1
|
Mannozzi J, Al-Hassan MH, Kaur J, Lessanework B, Alvarez A, Massoud L, Aoun K, Spranger M, O'Leary DS. Blood flow restriction training activates the muscle metaboreflex during low-intensity sustained exercise. J Appl Physiol (1985) 2023; 135:260-270. [PMID: 37348015 PMCID: PMC10393340 DOI: 10.1152/japplphysiol.00274.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Blood flow restriction training (BFRT) employs partial vascular occlusion of exercising muscle and has been shown to increase muscle performance while using reduced workload and training time. Numerous studies have demonstrated that BFRT increases muscle hypertrophy, mitochondrial function, and beneficial vascular adaptations. However, changes in cardiovascular hemodynamics during the exercise protocol remain unknown, as most studies measured blood pressure before the onset and after the cessation of exercise. With reduced perfusion to the exercising muscle during BFRT, the resultant accumulation of metabolites within the ischemic muscle could potentially trigger a large reflex increase in blood pressure, termed the muscle metaboreflex. At low workloads, this pressor response occurs primarily via increases in cardiac output. However, when increases in cardiac output are limited (e.g., heart failure or during severe exercise), the reflex shifts to peripheral vasoconstriction as the primary mechanism to increase blood pressure, potentially increasing the risk of a cardiovascular event. Using our chronically instrumented conscious canine model, we utilized a 60% reduction in femoral blood pressure applied to the hindlimbs during steady-state treadmill exercise (3.2 km/h) to reproduce the ischemic environment observed during BFRT. We observed significant increases in heart rate (+19 ± 3 beats/min), stroke volume (+2.52 ± 1.2 mL), cardiac output (+1.21 ± 0.2 L/min), mean arterial pressure (+18.2 ± 2.4 mmHg), stroke work (+1.93 ± 0.2 L/mmHg), and nonischemic vascular conductance (+3.62 ± 1.7 mL/mmHg), indicating activation of the muscle metaboreflex.NEW & NOTEWORTHY Blood flow restriction training (BFRT) increases muscle mass, strength, and endurance. There has been minimal consideration of the reflex cardiovascular responses that could be elicited during BFRT sessions. We showed that during low-intensity exercise BFRT may trigger large reflex increases in blood pressure and sympathetic activity due to muscle metaboreflex activation. Thus, we urge caution when employing BFRT, especially in patients in whom exaggerated cardiovascular responses may occur that could cause sudden, adverse cardiovascular events.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Mohamed-Hussein Al-Hassan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Louis Massoud
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kamel Aoun
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Marty Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
2
|
Sprick JD, Jeong J, Sabino-Carvalho JL, Li S, Park J. Neurocirculatory regulation and adaptations to exercise in chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H843-H855. [PMID: 37000610 PMCID: PMC10191135 DOI: 10.1152/ajpheart.00115.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by pronounced exercise intolerance and exaggerated blood pressure reactivity during exercise. Classic mechanisms of exercise intolerance in CKD have been extensively described previously and include uremic myopathy, chronic inflammation, malnutrition, and anemia. We contend that these classic mechanisms only partially explain the exercise intolerance experienced in CKD and that alterations in cardiovascular and autonomic regulation also play a key contributing role. The purpose of this review is to examine the physiological factors that contribute to neurocirculatory dysregulation during exercise and discuss the adaptations that result from regular exercise training in CKD. Key neurocirculatory mechanisms contributing to exercise intolerance in CKD include augmentation of the exercise pressor reflex, aberrations in neurocirculatory control, and increased neurovascular transduction. In addition, we highlight how some contributing factors may be improved through exercise training, with a specific focus on the sympathetic nervous system. Important areas for future work include understanding how the exercise prescription may best be optimized in CKD and how the beneficial effects of exercise training may extend to the brain.
Collapse
Affiliation(s)
- Justin D Sprick
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| |
Collapse
|
3
|
Abstract
Exaggerated cardiovascular responses to exercise increase the risk of myocardial infarction and stroke in individuals with type 1 diabetes (T1D); however, the underlying mechanisms remain largely elusive. This review provides an overview of the altered exercise pressor reflex in T1D, with an emphasis on the mechanical component of the reflex.
Collapse
Affiliation(s)
- Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Ann-Katrin Grotle
- Department of Sport and Physical Education, Western Norway University of Applied Sciences, Bergen, Norway
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
4
|
Huo Y, Grotle AK, McCuller RK, Samora M, Stanhope KL, Havel PJ, Harrison ML, Stone AJ. Exaggerated exercise pressor reflex in male UC Davis type 2 diabetic rats is due to the pathophysiology of the disease and not aging. Front Physiol 2023; 13:1063326. [PMID: 36703927 PMCID: PMC9871248 DOI: 10.3389/fphys.2022.1063326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Studies in humans and animals have found that type 2 diabetes mellitus (T2DM) exaggerates the blood pressure (BP) response to exercise, which increases the risk of adverse cardiovascular events such as heart attack and stroke. T2DM is a chronic disease that, without appropriate management, progresses in severity as individuals grow older. Thus, it is possible that aging may also exaggerate the BP response to exercise. Therefore, the purpose of the current study was to determine the effect of the pathophysiology of T2DM on the exercise pressor reflex independent of aging. Methods: We compared changes in peak pressor (mean arterial pressure; ΔMAP), BP index (ΔBPi), heart rate (ΔHR), and HR index (ΔHRi) responses to static contraction, intermittent contraction, and tendon stretch in UCD-T2DM rats to those of healthy, age-matched Sprague Dawley rats at three different stages of the disease. Results: We found that the ΔMAP, ΔBPi, ΔHR, and ΔHRi responses to static contraction were significantly higher in T2DM rats (ΔMAP: 29 ± 4 mmHg; ΔBPi: 588 ± 51 mmHg•s; ΔHR: 22 ± 5 bpm; ΔHRi: 478 ± 45 bpm•s) compared to controls (ΔMAP: 10 ± 1 mmHg, p < 0.0001; ΔBPi: 121 ± 19 mmHg•s, p < 0.0001; ΔHR: 5 ± 2 bpm, p = 0.01; ΔHRi: 92 ± 19 bpm•s, p < 0.0001) shortly after diabetes onset. Likewise, the ΔMAP, ΔBPi, and ΔHRi to tendon stretch were significantly higher in T2DM rats (ΔMAP: 33 ± 7 mmHg; ΔBPi: 697 ± 70 mmHg•s; ΔHRi: 496 ± 51 bpm•s) compared to controls (ΔMAP: 12 ± 5 mmHg, p = 0.002; ΔBPi: 186 ± 30 mmHg•s, p < 0.0001; ΔHRi: 144 ± 33 bpm•s, p < 0.0001) shortly after diabetes onset. The ΔBPi and ΔHRi, but not ΔMAP, to intermittent contraction was significantly higher in T2DM rats (ΔBPi: 543 ± 42 mmHg•s; ΔHRi: 453 ± 53 bpm•s) compared to controls (ΔBPi: 140 ± 16 mmHg•s, p < 0.0001; ΔHRi: 108 ± 22 bpm•s, p = 0.0002) shortly after diabetes onset. Discussion: Our findings suggest that the exaggerated exercise pressor reflex and mechanoreflex seen in T2DM are due to the pathophysiology of the disease and not aging.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Ann-Katrin Grotle
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Science, Bergen, Norway
| | - Richard K. McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Michelle L. Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
5
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
6
|
Hasegawa D, Hori A, Okamura Y, Baba R, Suijo K, Mizuno M, Sugawara J, Kitatsuji K, Ogata H, Toda K, Hotta N. Aging exaggerates blood pressure response to ischemic rhythmic handgrip exercise in humans. Physiol Rep 2021; 9:e15125. [PMID: 34817113 PMCID: PMC8611780 DOI: 10.14814/phy2.15125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ischemic skeletal muscle conditions are known to augment exercise-induced increases in blood pressure (BP). Aging is also a factor that enhances the pressor response to exercise. However, the effects of aging on the BP response to ischemic exercise remain unclear. We, therefore, tested the hypothesis that aging enhances the BP response to rhythmic handgrip (RHG) exercise during postexercise muscle ischemia (PEMI). We divided the normotensive participants without cardiovascular diseases into three age groups: young (n = 26; age, 18-28 years), middle-aged (n = 23; age, 35-59 years), and older adults (n = 23; age, 60-80 years). The participants performed RHG exercise with minimal effort for 1 min after rest with and without PEMI, which was induced by inflating a cuff on the upper arm just before the isometric handgrip exercise ended; the intensity was 30% of maximal voluntary contraction force. Under PEMI, the increase in diastolic BP (DBP) from rest to RHG exercise in the older adult group (Δ13 ± 2 mmHg) was significantly higher than that in the young (Δ5 ± 2 mmHg) and middle-aged groups (Δ6 ± 1 mmHg), despite there being no significant difference between the groups in the DBP response from rest to RHG exercise without PEMI. Importantly, based on multiple regression analysis, age remained a significant independent determinant of both the SBP and DBP responses to RHG exercise during PEMI (p < 0.01). These findings indicate that aging enhances the pressor response to ischemic rhythmic exercise.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- Nagoya Heisei College of Nursing and Medical CareNagoyaJapan
| | - Amane Hori
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Yukiko Okamura
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Reizo Baba
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Kenichi Suijo
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Masaki Mizuno
- Department of Applied Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jun Sugawara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Koji Kitatsuji
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Hisayoshi Ogata
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Kaoru Toda
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Norio Hotta
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| |
Collapse
|
7
|
Mizuno M, Hotta N, Ishizawa R, Kim HK, Iwamoto G, Vongpatanasin W, Mitchell JH, Smith SA. The Impact of Insulin Resistance on Cardiovascular Control During Exercise in Diabetes. Exerc Sport Sci Rev 2021; 49:157-167. [PMID: 33965976 PMCID: PMC8195845 DOI: 10.1249/jes.0000000000000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Gary Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| |
Collapse
|
8
|
Grotle AK, Huo Y, Harrison ML, Ybarbo KM, Stone AJ. GsMTx-4 normalizes the exercise pressor reflex evoked by intermittent muscle contraction in early stage type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2021; 320:H1738-H1748. [PMID: 33635166 DOI: 10.1152/ajpheart.00794.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests the exercise pressor reflex is exaggerated in early stage type 1 diabetes mellitus (T1DM). Piezo channels may play a role in this exaggeration, as blocking these channels attenuates the exaggerated pressor response to tendon stretch in T1DM rats. However, tendon stretch constitutes a different mechanical and physiological stimuli than that occurring during muscle contraction. Therefore, the purpose of this study was to determine the contribution of Piezo channels in evoking the pressor reflex during an intermittent muscle contraction in T1DM. In unanesthetized decerebrate rats, we compared the pressor and cardioaccelerator responses to intermittent muscle contraction before and after locally injecting grammostola spatulata mechanotoxin 4 (GsMTx-4, 0.25 µM) into the hindlimb vasculature. Although GsMTx-4 has a high potency for Piezo channels, it has also been suggested to block transient receptor potential cation (TRPC) channels. We, therefore, performed additional experiments to control for this possibility by also injecting SKF 96365 (10 µM), a TRPC channel blocker. We found that local injection of GsMTx-4, but not SKF 96365, attenuated the exaggerated peak pressor (ΔMAP before: 33 ± 3 mmHg, after: 22 ± 3 mmHg, P = 0.007) and pressor index (ΔBPi before: 668 ± 91 mmHg·s, after: 418 ± 81 mmHg·s, P = 0.021) response in streptozotocin (STZ) rats (n = 8). GsMTx-4 attenuated the exaggerated early onset pressor and the pressor response over time, which eliminated peak differences as well as those over time between T1DM and healthy controls. These data suggest that Piezo channels are an effective target to normalize the exercise pressor reflex in T1DM.NEW & NOTEWORTHY This is the first study to demonstrate that blocking Piezo channels is effective in ameliorating the exaggerated exercise pressor reflex evoked by intermittent muscle contraction, commonly occurring during physical activity, in T1DM. Thus, these findings suggest Piezo channels may serve as an effective therapeutic target to reduce the acute and prolonged cardiovascular strain that may occur during dynamic exercise in T1DM.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System/drug effects
- Autonomic Nervous System/metabolism
- Autonomic Nervous System/physiopathology
- Blood Pressure/drug effects
- Cardiovascular System/innervation
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Female
- Heart Rate/drug effects
- Intercellular Signaling Peptides and Proteins/pharmacology
- Ion Channels/antagonists & inhibitors
- Ion Channels/metabolism
- Male
- Membrane Transport Modulators/pharmacology
- Muscle Contraction
- Muscle, Skeletal/innervation
- Physical Conditioning, Animal
- Rats, Sprague-Dawley
- Reflex, Abnormal/drug effects
- Spider Venoms/pharmacology
- Time Factors
- Rats
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
9
|
Huo Y, Grotle AK, Ybarbo KM, Lee J, Harrison ML, Stone AJ. Effects of acute hyperglycemia on the exercise pressor reflex in healthy rats. Auton Neurosci 2020; 229:102739. [PMID: 33190039 DOI: 10.1016/j.autneu.2020.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023]
Abstract
The exercise pressor reflex is exaggerated in type 2 diabetes mellitus (T2DM). Hyperglycemia, a main characteristic of T2DM, likely contributes to this exaggerated response. However, the isolated effect of acute hyperglycemia, independent of T2DM, on the exercise pressor reflex is not known. Therefore, the purpose of this study was to determine the effect of acute, local exposure to hyperglycemia on the exercise pressor reflex and its two components, namely the mechanoreflex and the metaboreflex, in healthy rats. To accomplish this, we determined the effect of an acute locol intra-arterial glucose infusion (0.25 g/mL) on cardiovascular responses to static contraction (i.e., exercise pressor reflex) and tendon stretch (i.e., mechanoreflex) for 30 s, as well as hindlimb intra-arterial lactic acid (24 mM) injection (i.e., metaboreflex) in fasted unanesthetized, decerebrated Sprague-Dawley rats. We measured and compared changes in mean arterial pressure (MAP) and heart rate (HR) before and after glucose infusion. We found that acute glucose infusion did not affect the pressor response to static contraction (ΔMAP: before: 15 ± 2 mmHg, after: 12 ± 2 mmHg; n = 8, p > 0.05), tendon stretch (ΔMAP: before: 12 ± 1 mmHg, after: 12 ± 3 mmHg; n = 8, p > 0.05), or lactic acid injection (ΔMAP: before: 13 ± 2 mmHg, after: 17 ± 3 mmHg; n = 9, p > 0.05). Likewise, cardioaccelerator responses were unaffected by glucose infusion, p > 0.05 for all. In conclusion, these findings suggest that acute, local exposure to hyperglycemia does not affect the exercise pressor reflex or either of its components.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Junghoon Lee
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
10
|
Grotle AK, Huo Y, Harrison ML, Lee J, Ybarbo KM, Stone AJ. Effects of type 1 diabetes on reflexive cardiovascular responses to intermittent muscle contraction. Am J Physiol Regul Integr Comp Physiol 2020; 319:R358-R365. [DOI: 10.1152/ajpregu.00109.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This is the first study to provide evidence that early-stage type 1 diabetes mellitus (T1DM) leads to an exaggerated exercise pressor reflex evoked by intermittent muscle contraction, resulting in substantially higher cardiovascular strain. These findings are significant as they indicate that interventions targeting the exercise pressor reflex may work to alleviate the increased cardiovascular strain and overall burden during exercise in T1DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Michelle L. Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Junghoon Lee
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Kai M. Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| |
Collapse
|
11
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
12
|
Li Q, Garry MG. A murine model of the exercise pressor reflex. J Physiol 2020; 598:3155-3171. [PMID: 32406099 DOI: 10.1113/jp277602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The decerebrate mouse provides a novel working model of the exercise pressor reflex (EPR). The decerebrate mouse model of the EPR is similar to the previously described decerebrate rat model. Studying the EPR in transgenic mouse models can define exact mechanisms of the EPR in health and disease. ABSTRACT The exercise pressor reflex (EPR) is defined by a rise in mean arterial pressure (MAP) and heart rate (HR) in response to exercise and is necessary to match metabolic demand and prevent premature fatigue. While this reflex is readily tested in humans, mechanistic studies are largely infeasible. Here, we have developed a novel murine model of the EPR to allow for mechanistic studies in various mouse models. We observed that ventral root stimulation (VRS) in an anaesthetized mouse causes a depressor response and a reduction in HR. In contrast, the same stimulation in a decerebrate mouse causes a rise in MAP and HR which is abolished by dorsal rhizotomy or by neuromuscular blockade. Moreover, we demonstrate a reduced MAP response to VRS using TRPV1 antagonism or in Trpv1 null mice while the response to passive stretch remains intact. Additionally, we demonstrate that intra-arterial infusion of capsaicin results in a dose-related rise in MAP and HR that is significantly reduced by a selective and potent TRPV1 antagonist or is completely abolished in Trpv1 null mice. These data serve to validate the development of a decerebrate mouse model for the study of cardiovascular responses to exercise and further define the role of the TRPV1 receptor in mediating the EPR. This novel model will allow for extensive study of the EPR in unlimited transgenic and mutant mouse lines, and for an unprecedented exploration of the molecular mechanisms that control cardiovascular responses to exercise in health and disease.
Collapse
Affiliation(s)
- Qinglu Li
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
Ishizawa R, Kim HK, Hotta N, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Skeletal Muscle Reflex-Induced Sympathetic Dysregulation and Sensitization of Muscle Afferents in Type 1 Diabetic Rats. Hypertension 2020; 75:1072-1081. [PMID: 32063060 DOI: 10.1161/hypertensionaha.119.14118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood pressure response to exercise is exaggerated in the type 1 diabetes mellitus (T1DM). An overactive exercise pressor reflex (EPR) contributes to the potentiated pressor response. However, the mechanism(s) underlying this abnormal EPR activity remains unclear. This study tested the hypothesis that the heightened blood pressure response to exercise in T1DM is mediated by EPR-induced sympathetic overactivity. Additionally, the study examined whether the single muscle afferents are sensitized by PKC (protein kinase C) activation in this disease. Sprague-Dawley rats were intraperitoneally administered either 50 mg/kg streptozotocin (T1DM) or saline (control). At 1 to 3 weeks after administration, renal sympathetic nerve activity and mean arterial pressure responses to activation of the EPR, mechanoreflex, and metaboreflex were measured in decerebrate animals. Action potential responses to mechanical and chemical stimulation were determined in group IV afferents with pPKCα (phosphorylated-PKCα) levels assessed in dorsal root ganglia. Compared with control, EPR (58±18 versus 96±33%; P<0.05), mechanoreflex (21±13 versus 51±20%; P<0.05), and metaboreflex (40±20 versus 88±39%; P<0.01) activation in T1DM rats evoked significant increases in renal sympathetic nerve activity as well as mean arterial pressure. The response of group IV afferents to mechanical (18±24 versus 61±45 spikes; P<0.01) and chemical (0.3±0.4 versus 1.6±0.8 Hz; P<0.01) stimuli were significantly greater in T1DM than control. T1DM rats showed markedly increased pPKCα levels in dorsal root ganglia compared with control. These data suggest that in T1DM, abnormally muscle reflex-evoked increases in sympathetic activity mediate exaggerations in blood pressure. Further, sensitization of muscle afferents, potentially via PKC activation, may contribute to this abnormal circulatory responsiveness.
Collapse
Affiliation(s)
- Rie Ishizawa
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Han-Kyul Kim
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Norio Hotta
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,College of Life and Health Sciences, Chubu University, Kasugai, Japan (N.H.)
| | - Gary A Iwamoto
- Department of Cell Biology (G.A.I.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Jere H Mitchell
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Scott A Smith
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Masaki Mizuno
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
14
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
15
|
Grotle AK, Crawford CK, Huo Y, Ybarbo KM, Harrison ML, Graham J, Stanhope KL, Havel PJ, Fadel PJ, Stone AJ. Exaggerated cardiovascular responses to muscle contraction and tendon stretch in UCD type-2 diabetes mellitus rats. Am J Physiol Heart Circ Physiol 2019; 317:H479-H486. [PMID: 31274351 DOI: 10.1152/ajpheart.00229.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with type-2 diabetes mellitus (T2DM) have exaggerated sympathetic activity and blood pressure responses to exercise. However, the underlying mechanisms for these responses, as well as how these responses change throughout disease progression, are not completely understood. For this study, we examined the effect of the progression of T2DM on the exercise pressor reflex, a critical neurocardiovascular mechanism that functions to increase sympathetic activity and blood pressure during exercise. We also aimed to examine the effect of T2DM on reflexive cardiovascular responses to static contraction, as well as those responses to tendon stretch when an exaggerated exercise pressor reflex was present. We evoked the exercise pressor reflex and mechanoreflex by statically contracting the hindlimb muscles and stretching the Achilles tendon, respectively, for 30 s. We then compared pressor and cardioaccelerator responses in unanesthetized, decerebrated University of California Davis (UCD)-T2DM rats at 21 and 31 wk following the onset of T2DM to responses in healthy nondiabetic rats. We found that the pressor response to static contraction was greater in the 31-wk T2DM [change in mean arterial pressure (∆MAP) = 39 ± 5 mmHg] but not in the 21-wk T2DM (∆MAP = 24 ± 5 mmHg) rats compared with nondiabetic rats (∆MAP = 18 ± 2 mmHg; P < 0.05). Similarly, the pressor and the cardioaccelerator responses to tendon stretch were significantly greater in the 31-wk T2DM rats [∆MAP = 69 ± 6 mmHg; change in heart rate (∆HR) = 28 ± 4 beats/min] compared with nondiabetic rats (∆MAP = 14 ± 2 mmHg; ∆HR = 5 ± 3 beats/min; P < 0.05). These findings suggest that the exercise pressor reflex changes as T2DM progresses and that a sensitized mechanoreflex may play a role in exaggerating these cardiovascular responses.NEW & NOTEWORTHY This is the first study to provide evidence that as type-2 diabetes mellitus (T2DM) progresses, the exercise pressor reflex becomes exaggerated, an effect that may be due to a sensitized mechanoreflex. Moreover, these findings provide compelling evidence suggesting that impairments in the reflexive control of circulation contribute to exaggerated blood pressure responses to exercise in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Charles K Crawford
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - James Graham
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Paul J Fadel
- Department of Kinesiology; The University of Texas at Arlington, Arlington, Texas
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Grotle AK, Garcia EA, Harrison ML, Huo Y, Crawford CK, Ybarbo KM, Stone AJ. Exaggerated mechanoreflex in early-stage type 1 diabetic rats: role of Piezo channels. Am J Physiol Regul Integr Comp Physiol 2019; 316:R417-R426. [DOI: 10.1152/ajpregu.00294.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent findings have shown that muscle contraction evokes an exaggerated pressor response in type 1 diabetes mellitus (T1DM) rats; however, it is not known whether the mechanoreflex, which is commonly stimulated by stretching the Achilles tendon, contributes to this abnormal response. Furthermore, the role of mechano-gated Piezo channels, found on thin-fiber afferent endings, in evoking the mechanoreflex in T1DM is also unknown. Therefore, in male and female streptozotocin (STZ, 50 mg/kg)-induced T1DM and healthy control (CTL) rats, we examined the pressor and cardioaccelerator responses to tendon stretch during the early stage of the disease. To determine the role of Piezo channels, GsMTx-4, a selective Piezo channel inhibitor, was injected into the arterial supply of the hindlimb. At 1 wk after STZ injection in unanesthetized, decerebrate rats, we stretched the Achilles tendon for 30 s and measured pressor and cardioaccelerator responses. We then compared pressor and cardioaccelerator responses to tendon stretch before and after GsMTx-4 injection (10 µg/100 ml). We found that the pressor (change in mean arterial pressure) response [41 ± 5 mmHg ( n = 15) for STZ and 18 ± 3 mmHg ( n = 11) for CTL ( P < 0.01)] and cardioaccelerator (change in heart rate) response [18 ± 4 beats/min for STZ ( n = 15) and 8 ± 2 beats/min ( n = 11) for CTL ( P < 0.05)] to tendon stretch were exaggerated in STZ rats. Local injection of GsMTx-4 attenuated the pressor [55 ± 7 mmHg ( n = 6) before and 27 ± 9 mmHg ( n = 6) after GsMTx-4 ( P < 0.01)], but not the cardioaccelerator, response to tendon stretch in STZ rats and had no effect on either response in CTL rats. These data suggest that T1DM exaggerates the mechanoreflex response to tendon stretch and that Piezo channels play a role in this exaggeration.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Elizabeth A. Garcia
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Michelle L. Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Charles K. Crawford
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Kai M. Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
17
|
Marthandam Asokan S, Wang T, Su W, Lin W. Short Tetra‐peptide from soy‐protein hydrolysate attenuates hyperglycemia associated damages in H9c2 cells and ICR mice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shibu Marthandam Asokan
- Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Ting Wang
- Department of Hospitality Management, College of Agriculture Tunghai University Taichung Taiwan
| | - Wei‐Ting Su
- Department of Food Science, College of Agriculture Tunghai University Taichung Taiwan
| | - Wan‐Teng Lin
- Department of Hospitality Management, College of Agriculture Tunghai University Taichung Taiwan
| |
Collapse
|
18
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
19
|
Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J. Activation of spinal dorsal horn P2Y 13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 2018; 11:615-628. [PMID: 29628771 PMCID: PMC5877493 DOI: 10.2147/jpr.s154437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The dorsal horn P2Y13 receptor is involved in the development of pain behavior induced by peripheral nerve injury. It is unclear whether the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 at the spinal dorsal horn are influenced after the activation of P2Y13 receptor in rats with diabetic neuropathic pain (DNP). Methods A rat model of type 1 DNP was induced by intraperitoneal injection of streptozotocin (STZ). We examined the expression of P2Y13 receptor, Iba-1, IL-1β, IL-6, JAK2, STAT3, pTyr1336, and pTyr1472 NR2B in rat spinal dorsal horn. Results Compared with normal rats, STZ-diabetic rats displayed obvious mechanical allodynia and the increased expression of P2Y13 receptor, Iba-1, IL-1β, and IL-6 in the dorsal spinal cord that was continued for 6 weeks in DNP rats. The data obtained indicated that, in DNP rats, administration of MRS2211 significantly attenuated mechanical allodynia. Compared with DNP rats, after MRS2211 treatment, expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 were reduced 4 weeks after the STZ injection. However, MRS2211 treatment did not attenuate the expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 at 6 weeks after the STZ injection. MRS2211 suppressed JAK2 and STAT3 expression in the early stage, but not in the later stage. Moreover, pTyr1336 NR2B was significantly decreased, whereas pTyr1472 NR2B was unaffected in the dorsal spinal cord of MRS2211-treated DNP rats. Conclusion Intrathecal MRS2211 produces an anti-nociceptive effect in early-stage DNP. A possible mechanism involved in MRS2211-induced analgesia is that blocking the P2Y13 receptor downregulates levels of IL-1β and IL-6, which subsequently inhibit the activation of the JAK2/STAT3 signaling pathway. Furthermore, blocking the activation of the P2Y13 receptor can decrease NR2B-containing NMDAR phosphorylation in dorsal spinal cord neurons, thereby attenuating central sensitization in STZ-induced DNP rats.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - YuanShou Chen
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - DeYing Kong
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Mingxia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| |
Collapse
|