'Gallagher K, Shah AM, Zhang M. SERCA2a dysfunction in the pathophysiology of heart failure with preserved ejection fraction: a direct role is yet to be established. Heart Fail Rev 2025:10.1007/s10741-025-10487-1. [PMID: 39843817 DOI: 10.1007/s10741-025-10487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca2+ homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca2+-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses. This review examines the conflicting evidence present for changes in SERCA2a expression and activity in HFpEF, explores potential underlying mechanisms, and finally evaluates the drug and gene therapy trials targeting SERCA2a in heart failure. Recent positive results from trials involving widely used anti-diabetic agents such as sodium-glucose co-transporter protein 2 inhibitors (SGLT2i) and glucagon-like peptide-1 (GLP-1) agonists offer advancement in HFpEF management. The potential interplay between these agents and SERCA2a regulation presents a novel angle that could open new avenues for modulating diastolic function; however, the mechanistic research in this emerging field is limited. Overall, the direct role of SERCA2a dysfunction in HFpEF remains undetermined, highlighting the need for well-designed pre-clinical studies and robust clinical trials.
Collapse
Affiliation(s)
- Adam Kia Shooshtarian
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Kevin O'Gallagher
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Min Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
2
|
D’Amato A, Prosperi S, Severino P, Myftari V, Correale M, Perrone Filardi P, Badagliacca R, Fedele F, Vizza CD, Palazzuoli A. MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool. J Clin Med 2024; 13:7560. [PMID: 39768484 PMCID: PMC11728316 DOI: 10.3390/jcm13247560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome. In many maladaptive processes, the role of microRNAs (miRNAs) has been recently demonstrated. MiRNAs are small endogenous non-coding molecules of RNA involved in gene expression regulation, and they play a pivotal role in intercellular communication, being involved in different biological and pathophysiological processes. MiRNAs can modulate infarct area size, cardiomyocytes restoration, collagen deposition, and macrophage polarization. MiRNAs may be considered as specific biomarkers of hypertrophy and fibrosis. MiRNAs have been proposed as a therapeutical tool because their administration can contrast with myocardial pathophysiological remodeling leading to HF. Antimir and miRNA mimics are small oligonucleotides which may be administered in several manners and may be able to regulate the expression of specific and circulating miRNAs. Studies on animal models and on healthy humans demonstrate that these molecules are well tolerated and effective, opening the possibility of a therapeutic use of miRNAs in cases of HF. The application of miRNAs for diagnosis, prognostic stratification, and therapy fits in with the new concept of a personalized and tailored approach to HF.
Collapse
Affiliation(s)
- Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Michele Correale
- Cardiothoracic Department, ‘Policlinico Riuniti’ University Hospital, 71100 Foggia, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, 80131 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | | | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Alberto Palazzuoli
- Cardio Thoracic and Vascular Department, ‘S. Maria alle Scotte Hospital’, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Chen W, Aminu AJ, Yin Z, Karaesmen I, Atkinson AJ, Kuniewicz M, Holda M, Walocha J, Perde F, Molenaar P, Dobrzynski H. Profiling Reduced Expression of Contractile and Mitochondrial mRNAs in the Human Sinoatrial Node vs. Right Atrium and Predicting Their Suppressed Expression by Transcription Factors and/or microRNAs. Int J Mol Sci 2024; 25:10402. [PMID: 39408732 PMCID: PMC11477614 DOI: 10.3390/ijms251910402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Background: The sinus node (SN) is the main pacemaker of the heart. It is characterized by pacemaker cells that lack mitochondria and contractile elements. We investigated the possibility that transcription factors (TFs) and microRNAs (miRs) present in the SN can regulate gene expression that affects SN morphology and function. (2) Methods: From human next-generation sequencing data, a list of mRNAs that are expressed at lower levels in the SN compared with the right atrium (RA) was compiled. The mRNAs were then classified into contractile, mitochondrial or glycogen mRNAs using bioinformatic software, RStudio and Ingenuity Pathway Analysis. The mRNAs were combined with TFs and miRs to predict their interactions. (3) Results: From a compilation of the 1357 mRNAs, 280 contractile mRNAs and 198 mitochondrial mRNAs were identified to be expressed at lower levels in the SN compared with RA. TFs and miRs were shown to interact with contractile and mitochondrial function-related mRNAs. (4) Conclusions: In human SN, TFs (MYCN, SOX2, NUPR1 and PRDM16) mainly regulate mitochondrial mRNAs (COX5A, SLC25A11 and NDUFA8), while miRs (miR-153-3p, miR-654-5p, miR-10a-5p and miR-215-5p) mainly regulate contractile mRNAs (RYR2, CAMK2A and PRKAR1A). TF and miR-mRNA interactions provide a further understanding of the complex molecular makeup of the SN and potential therapeutic targets for cardiovascular treatments.
Collapse
Affiliation(s)
- Weixuan Chen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Abimbola J. Aminu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Irem Karaesmen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Andrew J. Atkinson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Marcin Kuniewicz
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Mateusz Holda
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- HEART-Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Filip Perde
- National Institute of Legal Medicine, 042122 Bucharest, Romania;
| | - Peter Molenaar
- Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4072, Australia
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
4
|
Latimer MN, Williams LJ, Shanmugan G, Carpenter BJ, Lazar MA, Dierickx P, Young ME. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart. Commun Biol 2023; 6:1149. [PMID: 37952007 PMCID: PMC10640639 DOI: 10.1038/s42003-023-05537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Circadian disruption increases cardiovascular disease (CVD) risk, through poorly understood mechanisms. Given that small RNA species are critical modulators of cardiac physiology/pathology, we sought to determine the extent to which cardiomyocyte circadian clock (CCC) disruption impacts cardiac small RNA species. Accordingly, we collected hearts from cardiomyocyte-specific Bmal1 knockout (CBK; a model of CCC disruption) and littermate control (CON) mice at multiple times of the day, followed by small RNA-seq. The data reveal 47 differentially expressed miRNAs species in CBK hearts. Subsequent bioinformatic analyses predict that differentially expressed miRNA species in CBK hearts influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 are predicted to be targeted by the transcriptional repressors REV-ERBα/β (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erbα/β double knockout (CM-RevDKO) mouse hearts exhibit increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs are commonly repressed in CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the circadian BMAL1-REV-ERBα/β regulatory network in the heart induces distinct miRNAs, whose mRNA targets impact critical cellular functions.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario J Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gobinath Shanmugan
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bryce J Carpenter
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pieterjan Dierickx
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Alshahrani SH, Rakhimov N, Gupta J, Hassan ZF, Alsalamy A, Saleh EAM, Alsaab HO, Al-Aboudy FK, Alawadi AR, Mustafa YF. The mechanisms, functions and clinical applications of miR-542-3p in human cancers. Pathol Res Pract 2023; 248:154724. [PMID: 37542861 DOI: 10.1016/j.prp.2023.154724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
MicroRNAs, as a major type of noncoding RNAs, have crucial roles in various functions during development. Available data have shown that miR-542-3p decreased in various types of cancers. MiR-542-3p is engaged in various cancer-related behaviors like glycolysis, metastasis, epithelial-to-mesenchymal transition (EMT), cell cycle, apoptosis, and proliferation via targeting at least 18 genes and some important signaling pathways like Wnt/β-catenin, Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Janus kinase 2 (JAK2) signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Current studies have proposed that the level of miR-542-3p could be modulated by several upstream regulators like transcription factors, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the level of miR-542-3p or its related lncRNAs/circRNAs are correlated with poor prognosis and clinicopathological features of cancer-affected patients. Here, we have discussed the biogenesis, function, and regulation of miR-542-3p as well as its aberrant expression in various types of neoplastic cells. Moreover, we have discussed the prognostic value of miR-542-3p in cancer. Finally, we have added the underlying molecular mechanism of miR-542-3p in cancer pathogenesis.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Head of the Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U. P., India.
| | | | - Ali Alsalamy
- Department of Computer Technical engineering, College of Information Technology Imam Ja'afarAl-Sadiq University Al-Muthanna, Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | | | - Ahmed Radhi Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
6
|
Gorący A, Rosik J, Szostak J, Szostak B, Retfiński S, Machaj F, Pawlik A. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets 2023; 27:593-608. [PMID: 37477241 DOI: 10.1080/14728222.2023.2240021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Heart failure is a complex clinical syndrome resulting from the unsuccessful compensation of symptoms of myocardial damage. Mitochondrial dysfunction is a process that occurs because of an attempt to adapt to the disruption of metabolic and energetic pathways occurring in the myocardium. This, in turn, leads to further dysfunction in cardiomyocyte processes. Currently, many therapeutic strategies have been implemented to improve mitochondrial function, but their effectiveness varies widely. AREAS COVERED This review focuses on new models of therapeutic strategies targeting mitochondrial function in the treatment of heart failure. EXPERT OPINION Therapeutic strategies targeting mitochondria appear to be a valuable option for treating heart failure. Currently, the greatest challenge is to develop new research models that could restore the disrupted metabolic processes in mitochondria as comprehensively as possible. Only the development of therapies that focus on improving as many dysregulated mitochondrial processes as possible in patients with heart failure will be able to bring the expected clinical improvement, along with inhibition of disease progression. Combined strategies involving the reduction of the effects of oxidative stress and mitochondrial dysfunction, appear to be a promising possibility for developing new therapies for a complex and multifactorial disease such as heart failure.
Collapse
Affiliation(s)
- Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Szymon Retfiński
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
7
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
8
|
Gambardella J, Fiordelisi A, Sorriento D, Cerasuolo F, Buonaiuto A, Avvisato R, Pisani A, Varzideh F, Riccio E, Santulli G, Iaccarino G. Mitochondrial microRNAs Are Dysregulated in Patients with Fabry Disease. J Pharmacol Exp Ther 2023; 384:72-78. [PMID: 35764328 PMCID: PMC9827504 DOI: 10.1124/jpet.122.001250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder caused by mutations in the gene for α-galactosidase A, inducing a progressive accumulation of globotriaosylceramide (GB3) and its metabolites in different organs and tissues. GB3 deposition does not fully explain the clinical manifestations of FD, and other pathogenetic mechanisms have been proposed, requiring the identification of new biomarkers for monitoring FD patients. Emerging evidence suggests the involvement of mitochondrial alterations in FD. Here, we propose mitochondrial-related microRNAs (miRs) as potential biomarkers of mitochondrial involvement in FD. Indeed, we demonstate that miRs regulating different aspects of mitochondrial homeostasis including expression and assembly of respiratory chain, mitogenesis, antioxidant capacity, and apoptosis are consistently dysregulated in FD patients. Our data unveil a novel noncoding RNA signature of FD patients, indicating mitochondrial-related miRs as new potential pathogenic players and biomarkers in FD. SIGNIFICANCE STATEMENT: This study demonstrates for the first time that a specific signature of circulating mitochondrial miRs (mitomiRs) is dysregulated in FD patients. MitomiRs regulating fundamental aspects of mitochondrial homeostasis and fitness, including expression and assembly of the respiratory chain, mitogenesis, antioxidant capacity, and apoptosis are significantly dysregulated in FD patients. Taken together, these new findings introduce mitomiRs as unprecedented biomarkers of FD and point at mitochondrial dysfunction as a novel potential mechanistic target for therapeutic approaches.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Federica Cerasuolo
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Antonietta Buonaiuto
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Roberta Avvisato
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Antonio Pisani
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Fahimeh Varzideh
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Eleonora Riccio
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| |
Collapse
|
9
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Benkner A, Rüdebusch J, Nath N, Hammer E, Grube K, Gross S, Dhople VM, Eckstein G, Meitinger T, Kaderali L, Völker U, Fielitz J, Felix SB. Riociguat attenuates left ventricular proteome and microRNA profile changes after experimental aortic stenosis in mice. Br J Pharmacol 2022; 179:4575-4592. [PMID: 35751875 DOI: 10.1111/bph.15910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Development and progression of heart failure (HF) involve endothelial and myocardial dysfunction as well as a dysregulation of the nitric oxide - soluble guanylyl cyclase - cyclic guanosine monophosphate (NO-sGC-cGMP) signalling pathway. Recently, we reported that the sGC stimulator riociguat (RIO) has beneficial effects on cardiac remodelling and progression of HF in response to chronic pressure overload. Here, we examined if these favourable RIO effects are also reflected in alterations of the myocardial proteome and microRNA profiles. EXPERIMENTAL APPROACH Male C57BL/6N mice underwent transverse aortic constriction (TAC) and sham operated mice served as controls. TAC and sham animals were randomised and treated with either RIO or vehicle for five weeks, starting three weeks post-surgery when cardiac hypertrophy was established. Afterwards we performed mass spectrometric proteome analyses and microRNA sequencing of proteins and RNAs, respectively, isolated from left ventricles (LV). KEY RESULTS TAC-induced changes of the LV proteome were significantly reduced by RIO treatment. Bioinformatics analyses revealed that RIO improved TAC-induced cardiovascular disease related pathways, metabolism and energy production, e.g. reversed alterations in the levels of myosin heavy chain 7 (MYH7), cardiac phospholamban (PLN), and ankyrin repeat domain-containing protein 1 (ANKRD1). RIO also attenuated TAC-induced changes of microRNA levels in the LV. CONCLUSION AND IMPLICATIONS The sGC stimulator RIO has beneficial effects on cardiac structure and function during pressure overload, which is accompanied by a reversal of TAC-induced changes of the cardiac proteome and microRNA profile. Our data support the potential of RIO as a novel HF therapeutic.
Collapse
Affiliation(s)
- Alexander Benkner
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Julia Rüdebusch
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Gross
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu M Dhople
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Centre Munich, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Centre Munich, Neuherberg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Kaderali
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jens Fielitz
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
A Non-Canonical Link between Non-Coding RNAs and Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10020445. [PMID: 35203652 PMCID: PMC8962294 DOI: 10.3390/biomedicines10020445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the top leading causes of mortality worldwide. Besides canonical environmental and genetic changes reported so far for CVDs, non-coding RNAs (ncRNAs) have emerged as key regulators of genetic and epigenetic mechanisms involved in CVD progression. High-throughput and sequencing data revealed that almost 80% of the total genome not only encodes for canonical ncRNAs, such as micro and long ncRNAs (miRNAs and lncRNAs), but also generates novel non-canonical sub-classes of ncRNAs, such as isomiRs and miRNA- and lncRNA-like RNAs. Moreover, recent studies reveal that canonical ncRNA sequences can influence the onset and evolution of CVD through novel “non-canonical” mechanisms. However, a debate exists over the real existence of these non-canonical ncRNAs and their concrete biochemical functions, with most of the dark genome being considered as “junk RNA”. In this review, we report on the ncRNAs with a scientifically validated canonical and non-canonical biogenesis. Moreover, we report on canonical ncRNAs that play a role in CVD through non-canonical mechanisms of action.
Collapse
|
12
|
What Role do Mitochondria have in Diastolic Dysfunction? Implications for Diabetic Cardiomyopathy and Heart Failure with Preserved Ejection Function (HFpEF). J Cardiovasc Pharmacol 2022; 79:399-406. [DOI: 10.1097/fjc.0000000000001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
|
13
|
Relevance of mitochondrial dysfunction in heart disease associated with insulin resistance conditions. Pflugers Arch 2021; 474:21-31. [PMID: 34807312 DOI: 10.1007/s00424-021-02638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
Collapse
|
14
|
Ding YQ, Zhang YH, Lu J, Li B, Yu WJ, Yue ZB, Hu YH, Wang PX, Li JY, Cai SD, Ye JT, Liu PQ. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Acta Pharmacol Sin 2021; 42:1422-1436. [PMID: 33247214 PMCID: PMC8379271 DOI: 10.1038/s41401-020-00563-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice. We first found that SIRT3 deficiency exacerbated Ang II-induced cardiac hypertrophy, and resulted in the development of spontaneous heart failure. Since miRNAs play crucial roles in the pathogenesis of cardiac hypertrophy, we performed miRNA sequencing on myocardium tissues from Ang II-infused Sirt3-/- and wild type mice, and identified microRNA-214 (miR-214) was significantly up-regulated in Ang II-infused mice. Similar results were also obtained in Ang II-treated neonatal mouse cardiomyocytes (NMCMs). Using dual-luciferase reporter assay we demonstrated that SIRT3 was a direct target of miR-214. Overexpression of miR-214 in vitro and in vivo decreased the expression of SIRT3, which resulted in extensive mitochondrial damages, thereby facilitating the onset of hypertrophy. In contrast, knockdown of miR-214 counteracted Ang II-induced detrimental effects via restoring SIRT3, and ameliorated mitochondrial morphology and respiratory activity. Collectively, these results demonstrate that miR-214 participates in Ang II-induced cardiac hypertrophy by directly suppressing SIRT3, and subsequently leading to mitochondrial malfunction, suggesting the potential of miR-214 as a promising intervention target for antihypertrophic therapy.
Collapse
Affiliation(s)
- Yan-Qing Ding
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Hong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen-Jing Yu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhong-Bao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Huai Hu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan-Xia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Dong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pei-Qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Yang M, Wang X, Wang T. Regulation of Mitochondrial Function by Noncoding RNAs in Heart Failure and Its Application in Diagnosis and Treatment. J Cardiovasc Pharmacol 2021; 78:377-387. [PMID: 34132686 DOI: 10.1097/fjc.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
ABSTRACT Heart failure (HF) is the terminal stage of multiple cardiovascular diseases. However, the pathogenesis of HF remains unclear and prompt; appropriate diagnosis and treatment of HF are crucial. Cardiomyocytes isolated from HF subjects frequently present mitochondrial impairment and dysfunction. Many studies have suggested that the regulation by noncoding RNAs (ncRNAs) of mitochondria can affect the occurrence and progression of HF. The regulation by ncRNAs of myocardial mitochondria during HF and the recent applications of ncRNAs in the diagnosis and treatment of HF are summarized in this review that is intended to gain keen insights into the mechanisms of HF and more effective treatments.
Collapse
Affiliation(s)
- Miaomiao Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | | | | |
Collapse
|
16
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
17
|
Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front Pharmacol 2021; 12:663322. [PMID: 34122082 PMCID: PMC8194257 DOI: 10.3389/fphar.2021.663322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are the key organelles that supply cellular energy. As the most active organ in the body, the energy required to maintain the mechanical function of the heart requires a high quantity of high-quality mitochondria in cardiomyocytes. MicroRNAs (miRNAs) are single-stranded noncoding RNAs, approximately 22 nt in length, which play key roles in mediating post-transcriptional gene silencing. Numerous studies have confirmed that miRNAs can participate in the occurrence and development of cardiac diseases by regulating mitochondrial function-related genes and signaling pathways. Therefore, elucidating the crosstalk that occurs between miRNAs and mitochondria is important for the prevention and treatment of cardiac diseases. In this review, we discuss the biogenesis of miRNAs, the miRNA-mediated regulation of major genes involved in the maintenance of mitochondrial function, and the effects of miRNAs on mitochondrial function in cardiac diseases in order to provide a theoretical basis for the clinical prevention and treatment of cardiac disease and the development of new drugs.
Collapse
Affiliation(s)
- Guang-Qiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Sheng-Quan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling-Yun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yi-Ni Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| |
Collapse
|
18
|
Yang D, Wan X, Dennis AT, Bektik E, Wang Z, Costa MG, Fagnen C, Vénien-Bryan C, Xu X, Gratz DH, Hund TJ, Mohler PJ, Laurita KR, Deschênes I, Fu JD. MicroRNA Biophysically Modulates Cardiac Action Potential by Direct Binding to Ion Channel. Circulation 2021; 143:1597-1613. [PMID: 33590773 PMCID: PMC8132313 DOI: 10.1161/circulationaha.120.050098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoping Wan
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Adrienne T. Dennis
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Emre Bektik
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Zhihua Wang
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Mauricio G.S. Costa
- Institute of Mineralogy, Materials Physics and Cosmochemistry, UMR 7590, Sorbonne Université, CNRS, MNHN, Paris F-75005, France
- Oswaldo Cruz Foundation, Scientific Computing Program, Vice Presidency of Education, Information and Communication, Rio de Janeiro, Brazil
| | - Charline Fagnen
- Institute of Mineralogy, Materials Physics and Cosmochemistry, UMR 7590, Sorbonne Université, CNRS, MNHN, Paris F-75005, France
| | - Catherine Vénien-Bryan
- Institute of Mineralogy, Materials Physics and Cosmochemistry, UMR 7590, Sorbonne Université, CNRS, MNHN, Paris F-75005, France
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Departments of Biomedical Engineering and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel H. Gratz
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Departments of Biomedical Engineering and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Departments of Biomedical Engineering and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth R. Laurita
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| |
Collapse
|
19
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
21
|
Therapeutic Strategies in the Development of Anti-viral Drugs and Vaccines Against SARS-CoV-2 Infection. Mol Neurobiol 2020; 57:4856-4877. [PMID: 32808122 PMCID: PMC7431281 DOI: 10.1007/s12035-020-02074-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
The whole world is currently facing a pandemic of an infectious disease known as novel coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) . This outbreak emerged unexpectedly and imposed a potential threat to humans, associated with the social and economic burden on the individual and federal governments. COVID-19, which initially started in Wuhan City of China and then spread to the whole world, has been declared a Public Health Emergency of International Concern. The continuous increase in the number of confirmed cases leads to high mortality across the world. Growing evidence indicates that the mortality rate is very predominant in elderly people and those with preexisting health conditions. However, the potential pathogenesis of SARS-CoV-2 infection in humans is still unknown. The dysregulated/exuberant immune response may have substantially contributed to the SARS-CoV-2-mediated pathology. Nevertheless, there is no clinically approved drug/vaccine currently available that can restrict its pathogenesis. However, several drugs are currently shown to provide some therapeutic benefits for COVID-19 patients, including antiviral drugs that might have a significant role in restricting the current pandemic of COVID-19. In this article, we highlighted the pharmacological treatment strategies for COVID-19 and purposed the therapeutic targets for the development of vaccines or anti-viral drug molecules against SARS-CoV-2 infection in humans.
Collapse
|
22
|
Berezin AE, Berezin AA. Extracellular Endothelial Cell-Derived Vesicles: Emerging Role in Cardiac and Vascular Remodeling in Heart Failure. Front Cardiovasc Med 2020; 7:47. [PMID: 32351973 PMCID: PMC7174683 DOI: 10.3389/fcvm.2020.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles play a pivotal role in numerous physiological (immune response, cell-to-cell cooperation, angiogenesis) and pathological (reparation, inflammation, thrombosis/coagulation, atherosclerosis, endothelial dysfunction) processes. The development of heart failure is strongly associated with endothelial dysfunction, microvascular inflammation, alteration in tissue repair, and cardiac and vascular remodeling. It has been postulated that activated endothelial cell-derived vesicles are not just transfer forms of several active molecules (such as regulatory peptides, coagulation factors, growth factors, active molecules, hormones that are embedded onto angiogenesis, tissue reparation, proliferation, and even prevention from ischemia/hypoxia), but are instead involved in direct myocardial and vascular damage due to regulation of epigenetic responses of the tissue. These responses are controlled by several factors, such as micro-RNAs, that are transferred inside extracellular vesicles from mother cells to acceptor cells and are transductors of epigenetic signals. Finally, it is not a uniform opinion whether different phenotypes of heart failure are the result of altered cardiac and vascular reparation due to certain epigenetic responses, which are yielded by co-morbidities, such as diabetes mellitus and obesity. The aim of the review is to summarize knowledge regarding the role of various types of extracellular endothelial cell-derived vesicles in the regulation of cardiac and vascular remodeling in heart failure.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| |
Collapse
|
23
|
Li J, Su H, Zhu Y, Cao Y, Ma X. ETS2 and microRNA-155 regulate the pathogenesis of heart failure through targeting and regulating GPR18 expression. Exp Ther Med 2020; 19:3469-3478. [PMID: 32346408 PMCID: PMC7185148 DOI: 10.3892/etm.2020.8642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a global pandemic cardiovascular disease with increasing prevalence, but the pathogenesis remains to be elucidated. The present study aimed to investigate the underlying mechanism in heart failure (HF) using bioinformatics and experimental validation. A HF-associated dataset GSE84796 was downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were screened for using Bayes method in the Limma package. Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to perform pathway enrichment analysis of these DEGs using The Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of DEG-encoded proteins was subsequently constructed using the Search tool for the Retrieval of Interacting Genes/Proteins, and a transcription factor (TF)/miRNA-target network was constructed according to the WEB-based Gene SeT AnaLysis Tookit. The expression levels of microRNA (miRNA/miR)-155, G-protein coupled receptor 18 (GRP18) and E26 transformation-specific transcription factor 2 (ETS2) were analyzed in clinical HF samples, and functional validations were performed in H9c2 (2-1) cells. A total of 419 DEGs were identified, including 366 upregulated genes and 53 downregulated genes. The upregulated DEGs were significantly enriched in the pathways of ‘cytokine-cytokine receptor interaction’, ‘natural killer cell mediated cytotoxicity’ and ‘primary immunodeficiency’. A total of two functional modules were identified in the PPI network: Module A was enriched in 3 KEGG pathways and module B was enriched in 15 KEGG pathways. Furthermore, a total of three miRNAs and eight TFs were identified in the TF/miRNA-target network. Specifically, GPR18 was discovered to be targeted by both ETS2 and miR-155. Clinical validation revealed that the expression levels of miR-155 were significantly decreased in the HF samples, whereas the expression levels of ETS2 and GPR18 were significantly increased in HF samples. In conclusion, the present study suggested that GPR18 may be a target of ETS2 and miR-155, and miR-155 may regulate cell viability and apoptosis in H9c2 (2-1) cells through targeting and regulating GPR18.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hongling Su
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yan Zhu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xuming Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
24
|
Zhang Y, He N, Feng B, Ye H. Exercise Mediates Heart Protection via Non-coding RNAs. Front Cell Dev Biol 2020; 8:182. [PMID: 32266263 PMCID: PMC7098911 DOI: 10.3389/fcell.2020.00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVDs) have become the central matter of death worldwide and have emerged as a notable concern in the healthcare field. There is accumulating evidence that regular exercise training can be as a reliable and widely favorable approach to prevent the heart from cardiovascular events. Non-coding RNAs (ncRNAs) could act as innovative biomarkers and auspicious therapeutic targets to reduce the incidence of CVDs. In this review, we summarized the regulatory effects of ncRNAs in the cardiac-protection provided by exercise to assess potential therapies for CVDs and disease prevention.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Nana He
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Beili Feng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
25
|
Park IH, Song YS, Joo HW, Shen GY, Seong JH, Shin NK, Cho YJ, Lee Y, Shin JH, Lim YH, Kim H, Kim KS. Role of MicroRNA-34a in Anti-Apoptotic Effects of Granulocyte-Colony Stimulating Factor in Diabetic Cardiomyopathy. Diabetes Metab J 2020; 44:173-185. [PMID: 31237127 PMCID: PMC7043984 DOI: 10.4093/dmj.2018.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/14/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recent studies have shown that microRNAs (miRNAs) are involved in the process of cardiomyocyte apoptosis. We have previously reported that granulocyte-colony stimulating factor (G-CSF) ameliorated diastolic dysfunction and attenuated cardiomyocyte apoptosis in a rat model of diabetic cardiomyopathy. In this study, we hypothesized a regulatory role of cardiac miRNAs in the mechanism of the anti-apoptotic effect of G-CSF in a diabetic cardiomyopathy rat model. METHODS Rats were given a high-fat diet and low-dose streptozotocin injection and then randomly allocated to receive treatment with either G-CSF or saline. H9c2 rat cardiomyocytes were cultured under a high glucose (HG) condition to induce diabetic cardiomyopathy in vitro. We examined the extent of apoptosis, miRNA expression, and miRNA target genes in the myocardium and H9c2 cells. RESULTS G-CSF treatment significantly decreased apoptosis and reduced miR-34a expression in diabetic myocardium and H9c2 cells under the HG condition. G-CSF treatment also significantly increased B-cell lymphoma 2 (Bcl-2) protein expression as a target for miR-34a. In addition, transfection with an miR-34a mimic significantly increased apoptosis and decreased Bcl-2 luciferase activity in H9c2 cells. CONCLUSION Our results indicate that G-CSF might have an anti-apoptotic effect through down-regulation of miR-34a in a diabetic cardiomyopathy rat model.
Collapse
Affiliation(s)
- In Hwa Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yi Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Hyun Woo Joo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Guang Yin Shen
- Division of Cardiology, Department of Internal Medicine, Jilin Central Hospital, Jilin University, Jilin, China
| | - Jin Hee Seong
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Na Kyoung Shin
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Young Jong Cho
- Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jeong Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University Seoul Hospital, Seoul, Korea
| | - Kyung Soo Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Mitochondrial MiRNA in Cardiovascular Function and Disease. Cells 2019; 8:cells8121475. [PMID: 31766319 PMCID: PMC6952824 DOI: 10.3390/cells8121475] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs functioning as crucial post-transcriptional regulators of gene expression involved in cardiovascular development and health. Recently, mitochondrial miRNAs (mitomiRs) have been shown to modulate the translational activity of the mitochondrial genome and regulating mitochondrial protein expression and function. Although mitochondria have been verified to be essential for the development and as a therapeutic target for cardiovascular diseases, we are just beginning to understand the roles of mitomiRs in the regulation of crucial biological processes, including energy metabolism, oxidative stress, inflammation, and apoptosis. In this review, we summarize recent findings regarding how mitomiRs impact on mitochondrial gene expression and mitochondrial function, which may help us better understand the contribution of mitomiRs to both the regulation of cardiovascular function under physiological conditions and the pathogenesis of cardiovascular diseases.
Collapse
|
27
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
28
|
RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20225554. [PMID: 31703292 PMCID: PMC6888515 DOI: 10.3390/ijms20225554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of β-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation.
Collapse
|
29
|
Musa G, Srivastava S, Petzold J, Cazorla-Vázquez S, Engel FB. miR-27a/b is a posttranscriptional regulator of Gpr126 (Adgrg6). Ann N Y Acad Sci 2019; 1456:109-121. [PMID: 31596512 DOI: 10.1111/nyas.14245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
Gpr126 (Adgrg6), a member of the adhesion G protein-coupled receptor family, has been associated with a variety of human diseases. Yet, despite its clinical importance, the mechanisms regulating Gpr126 expression are poorly understood. Here, we aimed at identifying upstream regulatory mechanisms of Gpr126 expression utilizing the heart as model organ in which Gpr126 regulates trabeculation. Here, we focused on possible regulation of Gpr126 regulation by microRNAs, which have emerged as key players in regulating development, have a critical role in disease progression, and might serve as putative therapeutic targets. In silico analyses identified one conserved binding site in the 3' UTR of Gpr126 for microRNA 27a and 27b (miR-27a/b). In addition, miR-27a/b and Gpr126 expression were differentially expressed during rat heart development. A regulatory role of miR-27a/b in controlling Gpr126 expression was substantiated by reduced Gpr126 mRNA levels upon ectopic expression of miR-27a/b in HEK293T cells and miR-27b in zebrafish embryos. Regulation of Gpr126 expression by direct binding of miR-27a/b to the 3' UTR of Gpr126 was verified by luciferase reporter assays in HEK293T cells. Finally, the modulation of gpr126 expression in zebrafish by injection of either miR-27b or miR-27b inhibitor in single cell-stage embryos resulted in hypo- or hypertrabeculation, respectively. Collectively, the data indicate that Gpr126 expression is regulated by miR-27a/b.
Collapse
Affiliation(s)
- Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Swati Srivastava
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Rech M, Barandiarán Aizpurua A, van Empel V, van Bilsen M, Schroen B. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle. Cardiovasc Res 2019; 114:782-793. [PMID: 29462282 DOI: 10.1093/cvr/cvy049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/15/2018] [Indexed: 12/26/2022] Open
Abstract
Half of all heart failure patients have preserved ejection fraction (HFpEF). Comorbidities associated with and contributing to HFpEF include obesity, diabetes and hypertension. Still, the underlying pathophysiological mechanisms of HFpEF are unknown. A preliminary consensus proposes that the multi-morbidity triggers a state of systemic, chronic low-grade inflammation, and microvascular dysfunction, causing reduced nitric oxide bioavailability to adjacent cardiomyocytes. As a result, the cardiomyocyte remodels its contractile elements and fails to relax properly, causing diastolic dysfunction, and eventually HFpEF. HFpEF is a complex syndrome for which currently no efficient therapies exist. This is notably due to the current one-size-fits-all therapy approach that ignores individual patient differences. MicroRNAs have been studied in relation to pathophysiological mechanisms and comorbidities underlying and contributing to HFpEF. As regulators of gene expression, microRNAs may contribute to the pathophysiology of HFpEF. In addition, secreted circulating microRNAs are potential biomarkers and as such, they could help stratify the HFpEF population and open new ways for individualized therapies. In this review, we provide an overview of the ever-expanding world of non-coding RNAs and their contribution to the molecular mechanisms underlying HFpEF. We propose prospects for microRNAs in stratifying the HFpEF population. MicroRNAs add a new level of complexity to the regulatory network controlling cardiac function and hence the understanding of gene regulation becomes a fundamental piece in solving the HFpEF puzzle.
Collapse
Affiliation(s)
- Monika Rech
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Vanessa van Empel
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
31
|
Du J, Yang ST, Liu J, Zhang KX, Leng JY. Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR- 142- 5p. Mol Cells 2019; 42:397-405. [PMID: 31085811 PMCID: PMC6537652 DOI: 10.14348/molcells.2018.0180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miRNAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.
Collapse
Affiliation(s)
- Jian Du
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, Jilin 130021,
China
| | - Si-Tong Yang
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, Jilin 130021,
China
| | - Jia Liu
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, Jilin 130021,
China
| | - Ke-Xin Zhang
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, Jilin 130021,
China
| | - Ji-Yan Leng
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, Jilin 130021,
China
| |
Collapse
|
32
|
miR-181c-5p Exacerbates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Targeting PTPN4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1957920. [PMID: 31178952 PMCID: PMC6501226 DOI: 10.1155/2019/1957920] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Background Activation of cell apoptosis is a major form of cell death during myocardial ischemia/reperfusion injury (I/RI). Therefore, examining ways to control cell apoptosis has important clinical significance for improving postischemic recovery. Clinical evidence demonstrated that miR-181c-5p was significantly upregulated in the early phase of myocardial infarction. However, whether or not miR-181c-5p mediates cardiac I/RI through cell apoptosis pathway is unknown. Thus, the present study is aimed at investigating the role and the possible mechanism of miR-181c-5p in apoptosis during I/R injury by using H9C2 cardiomyocytes. Methods and Results The rat origin H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R, 6 hours hypoxia followed by 6 hours reoxygenation) to induce cell injury. The results showed that H/R significantly increased the expression of miR-181c-5p but not miR-181c-3p in H9C2 cells. In line with this, in an in vivo rat cardiac I/RI model, miR-181c-5p expression was also significantly increased. The overexpression of miR-181c-5p by its agomir transfection significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase level and reduced cell viability) and exacerbated H/R-induced cell apoptosis (greater cleaved caspases 3 expression, Bax/Bcl-2 and more TUNEL-positive cells). In contrast, inhibition of miR-181c-5p in vitro had the opposite effect. By using computational prediction algorithms, protein tyrosine phosphatase nonreceptor type 4 (PTPN4) was predicted as a potential target gene of miR-181c-5p and was verified by the luciferase reporter assay. The overexpression of miR-181c-5p significantly attenuated the mRNA and protein expression of PTPN4 in H9C2 cardiomyocytes. Moreover, knockdown of PTPN4 significantly aggravated H/R-induced enhancement of LDH level, cleaved caspase 3 expression, and apoptotic cell death, which mimicked the proapoptotic effects of miR-181c-5p in H9C2 cardiomyocytes. Conclusions These findings suggested that miR-181c-5p exacerbates H/R-induced cardiomyocyte injury and apoptosis via targeting PTPN4 and that miR-181c-5p/PTPN4 signaling may yield novel strategies to combat myocardial I/R injury.
Collapse
|
33
|
Qin R, Murakoshi N, Xu D, Tajiri K, Feng D, Stujanna EN, Yonebayashi S, Nakagawa Y, Shimano H, Nogami A, Koike A, Aonuma K, Ieda M. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiol Rep 2019; 7:e13972. [PMID: 30806037 PMCID: PMC6389758 DOI: 10.14814/phy2.13972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exercise can improve morbidity and mortality in heart failure patients; however, the underlying mechanisms remain to be fully investigated. Thus, we investigated the effects of exercise on cardiac function and ventricular arrhythmias in myocardial infarction (MI) induced heart failure mice. Wild-type male mice underwent sham-operation or permanent left coronary artery ligation to induce MI. MI mice were divided into a sedentary (MI-Sed) and two intervention groups: MI-Ex (underwent 6-week treadmill exercise training) and MI-βb (oral bisoprolol treatment (1 mg/kg/d) without exercise). Cardiac function and structure were assessed by echocardiography and histology. Exercise capacity and cardiopulmonary function was accepted as oxygen consumption at peak exercise (peak VO2 ). Autonomic nervous system function and the incidence of spontaneous ventricular arrhythmia were evaluated via telemetry recording. mRNA and protein expressions in the left ventricle (LV) were investigated by real-time PCR and Western blotting. There were no differences in survival rate, MI size, cardiac function and structure, while exercise training improved peak VO2 . Compared with MI-Sed, MI-Ex, and MI-βb showed decreased sympathetic tone and lower incidence of spontaneous ventricular arrhythmia. By Western blot, the hyperphosphorylation of CaMKII and RyR2 were restored by exercise and β-blocker treatment. Furthermore, elevated expression of miR-1 and decreased expression of its target protein PP2A were recovered by exercise and β-blocker treatment. Continuous intensive exercise training can suppress ventricular arrhythmias in subacute to chronic phase of MI through restoring autonomic imbalance and impaired calcium handling, similarly to that for β-blockers.
Collapse
Affiliation(s)
- Rujie Qin
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Nobuyuki Murakoshi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - DongZhu Xu
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Kazuko Tajiri
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Duo Feng
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Endin N. Stujanna
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Saori Yonebayashi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Akihiko Nogami
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Akira Koike
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Medical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Kazutaka Aonuma
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Masaki Ieda
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
34
|
Affiliation(s)
- Charlotte J Demkes
- From Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands (C.J.D., E.v.R.); and Department of Cardiology. University Medical Center Utrecht, The Netherlands (C.J.D., E.v.R.)
| | - Eva van Rooij
- From Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands (C.J.D., E.v.R.); and Department of Cardiology. University Medical Center Utrecht, The Netherlands (C.J.D., E.v.R.).
| |
Collapse
|
35
|
Rech M, Kuhn AR, Lumens J, Carai P, van Leeuwen R, Verhesen W, Verjans R, Lecomte J, Liu Y, Luiken JJFP, Mohren R, Cillero-Pastor B, Heymans S, Knoops K, van Bilsen M, Schroen B. AntagomiR-103 and -107 Treatment Affects Cardiac Function and Metabolism. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:424-437. [PMID: 30731323 PMCID: PMC6365487 DOI: 10.1016/j.omtn.2018.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023]
Abstract
MicroRNA-103/107 regulate systemic glucose metabolism and insulin sensitivity. For this reason, inhibitory strategies for these microRNAs are currently being tested in clinical trials. Given the high metabolic demands of the heart and the abundant cardiac expression of miR-103/107, we questioned whether antagomiR-mediated inhibition of miR-103/107 in C57BL/6J mice impacts on cardiac function. Notably, fractional shortening decreased after 6 weeks of antagomiR-103 and -107 treatment. This was paralleled by a prolonged systolic radial and circumferential time to peak and by a decreased global strain rate. Histology and electron microscopy showed reduced cardiomyocyte area and decreased mitochondrial volume and mitochondrial cristae density following antagomiR-103 and -107. In line, antagomiR-103 and -107 treatment decreased mitochondrial OXPHOS complexes’ protein levels compared to scrambled, as assessed by mass spectrometry-based label-free quantitative proteomics. MiR-103/107 inhibition in primary cardiomyocytes did not affect glycolysis rates, but it decreased mitochondrial reserve capacity, reduced mitochondrial membrane potential, and altered mitochondrial network morphology, as assessed by live-cell imaging. Our data indicate that antagomiR-103 and -107 decrease cardiac function, cardiomyocyte size, and mitochondrial oxidative capacity in the absence of pathological stimuli. These data raise concern about the possible cardiac implications of the systemic use of antagomiR-103 and -107 in the clinical setting, and careful cardiac phenotyping within ongoing trials is highly recommended.
Collapse
Affiliation(s)
- Monika Rech
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Annika R Kuhn
- CARIM School for Cardiovascular Diseases, Department of Physiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Joost Lumens
- CARIM School for Cardiovascular Diseases, Department of Biomedical Engineering, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Paolo Carai
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Rick van Leeuwen
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Wouter Verhesen
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Robin Verjans
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Julie Lecomte
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Yilin Liu
- CARIM School for Cardiovascular Diseases, Department of Molecular Genetics, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Joost J F P Luiken
- CARIM School for Cardiovascular Diseases, Department of Molecular Genetics, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Ronny Mohren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Stephane Heymans
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Netherlands Heart Institute, 3511 EP Utrecht, the Netherlands
| | - Kèvin Knoops
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Microscopy CORE Lab, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Marc van Bilsen
- CARIM School for Cardiovascular Diseases, Department of Physiology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Blanche Schroen
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
36
|
Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic Biol Med 2018; 129:155-168. [PMID: 30227272 PMCID: PMC6309415 DOI: 10.1016/j.freeradbiomed.2018.09.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction characterized by impaired bioenergetics, oxidative stress and aldehydic load is a hallmark of heart failure. Recently, different research groups have provided evidence that selective activation of mitochondrial detoxifying systems that counteract excessive accumulation of ROS, RNS and reactive aldehydes is sufficient to stop cardiac degeneration upon chronic stress, such as heart failure. Therefore, pharmacological and non-pharmacological approaches targeting mitochondria detoxification may play a critical role in the prevention or treatment of heart failure. In this review we discuss the most recent findings on the central role of mitochondrial dysfunction, oxidative stress and aldehydic load in heart failure, highlighting the most recent preclinical and clinical studies using mitochondria-targeted molecules and exercise training as effective tools against heart failure.
Collapse
Affiliation(s)
- Ligia Akemi Kiyuna
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | | |
Collapse
|
37
|
microRNA-212-induced protection of the heart against myocardial infarction occurs via the interplay between AQP9 and PI3K/Akt signaling pathway. Exp Cell Res 2018; 370:531-541. [DOI: 10.1016/j.yexcr.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
|
38
|
Gupta A, Sugadev R, Sharma YK, Yahmad Y, Khurana P. Role of miRNAs in hypoxia-related disorders. J Biosci 2018; 43:739-749. [PMID: 30207319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxia is a complex pathophysiological condition. The physiological and molecular responses to this stress have been extensively studied. However, the management of its ill effects still poses a challenge to clinicians. MicroRNAs (miRNAs) are short non-coding RNA molecules that control post-transcriptional gene expression. The regulatory role of miRNAs in hypoxic environments has been studied in many hypoxia-related disorders, however a comprehensive compilation and analysis of all data and the significance of miRNAs in hypoxia adaption is still lacking. This review summarizes the miRNAs related to various hypoxia-related disorders and highlights the computational approaches to study them. This would help in designing novel strategies toward efficient management of hypoxia-related disorders.
Collapse
Affiliation(s)
- A Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R and D Organization (DRDO), Timarpur, Delhi 110 054, India
| | | | | | | | | |
Collapse
|
39
|
Gupta A, Sugadev R, Sharma YK, Ahmad Y, Khurana P. Role of miRNAs in hypoxia-related disorders. J Biosci 2018. [DOI: 10.1007/s12038-018-9789-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Ceholski DK, Turnbull IC, Kong CW, Koplev S, Mayourian J, Gorski PA, Stillitano F, Skodras AA, Nonnenmacher M, Cohen N, Björkegren JLM, Stroik DR, Cornea RL, Thomas DD, Li RA, Costa KD, Hajjar RJ. Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 119:147-154. [PMID: 29752948 DOI: 10.1016/j.yjmcc.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted β-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to β-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.
Collapse
Affiliation(s)
- Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Chi-Wing Kong
- Department of Paediatrics and Adolescent Medicine, Hong Kong University, Pokfulam, Hong Kong
| | - Simon Koplev
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Przemek A Gorski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Angelos A Skodras
- Microscopy Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mathieu Nonnenmacher
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ninette Cohen
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johan L M Björkegren
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel R Stroik
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ronald A Li
- Department of Paediatrics and Adolescent Medicine, Hong Kong University, Pokfulam, Hong Kong; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Solna SE-171, Sweden
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
41
|
Tang ZP, Zhao W, Du JK, Ni X, Zhu XY, Lu JQ. miR-494 Contributes to Estrogen Protection of Cardiomyocytes Against Oxidative Stress via Targeting (NF-κB) Repressing Factor. Front Endocrinol (Lausanne) 2018; 9:215. [PMID: 29867756 PMCID: PMC5960695 DOI: 10.3389/fendo.2018.00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress plays a pivotal role in the initiation and progression of cardiac diseases. Estrogens have been demonstrated to exert pleiotropic cardioprotective effects, among which antioxidative stress is one of the key effects linking estrogens to cardioprotection. By using a microRNAs (miRs) microarray screening approach, we discovered an increase in miR-494, which is known to exert cardioprotective effects, in estrogen-treated cardiomyocytes. We hypothesized that the upregulation of miR-494 might contribute to estrogen-mediated cardioprotection against oxidative stress. We found that E2 stimulates miR-494 expression via ERα in both cardiomyocytes and the myocardium of female mice. The miR-494 inhibitor attenuated the protective effect of 17β-estradiol (E2) against oxidative stress-induced injury in cardiomyocytes. By contrast, the miR-494 mimic protected cardiomyocytes against oxidative stress-induced cardiomyocyte injury. Using real-time PCR, western blot and dual-luciferase reporter gene analyses, we identified nuclear factor kappa B (NF-κB) repressing factor (NKRF) as the miR-494 target in cardiomyocytes. E2 was found to inhibit NKRF, thus activating NF-κB through a miR-494-dependent mechanism. In addition, the protective effects of E2 and miR-494 against oxidative stress in cardiomyocytes were eliminated by the NF-κB inhibitor. In summary, this study demonstrates for the first time that estrogen inhibits NKRF expression through ERα-mediated upregulation of miR-494 in cardiomyocytes, leading to the activation of NF-κB, which in turn results in an increase in antioxidative defense. ERα-mediated upregulation of miR-494 may contribute to estrogen protection of cardiomyocytes against oxidative stress.
Collapse
Affiliation(s)
- Zhi-Ping Tang
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Physiology, Second Military Medical University, Shanghai, China
- Research Laboratory of Burn and Trauma, PLA 181 Hospital, Guilin, China
| | - Wei Zhao
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Jian-kui Du
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
- *Correspondence: Xiao-Yan Zhu, ; Jian-Qiang Lu,
| | - Jian-Qiang Lu
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xiao-Yan Zhu, ; Jian-Qiang Lu,
| |
Collapse
|
42
|
Cardiovascular Risk Factors and Markers. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123062 DOI: 10.1007/978-3-319-89315-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiovascular risk is assessed for the prediction and appropriate management of patients using collections of identified risk markers obtained from clinical questionnaire information, concentrations of certain blood molecules (e.g., N-terminal proB-type natriuretic peptide fragment and soluble receptors of tumor-necrosis factor-α and interleukin-2), imaging data using various modalities, and electrocardiographic variables, in addition to traditional risk factors.
Collapse
|
43
|
Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM. Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 2017; 314:H293-H310. [PMID: 28986361 DOI: 10.1152/ajpheart.00520.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Mark V Pinti
- Division of Pharmaceutical and Pharmacological Sciences, West Virginia School of Pharmacy , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Shanawar Waris
- Department of Biomedical Engineering, West Virginia College of Engineering , Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
44
|
Hu H, Zhang Y, Shi Y, Feng L, Duan J, Sun Z. Microarray-based bioinformatics analysis of the combined effects of SiNPs and PbAc on cardiovascular system in zebrafish. CHEMOSPHERE 2017; 184:1298-1309. [PMID: 28679150 DOI: 10.1016/j.chemosphere.2017.06.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
With rapid development of nanotechnology and growing environmental pollution, the combined toxic effects of SiNPs and pollutants of heavy metals like lead have received global attentions. The aim of this study was to explore the cardiovascular effects of the co-exposure of SiNPs and lead acetate (PbAc) in zebrafish using microarray and bioinformatics analysis. Although there was no other obvious cardiovascular malformation except bleeding phenotype, bradycardia, angiogenesis inhibition and declined cardiac output in zebrafish co-exposed of SiNPs and PbAc at NOAEL level, significant changes were observed in mRNA and microRNA (miRNA) expression patterns. STC-GO analysis indicated that the co-exposure might have more toxic effects on cardiovascular system than that exposure alone. Key differentially expressed genes were discerned out based on the Dynamic-gene-network, including stxbp1a, ndfip2, celf4 and gsk3b. Furthermore, several miRNAs obtained from the miRNA-Gene-Network might play crucial roles in cardiovascular disease, such as dre-miR-93, dre-miR-34a, dre-miR-181c, dre-miR-7145, dre-miR-730, dre-miR-129-5p, dre-miR-19d, dre-miR-218b, dre-miR-221. Besides, the analysis of miRNA-pathway-network indicated that the zebrafish were stimulated by the co-exposure of SiNPs and PbAc, which might cause the disturbance of calcium homeostasis and endoplasmic reticulum stress. As a result, cardiac muscle contraction might be deteriorated. In general, our data provide abundant fundamental research clues to the combined toxicity of environmental pollutants and further in-depth verifications are needed.
Collapse
Affiliation(s)
- Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
45
|
Shepherd DL, Hathaway QA, Pinti MV, Nichols CE, Durr AJ, Sreekumar S, Hughes KM, Stine SM, Martinez I, Hollander JM. Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase). J Mol Cell Cardiol 2017; 110:15-25. [PMID: 28709769 PMCID: PMC5854179 DOI: 10.1016/j.yjmcc.2017.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the primary cause of mortality for individuals with type 2 diabetes mellitus. During the diabetic condition, cardiovascular dysfunction can be partially attributed to molecular changes in the tissue, including alterations in microRNA (miRNA) interactions. MiRNAs have been reported in the mitochondrion and their presence may influence cellular bioenergetics, creating decrements in functional capacity. In this study, we examined the roles of Argonaute 2 (Ago2), a protein associated with cytosolic and mitochondrial miRNAs, and Polynucleotide Phosphorylase (PNPase), a protein found in the inner membrane space of the mitochondrion, to determine their role in mitochondrial miRNA import. In cardiac tissue from human and mouse models of type 2 diabetes mellitus, Ago2 protein levels were unchanged while PNPase protein expression levels were increased; also, there was an increase in the association between both proteins in the diabetic state. MiRNA-378 was found to be significantly increased in db/db mice, leading to decrements in ATP6 levels and ATP synthase activity, which was also exhibited when overexpressing PNPase in HL-1 cardiomyocytes and in HL-1 cells with stable miRNA-378 overexpression (HL-1-378). To assess potential therapeutic interventions, flow cytometry evaluated the capacity for targeting miRNA-378 species in mitochondria through antimiR treatment, revealing miRNA-378 level-dependent inhibition. Our study establishes PNPase as a contributor to mitochondrial miRNA import through the transport of miRNA-378, which may regulate bioenergetics during type 2 diabetes mellitus. Further, our data provide evidence that manipulation of PNPase levels may enhance the delivery of antimiR therapeutics to mitochondria in physiological and pathological conditions.
Collapse
Affiliation(s)
- Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Cody E Nichols
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Shruthi Sreekumar
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Kristen M Hughes
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Seth M Stine
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Ivan Martinez
- Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
46
|
Wang X, Cui T. Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2017; 313:H304-H319. [PMID: 28576834 DOI: 10.1152/ajpheart.00145.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
Autophagy is an evolutionarily conserved process used by the cell to degrade cytoplasmic contents for quality control, survival for temporal energy crisis, and catabolism and recycling. Rapidly increasing evidence has revealed an important pathogenic role of altered activity of the autophagosome-lysosome pathway (ALP) in cardiac hypertrophy and heart failure. Although an early study suggested that cardiac autophagy is increased and that this increase is maladaptive to the heart subject to pressure overload, more recent reports have overwhelmingly supported that myocardial ALP insufficiency results from chronic pressure overload and contributes to maladaptive cardiac remodeling and heart failure. This review examines multiple lines of preclinical evidence derived from recent studies regarding the role of autophagic dysfunction in pressure-overloaded hearts, attempts to reconcile the discrepancies, and proposes that resuming or improving ALP flux through coordinated enhancement of both the formation and the removal of autophagosomes would benefit the treatment of cardiac hypertrophy and heart failure resulting from chronic pressure overload.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota; and
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
47
|
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2016; 14:238-250. [PMID: 28004807 PMCID: PMC5350035 DOI: 10.1038/nrcardio.2016.203] [Citation(s) in RCA: 507] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.
Collapse
Affiliation(s)
- David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, 12700 East 19th Avenue, B139, Aurora, Colorado 80045, USA
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - John G F Cleland
- National Heart &Lung Institute, National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton &Harefield Hospitals, Imperial College, London, UK
| | - Wilson S Colucci
- Cardiovascular Medicine Section, Boston University School of Medicine and Boston Medical Center, 88 East Newton Street, C-8, Boston, Massachusetts 02118, USA
| | - Javed Butler
- Division of Cardiology, Health Sciences Center, T-16 Room 080, SUNY at Stony Brook, New York 11794, USA
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen 9713 GZ, Netherlands
| | - Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen (UMG), Robert-Koch-Straße, D-37075, Göttingen, Germany
| | - Bertram Pitt
- University of Michigan School of Medicine, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Burkert Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow Klinikum, and German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gerasimos Filippatos
- National and Kopodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Rimini 1, Athens 12462, Greece
| | - Stephen J Greene
- Division of Cardiology, Duke University Medical Center, 2301 Erwin Road Suite 7400, Durham, North Carolina 27705, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, 201 East Huron, Galter 3-150, Chicago, Illinois 60611, USA
| |
Collapse
|