1
|
Wu XF, Xu Q, Wang A, Wang BZ, Lan XY, Li WY, Liu Y. Relationship between Indel Variants within the JAK2 Gene and Growth Traits in Goats. Animals (Basel) 2024; 14:1994. [PMID: 38998106 PMCID: PMC11240706 DOI: 10.3390/ani14131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ao Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ben-Zhi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-Yang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
2
|
Perales S, Sigamani V, Rajasingh S, Gurusamy N, Bittel D, Czirok A, Radic M, Rajasingh J. scaRNA20 promotes pseudouridylatory modification of small nuclear snRNA U12 and improves cardiomyogenesis. Exp Cell Res 2024; 436:113961. [PMID: 38341080 PMCID: PMC10964393 DOI: 10.1016/j.yexcr.2024.113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Non-coding RNAs, particularly small Cajal-body associated RNAs (scaRNAs), play a significant role in spliceosomal RNA modifications. While their involvement in ischemic myocardium regeneration is known, their role in cardiac development is unexplored. We investigated scaRNA20's role in iPSC differentiation into cardiomyocytes (iCMCs) via overexpression and knockdown assays. We measured scaRNA20-OE-iCMCs and scaRNA20-KD-iCMCs contractility using Particle Image Velocimetry (PIV), comparing them to control iCMCs. We explored scaRNA20's impact on alternative splicing via pseudouridylation (Ψ) of snRNA U12, analyzing its functional consequences in cardiac differentiation. scaRNA20-OE-iPSC differentiation increased beating colonies, upregulated cardiac-specific genes, activated TP53 and STAT3, and preserved contractility under hypoxia. Conversely, scaRNA20-KD-iCMCs exhibited poor differentiation and contractility. STAT3 inhibition in scaRNA20-OE-iPSCs hindered cardiac differentiation. RNA immunoprecipitation revealed increased Ψ at the 28th uridine of U12 RNA in scaRNA20-OE iCMCs. U12-KD iCMCs had reduced cardiac differentiation, which improved upon U12 RNA introduction. In summary, scaRNA20-OE in iPSCs enhances cardiomyogenesis, preserves iCMC function under hypoxia, and may have implications for ischemic myocardium regeneration.
Collapse
Affiliation(s)
- Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Bittel
- Department of Biosciences, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marko Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Kaur H, Sarmah D, Datta A, Borah A, Yavagal DR, Bhattacharya P. Stem cells alleviate OGD/R mediated stress response in PC12 cells following a co-culture: modulation of the apoptotic cascade through BDNF-TrkB signaling. Cell Stress Chaperones 2023; 28:1041-1051. [PMID: 36622548 PMCID: PMC10746664 DOI: 10.1007/s12192-022-01319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Apoptosis mediated by endoplasmic reticulum (ER) stress plays a crucial role in several neurovascular disorders, including ischemia/reperfusion injury (I/R injury). Previous in vitro and in vivo studies have suggested that following I/R injury, ER stress is vital for mediating CCAT-enhancer-binding protein homologous protein (CHOP) and caspase-12-dependent apoptosis. However, its modulation in the presence of stem cells and the underlying mechanism of cytoprotection remains elusive. In vivo studies from our lab have reported that post-stroke endovascular administration of stem cells renders neuroprotection and regulates apoptosis mediated by ER stress. In the current study, a more robust in vitro validation has been undertaken to decipher the mechanism of stem cell-mediated cytoprotection. Results from our study have shown that oxygen-glucose deprivation/reoxygenation (OGD/R) potentiated ER stress and apoptosis in the pheochromocytoma 12 (PC12) cell line as evident by the increase of protein kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic initiation factor 2α subunit (EIF2α), activation transcription factor 4 (ATF4), CHOP, and caspase 12 expressions. Following the co-culture of PC12 cells with MSCs, ER stress was significantly reduced, possibly via modulating the brain-derived neurotrophic factor (BDNF) signaling. Furthermore, inhibition of BDNF by inhibitor K252a abolished the protective effects of BDNF secreted by MSCs following OGD/R. Our study suggests that inhibition of ER stress-associated apoptotic pathway with MSCs co-culture following OGD/R may help to alleviate cellular injury and further substantiate the use of stem cells as a therapeutic modality toward neuroprotection following hypoxic injury or stroke in clinical settings.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Li X, Hu R, Wang H, Xu W. SOCS3 Silencing Promotes Activation of Vocal Fold Fibroblasts via JAK2/STAT3 Signaling Pathway. Inflammation 2023:10.1007/s10753-023-01810-9. [PMID: 37154979 DOI: 10.1007/s10753-023-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a negative regulatory protein that has been identified as a key inhibitory regulator of JAK/STAT signaling pathway. However, the mutual regulatory relationship between SOCS3 and JAK2/STAT3 signaling pathway after vocal fold injury remains unclear. In this study, we used small interfering RNA (siRNA) to investigate the mechanism of SOCS3 regulating of fibroblasts through JAK2/STAT3 signaling pathway after vocal fold injury. Our data shows that SOCS3 silencing promotes the transformation of normal vocal fold fibroblasts (VFFs) into an fibrotic phenotype and activates the JAK2/STAT3 signaling pathway. JAK2 silencing significantly inhibits the increase in type I collagen and α-smooth muscle actin (α-SMA) secretion in VFFs induced by TGF-β but has no significant effect on normal VFFs. The silencing of SOCS3 and JAK2 reverses the fibrotic phenotype of VFFs induced by SOCS3 silencing. Therefore, we suggest that SOCS3 can affect the activation of vocal fold fibroblasts by regulating the JAK2/STAT3 signaling pathway after vocal fold injury. It provides a new insight for promoting the repair of vocal fold injury and preventing the formation of fibrosis.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Rong Hu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China.
| |
Collapse
|
5
|
Effect of SOCS3 on vocal fold fibroblast activation by regulating the JAK2/STAT3 signalling pathway. Tissue Cell 2022; 79:101965. [DOI: 10.1016/j.tice.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2022]
|
6
|
Mahapatra S, Sharma MVR, Brownson B, Gallicano VE, Gallicano GI. Cardiac inducing colonies halt fibroblast activation and induce cardiac/endothelial cells to move and expand via paracrine signaling. Mol Biol Cell 2022; 33:ar96. [PMID: 35653297 DOI: 10.1091/mbc.e22-02-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myocardial fibrosis (MF), a common event that develops after myocardial infarction, initially is a reparative process but eventually leads to heart failure and sudden cardiac arrest. In MF, the infarct area is replaced by a collagenous-based scar induced by "excessive" collagen deposition from activated cardiac fibroblasts. The scar prevents ventricular wall thinning; however, over time it expands to noninfarcted myocardium. Therapies to prevent fibrosis include reperfusion, anti-fibrotic agents, and ACE inhibitors. Paracrine factor (PF)/stem cell research has recently gained significance as a therapy. We consistently find that cardiac inducing colonies (CiCs) (derived from human germline pluripotent stem cells) secrete PFs at physiologically relevant concentrations that suppress cardiac fibroblast activation and excessive extracellular matrix protein secretion. These factors also affect human cardiomyocytes and endothelial cells by inducing migration/proliferation of both populations into a myocardial wound model. Finally, CiC factors modulate matrix turnover and proinflammation. Taking the results together, we show that CiCs could help tip the balance from fibrosis toward repair.
Collapse
Affiliation(s)
- Samiksha Mahapatra
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| | | | - Breanna Brownson
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Rye High School, Rye, NY 10580
| | - Vaughn E Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Thomas Edison High School, Alexandria, VA 22310
| | - G Ian Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| |
Collapse
|
7
|
Yeung CK, Yan Y, Yan L, Duan Y, Li E, Huang B, Lu K, Li K, Zhou M, Zhang L, Wu Y, Luo KQ, Ji W, Xu RH, Si W. Preclinical safety evaluation and tracing of human mesenchymal stromal cell spheroids following intravenous injection into cynomolgus monkeys. Biomaterials 2022; 289:121759. [DOI: 10.1016/j.biomaterials.2022.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
8
|
Fadoul R, Haj Khalil T, Redenski I, Oren D, Zigron A, Sharon A, Dror AA, Falah M, Srouji S. The Modulatory Effect of Adipose-Derived Stem Cells on Endometrial Polyp Fibroblasts. Stem Cells Dev 2022; 31:311-321. [PMID: 35438525 DOI: 10.1089/scd.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endometrial polyps (EPs) are benign overgrowths of the endometrium, with the potential to cause severe complications, ranging from discomfort to inflammation and infertility. Dysfunction of endometrial fibroblasts may be a critical component leading to the development of polyps. While surgical intervention is the common remedy for severe cases, it comes with drawbacks, including infection, bleeding, and risk of damage to the cervix and adjacent tissues. Adipose-derived mesenchymal stromal cells (ASCs) are at the focus of modern medicine, as key modulators of tissue homeostasis, inflammation and tissue repair, rendering them prime candidate agents for tissue regeneration and cell-based therapies. In the current work, endometrial polyps were isolated from patients admitted to the OB/GYN department at the Galilee Medical Center and extracted fibroblasts (EPFs) were isolated and characterized. ASCs were isolated from healthy patients. The effect of EPF- and ASC-conditioned media (CM) on polyp-derived fibroblasts was evaluated, in both 2D and 3D assays, as well as on the expression of matrix-related gene expression. Herein, EPFs exposed to ASC-CM exhibited reduced migration, invasion, contraction of hydrogels, and extracellular matrix deposition, compared to those exposed to EPF-CM. Altogether, the current work suggests that ASCs may have a modulating effect on fibroblasts involved in forming endometrial polyps and may serve as the basis for conservative treatment strategies aimed at treating severe cases of EPs.
Collapse
Affiliation(s)
- Reema Fadoul
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Tharwat Haj Khalil
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Idan Redenski
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Daniel Oren
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Asaf Zigron
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| | - Avishalom Sharon
- Galilee Medical Center, 61255, Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Israel , Nahariya, North, Israel;
| | - Amiel A Dror
- Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel.,Galilee Medical Center, 61255, Department of Otolaryngology - Head and Neck Surgery, Nahariya, Israel;
| | - Mizied Falah
- Holy family hospital, Institute for Medical Research, Nazareth, Israel;
| | - Samer Srouji
- Galilee Medical Center, 61255, Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Nahariya, Israel.,Bar-Ilan University, 26731, The Azrieli Faculty of Medicine, Safed, Israel;
| |
Collapse
|
9
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
10
|
Schulman CI, Namias N, Pizano L, Rodriguez-Menocal L, Aickara D, Guzman W, Candanedo A, Maranda E, Beirn A, Badiavas EV. The effect of mesenchymal stem cells improves the healing of burn wounds: a phase 1 dose-escalation clinical trial. Scars Burn Heal 2022; 8:20595131211070783. [PMID: 35781931 PMCID: PMC9247372 DOI: 10.1177/20595131211070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Stem cell therapy holds promise to improve healing and stimulate tissue
regeneration after burn injury. Preclinical evidence has supported this;
however, clinical studies are lacking. We examined the application of bone
marrow-derived mesenchymal stem cells (BM-MSC) to deep second-degree burn
injuries using a two-dose escalation protocol. Methods Ten individuals aged 18 years or older with deep second-degree burn wounds
were enrolled. The first five patients were administered 2.5 × 10³
BM-MSC/cm2 to their wounds. After safety of the initial dose
level was assessed, a second group of five patients was treated with a
higher concentration of 5 × 10³ allogeneic BM-MSC/cm2. Safety was
assessed clinically and by evaluating cytokine levels in mixed recipient
lymphocyte/donor BM-MSC reactions (INFγ, IL-10 and TNFα). At each visit, we
performed wound measurements and assessed wounds using a Patient and
Observer Scar Assessment Scale (POSAS). Results All patients responded well to treatment, with 100% closure of wounds and
minimal clinical evidence of fibrosis. No adverse reactions or evidence of
rejection were observed for both dose levels. Patients receiving the first
dose concentration had a wound closure rate of 3.64 cm2/day.
Patients receiving the second dose concentration demonstrated a wound
closure rate of 10.47 cm2/day. The difference in healing rates
between the two groups was not found to be statistically significant
(P = 0.17). Conclusion BM-MSC appear beneficial in optimising wound healing in patients with deep
second-degree burn wounds. Adverse outcomes were not observed when
administering multiple doses of allogeneic BM-MSC. Lay Summary Thermal injuries are a significant source of morbidity and mortality,
constituting 5%–20% of all injuries and 4% of all deaths. Despite overall
improvements in the management of acutely burned patients, morbidities
associated with deeper burn injuries remain commonplace. Burn patients are
too often left with significant tissue loss, scarring and contractions
leading to physical loss of function and long-lasting psychological and
emotional impacts. In previous studies, we have demonstrated the safety and efficacy of
administering bone marrow-derived mesenchymal stem cells (BM-MSC) to chronic
wounds with substantial improvement in healing and evidence of tissue
regeneration. In this report, we have examined the application of BM-MSC to
deep second-degree burn injuries in patients. The aim of the present phase I/II clinical trial was to examine the safety
and efficacy of administering allogeneic BM-MSC to deep second-degree burns.
We utilised two different dose levels at concentrations 2.5 × 103
and 5 × 103 cells/cm2. Patients with deep
second-degree burn wounds up to 20% of the total body surface area were
eligible for treatment. Allogeneic BM-MSC were applied to burn wounds
topically or by injection under transparent film dressing <7 days after
injury. Patients were followed for at least six months after treatment. Using two dose levels allowed us to gain preliminary information as to
whether different amounts of BM-MSC administered to burn wounds will result
in significant differences in safety/ clinical response. Once the safety and
dose-response analysis were completed, we evaluated the efficacy of
allogeneic stem cell therapy in the treatment of deep second-degree burn
wounds. In this study, we examined the role of allogeneic BM-MSC treatment in
patients with deep second-degree burn injuries, in a dose-dependent manner.
No significant related adverse events were reported. Safety was evaluated
both clinically and by laboratory-based methods. Efficacy was assessed
clinically through evidence of re-pigmentation, hair follicle restoration
and regenerative change. While these findings are encouraging, more studies
will be needed to better establish the benefit of BM-MSC in the treatment of
burn injuries.
Collapse
Affiliation(s)
- Carl I Schulman
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Nicholas Namias
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Louis Pizano
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Luis Rodriguez-Menocal
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Divya Aickara
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Wellington Guzman
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Ambar Candanedo
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Eric Maranda
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Audrey Beirn
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Evangelos V Badiavas
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| |
Collapse
|
11
|
Notch signaling-modified mesenchymal stem cells improve tissue perfusion by induction of arteriogenesis in a rat hindlimb ischemia model. Sci Rep 2021; 11:2543. [PMID: 33510394 PMCID: PMC7844258 DOI: 10.1038/s41598-021-82284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/15/2021] [Indexed: 01/27/2023] Open
Abstract
Notch signaling-modified human mesenchymal stem cell, SB623 cell, is a promising cell therapy product for ischemic stroke. With the aim to expand indications for their use for critical limb-threatening ischemia (CLTI), we hypothesized that SB623 cells improved tissue perfusion by inducing angiogenesis or arteriogenesis in a hindlimb ischemia model rat. In Sprague–Dawley rats, hindlimb ischemia was generated by femoral artery removal, then seven days after ischemic induction 1 × 105 SB623 cells or PBS was injected into the ischemic adductor muscle. As compared with the PBS group, tissue perfusion was significantly increased in the SB623 group. While capillary density did not vary between the groups, αSMA- and vWF-positive arterioles with a diameter > 15 μm were significantly increased in the SB623 group. Whole transcriptome analysis of endothelial cells co-cultured with SB623 cells showed upregulation of the Notch signaling pathway as well as several other pathways potentially leading to arteriogenesis. Furthermore, rat muscle treated with SB623 cells showed a trend for higher ephrin-B2 and significantly higher EphB4 expression, which are known as arteriogenic markers. In the hindlimb ischemia model, SB623 cells improved tissue perfusion by inducing arteriogenesis, suggesting a promising cell source for treatment of CLTI.
Collapse
|
12
|
Li C, Naveed M, Dar K, Liu Z, Baig MMFA, Lv R, Saeed M, Dingding C, Feng Y, Xiaohui Z. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. J Drug Target 2020; 29:235-248. [PMID: 32933319 DOI: 10.1080/1061186x.2020.1818761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most commonly used administration methods in clinics and life are oral administration, intravenous injection, and other systemic administration methods. Targeted administration must be an essential long-term development direction due to the limited availability and a high incidence of systemic side effects. Cardiovascular diseases (CVD) are the leading cause of death all over the world. Targeted drug delivery (TDD) methods with the heart as the target organ have developed rapidly and are diversified. This article reviews the research progress of various TDD methods around the world with a heart as the target organ. It is mainly divided into two parts: the targeting vector represented by nanoparticles and various TDD methods such as intracoronary injection, ventricular wall injection, pericardial injection, and implantable medical device therapy and put forward some suggestions on the development of targeting. Different TDD methods described in this paper have not been widely used in clinical practice, and some have not even completed preclinical studies. Targeted drug delivery still requires long-term efforts by many researchers to realize the true meaning of the heart. HIGHLIGHTS Targeted administration can achieve a better therapeutic effect and effectively reduce the occurrence of adverse reactions. Parenteral administration or medical device implantation can be used for targeted drug delivery. Combined with new dosage forms or new technologies, better-targeted therapy can be achieved. Clinical trials have confirmed the safety and effectiveness of several administration methods.
Collapse
Affiliation(s)
- Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,School of Pharmacy, Nanjing Medical University, Nanjing, P. R. China
| | - Kashif Dar
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China
| | - Rundong Lv
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chen Dingding
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, P. R. China.,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, P. R. China
| |
Collapse
|
13
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
14
|
The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:175-193. [PMID: 31898787 DOI: 10.1007/978-3-030-31206-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells act in a paracrine manner through the secretion of biologically active cargo that acts on cells locally and systemically. These active molecules include not only soluble factors but also extracellular vesicles (EVs) that have recently emerged as a mechanism of cell-to-cell communication. EVs act as vehicles that transfer molecules between originator and recipient cells, thereby modifying the phenotype and function of the latter. As EVs released from stem cells may successfully activate regenerative processes in injured cells, their application as a form of therapy can be envisaged. EVs exert these proregenerative effects through the modulation of relevant cellular processes including proliferation, angiogenesis, oxidative stress, inflammation, and immunotolerance, among others. In this chapter, we review the preclinical studies that report the effect of stem cell-derived EVs in various pathological models of human disease.
Collapse
|
15
|
Islam MR, Choi S, Muthamilselvan T, Shin K, Hwang I. In Vivo Removal of N-Terminal Fusion Domains From Recombinant Target Proteins Produced in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2020; 11:440. [PMID: 32328082 PMCID: PMC7160244 DOI: 10.3389/fpls.2020.00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/25/2020] [Indexed: 05/22/2023]
Abstract
Plants show great potential for producing recombinant proteins in a cost-effective manner. Many strategies have therefore been employed to express high levels of recombinant proteins in plants. Although foreign domains are fused to target proteins for high expression or as an affinity tag for purification, the retention of foreign domains on a target protein may be undesirable, especially for biomedical purposes. Thus, their removal is often crucial at a certain time point after translation. Here, we developed a new strategy to produce target proteins without foreign domains. This involved in vivo removal of foreign domains fused to the N-terminus by the small ubiquitin-related modifier (SUMO) domain/SUMO-specific protease system. This strategy was tested successfully by generating a recombinant gene, BiP:p38:bdSUMO : His:hLIF, that produced human leukemia inhibitory factor (hLIF) fused to p38, a coat protein of the Turnip crinkle virus; the inclusion of p38 increased levels of protein expression. The recombinant protein was expressed at high levels in the leaf tissue of Nicotiana benthamiana. Coexpression of bdSENP1, a SUMO-specific protease, proteolytically released His:hLIF from the full-length recombinant protein in the endoplasmic reticulum of N. benthamiana leaf cells. His:hLIF was purified from leaf extracts via Ni2+-NTA affinity purification resulting in a yield of 32.49 mg/kg, and the N-terminal 5-residues were verified by amino acid sequencing. Plant-produced His:hLIF was able to maintain the pluripotency of mouse embryonic stem cells. This technique thus provides a novel method of removing foreign domains from a target protein in planta.
Collapse
Affiliation(s)
- Md Reyazul Islam
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Seoyoung Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South, Korea
| | - Thangarasu Muthamilselvan
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Kunyoo Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South, Korea
- *Correspondence: Inhwan Hwang,
| |
Collapse
|
16
|
Saheli M, Bayat M, Ganji R, Hendudari F, Kheirjou R, Pakzad M, Najar B, Piryaei A. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Arch Dermatol Res 2019; 312:325-336. [DOI: 10.1007/s00403-019-02016-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023]
|
17
|
Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts. J Clin Med 2019; 8:jcm8101602. [PMID: 31623330 PMCID: PMC6832897 DOI: 10.3390/jcm8101602] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The repair of bone defects caused by trauma, infection or tumor resection is a major clinical orthopedic challenge. The application of bone grafts in orthopedic procedures is associated with a problem of inadequate vascularization in the initial phase after implantation. Meanwhile, the survival of cells within the implanted graft and its integration with the host tissue is strongly dependent on nutrient and gaseous exchange, as well as waste product removal, which are effectuated by blood microcirculation. In the bone tissue, the vasculature also delivers the calcium and phosphate indispensable for the mineralization process. The critical role of vascularization for bone healing and function, led the researchers to the idea of generating a capillary-like network within the bone graft in vitro, which could allow increasing the cell survival and graft integration with a host tissue. New strategies for engineering pre-vascularized bone grafts, that apply the co-culture of endothelial and bone-forming cells, have recently gained interest. However, engineering of metabolically active graft, containing two types of cells requires deep understanding of the underlying mechanisms of interaction between these cells. The present review focuses on the best-characterized endothelial cells-human umbilical vein endothelial cells (HUVECs)-attempting to estimate whether the co-culture approach, using these cells, could bring us closer to development and possible clinical application of prevascularized bone grafts.
Collapse
|
18
|
Moresi V, Adamo S, Berghella L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front Physiol 2019; 10:500. [PMID: 31114509 PMCID: PMC6502894 DOI: 10.3389/fphys.2019.00500] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.
Collapse
Affiliation(s)
- Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Libera Berghella
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
19
|
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Chuang CH, Lin PC, Lin SZ. Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats. Redox Biol 2019; 27:101170. [PMID: 31164286 PMCID: PMC6859583 DOI: 10.1016/j.redox.2019.101170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Left ventricular hypertrophy (LVH) in hypertension has prognostic significance on cardiovascular mortality and morbidity. Recently, we have shown that n-butylidenephthalide (BP) improves human adipose-derived stem cell (hADSC) engraftment via attenuated reactive oxygen species (ROS) production. This prompted us to investigate whether remote transplantation of BP-pretreated hADSCs confers attenuated LVH at an established phase of hypertension. Male spontaneously hypertensive rats (SHRs) aged 12 weeks were randomly allocated to receive right hamstring injection of vehicle, clinical-grade hADSCs, and BP-preconditioned hADSCs for 8 weeks. As compared with untreated SHRs, naïve hADSCs decreased the ratio of LV weight to tibia, cardiomyocyte cell size, and collagen deposition independent of hemodynamic changes. These changes were accompanied by attenuated myocardial ROS production and increased p-STAT3 levels. Compared with naïve hADSCs, BP-preconditioned hADSCs provided a further decrease of ROS and LVH and an increase of local hADSC engraftment, STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels, and the percentage of M2 macrophage infiltration. SIN-1 or S3I-201 reversed the effects of BP-preconditioned ADSCs increase on myocardial IL-10 levels. Furthermore, SIN-1 abolished the phosphorylation of STAT3, whereas superoxide levels were not affected following the inhibition of STAT3. Our results highlighted the feasibility of remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy even at an established phase of hypertension. BP-pretreated hADSCs polarize macrophages into M2 immunoregulatory cells more efficiently than naïve hADSCs via ROS/STAT3 pathway. Hypertension was associated with left ventricular hypertrophy. Compared with untreated SHRs, naïve hADSCs injected at the right hamstring decreased LV mass and cardiomyocyte cell size. BP-preconditioned ADSCs provided a further increase of the M2 macrophage infiltration. The beneficial effects of BP-preconditioned stem cell administration can be abolished by exogenous SIN-1 or 3SI-201. Remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hua University, Hsinchu, Taiwan; Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Taiwan.
| |
Collapse
|
20
|
Pilny E, Smolarczyk R, Jarosz-Biej M, Hadyk A, Skorupa A, Ciszek M, Krakowczyk Ł, Kułach N, Gillner D, Sokół M, Szala S, Cichoń T. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue. Stem Cell Res Ther 2019; 10:93. [PMID: 30867059 PMCID: PMC6417195 DOI: 10.1186/s13287-019-1188-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stromal cells (ADSCs) are multipotent stromal cells. The cells secrete a number of cytokines and growth factors and show immunoregulatory and proangiogenic properties. Their properties may be used to repair damaged tissues. The aim of our work is to explain the muscle damage repair mechanism with the utilization of the human adipose-derived mesenchymal stromal cells (hADSCs). METHODS For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hind limb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6NCrl and NOD SCID mice. The mice received PBS- (controls) or 1 × 106 hADSCs. One, 3, 7, 14 and 21 days after the surgery, we collected the gastrocnemius muscles for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS The retention time of hADSCs in the limb lasted about 14 days. In the mice receiving hADSCs, the improvement in the functionality of the damaged limb occurred faster than in the control mice. More new blood vessels were formed in the limbs of the mice receiving hADSCs than in limbs of the control mice. hADSCs also increased the infiltration of the macrophages with the M2 phenotype (7-AAD-/CD45+/F4/80+/CD206+) into the ischemic limbs. hADSCs introduced into the limb of mice secreted interleukin-6. This cytokine stimulates the emergence of the proangiogenic M2 macrophages, involved, among others, in the repair of a damaged tissue. Both macrophage depletion and IL-6 blockage suppressed the therapeutic effect of hADSCs. In the mice treated with hADSCs and liposomes with clodronate (macrophages depletion), the number of capillaries formed was lower than in the mice treated with hADSCs alone. Administration of hADSCs to the mice that received siltuximab (human IL-6 blocker) did not cause an influx of the M2 macrophages, and the number of capillaries formed was at the level of the control group, as in contrast to the mice that received only the hADSCs. CONCLUSIONS The proposed mechanism for the repair of the damaged muscle using hADSCs is based on the activity of IL-6. In our opinion, the cytokine, secreted by the hADSCs, stimulates the M2 macrophages responsible for repairing damaged muscle and forming new blood vessels.
Collapse
Affiliation(s)
- Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland.,Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Księdza Marcina Strzody 9 Street, 44-100, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Alina Hadyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Agnieszka Skorupa
- Department of Medical Physics Maria Sklodowska-Curie Institute -Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Mateusz Ciszek
- Department of Medical Physics Maria Sklodowska-Curie Institute -Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Sklodowska-Curie Institute -Oncology Center, Wybrzeże Armii Krajowej 15 Street, 44-101 Gliwice Branch, Gliwice, Poland
| | - Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland.,Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 12 Street, 40-007, Katowice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Księdza Marcina Strzody 9 Street, 44-100, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics Maria Sklodowska-Curie Institute -Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland.
| |
Collapse
|
21
|
ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling. Gene Ther 2019; 26:165-176. [PMID: 30814673 DOI: 10.1038/s41434-018-0055-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023]
Abstract
Mesenchymal stem cells (MSCs) have been applied in treating various diseases including myocardial infarction (MI) and achieved a bit of success; however, the decreased survival rate of MSCs after transplantation greatly limited the efficacy for cell therapy. How to improve the MSC survival rate in stem cell transplantation has undoubtedly become urgent and genetic engineering may be an ideal and feasible way. In this study, we explored the effects on MSCs survival and self-renewal by overexpression of integrin-linked kinase (ILK) in MSCs under hypoxic stimulation and aimed to reveal the molecular mechanisms from the point of paracrine function of MSCs. We first found that overexpression of ILK induced the expression and secretion of IL-6 increased significantly in MSCs under hypoxic stimulation, and the survival and self-renewal of MSCs exposed to hypoxia were enhanced after ILK overexpression. Then the activation of JAK2/STAT3 signaling was detected because of the increased IL-6, and an lncRNA, named lncTCF7, was upregulated remarkably, promoting the activation of Wnt pathway that was required for keeping cell viability and stemness of MSCs. Moreover, we further verified that inhibition of STAT3 signaling by WP1066 and silencing lncTCF7 expression eliminated the protective effects of ILK overexpression on cell survival and self-renewal of MSCs under hypoxic sitmulation. In conclusion, our results uncovered a novel function of ILK to promote MSC survival and self-renewal, suggesting more application potentials of MSC cell therapy on MI.
Collapse
|
22
|
Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol Ther (Seoul) 2019; 27:25-33. [PMID: 29902862 PMCID: PMC6319543 DOI: 10.4062/biomolther.2017.260] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells are classified as multipotent stem cells, due to their capability to transdifferentiate into various lineages that develop from mesoderm. Their popular appeal as cell-based therapy was initially based on the idea of their ability to restore tissue because of their differentiation potential in vitro; however, the lack of evidence of their differentiation to target cells in vivo led researchers to focus on their secreted trophic factors and their role as potential powerhouses on regulation of factors under different immunological environments and recover homeostasis. To date there are more than 800 clinical trials on humans related to MSCs as therapy, not to mention that in animals is actively being applied as therapeutic resource, though it has not been officially approved as one. But just as how results from clinical trials are important, so is to reveal the biological mechanisms involved on how these cells exert their healing properties to further enhance the application of MSCs on potential patients. In this review, we describe characteristics of MSCs, evaluate their benefits as tissue regenerative therapy and combination therapy, as well as their immunological properties, activation of MSCs that dictate their secreted factors, interactions with other immune cells, such as T cells and possible mechanisms and pathways involved in these interactions.
Collapse
Affiliation(s)
| | - Ji-Houn Kang
- Laboratory of Internal Medicine, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Republic of Korea.,Institute of Life Science and Bio-Engineering, TheraCell Bio & Science, Cheongju 28644, Republic of Korea
| |
Collapse
|
23
|
Miklíková M, Jarkovská D, Čedíková M, Švíglerová J, Kuncová J, Nalos L, Kubíková T, Liška V, Holubová M, Lysák D, Králíčková M, Vištejnová L, Štengl M. Beneficial effects of mesenchymal stem cells on adult porcine cardiomyocytes in non-contact co-culture. Physiol Res 2018; 67:S619-S631. [PMID: 30607969 DOI: 10.33549/physiolres.934051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been reported to improve survival of cardiomyocytes (CMCs) and overall regeneration of cardiac tissue. Despite promising preclinical results, interactions of MSCs and CMCs, both direct and indirect, remain unclear. In this study, porcine bone marrow MSCs and freshly isolated porcine primary adult CMCs were used for non-contact co-culture experiments. Morphology, viability and functional parameters of CMCs were measured over time and compared between CMCs cultured alone and CMCs co-cultured with MSCs. In non-contact co-culture, MSCs improved survival of CMCs. CMCs co-cultured with MSCs maintained CMCs morphology and viability in significantly higher percentage than CMCs cultured alone. In viable CMCs, mitochondrial respiration was preserved in both CMCs cultured alone and in CMCs co-cultured with MSCs. Comparison of cellular contractility and calcium handling, measured in single CMCs, revealed no significant differences between viable CMCs from co-culture and CMCs cultured alone. In conclusion, non-contact co-culture of porcine MSCs and CMCs improved survival of CMCs with a sufficient preservation of functional and mitochondrial parameters.
Collapse
Affiliation(s)
- M Miklíková
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:8-18. [PMID: 30439932 DOI: 10.5507/bp.2018.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the development in pharmacotherapy, cardiosurgery and interventional cardiology, many patients remain at increased risk of developing adverse cardiac remodeling. An alternative treatment approach is the application of stem cells. Mesenchymal stem cells are among the most promising cell types usable for cardiac regeneration. Their homing to the damaged area, differentiation into cardiomyocytes, paracrine and/or immunomodulatory effect on cardiac tissue was investigated extensively. Despite promising preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac treatment may be not as helpful as expected. This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac tissue repair and discusses the problems and perspectives of this experimental therapeutical approach.
Collapse
Affiliation(s)
- Michaela Brychtova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Daniel Lysak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
25
|
Yan X, Cheng X, He X, Zheng W, Yuan X, Chen H. HO-1 Overexpressed Mesenchymal Stem Cells Ameliorate Sepsis-Associated Acute Kidney Injury by Activating JAK/stat3 Pathway. Cell Mol Bioeng 2018; 11:509-518. [PMID: 31719896 DOI: 10.1007/s12195-018-0540-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Stem cell therapy has been increasingly used in the treatment of sepsis-associated acute kidney injury (AKI). Engineering stem cells, through genetic method, for optimized therapeutic outcome is a desirable strategy, which requires clear understanding of molecular mechanism underlying the interaction between stem cells and damaged kidney. The aim of this study is to evaluate the therapeutic effects of HO-1 overexpressed mesenchymal stem cells (MSCs) in AKI and investigate the role of JAK/stat3 pathway in the treatment strategy. Method HO-1 was overexpressed in human MSCs with transfection of the expression plasmid. Quantitative RT-PCR was used to validate HO-1 overexpression. Sepsis was induced by the Cecal ligation and puncture (CLP) in mice. Survival of the treated mice were monitored and compared to that of the untreated mice. Biochemical analysis of serum biomarkers including colony forming unit (CFU), Creatinine (Cr) and blood urea nitrogen (BUN) was acquired and acute tubular necrosis (ATN) was measured. The extent of kidney injury was assessed through H&E staining of the kidney sections. Inflammatory factors were also compared between the two groups. Western blot was used to analyze the role of JAK/stat3 signaling pathway in this treatment strategy. Results MSCs with HO-1 overexpression markedly improved the survival of the AKI mice, accompanied by decreasing of CFU, Cr BUN in serum and ATN scores. H&E staining validated that kidney tissue demonstrated morphology that was similar to normal kidney in HO-1 MSC treated group. Inflammatory factors were also reduced by HO-1 MSC treatment. Western blot analysis indicated an upregulation of key proteins in the JAK/stat3 pathway. Conclusions HO-1 overexpression enhances therapeutic effect of MSCs in AKI, which is presumably attributed to the activation of JAK/stat3 signaling pathway.
Collapse
Affiliation(s)
- Xuetao Yan
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, No. 56 Yulv Road Bao'an District, Shenzhen, 518100 China
| | - Xiaoli Cheng
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, No. 56 Yulv Road Bao'an District, Shenzhen, 518100 China
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 128 Donghu Road Wuchang, Wuhan, 430071 Hubei China
| | - Wenzhong Zheng
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, No. 56 Yulv Road Bao'an District, Shenzhen, 518100 China
| | - Xiaofang Yuan
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, No. 56 Yulv Road Bao'an District, Shenzhen, 518100 China
| | - Hu Chen
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, No. 56 Yulv Road Bao'an District, Shenzhen, 518100 China
| |
Collapse
|
26
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
27
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6:2173-2185. [PMID: 29076267 PMCID: PMC5702523 DOI: 10.1002/sctm.17-0129] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.
Collapse
Affiliation(s)
- Rebekah M. Samsonraj
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Department of Orthopaedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Raghunath
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Center for Cell Biology and Tissue Engineering, Competence Center for Tissue Engineering and Substance Testing (TEDD)Institute for Chemistry and Biotechnology, ZHAW School of Life Sciences and Facility Management, Zurich University of Applied SciencesSwitzerland
| | - Victor Nurcombe
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Simon M. Cool
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
28
|
Lee HS, Song S, Shin DY, Kim GS, Lee JH, Cho CW, Lee KW, Park H, Ahn C, Yang J, Yang HM, Park JB, Kim SJ. Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-Fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Sin Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Sanghyun Song
- Department of Surgery; Dankook University College of Medicine; Dankook University Hospital; Cheonam Korea
| | - Du Yeon Shin
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
| | - Geun-Soo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Jong-Hyun Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Chan Woo Cho
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyo Won Lee
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyojun Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Curie Ahn
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Heung-Mo Yang
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Medicine; Sungkyunkwan University School of Medicine; Kyunggi Korea
| | - Jae Berm Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sung-Joo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
29
|
Yamawaki-Ogata A, Oshima H, Usui A, Narita Y. Bone marrow–derived mesenchymal stromal cells regress aortic aneurysm via the NF-kB, Smad3 and Akt signaling pathways. Cytotherapy 2017; 19:1167-1175. [DOI: 10.1016/j.jcyt.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
|
30
|
Matsui F, Babitz SK, Rhee A, Hile KL, Zhang H, Meldrum KK. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am J Physiol Renal Physiol 2016; 312:F25-F32. [PMID: 27760767 DOI: 10.1152/ajprenal.00311.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/29/2016] [Accepted: 10/12/2016] [Indexed: 01/06/2023] Open
Abstract
STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 106/rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson's trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production.
Collapse
Affiliation(s)
- Futoshi Matsui
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Stephen K Babitz
- Division of Pediatric Urology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Audrey Rhee
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Karen L Hile
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Hongji Zhang
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Kirstan K Meldrum
- Division of Pediatric Urology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| |
Collapse
|
31
|
Lin H, Angeli M, Chung KJ, Ejimadu C, Rosa AR, Lee T. sFRP2 activates Wnt/β-catenin signaling in cardiac fibroblasts: differential roles in cell growth, energy metabolism, and extracellular matrix remodeling. Am J Physiol Cell Physiol 2016; 311:C710-C719. [PMID: 27605451 DOI: 10.1152/ajpcell.00137.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Secreted Frizzled-related protein 2 (sFRP2) plays a key role in chronic fibrosis after myocardial infarction and in heart failure. The aim of this study was to elucidate the mechanisms through which sFRP2 may regulate the growth and extracellular matrix (ECM) remodeling of adult mouse cardiac fibroblasts (CFs). We found that sFRP2 activates CFs in part through canonical Wnt/β-catenin signaling, as evidenced by increased expression of Axin2 and Wnt3a, but not Wnt5a, as well as accumulation of nuclear β-catenin. In response to sFRP2, CFs exhibited robust cell proliferation associated with increased glucose consumption and lactate production, a phenomenon termed "the Warburg effect" in oncology. The coupling between CF expansion and anaerobic glycolysis is marked by upregulation of glyceraldehyde-3-phosphate dehydrogenase and tissue-nonspecific alkaline phosphatase. In conjunction with these phenotypic changes, CFs accelerated ECM remodeling through upregulation of expression of the matrix metalloproteinase (MMP) 1 and MMP13 genes, two members of the collagenase subfamily, and enzyme activities of MMP2 and MMP9, two members of the gelatinase subfamily. Consistent with the induction of multiple MMPs possessing collagenolytic activities, the steady-state level of collagen type 1 in CF-spent medium was reduced by sFRP2. Analysis of non-CF cell types revealed that the multifaceted effects of sFRP2 on growth control, glucose metabolism, and ECM regulation are largely restricted to CFs and highly sensitive to Wnt signaling perturbation. The study provides a molecular framework on which the functional versatility and signaling complexity of sFRP2 in cardiac fibrosis may be better defined.
Collapse
Affiliation(s)
- Huey Lin
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Mia Angeli
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Kwang Jin Chung
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Chukwuemeka Ejimadu
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Angelica Rivera Rosa
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Techung Lee
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
32
|
Chen Y, Wang C, Huang Q, Wu D, Cao J, Xu X, Yang C, Li X. Caveolin-1 Plays an Important Role in the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Cardiomyocytes. Cardiology 2016; 136:40-48. [PMID: 27554796 DOI: 10.1159/000446869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Accumulating evidence has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) may transdifferentiate into cardiomyocytes, making BMSCs a promising source of cardiomyocytes for transplantation. However, little is known about the molecular mechanisms underlying myogenic conversion of BMSCs. METHODS This study was designed to investigate the functional role of caveolin-1 in the cardiomyocyte differentiation of BMSCs and to explore the potential underlying molecular mechanisms. RESULTS BMSC differentiation was induced by treatment with 10 μM 5-azacytidine, and immunofluorescence assay showed that the expression of cardiomyocyte marker cardiac troponin T (cTnT) was significantly increased compared with a control group. Meanwhile, an increased caveolin-1 expression was found during the 5-azacytidine-induced BMSC differentiation. Additionally, the role of caveolin-1 in the differentiation process was then studied by using caveolin-1 siRNAs. We found that silencing caveolin-1 during induction remarkably enhanced the expression of cardiomyocyte marker genes, including cTnT, Nkx2.5 (cardiac-specific transcription factor), α-cardiac actin and α-myosin heavy chain (α-MHC). Moreover, we observed that downregulation of caveolin-1 was accompanied by inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. CONCLUSIONS Taken together, these findings demonstrate that caveolin-1 plays an important role in the differentiation of BMSCs into cardiomyocytes in conjunction with the STAT3 pathway.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
34
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
35
|
Rahmi G, Pidial L, Silva AKA, Blondiaux E, Meresse B, Gazeau F, Autret G, Balvay D, Cuenod CA, Perretta S, Tavitian B, Wilhelm C, Cellier C, Clément O. Designing 3D Mesenchymal Stem Cell Sheets Merging Magnetic and Fluorescent Features: When Cell Sheet Technology Meets Image-Guided Cell Therapy. Am J Cancer Res 2016; 6:739-51. [PMID: 27022420 PMCID: PMC4805667 DOI: 10.7150/thno.14064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cell sheet technology opens new perspectives in tissue regeneration therapy by providing readily implantable, scaffold-free 3D tissue constructs. Many studies have focused on the therapeutic effects of cell sheet implantation while relatively little attention has concerned the fate of the implanted cells in vivo. The aim of the present study was to track longitudinally the cells implanted in the cell sheets in vivo in target tissues. To this end we (i) endowed bone marrow-derived mesenchymal stem cells (BMMSCs) with imaging properties by double labeling with fluorescent and magnetic tracers, (ii) applied BMMSC cell sheets to a digestive fistula model in mice, (iii) tracked the BMMSC fate in vivo by MRI and probe-based confocal laser endomicroscopy (pCLE), and (iv) quantified healing of the fistula. We show that image-guided longitudinal follow-up can document both the fate of the cell sheet-derived BMMSCs and their healing capacity. Moreover, our theranostic approach informs on the mechanism of action, either directly by integration of cell sheet-derived BMMSCs into the host tissue or indirectly through the release of signaling molecules in the host tissue. Multimodal imaging and clinical evaluation converged to attest that cell sheet grafting resulted in minimal clinical inflammation, improved fistula healing, reduced tissue fibrosis and enhanced microvasculature density. At the molecular level, cell sheet transplantation induced an increase in the expression of anti-inflammatory cytokines (TGF-ß2 and IL-10) and host intestinal growth factors involved in tissue repair (EGF and VEGF). Multimodal imaging is useful for tracking cell sheets and for noninvasive follow-up of their regenerative properties.
Collapse
|
36
|
Shalaby SM, El-Shal AS, Zidan HE, Mazen NF, Abd El-Haleem MR, Abd El Motteleb DM. Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction. IUBMB Life 2016; 68:343-54. [DOI: 10.1002/iub.1487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Haidy E. Zidan
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Nehad F. Mazen
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Manal R. Abd El-Haleem
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | | |
Collapse
|
37
|
Bei Y, Zhou Q, Sun Q, Xiao J. Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol 2016; 55:14-21. [PMID: 26826525 DOI: 10.1016/j.semcdb.2016.01.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 02/08/2023]
Abstract
Telocytes (TCs) are a novel type of stromal cells reported by Popescu's group in 2010. The unique feature that distinguishes TCs from other "classical" stromal cells is their extremely long and thin telopodes (Tps). As evidenced by electron microscopy, TCs are widely distributed in almost all tissues and organs. TCs contribute to form a three-dimensional interstitial network and play as active regulators in intercellular communication via homocellular/heterocellular junctions or shed vesicles. Interestingly, increasing evidence suggests the potential role of TCs in regenerative medicine. Although the heart retains some limited endogenous regenerative capacity, cardiac regenerative and repair response is however insufficient to make up the loss of cardiomyocytes upon injury. Developing novel strategies to increase cardiomyocyte renewal and repair is of great importance for the treatment of cardiac diseases. In this review, we focus on the role of TCs in cardiac regeneration and repair. We particularly describe the intercellular communication between TCs and cardiomyocytes, stem/progenitor cells, endothelial cells, and fibroblasts. Also, we discuss the current knowledge about TCs in cardiac repair after myocardial injury, as well as their potential roles in cardiac development and aging. TC-based therapy or TC-derived exosome delivery might be used as novel therapeutic strategies to promote cardiac regeneration and repair.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qi Sun
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
38
|
Tobita M, Tajima S, Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res Ther 2015; 6:215. [PMID: 26541973 PMCID: PMC4635588 DOI: 10.1186/s13287-015-0217-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of their ease of isolation and relative abundance, adipose-derived mesenchymal stem cells (ASCs) are a particularly attractive autologous cell source for various therapeutic purposes. ASCs retain a high proliferation capacity in vitro and have the ability to undergo extensive differentiation into multiple cell lineages. Moreover, ASCs secrete a wide range of growth factors that can stimulate tissue regeneration. Therefore, the clinical use of ASCs is feasible. However, the potential of ASCs differs depending on the donor's medical condition, including diseases such as diabetes. Recent studies demonstrated that ASCs from diabetic donors exhibit reduced proliferative potential and a smaller proportion of stem cell marker-positive cells. Therefore, to ensure the success of regenerative medicine, tissue engineering methods must be improved by the incorporation of factors that increase the proliferation and differentiation of stem/progenitor cells when autologous cells are used. Platelet-rich plasma (PRP), which contains high levels of diverse growth factors that can stimulate stem cell proliferation and cell differentiation in the context of tissue regeneration, has recently been identified as a biological material that could be applied to tissue regeneration. Thus, co-transplantation of ASCs and PRP represents a promising novel approach for cell therapy in regenerative medicine. In this review, we describe the potential benefits of adding PRP to ASCs and preclinical and clinical studies of this approach in various medical fields. We also discuss the mechanisms of PRP action and future cell-based therapies using co-transplantation of ASCs and PRP.
Collapse
Affiliation(s)
- Morikuni Tobita
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 1138421, Japan
| | - Satoshi Tajima
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 1138421, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 1138421, Japan.
| |
Collapse
|
39
|
Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med 2015; 19:1783-94. [PMID: 26176909 PMCID: PMC4549029 DOI: 10.1111/jcmm.12624] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs-CSCs in co-culture using (i) high-sensitivity on-chip electrophoresis, (ii) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and (iii) multiplex analysis by Luminex-xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)-6, VEGF, macrophage inflammatory protein 1α (MIP-1α), MIP-2 and MCP-1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL-2, IL-10, IL-13 and some chemokines like, GRO-KC. We found that VEGF, IL-6 and some chemokines (all stimulated by IL-6 signalling) are secreted by cardiac TCs and overexpressed in co-cultures with CSCs. The expression levels of MIP-2 and MIP-1α increased twofold and fourfold, respectively, when TCs were co-cultured with CSCs, while the expression of IL-2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co-culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Radu Albulescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
- National Institute for Chemical Pharmaceutical Research & DevelopmentBucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Daniela I Popescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Sanda M Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Ultrastructural Pathology, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Laurentiu M Popescu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Advanced Studies, Victor Babeş National Institute of PathologyBucharest, Romania
- * Correspondence to: Laurentiu M. POPESCU, MD, PhD, E-mail:
| |
Collapse
|
40
|
Cardiopulmonary Bypass Decreases Activation of the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway in Diabetic Human Myocardium. Ann Thorac Surg 2015; 100:1636-45; discussion 1645. [PMID: 26228595 DOI: 10.1016/j.athoracsur.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is associated with increased myocardial oxidative stress and apoptosis in diabetic patients. A mechanistic understanding of this relationship could have therapeutic value. To establish a possible mechanism, we compared the activation of the cardioprotective signal transducer and activator of transcription 3 (STAT3) pathway between patients with uncontrolled diabetes (UD) and nondiabetic (ND) patients. METHODS Right atrial tissue and serum were collected before and after CPB from 80 patients, 39 ND and 41 UD (HbA1c ≥ 6.5), undergoing cardiac operations. The samples were evaluated with Western blotting, immunohistochemistry, and microarray. RESULTS On Western blot, leptin levels were significantly increased in ND post-CPB (p < 0.05). Compared with ND, the expression of Janus kinase 2 and phosphorylation (p-) of STAT3 was significantly decreased in UD (p < 0.05). The apoptotic proteins p-Bc12/Bc12 and caspase 3 were significantly increased (p < 0.05), antiapoptotic proteins Mcl-1, Bcl-2, and p-Akt were significantly decreased (p < 0.05) in UD compared with ND. The microarray data suggested significantly increased expression of interleukin-6 R, proapoptotic p-STAT1, caspase 9, and decreased expression of Bc12 and protein inhibitor of activated STAT1 antiapoptotic genes (p = 0.05) in the UD patients. The oxidative stress marker nuclear factor-κB was significantly higher (p < 0.05) in UD patients post-CPB compared with the pre-CPB value, but was decreased, albeit insignificantly, in ND patients post-CPB. CONCLUSIONS Compared with ND, UD myocardium demonstrated attenuation of the cardioprotective STAT3 pathway. Identification of this mechanism offers a possible target for therapeutic modulation.
Collapse
|
41
|
Yao Y, Huang J, Geng Y, Qian H, Wang F, Liu X, Shang M, Nie S, Liu N, Du X, Dong J, Ma C. Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts. PLoS One 2015; 10:e0129164. [PMID: 26043119 PMCID: PMC4456391 DOI: 10.1371/journal.pone.0129164] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been recently demonstrated as a promising stem cell type to rescue damaged myocardium after acute infarction. One of the most important mechanisms underlying their therapeutic effects is the secretion of paracrine factors. However, the expression profile of paracrine factors of MSCs in infarcted hearts, especially at single cell level, is poorly defined. Methods and Results We aimed to depict the transcriptional profile of paracrine factors secreted by MSCs in vivo, with particular interest in the comparison between normal and infarcted hearts. Bone marrow mesenchymal stem cells were isolated and injected into mice hearts immediately after infarction surgery. Bioluminescence imaging (BLI) indicated a proportion of cells still alive even up to 10 days post surgery. Paralleled with survived cells, cardiac function was significantly improved after MSC injection compared to that in PBS-injected mice, indicated by MRI and histology. Despite increased number of vessels in MSC-injected hearts, endothelial cells and cardiomyocytes transdifferentiation were not observed in infarcted hearts 5 days after infarction. Furthermore, laser capture microdissection (LCM) followed by high through-put real time PCR was employed in our study, uncovering that the injected MSCs, compared to local cardiomyocytes, displayed elevated levels of secreted factors. To further investigate the regulation of those factors, we performed single cell analysis to dissect the gene expression profile of MSCs at single cell level in infarcted and normal hearts, respectively. Consistent with the in vivo observation, a similar regulation pattern of those factors was detected in cultured MSCs under hypoxia. Conclusions Our study, for the first time, elucidated gene expression profiles, as well as regulation of paracrine factors, of MSCs at single cell level in vivo, indicating that paracrine factors from MSCs account for the improvement of cardiac function after infarction.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
- * E-mail:
| | - Ji Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Yongjian Geng
- Center for Cardiovascular Biology and Atherosclerosis, Department of Internal Medicine, The University of Texas, Health Science Center at Houston, Medical School, Texas Heart Institute, Houston, TX, United States of America
| | - Haiyan Qian
- Center for Coronary Heart Disease, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Fan Wang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Xiaohui Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Meisheng Shang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Shaoping Nie
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| |
Collapse
|
42
|
Peng SY, Chou CJ, Cheng PJ, Tseng TY, Cheng WTK, Shaw SWS, Wu SC. Intramuscular Transplantation of Pig Amniotic Fluid-Derived Progenitor Cells Has Therapeutic Potential in a Mouse Model of Myocardial Infarction. Cell Transplant 2015; 24:1003-12. [DOI: 10.3727/096368914x680109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute myocardial infarction (MI) is a fatal event that causes a large number of deaths worldwide. MI results in pathological remodeling and decreased cardiac function, which could lead to heart failure and fatal arrhythmia. Cell therapy is a potential strategy to repair the damage through enhanced angiogenesis or by modulation of the inflammatory process via paracrine signaling. Amniotic fluid-derived progenitor cells (AFPCs) have been reported to differentiate into several lineages and can be used without ethical concerns or risk of teratoma formation. Since pigs are anatomically, physiologically, and genetically similar to humans, and pregnant pigs can be an abundant source of AFPCs, we used porcine AFPCs (pAFPCs) as our target cells. Intramyocardial injection of AFPCs has been shown to cure MI in animal models. However, intramuscular transplantation of cells has not been extensively investigated. In this study, we investigated the therapeutic potential of intramuscular injection of pAFPCs on acute MI. MI mice were divided into 1) PBS control, 2) medium cell dose (1 × 106 cells per leg; cell-M), and 3) high cell dose (4 × 106 cells per leg; cell-H) groups. Cells or PBS were directly injected into the hamstring muscle 20 min after MI surgery. Four weeks after MI surgery, the cell-M and cell-H groups exhibited significantly better ejection fraction, significantly greater wall thickness, smaller infarct scar sizes, and lower LV expansion index compared to the PBS group. Using in vivo imaging, we showed that the hamstring muscles from animals in the cell-M and cell-H groups had RFP-positive signals. In summary, intramuscular injection of porcine AFPCs reduced scar size, reduced pathological remodeling, and preserved heart function after MI.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Tse-Yang Tseng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Winston Teng-Kui Cheng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - S. W. Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells Dev 2015; 24:1635-47. [PMID: 25867197 DOI: 10.1089/scd.2014.0316] [Citation(s) in RCA: 466] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although chronic wounds are common and continue to be a major cause of morbidity and mortality, treatments for these conditions are lacking and often ineffective. A large body of evidence exists demonstrating the therapeutic potential of mesenchymal stem cells (MSCs) for repair and regeneration of damaged tissue, including acceleration of cutaneous wound healing. However, the exact mechanisms of wound healing mediated by MSCs are unclear. In this study, we examined the role of MSC exosomes in wound healing. We found that MSC exosomes ranged from 30 to 100-nm in diameter and internalization of MSC exosomes resulted in a dose-dependent enhancement of proliferation and migration of fibroblasts derived from normal donors and chronic wound patients. Uptake of MSC exosomes by human umbilical vein endothelial cells also resulted in dose-dependent increases of tube formation by endothelial cells. MSC exosomes were found to activate several signaling pathways important in wound healing (Akt, ERK, and STAT3) and induce the expression of a number of growth factors [hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF1), nerve growth factor (NGF), and stromal-derived growth factor-1 (SDF1)]. These findings represent a promising opportunity to gain insight into how MSCs may mediate wound healing.
Collapse
Affiliation(s)
- Arsalan Shabbir
- Department of Dermatology and Cutaneous Surgery, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| | - Audrey Cox
- Department of Dermatology and Cutaneous Surgery, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| | - Luis Rodriguez-Menocal
- Department of Dermatology and Cutaneous Surgery, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| | - Marcela Salgado
- Department of Dermatology and Cutaneous Surgery, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| | - Evangelos Van Badiavas
- Department of Dermatology and Cutaneous Surgery, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
44
|
Martin S, Lin H, Ejimadu C, Lee T. Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts. Am J Physiol Cell Physiol 2015; 309:C139-47. [PMID: 25972450 DOI: 10.1152/ajpcell.00009.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/04/2015] [Indexed: 01/11/2023]
Abstract
Recent studies of myocardial infarction in secreted Frizzled-related protein 2 (sFRP2) knockout mice and our hamster heart failure therapy based on sFRP2 blockade have established sFRP2 as a key profibrotic cytokine in the heart. The failing hamster heart is marked by prominent fibrosis and calcification with elevated expression of sFRP2. Noting the involvement of tissue-nonspecific alkaline phosphatase (TNAP) in bone mineralization and vascular calcification, we determined whether sFRP2 might be an upstream regulator of TNAP. Biochemical assays revealed an approximately twofold increase in the activity of TNAP and elevated levels of inorganic phosphate (Pi) in the failing heart compared with the normal heart. Neither was this change detected in the liver or hamstring muscle nor was it associated with systemic hyperphosphatemia. TNAP was readily cloned from the hamster heart and upon overexpression increased the level of extracellular but not intracellular Pi, which is consistent with the cell surface location of the ectoenzyme. In line with the previous demonstration that sFRP2 blockade attenuated fibrosis, we show here that the therapy downregulated TNAP. This in vivo finding is corroborated by the in vitro study showing that cultured cardiac fibroblasts treated with recombinant sFRP2 protein exhibited progressive increase in the expression and activity of TNAP, which was completely abrogated by cycloheximide or tunicamycin. Induction of TNAP by sFRP2 is restricted to cardiac fibroblasts among the multiple cell types examined, and was not observed with sFRP4. The current work indicates that sFRP2 may promote cardiac fibrocalcification through coordinate activation of tolloid-like metalloproteinases and TNAP.
Collapse
Affiliation(s)
- Sean Martin
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Huey Lin
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Chukwuemeka Ejimadu
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Techung Lee
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
45
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
46
|
Wang Y, Yuan M, Guo QY, Lu SB, Peng J. Mesenchymal Stem Cells for Treating Articular Cartilage Defects and Osteoarthritis. Cell Transplant 2014; 24:1661-78. [PMID: 25197793 DOI: 10.3727/096368914x683485] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Articular cartilage damage and osteoarthritis are the most common joint diseases. Joints are prone to damage caused by sports injuries or aging, and such damage regularly progresses to more serious joint disorders, including osteoarthritis, which is a degenerative disease characterized by the thinning and eventual wearing out of articular cartilage, ultimately leading to joint destruction. Osteoarthritis affects millions of people worldwide. Current approaches to repair of articular cartilage damage include mosaicplasty, microfracture, and injection of autologous chondrocytes. These treatments relieve pain and improve joint function, but the long-term results are unsatisfactory. The long-term success of cartilage repair depends on development of regenerative methodologies that restore articular cartilage to a near-native state. Two promising approaches are (i) implantation of engineered constructs of mesenchymal stem cell (MSC)-seeded scaffolds, and (ii) delivery of an appropriate population of MSCs by direct intra-articular injection. MSCs may be used as trophic producers of bioactive factors initiating regenerative activities in a defective joint. Current challenges in MSC therapy are the need to overcome current limitations in cartilage cell purity and to in vitro engineer tissue structures exhibiting the required biomechanical properties. This review outlines the current status of MSCs used in cartilage tissue engineering and in cell therapy seeking to repair articular cartilage defects and related problems. MSC-based technologies show promise when used to repair cartilage defects in joints.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
Abstract
Recently various kinds of cardiac stem/progenitor cells have been identified and suggested to be involved in cardiac repair and regeneration in injured myocardium. In this review, we focus on the roles of JAK-STAT signaling in cardiac stem/progenitor cells in cardiomyogenesis. JAK-STAT signaling plays important roles in the differentiation of stem cells into cardiac lineage cells. The activation of JAK-STAT signal elicits the mobilization of mesenchymal stem cells as well, contributing to the maintenance of cardiac function. Thus we propose that JAK-STAT could be a target signaling pathway in cardiac regenerative therapy.
Collapse
Affiliation(s)
- Tomomi Mohri
- Laboratory of Clinical Science and Biomedicine; Graduate School of Pharmaceutical Sciences; Osaka University; Osaka, Japan
| | | | | | | |
Collapse
|
48
|
Hwang SJ, Cho TH, Kim IS. In vivo gene activity of human mesenchymal stem cells after scaffold-mediated local transplantation. Tissue Eng Part A 2014; 20:2350-64. [PMID: 24575828 DOI: 10.1089/ten.tea.2013.0507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional activation of stem cells after transplantation is a main concern in stem cell therapy. For local transplantation, mesenchymal stem cells (MSCs) are usually administered via scaffolds, either by direct implantation or after preculturing of cells, and it is unclear which is better for the activation of transplanted cells. In this study, we investigated the in vivo gene expression activity of human MSCs (hMSCs) transplanted into calvarial defects either directly post-seeding on collagen sponges (Group 1) or after overnight in vitro culturing post-seeding (Group 2). Real-time reverse transcription-polymerase chain reaction at days 7 and 14 after transplantation identified a time-dependent, rapid decrease in gene expression by the hMSCs, which in Group 1 was slightly more attenuated than in Group 2. Both groups exhibited a limited range of human-specific gene expression, which involved type I collagen (ColI), fibronectin, stromal cell-derived factor (SDF-1), and osteoprotegerin. Among these, ColI expression was the most efficient, with higher levels in Group 1 than Group 2. There was a lack of evidence for the expression of osteoblast differentiation-related markers or trophic factors, while resident cells showed clear expression of those genes. Rat-specific β-actin expression in Group 2 was least among the scaffold control, Group 1, and Group 2, and this pattern was repeated in the expression of other rat osteogenic genes. Group 1 transplants positively influenced the osteogenic process of the defect tissue in part, and rat IGF-1 expression was significantly increased in Group 1. This tendency of gene expression by hMSCs in a rat model was very similar to what was observed in transplantations using immunodeficient mice. The current study showed that a main gene expressed by transplanted hMSCs during the initial weeks following transplantation is ColI, with a lack of differentiation-related markers or growth factor expression by hMSCs. Our data suggest that direct transplantation of hMSCs loaded on a collagen sponge is more efficient for gene activation in transplanted hMSCs, and more favorable to the local host tissue than transplantation after preculturing of cells.
Collapse
Affiliation(s)
- Soon Jung Hwang
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | | | | |
Collapse
|
49
|
Mastri M, Lin H, Lee T. Enhancing the efficacy of mesenchymal stem cell therapy. World J Stem Cells 2014; 6:82-93. [PMID: 24772236 PMCID: PMC3999784 DOI: 10.4252/wjsc.v6.i2.82] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is entering a challenging phase after completion of many preclinical and clinical trials. Among the major hurdles encountered in MSC therapy are inconsistent stem cell potency, poor cell engraftment and survival, and age/disease-related host tissue impairment. The recognition that MSCs primarily mediate therapeutic benefits through paracrine mechanisms independent of cell differentiation provides a promising framework for enhancing stem cell potency and therapeutic benefits. Several MSC priming approaches are highlighted, which will likely allow us to harness the full potential of adult stem cells for their future routine clinical use.
Collapse
|
50
|
Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 2014; 143:181-96. [PMID: 24594234 DOI: 10.1016/j.pharmthera.2014.02.013] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/30/2013] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically.
Collapse
Affiliation(s)
- Annelies Bronckaers
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| | - Petra Hilkens
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Wendy Martens
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jessica Ratajczak
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Tom Struys
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|