1
|
Yang K, Zhao Y, Hu J, Gao R, Shi J, Wei X, Chen J, Hu K, Sun A, Ge J. ALKBH5 induces fibroblast-to-myofibroblast transformation during hypoxia to protect against cardiac rupture after myocardial infarction. J Adv Res 2024; 61:193-209. [PMID: 37689242 PMCID: PMC11258655 DOI: 10.1016/j.jare.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) methylation produces a marked effect on cardiovascular diseases. The m6A demethylase AlkB homolog 5 (ALKBH5), as an m6A "eraser", is responsible for decreased m6A modification. However, its role in cardiac fibroblasts during the post-myocardial infarction (MI) healing process remains elusive. OBJECTIVES To investigate the effect of ALKBH5 in cardiac fibroblasts during infarct repair. METHODS MI was mimicked by permanent left anterior descending artery ligation in global ALKBH5-knockout, ALKBH5-knockin, and fibroblast-specific ALKBH5-knockout mice to study the function of ALKBH5 during post-MI collagen repair. Methylated RNA immunoprecipitation sequencing was performed to explore potential ALKBH5 targets. RESULTS Dramatic alterations in ALKBH5 expression were observed during the early stages post-MI and in hypoxic fibroblasts. Global ALKBH5 knockin reduced infarct size and ameliorated cardiac function after MI. The global and fibroblast-specific ALKBH5-knockout mice both exhibited low survival rates along with poor collagen repair, impaired cardiac function, and cardiac rupture. Both in vivo and in vitro ALKBH5 loss resulted in impaired fibroblast activation and decreased collagen deposition. Additionally, hypoxia, but not TGF-β1 or Ang II, upregulated ALKBH5 expression in myofibroblasts by HIF-1α-dependent transcriptional regulation. Mechanistically, ALKBH5 promoted the stability of ErbB4 mRNA and the degradation of ST14 mRNA via m6A demethylation. Fibroblast-specific ErbB4 overexpression ameliorated the impaired fibroblast-to-myofibroblast transformation and poor post-MI repair due to ALKBH5 knockout. CONCLUSION Fibroblast ALKBH5 positively regulates post-MI healing by stabilization of ErbB4 mRNA in an m6A-dependent manner. ALKBH5/ErbB4 might be potential therapeutic targets for post-MI cardiac rupture.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou Province, China
| | - Jingjing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Rifeng Gao
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Xiang Wei
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
2
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
3
|
Lenz M, Kiss A, Haider P, Salzmann M, Brekalo M, Krychtiuk KA, Hamza O, Huber K, Hengstenberg C, Podesser BK, Wojta J, Hohensinner PJ, Speidl WS. Short-term toll-like receptor 9 inhibition leads to left ventricular wall thinning after myocardial infarction. ESC Heart Fail 2023. [PMID: 37190856 PMCID: PMC10375131 DOI: 10.1002/ehf2.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
AIMS Ischaemia-reperfusion injury (IRI) following myocardial infarction remains a challenging topic in acute cardiac care and consecutively arising heart failure represents a severe long-term consequence. The extent of neutrophil infiltration and neutrophil-mediated cellular damage are thought to be aggravating factors enhancing primary tissue injury. Toll-like receptor 9 was found to be involved in neutrophil activation as well as chemotaxis and may represent a target in modulating IRI, aspects we aimed to illuminate by pharmacological inhibition of the receptor. METHODS AND RESULTS Forty-nine male adult Sprague-Dawley rats were used. IRI was induced by occlusion of the left coronary artery and subsequent snare removal after 30 min. Oligonucleotide (ODN) 2088, a toll-like receptor 9 (TLR9) antagonist, control-ODN, or DNase, were administered at the time of reperfusion and over 24 h via a mini-osmotic pump. The hearts were harvested 24 h or 4 weeks after left coronary artery occlusion and immunohistochemical staining was performed. Echocardiography was done after 1 and 4 weeks to determine ventricular function. Inhibition of TLR9 by ODN 2088 led to left ventricular wall thinning (P = 0.003) in association with drastically enhanced neutrophil infiltration (P = 0.005) and increased markers of tissue damage. Additionally, an up-regulation of the chemotactic receptor CXCR2 (P = 0.046) was found after TLR9 inhibition. No such effects were observed in control-ODN or DNase-treated animals. We did not observe changes in monocyte content or subset distribution, hinting towards neutrophils as the primary mediators of the exerted tissue injury. CONCLUSIONS Our data indicate a TLR9-dependent, negative regulation of neutrophil infiltration. Blockage of TLR9 appears to prevent the down-regulation of CXCR2, followed by an uncontrolled migration of neutrophils towards the area of infarction and the exertion of disproportional tissue injury resulting in potential aneurysm formation. In comparison with previous studies conducted in TLR-/- mice, we deliberately chose a transient pharmacological inhibition of TLR9 to highlight effects occurring in the first 24 h following IRI.
Collapse
Affiliation(s)
- Max Lenz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Manuel Salzmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Konstantin A Krychtiuk
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Ouafa Hamza
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department for Cardiology and Emergency Medicine, Faculty of Medicine, Wilhelminenhospital and Sigmund Freud University, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
4
|
Xia G, Xu J, Chen M, Jin J, Wang X, Ye Y. Loss of ALDH2 aggravates mitochondrial biogenesis disorder in cardiac myocytes induced by TAC. Biochem Biophys Res Commun 2023; 639:189-196. [PMID: 36535138 DOI: 10.1016/j.bbrc.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Heart failure is one of the major fatal diseases and mitochondrial biogenesis is an important compensatory mechanism in the process of heart failure. Aldehyde dehydrogenase 2(ALDH2) is an important endogenous cardiac protective factor in mitochondria, but its role in mitochondrial biogenesis of cardiomyocytes remains unknown. In our study, transverse aorta constriction(TAC)-induced heart failure model was established in ALDH2-/- mice and wild-type mice. The cardiac function was examined by echocardiography at 4 weeks after operation. The myocardial tissue was stained by HE. The mitochondria morphology was observed using electron microscope, and the ATP content, Sirt1,PGC-1α and NRF1 expression were measured. Compared with wild-type mice, the cardiac function of ALDH2 -/- mice decreased significantly at 4 weeks after TAC. The proportion of mitochondrial area and mitochondrial crest/mitochondrial ratio decreased in the ALDH2-/- group after TAC. The ATP content decreased in ALDH2 -/- mice at 4 weeks after TAC. In the meantime, the expression of PGC-1α,Sirt 1 and NRF1 decreased in the ALDH2-/- TAC group compared with wild type TAC group.Neonatal rat cardiomyocytes were cultured and stretched. Cardiomyocytes were treated with the activator of ALDH2(Alda-1), Sirt1-SiRNA and PGC-1α-siRNA, respectively. The mitochondrial structure of cardiomyocytes was observed by transmission electron microscopy. The levels of PGC-1α,NRF-1 and Tfam were measured by Western blot.Mitochondrial biogenesis was enhanced in stretch cardiomyocytes treated with Alda-1.When cardiomyocytes were treated with Sirt1-SiRNA or PGC1α-SiRNA, the effect of Alda-1 in promoting mitochondrial biogenesis was attenuated.Therefore, these results suggested that the loss of ALDH2 aggravates mitochondrial biogenesis disorder in cardiac myocytes induced by TAC. Alda-1 could promote mitochondrial biogenesis in stretched cardiomyocytes, and this effect depends on Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Guang Xia
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfei Xu
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Chen
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jifu Jin
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Ye
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Expression of cathelicidin, ERK, MyD88, and TLR-9 in the blood of women in the pre-pregnancy, pregnancy, and their infant cord blood. Hum Immunol 2022; 83:826-831. [PMID: 36058765 DOI: 10.1016/j.humimm.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/22/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
During pregnancy, the immune responses are modulated to protect mothers and infants from different pathogens. Cathelicidin as an antimicrobial peptide has a defending role against many pathogens. In this study, to better understand the role of cathelicidin peptide and three of its related proteins in immune pathways (ERK, MyD88, and TLR-9) in the immune system during pregnancy, we examined their expression in the blood of non-pregnant and pregnant mothers and their infant's cord blood. Blood samples were taken, and their peripheral blood mononuclear cells (PBMCs) were obtained. The expression level of cathelicidin was determined by quantitative PCR. Also, the expression of cathelicidin, ERK, MyD88, and TLR-9 was assessed by Western blotting. Higher level of cathelicidin mRNA was detected in the cord blood samples compared to other samples. The Western blotting results showed higher levels of cathelicidin, ERK, MyD88, and TLR-9 in the cord blood samples than in the blood of both pregnant and non-pregnant samples. Also, the level of all molecules was higher in pregnant than non-pregnant women. These high levels of the mentioned molecules are necessary to protect the mother and fetus against various pathogens, although understanding their mechanism of action needs more studies.
Collapse
|
6
|
Saber MM, Monir N, Awad AS, Elsherbiny ME, Zaki HF. TLR9: A friend or a foe. Life Sci 2022; 307:120874. [PMID: 35963302 DOI: 10.1016/j.lfs.2022.120874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
The innate immune system is a primary protective line in our body. It confers its protection through different pattern recognition receptors (PRRs), especially toll like receptors (TLRs). Toll like receptor 9 (TLR9) is an intracellular TLR, expressed in different immunological and non-immunological cells. Release of cellular components, such as proteins, nucleotides, and DNA confers a beneficial inflammatory response and maintains homeostasis for removing cellular debris during normal physiological conditions. However, during pathological cellular damage and stress signals, engagement between mtDNA and TLR9 acts as an alarm for starting inflammatory and autoimmune disorders. The controversial role of TLR9 in different diseases baffled scientists if it has a protective or deleterious effect after activation during insults. Targeting the immune system, especially the TLR9 needs further investigation to provide a therapeutic strategy to control inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Nada Monir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
8
|
Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN. Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 2022; 70:607-623. [PMID: 35608723 DOI: 10.1007/s12026-022-09290-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nimrah Komal
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Ali Mujtaba
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
9
|
Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. Cardiac Fibrosis in the Pressure Overloaded Left and Right Ventricle as a Therapeutic Target. Front Cardiovasc Med 2022; 9:886553. [PMID: 35600469 PMCID: PMC9120363 DOI: 10.3389/fcvm.2022.886553] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Myocardial fibrosis is a remodeling process of the extracellular matrix (ECM) following cardiac stress. "Replacement fibrosis" is a term used to describe wound healing in the acute phase of an injury, such as myocardial infarction. In striking contrast, ECM remodeling following chronic pressure overload insidiously develops over time as "reactive fibrosis" leading to diffuse interstitial and perivascular collagen deposition that continuously perturbs the function of the left (L) or the right ventricle (RV). Examples for pressure-overload conditions resulting in reactive fibrosis in the LV are systemic hypertension or aortic stenosis, whereas pulmonary arterial hypertension (PAH) or congenital heart disease with right sided obstructive lesions such as pulmonary stenosis result in RV reactive fibrosis. In-depth phenotyping of cardiac fibrosis has made it increasingly clear that both forms, replacement and reactive fibrosis co-exist in various etiologies of heart failure. While the role of fibrosis in the pathogenesis of RV heart failure needs further assessment, reactive fibrosis in the LV is a pathological hallmark of adverse cardiac remodeling that is correlated with or potentially might even drive both development and progression of heart failure (HF). Further, LV reactive fibrosis predicts adverse outcome in various myocardial diseases and contributes to arrhythmias. The ability to effectively block pathological ECM remodeling of the LV is therefore an important medical need. At a cellular level, the cardiac fibroblast takes center stage in reactive fibrotic remodeling of the heart. Activation and proliferation of endogenous fibroblast populations are the major source of synthesis, secretion, and deposition of collagens in response to a variety of stimuli. Enzymes residing in the ECM are responsible for collagen maturation and cross-linking. Highly cross-linked type I collagen stiffens the ventricles and predominates over more elastic type III collagen in pressure-overloaded conditions. Research has attempted to identify pro-fibrotic drivers causing fibrotic remodeling. Single key factors such as Transforming Growth Factor β (TGFβ) have been described and subsequently targeted to test their usefulness in inhibiting fibrosis in cultured fibroblasts of the ventricles, and in animal models of cardiac fibrosis. More recently, modulation of phenotypic behaviors like inhibition of proliferating fibroblasts has emerged as a strategy to reduce pathogenic cardiac fibroblast numbers in the heart. Some studies targeting LV reactive fibrosis as outlined above have successfully led to improvements of cardiac structure and function in relevant animal models. For the RV, fibrosis research is needed to better understand the evolution and roles of fibrosis in RV failure. RV fibrosis is seen as an integral part of RV remodeling and presents at varying degrees in patients with PAH and animal models replicating the disease of RV afterload. The extent to which ECM remodeling impacts RV function and thus patient survival is less clear. In this review, we describe differences as well as common characteristics and key players in ECM remodeling of the LV vs. the RV in response to pressure overload. We review pre-clinical studies assessing the effect of anti-fibrotic drug candidates on LV and RV function and their premise for clinical testing. Finally, we discuss the mode of action, safety and efficacy of anti-fibrotic drugs currently tested for the treatment of left HF in clinical trials, which might guide development of new approaches to target right heart failure. We touch upon important considerations and knowledge gaps to be addressed for future clinical testing of anti-fibrotic cardiac therapies.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Kenzo Ichimura
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sushma Reddy
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Pediatric Cardiology, Stanford University, Stanford, CA, United States
| | - Francois Haddad
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Edda Spiekerkoetter,
| |
Collapse
|
10
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Yonebayashi S, Tajiri K, Murakoshi N, Xu D, Li S, Feng D, Okabe Y, Yuan Z, Song Z, Aonuma K, Shibuya A, Aonuma K, Ieda M. MAIR-II deficiency ameliorates cardiac remodelling post-myocardial infarction by suppressing TLR9-mediated macrophage activation. J Cell Mol Med 2020; 24:14481-14490. [PMID: 33140535 PMCID: PMC7753988 DOI: 10.1111/jcmm.16070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are fundamental components of inflammation in post‐myocardial infarction (MI) and contribute to adverse cardiac remodelling and heart failure. However, the regulatory mechanisms in macrophage activation have not been fully elucidated. Previous studies showed that myeloid‐associated immunoglobulin–like receptor II (MAIR‐II) is involved in inflammatory responses in macrophages. However, its role in MI is unknown. Thus, this study aimed to determine a novel role and mechanism of MAIR‐II in MI. We first identified that MAIR‐II–positive myeloid cells were abundant from post‐MI days 3 to 5 in infarcted hearts of C57BL/6J (WT) mice induced by permanent left coronary artery ligation. Compared to WT, MAIR‐II–deficient (Cd300c2−/−) mice had longer survival, ameliorated cardiac remodelling, improved cardiac function and smaller infarct sizes. Moreover, we detected lower pro‐inflammatory cytokine and fibrotic gene expressions in Cd300c2−/−‐infarcted hearts. These mice also had less infiltrating pro‐inflammatory macrophages following MI. To elucidate a novel molecular mechanism of MAIR‐II, we considered macrophage activation by Toll‐like receptor (TLR) 9–mediated inflammation. In vitro, we observed that Cd300c2−/− bone marrow–derived macrophages stimulated by a TLR9 agonist expressed less pro‐inflammatory cytokines compared to WT. In conclusion, MAIR‐II may enhance inflammation via TLR9‐mediated macrophage activation in MI, leading to adverse cardiac remodelling and poor prognosis.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Siqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duo Feng
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuta Okabe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zixun Yuan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zonghu Song
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Wang CY, Chen CC, Lin MH, Su HT, Ho MY, Yeh JK, Tsai ML, Hsieh IC, Wen MS. TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. BIOLOGY 2020; 9:biology9110369. [PMID: 33138323 PMCID: PMC7693736 DOI: 10.3390/biology9110369] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Large cardiovascular outcome trials have reported favorable effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on heart failure. To study the potential mechanism of the SGLT2 inhibition in heart failure, we used the murine doxorubicin-induced cardiomyopathy model and identified the toll-like receptor 9 (TLR9), NAD-dependent deacetylase sirtuin-3 (SIRT3), and Beclin 1, acting in a complex together in response to empagliflozin treatment. The interactions and implications in mitochondrial function were evaluated with TLR9 deficient, SIRT3 deficient, Beclin 1 haplodeficient, and autophagy reporter mice and confirmed in a patient with SIRT3 point mutation and reduced enzymatic activity. The SGLT2 inhibitor, empagliflozin, protects the heart from doxorubicin cardiomyopathy in mice, by acting through a novel Beclin 1-toll-like receptor (TLR) 9-sirtuin-(SIRT) 3 axis. TLR9 and SIRT3 were both essential for the protective effects of empagliflozin. The dilated cardiomyopathy patient with SIRT3 point mutation and reduced enzymatic activity is associated with reduced TLR9 activation and the absence of mitochondrial responses in the heart after the SGLT2 inhibitor treatment. Our data indicate a dynamic communication between autophagy and Beclin 1-TLR9-SIRT3 complexes in the mitochondria in response to empagliflozin that may serve as a potential treatment strategy for heart failure.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 7622); Fax: +886-3-3289134
| | - Chun-Chi Chen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - Hui-Ting Su
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City 333, Taiwan; (C.-C.C.); (M.-H.L.); (H.-T.S.); (M.-Y.H.); (J.-K.Y.); (M.-L.T.); (I.-C.H.); (M.-S.W.)
| |
Collapse
|
13
|
Hanna A, Shinde AV, Frangogiannis NG. Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 319:H948-H964. [PMID: 32886000 DOI: 10.1152/ajpheart.00318.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In patients with myocardial infarction (MI), cardiac rupture is an uncommon but catastrophic complication. In the mouse model of nonreperfused MI, reported rupture rates are highly variable and depend not only on the genetic background and sex of animals but also on the method used for documentation of rupture. In most studies, diagnosis of cardiac rupture is based on visual inspection during autopsy; however, criteria are poorly defined. We performed systematic histopathological analysis of whole hearts from C57BL/6J mice dying after nonreperfused MI and evaluated the reliability of autopsy-based criteria in identification of rupture. Moreover, we compared the cell biological environment of the infarct between rupture-related and rupture-independent deaths. Histopathological analysis documented rupture in 50% of mice dying during the first week post-MI. Identification of a gross rupture site was highly specific but had low sensitivity; in contrast, hemothorax had high sensitivity but low specificity. Mice with rupture had lower myofibroblast infiltration, accentuated macrophage influx, and a trend toward reduced collagen content in the infarct. Male mice had increased mortality and higher incidence of rupture. However, infarct myeloid cells harvested from male and female mice at the peak of the incidence of rupture had comparable inflammatory gene expression. In conclusion, the reliability of autopsy in documentation of rupture in infarcted mice is dependent on the specific criteria used. Macrophage-driven inflammation and reduced activation of collagen-secreting reparative myofibroblasts may be involved in the pathogenesis of post-MI cardiac rupture.NEW & NOTEWORTHY We show that cardiac rupture accounts for 50% of deaths in C57BL/6J mice undergoing nonreperfused myocardial infarction protocols. Overestimation of rupture events in published studies likely reflects the low specificity of hemothorax as a criterion for documentation of rupture. In contrast, identification of a gross rupture site has high specificity and low sensitivity. We also show that mice dying of rupture have increased macrophage influx and attenuated myofibroblast infiltration in the infarct. These findings are consistent with a role for perturbations in the balance between inflammatory and reparative responses in the pathogenesis of postinfarction cardiac rupture. We also report that the male predilection for rupture in infarcted mice is not associated with increased inflammatory activation of myeloid cells.
Collapse
Affiliation(s)
- Anis Hanna
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Arti V Shinde
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
14
|
Nie S, Lu J, Wang L, Gao M. Pro‐inflammatory role of
cell‐free
mitochondrial
DNA
in cardiovascular diseases. IUBMB Life 2020; 72:1879-1890. [PMID: 32656943 DOI: 10.1002/iub.2339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Shu Nie
- Department of PediatricsThe First Hospital of Jilin University Changchun China
| | - Junying Lu
- Department of Intensive Care UnitThe First Hospital of Jilin University Changchun China
| | - Lina Wang
- Department of PediatricsThe First Hospital of Jilin University Changchun China
| | - Man Gao
- Department of PediatricsThe First Hospital of Jilin University Changchun China
| |
Collapse
|
15
|
The Association of rs1898830 in Toll-Like Receptor 2 with Lipids and Blood Pressure. J Cardiovasc Dev Dis 2020; 7:jcdd7030024. [PMID: 32650372 PMCID: PMC7569770 DOI: 10.3390/jcdd7030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Toll-like receptors (TLRs) are important components of the innate immune system, involved in establishing immunity to infections. Apart from being implicated in immunity, numerous studies have reported that many TLRs, including TLR2, are involved in the pathogenesis of cardiovascular diseases and their risk factors. Since rs1898830 is associated with TLR2-mediated cellular activation, we aimed to study its association with CVD risk factors, such as lipid levels and hypertension. METHODS A cross-sectional study was conducted on 460 individuals free from chronic diseases. Clinical and biological data were collected and DNA was extracted and genotyped using Kompetitive allele specific PCR (KASP™). Multiple logistic regression models, adjusted for six covariates, were used. A power calculation analysis was also performed. RESULTS We found that rs1898830 in TLR2 was positively associated with hypertension (OR = 2.18, p = 0.03) and negatively associated with high-density lipoprotein cholesterol (OR = 0.66, p = 0.05). In contrast, no relation was found with total cholesterol and low-density lipoprotein cholesterol. CONCLUSION The present results provide additional evidence supporting the implication of TLR2 in CVD risk factors.
Collapse
|
16
|
de Kleijn DPV, Chong SY, Wang X, Yatim SMJM, Fairhurst AM, Vernooij F, Zharkova O, Chan MY, Foo RSY, Timmers L, Lam CSP, Wang JW. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovasc Res 2020; 115:1791-1803. [PMID: 30830156 DOI: 10.1093/cvr/cvz057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
AIMS The Toll-like receptor 7 (TLR7) is an intracellular innate immune receptor activated by nucleic acids shed from dying cells leading to activation of the innate immune system. Since innate immune system activation is involved in the response to myocardial infarction (MI), this study aims to identify if TLR7 is involved in post-MI ischaemic injury and adverse remodelling after MI. METHODS AND RESULTS TLR7 involvement in MI was investigated in human tissue from patients with ischaemic heart failure, as well as in a mouse model of permanent left anterior descending artery occlusion in C57BL/6J wild type and TLR7 deficient (TLR7-/-) mice. TLR7 expression was up-regulated in human and mouse ischaemic myocardium after MI. Compared to wild type mice, TLR7-/- mice had less acute cardiac rupture associated with blunted activation of matrix metalloproteinase 2, increased expression of tissue inhibitor of metalloproteinase 1, recruitment of more myofibroblasts, and the formation of a myocardial scar with higher collagen fibre density. Furthermore, inflammatory cell influx and inflammatory cytokine expression post-MI were reduced in the TLR7-/- heart. During a 28-day follow-up after MI, TLR7 deficiency resulted in less chronic adverse left ventricular remodelling and better cardiac function. Bone marrow (BM) transplantation experiments showed that TLR7 deficiency in BM-derived cells preserved cardiac function after MI. CONCLUSIONS In acute MI, TLR7 mediates the response to acute cardiac injury and chronic remodelling probably via modulation of post-MI scar formation and BM-derived inflammatory infiltration of the myocardium.
Collapse
Affiliation(s)
- Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Siti Maryam J M Yatim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network (SIgN), A*STAR Research Entities, Singapore, Singapore
| | - Flora Vernooij
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Mark Y Chan
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Roger S Y Foo
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore (NHCS), Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Cardiology, University Medical Center, Groningen, The Netherlands
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Al-Kahiry WMA, Dammag EAM, Abdelsalam HST, Fadlallah HK, Owais MS. Toll-like receptor 9 negatively related to clinical outcome of AML patients. J Egypt Natl Canc Inst 2020; 32:15. [PMID: 32372371 DOI: 10.1186/s43046-020-00027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/17/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) can modulate toll-like receptor-9 (TLR9) expression and activation. This study was conducted to elucidate the expression of TLR9 in AML patients and its relation to the prognosis of the disease. RESULTS The study included 40 newly diagnosed AML patients managed in the hospital in addition to 20 sex and age matched normal volunteers as control. TLR9 expression assay was conducted on peripheral blood samples of AML cases before the start of treatment as well as the controls by immunophenotyping. TLR9 expression was ranging from 0.10 to 2.40% in AML patients with higher expression among the control, ranging from 0.94 to 8.25%. The median TLR9 expression in AML patients was significantly lower with advanced cytogenetic risk score. It is not significantly differing in relation to patients' sex, age group, and FAB type of AML. However, significant lower median expression was found in relation to clinical outcome. TLR9 expression ≤ 1% showed lower median overall survival time when compared to those with > 1% expression. CONCLUSION This study concluded that AML patients express TLR9 in leukemic cells with very low percentage. This expression was negatively related to the clinical outcome.
Collapse
Affiliation(s)
| | | | - Hadeel S T Abdelsalam
- Medical Laboratory Technology Department, Faculty of Allied Medical Sciences, Pharos University, Alexandria, Egypt
| | - Hayat K Fadlallah
- Department of Hematology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona S Owais
- Department of Clinical Pathology, Alexandria University Hospital, Fellow of Clinical Pathology, Alexandria Main University Hospital, Alexandria, Egypt
| |
Collapse
|
18
|
Omiya S, Omori Y, Taneike M, Murakawa T, Ito J, Tanada Y, Nishida K, Yamaguchi O, Satoh T, Shah AM, Akira S, Otsu K. Cytokine mRNA Degradation in Cardiomyocytes Restrains Sterile Inflammation in Pressure-Overloaded Hearts. Circulation 2020; 141:667-677. [PMID: 31931613 PMCID: PMC7034406 DOI: 10.1161/circulationaha.119.044582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Proinflammatory cytokines play an important role in the pathogenesis of heart failure. The mechanisms responsible for maintaining sterile inflammation within failing hearts remain poorly defined. Although transcriptional control is important for proinflammatory cytokine gene expression, the stability of mRNA also contributes to the kinetics of immune responses. Regnase-1 is an RNase involved in the degradation of a set of proinflammatory cytokine mRNAs in immune cells. The role of Regnase-1 in nonimmune cells such as cardiomyocytes remains to be elucidated. METHODS To examine the role of proinflammatory cytokine degradation by Regnase-1 in cardiomyocytes, cardiomyocyte-specific Regnase-1-deficient mice were generated. The mice were subjected to pressure overload by means of transverse aortic constriction to induce heart failure. Cardiac remodeling was assessed by echocardiography as well as histological and molecular analyses 4 weeks after operation. Inflammatory cell infiltration was examined by immunostaining. Interleukin-6 signaling was inhibited by administration with its receptor antibody. Overexpression of Regnase-1 in the heart was performed by adeno-associated viral vector-mediated gene transfer. RESULTS Cardiomyocyte-specific Regnase-1-deficient mice showed no cardiac phenotypes under baseline conditions, but exhibited severe inflammation and dilated cardiomyopathy after 4 weeks of pressure overload compared with control littermates. Four weeks after transverse aortic constriction, the Il6 mRNA level was upregulated, but not other cytokine mRNAs, including tumor necrosis factor-α, in Regnase-1-deficient hearts. Although the Il6 mRNA level increased 1 week after operation in both Regnase-1-deficient and control hearts, it showed no increase in control hearts 4 weeks after operation. Administration of anti-interleukin-6 receptor antibody attenuated the development of inflammation and cardiomyopathy in cardiomyocyte-specific Regnase-1-deficient mice. In severe pressure overloaded wild-type mouse hearts, sustained induction of Il6 mRNA was observed, even though the protein level of Regnase-1 increased. Adeno-associated virus 9-mediated cardiomyocyte-targeted gene delivery of Regnase-1 or administration of anti-interleukin-6 receptor antibody attenuated the development of cardiomyopathy induced by severe pressure overload in wild-type mice. CONCLUSIONS The degradation of cytokine mRNA by Regnase-1 in cardiomyocytes plays an important role in restraining sterile inflammation in failing hearts and the Regnase-1-mediated pathway might be a therapeutic target to treat patients with heart failure.
Collapse
Affiliation(s)
- Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Yosuke Omori
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Yohei Tanada
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan
| | - Takashi Satoh
- Laboratory of Host Defense, Research Institute for Microbial Diseases (T.S., S.A.), Osaka University, Suita, Japan
| | - Ajay M. Shah
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Shizuo Akira
- Laboratory of Host Defense, Research Institute for Microbial Diseases (T.S., S.A.), Osaka University, Suita, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| |
Collapse
|
19
|
TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature 2020; 578:605-609. [PMID: 32051584 PMCID: PMC7047589 DOI: 10.1038/s41586-020-1992-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
The activation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle coordinates systemic metabolic responses to exercise1. Autophagy-a lysosomal degradation pathway that maintains cellular homeostasis2-is upregulated during exercise, and a core autophagy protein, beclin 1, is required for AMPK activation in skeletal muscle3. Here we describe a role for the innate immune-sensing molecule Toll-like receptor 9 (TLR9)4, and its interaction with beclin 1, in exercise-induced activation of AMPK in skeletal muscle. Mice that lack TLR9 are deficient in both exercise-induced activation of AMPK and plasma membrane localization of the GLUT4 glucose transporter in skeletal muscle, but are not deficient in autophagy. TLR9 binds beclin 1, and this interaction is increased by energy stress (glucose starvation and endurance exercise) and decreased by a BCL2 mutation3,5 that blocks the disruption of BCL2-beclin 1 binding. TLR9 regulates the assembly of the endolysosomal phosphatidylinositol 3-kinase complex (PI3KC3-C2)-which contains beclin 1 and UVRAG-in skeletal muscle during exercise, and knockout of beclin 1 or UVRAG inhibits the cellular AMPK activation induced by glucose starvation. Moreover, TLR9 functions in a muscle-autonomous fashion in ex vivo contraction-induced AMPK activation, glucose uptake and beclin 1-UVRAG complex assembly. These findings reveal a heretofore undescribed role for a Toll-like receptor in skeletal-muscle AMPK activation and glucose metabolism during exercise, as well as unexpected crosstalk between this innate immune sensor and autophagy proteins.
Collapse
|
20
|
Zhang S, Jia X, Zhang Q, Zhang L, Yang J, Hu C, Shi J, Jiang X, Lu J, Shen H. Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J Cell Mol Med 2019; 24:1658-1669. [PMID: 31821687 PMCID: PMC6991674 DOI: 10.1111/jcmm.14858] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Excessive neutrophil extracellular trap (NET) formation may contribute to polymyositis (PM)‐associated interstitial lung diseases (ILD), but the underlying mechanism is not fully revealed. In this study, we found that NET accelerated the progression of ILD and promoted pulmonary fibrosis (PF) in vivo. miR‐7 expression was down‐regulated in lung tissue of PM group than control group, and NETs further decreased miR‐7 expression. TLR9 and Smad2 were up‐regulated in lung tissue of PM group than control group, and NETs further increased TLR9 and Smad2 expressions. In vitro experiments showed that PMA‐treated NETs accelerated the proliferation of LF and their differentiation into myofibroblast (MF), whereas DNase I decreased the promotion effect of NETs. Neutrophil extracellular trap components myeloperoxidase (MPO) and histone 3 also promoted the proliferation and differentiation of LF. In addition, we demonstrated that TLR9 involved in the regulation of NETs on LF proliferation and differentiation, and confirmed the interaction between miR‐7 and Smad2 in LF. Finally, miR‐7‐Smad2 pathway was confirmed to be involved in the regulation of TLR9 on LF proliferation and differentiation. Therefore, NETs promote PM‐related ILD, and TLR9‐miR‐7‐Smad2 signalling pathway is involved in the proliferation of LFs and their differentiation into MFs.
Collapse
Affiliation(s)
- Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xueqin Jia
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiuyue Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Yang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Caihong Hu
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou, China
| | - Junnian Shi
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jinyue Lu
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
21
|
Inflammation in acute coronary syndrome: Expression of TLR2 mRNA is increased in platelets of patients with ACS. PLoS One 2019; 14:e0224181. [PMID: 31644579 PMCID: PMC6808418 DOI: 10.1371/journal.pone.0224181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background Platelets are key components in atherogenesis and determine the course of its clinical sequelae acute coronary syndrome (ACS). Components of the innate immune system—the superfamily of TLR receptors–are present in platelets and represent a link between atherothrombosis and inflammation. We hypothesize that alteration in platelet TLR mRNA expression is a result of inflammation driving coronary atherosclerosis and may represent an alternative platelet activation pathway in ACS. TLR2-, TLR4- and TLR9- mRNA-expression was determined in ACS patients and compared to patients with invasive exclusion of atherosclerotic lesions of coronary arteries. Methods A total of fifty-four patients were enrolled in this clinical retrospective cohort single centre study. Total RNA from sepharose-filtered highly purified platelets was isolated using acid guanidinium thiocyanate-phenol-chloroform extraction and transcribed to cDNA using a first strand cDNA synthesis kit. To determine absolute copy numbers of TLR2, TLR4 and TLR9 we used plasmid based quantitative PCR with normalisation to an internal control. Results We found that mRNA expression levels of TLR2 but not TLR 4 and 9 are up-regulated in platelets of patients with ACS when compared to patients without coronary atherosclerosis. Conclusion Our results suggest elevated TLR2 mRNA expression in platelets as a biomarker reflecting the underlying inflammation in ACS and possibly severity of coronary atherosclerosis. Platelet TLR2 may represent a link between inflammation and atherothrombosis in ACS.
Collapse
|
22
|
Nugroho J, Yuniarti WM, Wardhana A, Ghea C. Modification on acute myocardial infarction model through left anterior descending coronary artery ligation: An experimental study on rats ( Rattus norvegicus) using readily available materials. Vet World 2019; 12:1448-1453. [PMID: 31749580 PMCID: PMC6813610 DOI: 10.14202/vetworld.2019.1448-1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIM Several difficulties are involved in creating models for myocardial infarction (MI) in animals, such as low survival rates after acute MI, complicated techniques in creating animal models, complexities in confirming acute MI incidence, and complex surgical tools needed in the process. This study aimed to develop an animal model for acute MI using Wistar rats utilizing simple instruments that are readily available in standard animal laboratories. MATERIALS AND METHODS We induced MI in 48 Wistar rats using the left anterior descending coronary artery ligation modification technique without tracheal incision and ventilator. This ligation technique was performed 1-2 mm distal to the left atrial appendage. MI occurrence was evaluated using heart enzyme parameters 24 h post-ligation and histological studies of the infarcted area 6 weeks after the ligation. Rats were divided into the coronary artery ligation group and sham group. RESULTS Of the 48 rats, 24 (50%) died within 24 h post-ligation, but no further deaths occurred in the next follow-up period of 6 weeks. The average infarct size in six rats within 24 h of ligation was 35%±5.7%. The serum glutamic oxaloacetic transaminase level of the group treated with coronary artery ligation was statistically significantly higher than that of the sham group (p=0.000). CONCLUSION We developed an MI rat model with consistent infarction size, in which the long-term death of rats was not observed. Our ligation technique for an MI rat model can be a reference for experimental settings without ventilators for small animals.
Collapse
Affiliation(s)
- Johanes Nugroho
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Wiwik Misaco Yuniarti
- Department of Veterinary Clinical Science, Faculty of Veterinary, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
23
|
Kitazume-Taneike R, Taneike M, Omiya S, Misaka T, Nishida K, Yamaguchi O, Akira S, Shattock MJ, Sakata Y, Otsu K. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochem Biophys Res Commun 2019; 515:442-447. [PMID: 31160091 PMCID: PMC6590932 DOI: 10.1016/j.bbrc.2019.05.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
Abstract
In myocardial ischemia/reperfusion injury, the innate immune and subsequent inflammatory responses play a crucial role in the extension of myocardial damage. Toll-like receptor 9 (TLR9) is a critical receptor for recognizing unmethylated CpG motifs that mitochondria contain in their DNA, and induces inflammatory responses. The aim of this study was to elucidate the role of TLR9 in myocardial ischemia/reperfusion injury. Isolated hearts from TLR9-deficient and control wild-type mice were subjected to 35 min of global ischemia, followed by 60 min of reperfusion with Langendorff apparatus. Furthermore, wild-type mouse hearts were infused with DNase I and subjected to ischemia/reperfusion. Ablation of TLR9-mediated signaling pathway attenuates myocardial ischemia/reperfusion injury and inflammatory responses, and digestion of extracellular mitochondrial DNA released from the infarct heart partially improved myocardial ischemia/reperfusion injury with no effect on inflammatory responses. TLR9 could be a therapeutic target to reduce myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Rika Kitazume-Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Tomofumi Misaka
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 2nd Fl. IFReC Research Building, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michael J Shattock
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom.
| |
Collapse
|
24
|
Inhibition of TLR9 attenuates skeletal muscle fibrosis in aged sarcopenic mice via the p53/SIRT1 pathway. Exp Gerontol 2019; 122:25-33. [PMID: 31003004 DOI: 10.1016/j.exger.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Sarcopenia is an age-related syndrome characterized by a gradual loss of muscle mass and function, but its pathophysiological mechanism remains unclear. Skeletal muscle extracellular matrix (ECM) remodeling is an important pathological change in sarcopenia, and fibrosis is the most obvious manifestation of this change. We found that the expression of the immunoreceptor Toll-like receptor 9 (TLR9) is significantly increased in skeletal muscle in aged mice and is positively related to muscle fibrosis. Moreover, in previous reports, the longevity gene Sirt1 was reported to attenuate ECM deposition and improve muscle function. In this study, we hypothesized that TLR9 modulated skeletal muscle fibrosis via Sirt1. We used TLR9 knockout (TLR9 KO) mice and C57 mice, and grip strength and body composition were compared at different ages. We found that TLR9 knockout significantly attenuated skeletal muscle fibrosis and improved muscle function in aged mice. Furthermore, silent information regulator 1 (Sirt1) activity in mice was inhibited by Ex527, which is a specific inhibitor of Sirt1. Negative Sirt1 regulation via the activation of TLR9-related signaling pathways participated in skeletal muscle fibrosis in the sarcopenic mice, and this process might mediated by the Sirt1/Smad signaling pathway. Our findings revealed that fibrosis changes in the gastrocnemius muscle in sarcopenic mice are closely related to TLR9 activation, and TLR9 modulation could be a therapeutic strategy for combating sarcopenia during aging.
Collapse
|
25
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
26
|
Qi S, Qian J, Chen F, Zhou P, Yue J, Tang F, Zhang Y, Gong S, Shang G, Cui C, Xu Y. Expression of autophagy‑associated proteins in rat dental irreversible pulpitis. Mol Med Rep 2019; 19:2749-2757. [PMID: 30816453 PMCID: PMC6423575 DOI: 10.3892/mmr.2019.9944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 01/25/2019] [Indexed: 11/23/2022] Open
Abstract
Autophagy serves an important role in numerous diseases, as well as in infection and inflammation. Irreversible pulpitis (IP) is one of the most common inflammatory endodontic diseases, and autophagy has been reported to regulate IP in vitro. However, the level of autophagy in the IP pathogenic process in vivo remains unknown. The aim of the current study was, thus, to investigate the levels of autophagy-associated proteins in rats with IP in vivo. A rat dental IP model was successfully constructed, and five different time points (0, 1, 3, 5 and 7 days) were investigated. The levels of the autophagy-related 5 (ATG5), ATG7, light chain 3 (LC3) and Beclin-1 proteins exhibited a time-dependent increase in rats with IP, whereas the levels of mammalian target of rapamycin and p62/sequestosome 1 were decreased. In addition, the levels of ATG proteins were specifically increased in odontoblasts and microvascular endothelial cells in pulpitis tissue. Based on these findings, autophagy may serve an important role in IP, and the present study data provide a new insight into the IP pathogenesis and treatment.
Collapse
Affiliation(s)
- Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jun Qian
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Peng Zhou
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Yue
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fengqin Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chun Cui
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
27
|
Gao K, Chen JX, Jia CX, Wang JP, Zhang FL, Pang XH, Wang WL, Xu PX. Study on the mechanism of qingre huoxue prescription in the intervention and treatment of acute myocardial infarction based on network pharmacology. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2019. [DOI: 10.4103/wjtcm.wjtcm_15_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Jackson AO, Regine MA, Subrata C, Long S. Molecular mechanisms and genetic regulation in atherosclerosis. IJC HEART & VASCULATURE 2018; 21:36-44. [PMID: 30276232 PMCID: PMC6161413 DOI: 10.1016/j.ijcha.2018.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Atherosclerosis (AS) manifested by lipid accumulation, extracellular matrix protein deposition, and calcification in the intima and media of the large to medium size arteries promoting arterial stiffness and reduction of elasticity. It has been accepted that AS leads to increased morbidity and mortality worldwide. Recent studies indicated that genetic abnormalities play an important role in the development of AS. Specific genetic mutation and histone modification have been found to induce AS formation. Furthermore, specific RNAs such as microRNAs and circular RNAs have been identified to play a crucial role in the progression of AS. Nevertheless, the mechanisms by which genetic mutation, DNA and histone modification, microRNAs and circular RNA induce AS still remain elusive. This review describes specific mechanisms and pathways through which genetic mutation, DNA and histone modification, microRNAs and circular RNA instigate AS. This review further provides a therapeutic strategic direction for the treatment of AS targeting genetic mechanisms. DNA and histone modifications promote transcriptional changes in atherosclerosis. Gene mutations cause dyslipidemia and hyperglycemia to promote atherosclerosis. miRNAs and cirRNA are involved in the development of atherosclerosis. Gene mutations associated oxidative stress and altered inflammatory and nutritive factors promote atherosclerosis.
Collapse
Affiliation(s)
- Ampadu-Okyere Jackson
- Research lab of translational medicine, Medical school, University of South China, Hengyang, Hunan Province 421001, China.,International college, University of South China, Hengyang, Hunan Province 421001, China
| | - Mugwaneza Annick Regine
- Research lab of translational medicine, Medical school, University of South China, Hengyang, Hunan Province 421001, China.,International college, University of South China, Hengyang, Hunan Province 421001, China
| | - Chakrabarti Subrata
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
29
|
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem J 2018; 475:839-852. [PMID: 29511093 PMCID: PMC5840331 DOI: 10.1042/bcj20170714] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection — termed sterile inflammation — is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP–AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases.
Collapse
|
30
|
Fan L, Meng H, Guo X, Li X, Meng F. Differential gene expression profiles in peripheral blood in Northeast Chinese Han people with acute myocardial infarction. Genet Mol Biol 2018; 41:59-66. [PMID: 29658970 PMCID: PMC5901496 DOI: 10.1590/1678-4685-gmb-2017-0075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/08/2017] [Indexed: 11/28/2022] Open
Abstract
This study aimed to use gene chips to investigate differential gene expression
profiles in the occurrence and development of acute myocardial infarction (AMI).
The study included 12 AMI patients and 12 healthy individuals. Total mRNA of
peripheral bloodwas extracted and reversed-transcribed to cDNA for microarray
analysis. After establishing two pools with three subjects each (3 AMI patients
and 3 healthy individuals), the remaining samples were used for RT-qPCR to
confirm the microarray data. From the microarray results, seven genes were
randomly selected for RT-qPCR. RT-qPCR results were analyzed by the
2-ΔΔCt method. Microarray analysis showed that 228 genes were up-
regulated and 271 were down-regulated (p ≤ 0.05, |logFC| >
1). Gene ontology showed that these genes belong to 128 cellular components, 521
biological processes, and 151 molecular functions. KEGG pathway analysis showed
that these genes are involved in 107 gene pathways. RT-qPCR results for the
seven genes showed expression levels consistent with those obtained by
microarray. Thus, microarray data could be used to select the pathogenic genes
for AMI. Investigating the abnormal expression of these differentially expressed
genes might suggest efficient strategies for the prevention, diagnosis, and
treatment of AMI.
Collapse
Affiliation(s)
- Lin Fan
- China-Japan Union Hospital, Jilin University, Jilin, China
| | - Heyu Meng
- Medical College of Yanbian University, Yanji, China
| | - Xudong Guo
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Xiangdong Li
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Fanbo Meng
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
31
|
|
32
|
Cao DJ, Schiattarella GG, Villalobos E, Jiang N, May HI, Li T, Chen ZJ, Gillette TG, Hill JA. Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation 2018; 137:2613-2634. [PMID: 29437120 DOI: 10.1161/circulationaha.117.031046] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Myocardium irreversibly injured by ischemic stress must be efficiently repaired to maintain tissue integrity and contractile performance. Macrophages play critical roles in this process. These cells transform across a spectrum of phenotypes to accomplish diverse functions ranging from mediating the initial inflammatory responses that clear damaged tissue to subsequent reparative functions that help rebuild replacement tissue. Although macrophage transformation is crucial to myocardial repair, events governing this transformation are poorly understood. METHODS Here, we set out to determine whether innate immune responses triggered by cytoplasmic DNA play a role. RESULTS We report that ischemic myocardial injury, along with the resulting release of nucleic acids, activates the recently described cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Animals lacking cyclic GMP-AMP synthase display significantly improved early survival after myocardial infarction and diminished pathological remodeling, including ventricular rupture, enhanced angiogenesis, and preserved ventricular contractile function. Furthermore, cyclic GMP-AMP synthase loss of function abolishes the induction of key inflammatory programs such as inducible nitric oxide synthase and promotes the transformation of macrophages to a reparative phenotype, which results in enhanced repair and improved hemodynamic performance. CONCLUSIONS These results reveal, for the first time, that the cytosolic DNA receptor cyclic GMP-AMP synthase functions during cardiac ischemia as a pattern recognition receptor in the sterile immune response. Furthermore, we report that this pathway governs macrophage transformation, thereby regulating postinjury cardiac repair. Because modulators of this pathway are currently in clinical use, our findings raise the prospect of new treatment options to combat ischemic heart disease and its progression to heart failure.
Collapse
Affiliation(s)
- Dian J Cao
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.) .,VA North Texas Health System (D.C.)
| | - Gabriele G Schiattarella
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Elisa Villalobos
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Nan Jiang
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Herman I May
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Tuo Li
- Molecular Biology (T.L., Z.J.C., J.A.H.)
| | - Zhijian J Chen
- Molecular Biology (T.L., Z.J.C., J.A.H.).,Howard Hughes Medical Institute (Z.J.C.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Joseph A Hill
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.) .,Molecular Biology (T.L., Z.J.C., J.A.H.)
| |
Collapse
|
33
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
34
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
35
|
Ye L, Feng Z, Doycheva D, Malaguit J, Dixon B, Xu N, Zhang JH, Tang J. CpG-ODN exerts a neuroprotective effect via the TLR9/pAMPK signaling pathway by activation of autophagy in a neonatal HIE rat model. Exp Neurol 2017; 301:70-80. [PMID: 29274721 DOI: 10.1016/j.expneurol.2017.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
Hypoxic Ischemic Encephalopathy (HIE) is an injury caused to the brain due to prolonged lack of oxygen and blood supply which results in death or long-term disabilities. The main aim of this study was to investigate the role of Cytosine-phospho-guanine oligodeoxynucleotide (CpG-ODN) in autophagy after HIE. Ten-day old (P10) rat pups underwent right common carotid artery ligation followed by 2.5h of hypoxia as previously described by Rice-Vannucci. At 1h post HIE, rats were intranasally administered with recombinant CpG-ODN. Time-course expression levels of endogenous key proteins, TLR9, pAMPK/AMPK, LC3II/I, and LAMP1 involved in CpG-ODN's protective effects were measured using western blot. Short (48h) and long (4w) term neurobehavior studies were performed using righting reflex, negative geotaxis, water maze, foot fault and Rota rod tests. Brain samples were collected after long term for histological analysis. Furthermore, to elucidate the pathway via which CpG-ODN confers protection, TLR9 and AMPK inhibitors were used. Time course results showed that the expression of TLR9, pAMPK/AMPK, LC3II/I, LAMP1 increased after HIE. Neurobehavioral studies showed that HIE induced a significant delay in development and resulted in cognitive and motor function deficits. However, CpG-ODN ameliorated HIE-induced outcomes and improved long term neurological deficits. In addition, CpG-ODN increased expression of pAMPK/AMPK, p-ULK1/ULK1, P-AMBRA1/AMBRA1, LC3II/I and LAMP1 while inhibition of TLR9 and AMPK reversed those effects. In summary, CpG-ODN increased HIE-induced autophagy and improved short and long term neurobehavioral outcomes which may be mediated by the TLR9/pAMPK signaling pathway after HIE.
Collapse
Affiliation(s)
- Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, Guizhou Medical University, Guiyang 550004, China; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Desislava Doycheva
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States.
| | - Jay Malaguit
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Brandon Dixon
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States.
| | - Ningbo Xu
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - John H Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Jiping Tang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States.
| |
Collapse
|
36
|
Misaka T, Murakawa T, Nishida K, Omori Y, Taneike M, Omiya S, Molenaar C, Uno Y, Yamaguchi O, Takeda J, Shah AM, Otsu K. FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. J Mol Cell Cardiol 2017; 114:93-104. [PMID: 29129702 PMCID: PMC5807029 DOI: 10.1016/j.yjmcc.2017.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Protein quality control in cardiomyocytes is crucial to maintain cellular homeostasis. The accumulation of damaged organelles, such as mitochondria and misfolded proteins in the heart is associated with heart failure. During the process to identify novel mitochondria-specific autophagy (mitophagy) receptors, we found FK506-binding protein 8 (FKBP8), also known as FKBP38, shares similar structural characteristics with a yeast mitophagy receptor, autophagy-related 32 protein. However, knockdown of FKBP8 had no effect on mitophagy in HEK293 cells or H9c2 myocytes. Since the role of FKBP8 in the heart has not been fully elucidated, the aim of this study is to determine the functional role of FKBP8 in the heart. Cardiac-specific FKBP8-deficient (Fkbp8-/-) mice were generated. Fkbp8-/- mice showed no cardiac phenotypes under baseline conditions. The Fkbp8-/- and control wild type littermates (Fkbp8+/+) mice were subjected to pressure overload by means of transverse aortic constriction (TAC). Fkbp8-/- mice showed left ventricular dysfunction and chamber dilatation with lung congestion 1week after TAC. The number of apoptotic cardiomyocytes was dramatically elevated in TAC-operated Fkbp8-/- hearts, accompanied with an increase in protein levels of cleaved caspase-12 and endoplasmic reticulum (ER) stress markers. Caspase-12 inhibition resulted in the attenuation of hydrogen peroxide-induced apoptotic cell death in FKBP8 knockdown H9c2 myocytes. Immunocytological and immunoprecipitation analyses indicate that FKBP8 is localized to the ER and mitochondria in the isolated cardiomyocytes, interacting with heat shock protein 90. Furthermore, there was accumulation of misfolded protein aggregates in FKBP8 knockdown H9c2 myocytes and electron dense deposits in perinuclear region in TAC-operated Fkbp8-/- hearts. The data suggest that FKBP8 plays a protective role against hemodynamic stress in the heart mediated via inhibition of the accumulation of misfolded proteins and ER-associated apoptosis.
Collapse
Affiliation(s)
- Tomofumi Misaka
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Yosuke Omori
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Chris Molenaar
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Yoshihiro Uno
- Developmental Biology, Laboratory Animal Science, The Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Ajay M Shah
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK.
| |
Collapse
|
37
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
38
|
Abstract
In most patients with chronic heart failure (HF), levels of circulating cytokines are elevated and the elevated cytokine levels correlate with the severity of HF and prognosis. Various stresses induce subcellular component abnormalities, such as mitochondrial damage. Damaged mitochondria induce accumulation of reactive oxygen species and apoptogenic proteins, and subcellular inflammation. The vicious cycle of subcellular component abnormalities, inflammatory cell infiltration and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in cardiac dysfunction and HF. Quality control mechanisms at both the protein and organelle levels, such as elimination of apoptogenic proteins and damaged mitochondria, maintain cellular homeostasis. An imbalance between protein synthesis and degradation is likely to result in cellular dysfunction and disease. Three major protein degradation systems have been identified, namely the cysteine protease system, autophagy, and the ubiquitin proteasome system. Autophagy was initially believed to be a non-selective process. However, recent studies have described the process of selective mitochondrial autophagy, known as mitophagy. Elimination of damaged mitochondria by autophagy is important for maintenance of cellular homeostasis. DNA and RNA degradation systems also play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and post-transcriptional regulation, respectively. This review discusses some recent advances in understanding the role of sterile inflammation and degradation systems in HF.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence
| |
Collapse
|