1
|
Kim DY, Kim SM, Han IO. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer's disease by decreasing brain O-GlcNAc cycling in mice. J Neuroinflammation 2024; 21:180. [PMID: 39044290 PMCID: PMC11264383 DOI: 10.1186/s12974-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3β and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
2
|
Deng W, Chen Y, Zhang J, Ling J, Xu Z, Zhu Z, Tang X, Liu X, Zhang D, Zhu H, Lang H, Zhang L, Hua F, Yu S, Qian K, Yu P. Mild therapeutic hypothermia upregulates the O-GlcNAcylation level of COX10 to alleviate mitochondrial damage induced by myocardial ischemia-reperfusion injury. J Transl Med 2024; 22:489. [PMID: 38778315 PMCID: PMC11112789 DOI: 10.1186/s12967-024-05264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) is an important method for perioperative prevention and treatment of myocardial ischemia-reperfusion injury (MIRI). Modifying mitochondrial proteins after protein translation to regulate mitochondrial function is one of the mechanisms for improving myocardial ischemia-reperfusion injury. This study investigated the relationship between shallow hypothermia treatment improving myocardial ischemia-reperfusion injury and the O-GlcNAcylation level of COX10. METHODS We used in vivo Langendorff model and in vitro hypoxia/reoxygenation (H/R) cell model to investigate the effects of MTH on myocardial ischemia-reperfusion injury. Histological changes, myocardial enzymes, oxidative stress, and mitochondrial structure/function were assessed. Mechanistic studies involved various molecular biology methods such as ELISA, immunoprecipitation (IP), WB, and immunofluorescence. RESULTS Our research results indicate that MTH upregulates the O-GlcNACylation level of COX10, improves mitochondrial function, and inhibits the expression of ROS to improve myocardial ischemia-reperfusion injury. In vivo, MTH effectively alleviates ischemia-reperfusion induced cardiac dysfunction, myocardial injury, mitochondrial damage, and redox imbalance. In vitro, the OGT inhibitor ALX inhibits the OGT mediated O-GlcNA acylation signaling pathway, downregulates the O-Glc acylation level of COX10, promotes ROS release, and counteracts the protective effect of MTH. On the contrary, the OGA inhibitor ThG showed opposite effects to ALX, further confirming that MTH activated the OGT mediated O-GlcNAcylation signaling pathway to exert cardioprotective effects. CONCLUSIONS In summary, MTH activates OGT mediated O-glycosylation modified COX10 to regulate mitochondrial function and improve myocardial ischemia-reperfusion injury, which provides important theoretical basis for the clinical application of MTH.
Collapse
Affiliation(s)
- Wei Deng
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jitao Ling
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, 330006, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Yanjiang Road, Guangzhou, Guangdong Province, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hong Zhu
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi province, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi province, China
| | - Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| | - Kejian Qian
- Department of Intensive Care Unit, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, China.
| | - Peng Yu
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
3
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Qiu Z, Cui J, Huang Q, Qi B, Xia Z. Roles of O-GlcNAcylation in Mitochondrial Homeostasis and Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:571. [PMID: 38790676 PMCID: PMC11117601 DOI: 10.3390/antiox13050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Protein posttranslational modifications are important factors that mediate the fine regulation of signaling molecules. O-linked β-N-acetylglucosamine-modification (O-GlcNAcylation) is a monosaccharide modification on N-acetylglucosamine linked to the hydroxyl terminus of serine and threonine of proteins. O-GlcNAcylation is responsive to cellular stress as a reversible and posttranslational modification of nuclear, mitochondrial and cytoplasmic proteins. Mitochondrial proteins are the main targets of O-GlcNAcylation and O-GlcNAcylation is a key regulator of mitochondrial homeostasis by directly regulating the mitochondrial proteome or protein activity and function. Disruption of O-GlcNAcylation is closely related to mitochondrial dysfunction. More importantly, the O-GlcNAcylation of cardiac proteins has been proven to be protective or harmful to cardiac function. Mitochondrial homeostasis is crucial for cardiac contractile function and myocardial cell metabolism, and the imbalance of mitochondrial homeostasis plays a crucial role in the pathogenesis of cardiovascular diseases (CVDs). In this review, we will focus on the interactions between protein O-GlcNAcylation and mitochondrial homeostasis and provide insights on the role of mitochondrial protein O-GlcNAcylation in CVDs.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Jiahui Cui
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Biao Qi
- Department of Anesthesiology, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan Orthopaedics Hospital of Intergrated Traditional Medicine Chinese and Western Medicine, The Affiliated Hospital of Wuhan Sports University, Wuhan 430070, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| |
Collapse
|
5
|
Hsu YP, Huang TH, Liu ST, Huang SM, Chen YC, Wu CC. Glucosamine and Silibinin Alter Cartilage Homeostasis through Glycosylation and Cellular Stresses in Human Chondrocyte Cells. Int J Mol Sci 2024; 25:4905. [PMID: 38732122 PMCID: PMC11084729 DOI: 10.3390/ijms25094905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.
Collapse
Affiliation(s)
- Yu-Pao Hsu
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
| | - Tsung-Hsi Huang
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan; (S.-T.L.); (S.-M.H.)
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan; (S.-T.L.); (S.-M.H.)
| | - Yi-Chou Chen
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan
| | - Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 237, Taiwan
| |
Collapse
|
6
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
7
|
Schauner R, Cress J, Hong C, Wald D, Ramakrishnan P. Single cell and bulk RNA expression analyses identify enhanced hexosamine biosynthetic pathway and O-GlcNAcylation in acute myeloid leukemia blasts and stem cells. Front Immunol 2024; 15:1327405. [PMID: 38601153 PMCID: PMC11004450 DOI: 10.3389/fimmu.2024.1327405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.
Collapse
Affiliation(s)
- Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Cress
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
8
|
Xue Q, Ji S, Xu H, Yu S. O-GlcNAcylation: a pro-survival response to acute stress in the cardiovascular and central nervous systems. Eur J Med Res 2024; 29:174. [PMID: 38491477 PMCID: PMC10943874 DOI: 10.1186/s40001-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.
Collapse
Affiliation(s)
- Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226361, China
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, 399 Century Avenue, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
9
|
Narayanan B, Sinha P, Henry R, Reeves RA, Paolocci N, Kohr MJ, Zachara NE. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J Biol Chem 2023; 299:105447. [PMID: 37949223 PMCID: PMC10711226 DOI: 10.1016/j.jbc.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prithvi Sinha
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roger Henry
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell A Reeves
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mark J Kohr
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha E Zachara
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Department of Oncology at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
11
|
Xiong Y, Leng Y, Li W, Li W, Tian H, Tao J, Chen R, Xia Z. Nogo-A Mediated Endoplasmic Reticulum Stress During Myocardial Ischemic-Reperfusion Injury in Diabetic Rats. Cardiovasc Toxicol 2023; 23:147-160. [PMID: 36964845 DOI: 10.1007/s12012-023-09788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
Among the three isoforms encoded by neurite outgrowth inhibitor proteins has been intensely investigated as a central nervous system inhibitor. Although neurite outgrowth inhibitor protein-A (Nogo-A) expression is increased in plasma of patients who have experienced a coronary heart disease, its role in heart disease is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in diabetic myocardial ischemia reperfusion (MI/R) injury conditions. Accelerated Nogo-A and MI/R injury in diabetic rats was attenuated by tauroursodeoxycholic acid treatment and knockdown of Nogo-A per se is sufficient to decrease endoplasmic reticulum (ER) stress as well as prevents cardiomyocyte apoptosis. We hypothesized that decreased Nogo-A levels might reducing diabetic MI/R injury. Nogo-A interacted with C/EBP homologous protein, suggesting a role for Nogo-A in ER stress during diabetic MI/R. In conclusion, Nogo-A mediated ER stress plays a major role in diabetic MI/R injury, and pathologically altered Nogo-A expression mediates diabetic MI/R injury, suggesting Nogo-A as a novel target for the treatment of diabetic MI/R injury in clinical settings.
Collapse
Affiliation(s)
- Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jie Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
12
|
Hua Q, Lu Y, Wang D, Da J, Peng W, Sun G, Gu K, Wang H, Zhu Y. KIAA1199 promotes oxaliplatin resistance and epithelial mesenchymal transition of colorectal cancer via protein O-GlcNAcylation. Transl Oncol 2023; 28:101617. [PMID: 36610242 PMCID: PMC9850197 DOI: 10.1016/j.tranon.2023.101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Oxaliplatin is a commonly used platinum drug for colorectal cancer (CRC). However, the treatment of CRC by oxaliplatin usually fails because of drug resistance, which results in a huge challenge in the therapy of CRC. Elucidation of molecular mechanisms may help to overcome oxaliplatin resistance of CRC. In our study, we revealed that KIAA1199 can promote oxaliplatin resistance of CRC. Mechanistically, KIAA1199 prevents oxaliplatin mediated apoptosis via up-regulated PARP1 derived from reduced endoplasmic reticulum stress induced by protein O-GlcNAcylation. In the meantime, KIAA1199 can also trigger epithelial mesenchymal transition by stabilizing SNAI1 protein via O-GlcNAcylation. Therefore, KIAA1199 has great potential to be a novel biomarker, therapeutic target for oxaliplatin resistance and metastasis of CRC.
Collapse
Affiliation(s)
- Qingling Hua
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Yuanyuan Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, China
| | - Dingxiang Wang
- Department of Psychology, The fourth people's hospital, Wuhu, 241003, China
| | - Jie Da
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Wanren Peng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China,Corresponding author.
| |
Collapse
|
13
|
What does not kill mesangial cells makes it stronger? The response of the endoplasmic reticulum stress and the O-GlcNAc signaling to ATP depletion. Life Sci 2022; 311:121070. [DOI: 10.1016/j.lfs.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
14
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
15
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
17
|
Zou L, Collins HE, Young ME, Zhang J, Wende AR, Darley-Usmar VM, Chatham JC. The Identification of a Novel Calcium-Dependent Link Between NAD + and Glucose Deprivation-Induced Increases in Protein O-GlcNAcylation and ER Stress. Front Mol Biosci 2021; 8:780865. [PMID: 34950703 PMCID: PMC8691773 DOI: 10.3389/fmolb.2021.780865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
The modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is associated with the regulation of numerous cellular processes. Despite the importance of O-GlcNAc in mediating cellular function our understanding of the mechanisms that regulate O-GlcNAc levels is limited. One factor known to regulate protein O-GlcNAc levels is nutrient availability; however, the fact that nutrient deficient states such as ischemia increase O-GlcNAc levels suggests that other factors also contribute to regulating O-GlcNAc levels. We have previously reported that in unstressed cardiomyocytes exogenous NAD+ resulted in a time and dose dependent decrease in O-GlcNAc levels. Therefore, we postulated that NAD+ and cellular O-GlcNAc levels may be coordinately regulated. Using glucose deprivation as a model system in an immortalized human ventricular cell line, we examined the influence of extracellular NAD+ on cellular O-GlcNAc levels and ER stress in the presence and absence of glucose. We found that NAD+ completely blocked the increase in O-GlcNAc induced by glucose deprivation and suppressed the activation of ER stress. The NAD+ metabolite cyclic ADP-ribose (cADPR) had similar effects on O-GlcNAc and ER stress suggesting a common underlying mechanism. cADPR is a ryanodine receptor (RyR) agonist and like caffeine, which also activates the RyR, both mimicked the effects of NAD+. SERCA inhibition, which also reduces ER/SR Ca2+ levels had similar effects to both NAD+ and cADPR on O-GlcNAc and ER stress responses to glucose deprivation. The observation that NAD+, cADPR, and caffeine all attenuated the increase in O-GlcNAc and ER stress in response to glucose deprivation, suggests a potential common mechanism, linked to ER/SR Ca2+ levels, underlying their activation. Moreover, we showed that TRPM2, a plasma membrane cation channel was necessary for the cellular responses to glucose deprivation. Collectively, these findings support a novel Ca2+-dependent mechanism underlying glucose deprivation induced increase in O-GlcNAc and ER stress.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Helen E. Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
18
|
Dozio E, Massaccesi L, Corsi Romanelli MM. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J Clin Med 2021; 10:jcm10204792. [PMID: 34682915 PMCID: PMC8539574 DOI: 10.3390/jcm10204792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glycation and glycosylation are non-enzymatic and enzymatic reactions, respectively, of glucose, glucose metabolites, and other reducing sugars with different substrates, such as proteins, lipids, and nucleic acids. Increased availability of glucose is a recognized risk factor for the onset and progression of diabetes-mellitus-associated disorders, among which cardiovascular diseases have a great impact on patient mortality. Both advanced glycation end products, the result of non-enzymatic glycation of substrates, and O-linked-N-Acetylglucosaminylation, a glycosylation reaction that is controlled by O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), have been shown to play a role in cardiovascular remodeling. In this review, we aim (1) to summarize the most recent data regarding the role of glycation and O-linked-N-Acetylglucosaminylation as glucose-related pathogenetic factors and disease markers in cardiovascular remodeling, and (2) to discuss potential common mechanisms linking these pathways to the dysregulation and/or loss of function of different biomolecules involved in this field.
Collapse
Affiliation(s)
- Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50-315-342
| | - Luca Massaccesi
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
| | - Massimiliano Marco Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
19
|
Ng YH, Okolo CA, Erickson JR, Baldi JC, Jones PP. Protein O-GlcNAcylation in the heart. Acta Physiol (Oxf) 2021; 233:e13696. [PMID: 34057811 DOI: 10.1111/apha.13696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
O-GlcNAcylation is a ubiquitous post-translational modification that is extremely labile and plays a significant role in physiology, including the heart. Sustained activation of cardiac O-GlcNAcylation is frequently associated with alterations in cellular metabolism, leading to detrimental effects on cardiovascular function. This is particularly true during conditions such as diabetes, hypertension, cardiac remodelling, heart failure and arrhythmogenesis. Paradoxically, transient elevation of cardiac protein O-GlcNAcylation can also exert beneficial effects in the heart. There is compelling evidence to suggest that a complex interaction between O-GlcNAcylation and phosphorylation also exists in the heart. Beyond direct functional consequences on cardiomyocytes, O-GlcNAcylation also acts indirectly by altering the function of transcription factors that affect downstream signalling. This review focuses on the potential cardioprotective role of protein O-GlcNAcylation during ischaemia-reperfusion injury, the deleterious consequences of chronically elevated O-GlcNAc levels, the interplay between O-GlcNAcylation and phosphorylation in the cardiomyocytes and the effects of O-GlcNAcylation on other major non-myocyte cell types in the heart.
Collapse
Affiliation(s)
- Yann Huey Ng
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Chidinma A. Okolo
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
- Life Sciences Division Diamond Light Source LtdHarwell Science and Innovation Campus Didcot UK
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| | - James C. Baldi
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Peter P. Jones
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| |
Collapse
|
20
|
Nikolaou MA, Drosos Y, Havaki S, Arvanitis D, Sotiriou S, Vassiou K, Zibis A, Arvanitis LD. The O-Linked N-Acetylglucosamine Containing Epitope H (O-GlcNAcH) is Upregulated in the Trophoblastic and Downregulated in the Fibroblastic Cells in Missed Miscarriage Human Chorionic Villi With Simple Hydropic Degeneration. Int J Gynecol Pathol 2021; 40:324-332. [PMID: 32897971 DOI: 10.1097/pgp.0000000000000693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epitope H contains an O-linked N-acetylglucosamine (O-GlcNAcH) residue in a specific conformation and/or environment recognized by the mouse monoclonal antibody H. O-GlcNAcH is present in several types of cells and in several polypeptides, including cytokeratin 8 and vimentin, on the latter in cells under stress. In the present work, we examined the expression of the O-GlcNAcH in 60 cases of endometrial curettings from missed miscarriage cases containing normal and simple hydropic degenerated chorionic villi in each case, using monoclonal antibody H and indirect immunoperoxidase and Western blot immunoblot. In all cases examined the expression of the O-GlcNAcH was cytoplasmic as follows: (1) syncytiotrophoblastic cells showed very low expression in chorionic villi (CV) with nonhydropic degeneration (NHD) and high expression in hydropic degenerated (HD) CV; (2) cytotrophoblastic cells showed low expression in CV with NHD and high expression in HD CV; (3) fibroblastic cells showed high expression in CV with NHD and very low expression in HD CV; (4) histiocytes showed very low expression in both types of CV; (5) endothelial cells showed high expression in both types of CV. An immunoblot of CV from one case of a legal abortion from a normal first-trimester pregnancy showed 5 polypeptides with 118.5, 106.3, 85, 53, and 36.7 kD bearing the epitope H and the 53 kD corresponded to cytokeratin 8. The expression of the O-GlcNAcH is upregulated in the trophoblastic cells and downregulated in the fibroblastic cells in the HD CV in comparison to the NHD CV.
Collapse
|
21
|
Martinez M, Renuse S, Kreimer S, O'Meally R, Natov P, Madugundu AK, Nirujogi RS, Tahir R, Cole R, Pandey A, Zachara NE. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Mol Cell Proteomics 2021; 20:100069. [PMID: 33716169 PMCID: PMC8079276 DOI: 10.1016/j.mcpro.2021.100069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.
Collapse
Affiliation(s)
- Marissa Martinez
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Foghorn Therapeutics, Cambridge, Massachusetts, United States
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Simion Kreimer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Currently at the Advanced Clinical Biosystems Institute, Smidt Heart institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Natov
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Ginkgo Bioworks, Massachusetts, United States
| | - Robert Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
| |
Collapse
|
22
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
23
|
Quantitative chemoproteomics reveals O-GlcNAcylation of cystathionine γ-lyase (CSE) represses trophoblast syncytialization. Cell Chem Biol 2021; 28:788-801.e5. [PMID: 33626323 DOI: 10.1016/j.chembiol.2021.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
Emerging evidence indicates the involvement of O-GlcNAc modification in placental development and pregnant health through mechanisms that are not well understood. Herein, by applying the quantitative O-GlcNAc proteomics, we established a database of O-GlcNAcylated proteins in human placental trophoblasts. Hundreds of proteins that were dynamically O-GlcNAcylated during trophoblast differentiation were identified, among which cystathionine γ-lyase (CSE) exhibited the most significant change. Site-specific analysis by mass spectrometry revealed Ser138 as the core O-GlcNAc site in CSE, and its O-GlcNAcylation promoted the enzymatic activity to produce H2S, which in turn repressed trophoblast differentiation via inhibiting androgen receptor dimerization. Consistently, in preeclamptic placentas, remarkably enhanced CSE O-GlcNAcylation and H2S production were associated with restricted trophoblast differentiation. The findings establish a resource of O-GlcNAc dynamics in human placenta, and provide a deeper insight into the biological significance of O-GlcNAcylation in placental development as well as potential therapeutic targets for the relevant pregnant complications.
Collapse
|
24
|
Dassanayaka S, Brittian KR, Long BW, Higgins LA, Bradley JA, Audam TN, Jurkovic A, Gumpert AM, Harrison LT, Hartyánszky I, Perge P, Merkely B, Radovits T, Hanover JA, Jones SP. Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction. PLoS One 2020; 15:e0242250. [PMID: 33253217 PMCID: PMC7703924 DOI: 10.1371/journal.pone.0242250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale The beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to proteins is a pro-adaptive response to cellular insults. To this end, increased protein O-GlcNAcylation improves short-term survival of cardiomyocytes subjected to acute injury. This observation has been repeated by multiple groups and in multiple models; however, whether increased protein O-GlcNAcylation plays a beneficial role in more chronic settings remains an open question. Objective Here, we queried whether increasing levels of cardiac protein O-GlcNAcylation would be beneficial during infarct-induced heart failure. Methods and results To achieve increased protein O-GlcNAcylation, we targeted Oga, the gene responsible for removing O-GlcNAc from proteins. Here, we generated mice with cardiomyocyte-restricted, tamoxifen-inducible haploinsufficient Oga gene. In the absence of infarction, we observed a slight reduction in ejection fraction in Oga deficient mice. Overall, Oga reduction had no major impact on ventricular function. In additional cohorts, mice of both sexes and both genotypes were subjected to infarct-induced heart failure and followed for up to four weeks, during which time cardiac function was assessed via echocardiography. Contrary to our prediction, the Oga deficient mice exhibited exacerbated—not improved—cardiac function at one week following infarction. When the observation was extended to 4 wk post-MI, this acute exacerbation was lost. Conclusions The present findings, coupled with our previous work, suggest that altering the ability of cardiomyocytes to either add or remove O-GlcNAc modifications to proteins exacerbates early infarct-induced heart failure. We speculate that more nuanced approaches to regulating O-GlcNAcylation are needed to understand its role—and, in particular, the possibility of cycling, in the pathophysiology of the failing heart.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Kenneth R. Brittian
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Bethany W. Long
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Lauren A. Higgins
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - James A. Bradley
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Timothy N. Audam
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Andrea Jurkovic
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Anna M. Gumpert
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Linda T. Harrison
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - István Hartyánszky
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - Péter Perge
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIH-NIDDK, Bethesda, MD, United states of America
| | - Steven P. Jones
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
- * E-mail:
| |
Collapse
|
25
|
Hsieh YL, Su FY, Tsai LK, Huang CC, Ko YL, Su LW, Chen KY, Shih HM, Hu CM, Lee WH. NPGPx-Mediated Adaptation to Oxidative Stress Protects Motor Neurons from Degeneration in Aging by Directly Modulating O-GlcNAcase. Cell Rep 2020; 29:2134-2143.e7. [PMID: 31747588 DOI: 10.1016/j.celrep.2019.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, usually occurs in middle-aged people. However, the molecular basis of age-related cumulative stress in ALS pathogenesis remains elusive. Here, we found that mice deficient in NPGPx (GPx7), an oxidative stress sensor, develop ALS-like phenotypes, including paralysis, muscle denervation, and motor neurons loss. Unlike normal spinal motor neurons that exhibit elevated O-GlcNAcylation against age-dependent oxidative stress, NPGPx-deficient spinal motor neurons fail to boost O-GlcNAcylation and exacerbate ROS accumulation, leading to cell death. Mechanistically, stress-activated NPGPx inhibits O-GlcNAcase (OGA) through disulfide bonding to fine-tune global O-GlcNAcylation. Pharmacological inhibition of OGA rescues spinal motor neuron loss in aged NPGPx-deficient mice. Furthermore, expression of NPGPx in ALS patients is significantly lower than in unaffected adults. These results suggest that NPGPx modulates O-GlcNAcylation by inhibiting OGA to cope with age-dependent oxidative stress and protect motor neurons from degeneration, providing a potential therapeutic axis for ALS.
Collapse
Affiliation(s)
- Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Fang-Yi Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Li-Wen Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Drug Development Center, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
26
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Curcumin Ameliorates Nonalcoholic Fatty Liver Disease through Inhibition of O-GlcNAcylation. Nutrients 2019; 11:nu11112702. [PMID: 31717261 PMCID: PMC6893521 DOI: 10.3390/nu11112702] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The cause of progression to non-alcoholic fatty liver disease (NAFLD) is not fully understood. In the present study, we aimed to investigate how curcumin, a natural phytopolyphenol pigment, ameliorates NAFLD. Initially, we demonstrated that curcumin dramatically suppresses fat accumulation and hepatic injury induced in methionine and choline-deficient (MCD) diet mice. The severity of hepatic inflammation was alleviated by curcumin treatment. To identify the proteins involved in the pathogenesis of NAFLD, we also characterized the hepatic proteome in MCD diet mice. As a result of two-dimensional proteomic analysis, it was confirmed that thirteen proteins including antioxidant protein were differentially expressed in hepatic steatosis. However, the difference in expression was markedly improved by curcumin treatment. Interestingly, eight of the identified proteins are known to undergo O-GlcNAcylation modification. Thus, we further focused on elucidating how the regulation of O-linked β-N-acetylglucosamine (O-GlcNAc) modification is associated with the progression of hepatic steatosis leading to hepatitis in MCD diet mice. In parallel with lipid accumulation and inflammation, the MCD diet significantly up-regulated hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) via ER stress. Curcumin treatment alleviates the severity of hepatic steatosis by relieving the dependence of O-GlcNAcylation on nuclear factor-κB (NF-κB) in inflammation signaling. Conversely, the expressions of superoxide dismutase 1 (SOD1) and SIRT1 were significantly upregulated by curcumin treatment. In conclusion, curcumin inhibits O-GlcNAcylation pathway, leading to antioxidant responses in non-alcoholic steatohepatitis (NASH) mice. Therefore, curcumin will be a promising therapeutic agent for diseases involving hyper-O-GlcNAcylation, including cancer.
Collapse
|
28
|
Zhang B, Li MD, Yin R, Liu Y, Yang Y, Mitchell-Richards KA, Nam JH, Li R, Wang L, Iwakiri Y, Chung D, Robert ME, Ehrlich BE, Bennett AM, Yu J, Nathanson MH, Yang X. O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight 2019; 4:127709. [PMID: 31672932 DOI: 10.1172/jci.insight.127709] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology and
| | - Min-Dian Li
- Department of Cellular and Molecular Physiology and
| | - Ruonan Yin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuyang Liu
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yunfan Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rui Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Physiology and Neurobiology and.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology and.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M Bennett
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | | | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology and.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Dassanayaka S, Brittian KR, Jurkovic A, Higgins LA, Audam TN, Long BW, Harrison LT, Militello G, Riggs DW, Chitre MG, Uchida S, Muthusamy S, Gumpert AM, Jones SP. E2f1 deletion attenuates infarct-induced ventricular remodeling without affecting O-GlcNAcylation. Basic Res Cardiol 2019; 114:28. [PMID: 31152247 DOI: 10.1007/s00395-019-0737-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023]
Abstract
Several post-translational modifications figure prominently in ventricular remodeling. The beta-O-linkage of N-acetylglucosamine (O-GlcNAc) to proteins has emerged as an important signal in the cardiovascular system. Although there are limited insights about the regulation of the biosynthetic pathway that gives rise to the O-GlcNAc post-translational modification, much remains to be elucidated regarding the enzymes, such as O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which regulate the presence/absence of O-GlcNAcylation. Recently, we showed that the transcription factor, E2F1, could negatively regulate OGT and OGA expression in vitro. The present study sought to determine whether E2f1 deletion would improve post-infarct ventricular function by de-repressing expression of OGT and OGA. Male and female mice were subjected to non-reperfused myocardial infarction (MI) and followed for 1 or 4 week. MI significantly increased E2F1 expression. Deletion of E2f1 alone was not sufficient to alter OGT or OGA expression in a naïve setting. Cardiac dysfunction was significantly attenuated at 1-week post-MI in E2f1-ablated mice. During chronic heart failure, E2f1 deletion also attenuated cardiac dysfunction. Despite the improvement in function, OGT and OGA expression was not normalized and protein O-GlcNAcyltion was not changed at 1-week post-MI. OGA expression was significantly upregulated at 4-week post-MI but overall protein O-GlcNAcylation was not changed. As an alternative explanation, we also performed guided transcriptional profiling of predicted targets of E2F1, which indicated potential differences in cardiac metabolism, angiogenesis, and apoptosis. E2f1 ablation increased heart size and preserved remote zone capillary density at 1-week post-MI. During chronic heart failure, cardiomyocytes in the remote zone of E2f1-deleted hearts were larger than wildtype. These data indicate that, overall, E2f1 exerts a deleterious effect on ventricular remodeling. Thus, E2f1 deletion improves ventricular remodeling with limited impact on enzymes regulating O-GlcNAcylation.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Andrea Jurkovic
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Lauren A Higgins
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Linda T Harrison
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Giuseppe Militello
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Daniel W Riggs
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Mitali G Chitre
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Shizuka Uchida
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA.
| |
Collapse
|
30
|
Nie H, Yi W. O-GlcNAcylation, a sweet link to the pathology of diseases. J Zhejiang Univ Sci B 2019; 20:437-448. [PMID: 31090269 PMCID: PMC6568225 DOI: 10.1631/jzus.b1900150] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification occurring on myriad proteins in the cell nucleus, cytoplasm, and mitochondria. The donor sugar for O-GlcNAcylation, uridine-diphosphate N-acetylglucosamine (UDP-GlcNAc), is synthesized from glucose through the hexosamine biosynthetic pathway (HBP). The recycling of O-GlcNAc on proteins is mediated by two enzymes in cells-O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and removal of O-GlcNAc, respectively. O-GlcNAcylation is involved in a number of important cell processes including transcription, translation, metabolism, signal transduction, and apoptosis. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular diseases. A better understanding of the roles of O-GlcNAcylation in physiopathological processes would help to uncover novel avenues for therapeutic intervention. The aim of this review is to discuss the recent updates on the mechanisms and impacts of O-GlcNAcylation on these diseases, and its potential as a new clinical target.
Collapse
|
31
|
Zhang N, Zhu T, Yu K, Shi M, Wang X, Wang L, Huang T, Li W, Liu Y, Zhang J. Elevation of O-GlcNAc and GFAT expression by nicotine exposure promotes epithelial-mesenchymal transition and invasion in breast cancer cells. Cell Death Dis 2019; 10:343. [PMID: 31019204 PMCID: PMC6482138 DOI: 10.1038/s41419-019-1577-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Cigarette smoking has been shown to be a carcinogenic factor in breast cancer. Nicotine (Nic), an active component of tobacco, has been found to induce epithelial-mesenchymal transition (EMT) in breast cancer cells. However, the alterations in protein O-GlcNAcylation in Nic-mediated tumorigenesis and malignization mechanisms are less well studied. Herein, we found that cellular O-GlcNAcylation dramatically increased in human breast cancer cells with EMT activation induced by Nic. Elevated O-GlcNAcylation subsequently promoted Nic-induced EMT activation and increased cell migratory abbility. In addition, we demonstrated that a differentiation factor for the mammary epithelium, CCAAT/enhancer-binding protein B (CEBPB), was involved in Nic-induced hyper-O-GlcNAcylation via transcriptional regulation of the expression of the key enzyme glutamine: fructose-6-phosphate amidotransferase (GFAT) and thus increased the flux through the hexosamine biosynthetic pathway (HBP). Finally, elevated O-GlcNAcylation of the transcriptional repressor C/EBP homologous protein (CHOP) suppressed its heterodimerization with CEBPB and facilitated the DNA-binding activity of CEBPB, further generating positive feedback that enhanced EMT upon Nic stimulation. In conclusion, our results have revealed a new regulatory mechanism involving CEBPB/GFAT-induced hyper-O-GlcNAcylation that plays a key role in EMT and smoking-mediated breast cancer progression.
Collapse
Affiliation(s)
- Nana Zhang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Tong Zhu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Kairan Yu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Meiyun Shi
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Xue Wang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Lingyan Wang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Tianmiao Huang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
- School of Life Science & Biotechnology, Dalian University of Technology, Dalian, China
| | - Yubo Liu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China.
| | - Jianing Zhang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China.
| |
Collapse
|
32
|
Cholinergic drugs ameliorate endothelial dysfunction by decreasing O-GlcNAcylation via M3 AChR-AMPK-ER stress signaling. Life Sci 2019; 222:1-12. [PMID: 30786250 DOI: 10.1016/j.lfs.2019.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/22/2023]
Abstract
AIMS Obesity is associated with increased cardiovascular morbidity and mortality. It is accompanied by augmented O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins via increasing hexosamine biosynthetic pathway (HBP) flux. However, the changes and regulation of the O-GlcNAc levels induced by obesity are unclear. MAIN METHODS High fat diet (HFD) model was induced obesity in mice with or without the cholinergic drug pyridostigmine (PYR, 3 mg/kg/d) for 22 weeks and in vitro human umbilical vein endothelial cells (HUVECs) was treated with high glucose (HG, 30 mM) with or without acetylcholine (ACh). KEY FINDINGS PYR significantly reduced body weight, blood glucose, and O-GlcNAcylation levels and attenuated vascular endothelial cells detachment in HFD-fed mice. HG addition induced endoplasmic reticulum (ER) stress and increased O-GlcNAcylation levels and apoptosis in HUVECs in a time-dependent manner. Additionally, HG decreased levels of phosphorylated AMP-activated protein kinase (AMPK). Interestingly, ACh significantly blocked damage to HUVECs induced by HG. Furthermore, the effects of ACh on HG-induced ER stress, O-GlcNAcylation, and apoptosis were prevented by treating HUVECs with 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, a selective M3 AChR antagonist) or compound C (Comp C, an AMPK inhibitor). Treatment with 5-aminoimidazole-4-carboxamide ribose (AICAR, an AMPK activator), 4-phenyl butyric acid (4-PBA, an ER stress inhibitor), and 6-diazo-5-oxonorleucine (DON, a GFAT antagonist) reproduced a similar effect with ACh. SIGNIFICANCE Activation of cholinergic signaling ameliorated endothelium damage, reduced levels of ER stress, O-GlcNAcylation, and apoptosis in mice and HUVECs under obese conditions, which may function through M3 AChR-AMPK signaling.
Collapse
|
33
|
Jensen RV, Andreadou I, Hausenloy DJ, Bøtker HE. The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20020404. [PMID: 30669312 PMCID: PMC6359045 DOI: 10.3390/ijms20020404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury. Experimental cellular and animal models, and also human studies, have demonstrated that protection against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the principal mechanisms underlying tissue protection against IR injury and the associated immediate elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of inflammatory and heat shock responses, and interference with established cardioprotective pathways. O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is activated by mechanical conditioning strategies.
Collapse
Affiliation(s)
- Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Panepistimiopolis, 15771 Zografou, Greece.
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore.
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London W1T 7DN, UK.
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey 64849, Mexico.
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
34
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Effects of Acute Cold Stress on Liver O-GlcNAcylation and Glycometabolism in Mice. Int J Mol Sci 2018; 19:ijms19092815. [PMID: 30231545 PMCID: PMC6165085 DOI: 10.3390/ijms19092815] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Protein O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) regulates many biological processes. Studies have shown that O-GlcNAc modification levels can increase during acute stress and suggested that this may contribute to the survival of the cell. This study investigated the possible effects of O-GlcNAcylation that regulate glucose metabolism, apoptosis, and autophagy in the liver after acute cold stress. Male C57BL/6 mice were exposed to cold conditions (4 °C) for 0, 2, 4, and 6 h, then their livers were extracted and the expression of proteins involved in glucose metabolism, apoptosis, and autophagy was determined. It was found that acute cold stress increased global O-GlcNAcylation and protein kinase B (AKT) phosphorylation levels. This was accompanied by significantly increased activation levels of the glucose metabolism regulators 160 kDa AKT substrate (AS160), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), and glycogen synthase kinase-3β (GSK3β). The levels of glycolytic intermediates, fructose-1,6-diphosphate (FDP) and pyruvic acid (PA), were found to show a brief increase followed by a sharp decrease. Additionally, adenosine triphosphate (ATP), as the main cellular energy source, had a sharp increase. Furthermore, the B-cell lymphoma 2(Bcl-2)/Bcl-2-associated X (Bax) ratio was found to increase, whereas cysteine-aspartic acid protease 3 (caspase-3) and light chain 3-II (LC3-II) levels were reduced after acute cold stress. Therefore, acute cold stress was found to increase O-GlcNAc modification levels, which may have resulted in the decrease of the essential processes of apoptosis and autophagy, promoting cell survival, while altering glycose transport, glycogen synthesis, and glycolysis in the liver.
Collapse
|
36
|
Remote Ischemic Preconditioning Ameliorates Acute Kidney Injury due to Contrast Exposure in Rats through Augmented O-GlcNAcylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4895913. [PMID: 30186544 PMCID: PMC6112094 DOI: 10.1155/2018/4895913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023]
Abstract
Remote ischemic preconditioning (RIPC) is an adaptive response, manifesting when local short-term ischemic preconditioning reduces damage to adjacent or distant tissues or organs. O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of intracellular proteins denotes a type of posttranslational modification that influences multiple cytoplasmic and nuclear protein functions. Growing evidence indicates that stress can induce an acute increase in O-GlcNAc levels, which can be cytoprotective. The current study aimed to determine whether RIPC can provide renoprotection against contrast-induced acute kidney injury (CI-AKI) by augmenting O-GlcNAc signaling. We established a stable model of CI-AKI using 5/6 nephrectomized rats exposed to dehydration followed by iohexol injection via the tail vein. We found that RIPC increased UDP-GlcNAc levels through the hexosamine biosynthetic pathway as well as global renal O-GlcNAcylation. RIPC-induced elevation of O-GlcNAc signaling ameliorated CI-AKI based on the presence of less tubular damage and apoptosis and the amount of reactive oxygen species. In addition, the use of alloxan, an O-GlcNAc transferase inhibitor, and azaserine, a glutamine fructose-6-phosphate amidotransferase inhibitor, neutralized the protective effect of RIPC against oxidative stress and tubular apoptosis. In conclusion, RIPC attenuates local oxidative stress and tubular apoptosis induced by contrast exposure by enhancing O-GlcNAc glycosylation levels; this can be a potentially useful approach for lowering the risk of CI-AKI.
Collapse
|
37
|
Zhao L, Shah JA, Cai Y, Jin J. ' O-GlcNAc Code' Mediated Biological Functions of Downstream Proteins. Molecules 2018; 23:molecules23081967. [PMID: 30082668 PMCID: PMC6222556 DOI: 10.3390/molecules23081967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022] Open
Abstract
As one of the post-translational modifications, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) often occurs on serine (Ser) and threonine (Thr) residues of specific substrate cellular proteins via the addition of O-GlcNAc group by O-GlcNAc transferase (OGT). Maintenance of normal intracellular levels of O-GlcNAcylation is controlled by OGT and glycoside hydrolase O-GlcNAcase (OGA). Unbalanced O-GlcNAcylation levels have been involved in many diseases, including diabetes, cancer, and neurodegenerative disease. Recent research data reveal that O-GlcNAcylation at histones or non-histone proteins may provide recognition platforms for subsequent protein recruitment and further initiate intracellular biological processes. Here, we review the current understanding of the 'O-GlcNAc code' mediated intracellular biological functions of downstream proteins.
Collapse
Affiliation(s)
- Linhong Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
38
|
Muter J, Alam MT, Vrljicak P, Barros FSV, Ruane PT, Ewington LJ, Aplin JD, Westwood M, Brosens JJ. The Glycosyltransferase EOGT Regulates Adropin Expression in Decidualizing Human Endometrium. Endocrinology 2018; 159:994-1004. [PMID: 29244071 DOI: 10.1210/en.2017-03064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
In pregnancy, resistance of endometrial decidual cells to stress signals is critical for the integrity of the fetomaternal interface and, by extension, survival of the conceptus. O-GlcNAcylation is an essential posttranslational modification that links glucose sensing to cellular stress resistance. Unexpectedly, decidualization of primary endometrial stromal cells (EnSCs) was associated with a 60% reduction in O-linked β-N-acetylglucosamine (O-GlcNAc)‒modified proteins, reflecting downregulation of the enzyme that adds O-GlcNAc to substrates (O-GlcNAc transferase; OGT) but not the enzyme that removes the modification (O-GlcNAcase). Notably, epidermal growth factor domain-specific O-linked GlcNAc transferase (EOGT), an endoplasmic reticulum-specific OGT that modifies a limited number of secreted and membrane proteins, was markedly induced in differentiating EnSCs. Knockdown of EOGT perturbed a network of decidual genes involved in multiple cellular functions. The most downregulated gene upon EOGT knockdown in decidualizing cells was the energy homeostasis-associated gene (ENHO), which encodes adropin, a metabolic hormone involved in energy homeostasis and glucose and fatty acid metabolism. Analysis of midluteal endometrial biopsies revealed an inverse correlation between endometrial EOGT and ENHO expression and body mass index. Taken together, our findings revealed that obesity impairs the EOGT-adropin axis in decidual cells, which in turn points toward a mechanistic link between metabolic disorders and adverse pregnancy outcome.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad T Alam
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Flavio S V Barros
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter T Ruane
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
39
|
Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, Daskalopoulos EP, Esfahani H, Dubois-Deruy E, Lauzier B, Gauthier C, Olson AK, Bouchard B, Des Rosiers C, Viollet B, Sakamoto K, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S, Bertrand L. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun 2018; 9:374. [PMID: 29371602 PMCID: PMC5785516 DOI: 10.1038/s41467-017-02795-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) has been shown to inhibit cardiac hypertrophy. Here, we show that submaximal AMPK activation blocks cardiomyocyte hypertrophy without affecting downstream targets previously suggested to be involved, such as p70 ribosomal S6 protein kinase, calcineurin/nuclear factor of activated T cells (NFAT) and extracellular signal-regulated kinases. Instead, cardiomyocyte hypertrophy is accompanied by increased protein O-GlcNAcylation, which is reversed by AMPK activation. Decreasing O-GlcNAcylation by inhibitors of the glutamine:fructose-6-phosphate aminotransferase (GFAT), blocks cardiomyocyte hypertrophy, mimicking AMPK activation. Conversely, O-GlcNAcylation-inducing agents counteract the anti-hypertrophic effect of AMPK. In vivo, AMPK activation prevents myocardial hypertrophy and the concomitant rise of O-GlcNAcylation in wild-type but not in AMPKα2-deficient mice. Treatment of wild-type mice with O-GlcNAcylation-inducing agents reverses AMPK action. Finally, we demonstrate that AMPK inhibits O-GlcNAcylation by mainly controlling GFAT phosphorylation, thereby reducing O-GlcNAcylation of proteins such as troponin T. We conclude that AMPK activation prevents cardiac hypertrophy predominantly by inhibiting O-GlcNAcylation.
Collapse
Affiliation(s)
- Roselle Gélinas
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Florence Mailleux
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Justine Dontaine
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Bénédicte Demeulder
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Audrey Ginion
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Evangelos P Daskalopoulos
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Hrag Esfahani
- Pole of Pharmacotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Emilie Dubois-Deruy
- Pole of Pharmacotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Benjamin Lauzier
- l'institut du thorax, INSERM, CNRS, Univ. Nantes, Nantes, 44007, France
| | - Chantal Gauthier
- l'institut du thorax, INSERM, CNRS, Univ. Nantes, Nantes, 44007, France
| | - Aaron K Olson
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, 98105-0371, WA, USA.,Montreal Heart Institute, Montreal, H1T 1C8, Canada
| | | | - Christine Des Rosiers
- Montreal Heart Institute, Montreal, H1T 1C8, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1A8, Canada
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, 75014, Paris, France.,CNRS UMR8104, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Lausanne, 1015, Switzerland
| | - Jean-Luc Balligand
- Pole of Pharmacotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Jean-Louis Vanoverschelde
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.
| |
Collapse
|
40
|
Ferron M, Denis M, Persello A, Rathagirishnan R, Lauzier B. Protein O-GlcNAcylation in Cardiac Pathologies: Past, Present, Future. Front Endocrinol (Lausanne) 2018; 9:819. [PMID: 30697194 PMCID: PMC6340935 DOI: 10.3389/fendo.2018.00819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous and reversible post-translational protein modification that has recently gained renewed interest due to the rapid development of analytical tools and new molecules designed to specifically increase the level of protein O-GlcNAcylation. The level of O-GlcNAc modification appears to have either deleterious or beneficial effects, depending on the context (exposure time, pathophysiological context). While high O-GlcNAcylation levels are mostly reported in chronic diseases, the increase in O-GlcNAc level in acute stresses such as during ischemia reperfusion or hemorrhagic shock is reported to be beneficial in vitro, ex vivo, or in vivo. In this context, an increase in O-GlcNAc levels could be a potential new cardioprotective therapy, but the ambivalent effects of protein O-GlcNAcylation augmentation remains as a key problem to be solved prior to their transfer to the clinic. The emergence of new analytical tools has opened new avenues to decipher the mechanisms underlying the beneficial effects associated with an O-GlcNAc level increase. A better understanding of the exact roles of O-GlcNAc on protein function, targeting or stability will help to develop more targeted approaches. The aim of this review is to discuss the mechanisms and potential beneficial impact of O-GlcNAc modulation, and its potential as a new clinical target in cardiology.
Collapse
Affiliation(s)
- Marine Ferron
- Montreal Heart Institute, Montreal, QC, Canada
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- *Correspondence: Marine Ferron
| | - Manon Denis
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | | |
Collapse
|
41
|
The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1308692. [PMID: 29456783 PMCID: PMC5804373 DOI: 10.1155/2017/1308692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification that is increasingly recognized as a signal transduction mechanism. Unlike other glycans, O-GlcNAc is a highly dynamic and reversible process that involves the addition and removal of a single N-acetylglucosamine molecule to Ser/Thr residues of proteins. UDP-GlcNAc—the direct substrate for O-GlcNAc modification—is controlled by the rate of cellular metabolism, and thus O-GlcNAc is dependent on substrate availability. Serving as a feedback mechanism, O-GlcNAc influences the regulation of insulin signaling and glucose transport. Besides nutrient sensing, O-GlcNAc was also implicated in the regulation of various physiological and pathophysiological processes. Due to improvements of mass spectrometry techniques, more than one thousand proteins were detected to carry the O-GlcNAc moiety; many of them are known to participate in the regulation of metabolites, ions, or protein transport across biological membranes. Recent studies also indicated that O-GlcNAc is involved in stress adaptation; overwhelming evidences suggest that O-GlcNAc levels increase upon stress. O-GlcNAc elevation is generally considered to be beneficial during stress, although the exact nature of its protective effect is not understood. In this review, we summarize the current data regarding the oxidative stress-related changes of O-GlcNAc levels and discuss the implications related to membrane trafficking.
Collapse
|
42
|
Jose J, Tavares CDJ, Ebelt ND, Lodi A, Edupuganti R, Xie X, Devkota AK, Kaoud TS, Van Den Berg CL, Anslyn EV, Tiziani S, Bartholomeusz C, Dalby KN. Serotonin Analogues as Inhibitors of Breast Cancer Cell Growth. ACS Med Chem Lett 2017; 8:1072-1076. [PMID: 29057053 DOI: 10.1021/acsmedchemlett.7b00282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a critical local regulator of epithelial homeostasis in the breast and exerts its actions through a number of receptors. Dysregulation of serotonin signaling is reported to contribute to breast cancer pathophysiology by enhancing cell proliferation and promoting resistance to apoptosis. Preliminary analyses indicated that the potent 5-HT1B/1D serotonin receptor agonist 5-nonyloxytryptamine (5-NT), a triptan-like molecule, induced cell death in breast cancer cell lines. Thus, we synthesized a series of novel alkyloxytryptamine analogues, several of which decreased the viability of various human cancer cell lines. Proteomic and metabolomic analyses showed that compounds 6 and 10 induced apoptosis and interfered with signaling pathways that regulate protein translation and survival, such as the Akt/mTOR pathway, in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Jiney Jose
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Clint D. J. Tavares
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Graduate
Program in Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nancy D. Ebelt
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Graduate
Program in Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alessia Lodi
- Department
of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas 78723, United States
| | - Ramakrishna Edupuganti
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xuemei Xie
- Section
of Translational Breast Cancer Research, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department
of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ashwini K. Devkota
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Graduate
Program in Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tamer S. Kaoud
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carla L. Van Den Berg
- Graduate
Program in Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas 78723, United States
| | - Eric V. Anslyn
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stefano Tiziani
- Department
of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas 78723, United States
| | - Chandra Bartholomeusz
- Section
of Translational Breast Cancer Research, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department
of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Kevin N. Dalby
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Graduate
Program in Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Yang W, Paschen W. Is age a key factor contributing to the disparity between success of neuroprotective strategies in young animals and limited success in elderly stroke patients? Focus on protein homeostasis. J Cereb Blood Flow Metab 2017; 37:3318-3324. [PMID: 28752781 PMCID: PMC5624400 DOI: 10.1177/0271678x17723783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuroprotection strategies to improve stroke outcome have been successful in the laboratory but not in clinical stroke trials, and thus have come under scrutiny by the medical community. Experimental stroke investigators are therefore under increased pressure to resolve this problem. Acute ischemic stroke represents a severe form of metabolic stress that activates many pathological processes and thereby impairs cellular functions. Traditionally, neuroprotection strategies were designed to improve stroke outcome by interfering with pathological processes triggered by ischemia. However, stroke outcome is also dependent on the brain's capacity to restore cellular functions impaired by ischemia, and this capacity declines with age. It is, therefore, conceivable that this age-dependent decline in the brain's self-healing capacity contributes to the disparity between the success of neuroprotective strategies in young animals, and limited success in elderly stroke patients. Here, prosurvival pathways that restore protein homeostasis impaired by ischemic stress should be considered, because their capacity decreases with increasing age, and maintenance of proteome fidelity is pivotal for cell survival. Boosting such prosurvival pathways pharmacologically to restore protein homeostasis and, thereby, cellular functions impaired by ischemic stress is expected to counterbalance the compromised self-healing capacity of aged brains and thereby help to improve stroke outcome.
Collapse
Affiliation(s)
- Wei Yang
- 1 Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- 1 Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Han JW, Valdez JL, Ho DV, Lee CS, Kim HM, Wang X, Huang L, Chan JY. Nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) is regulated by O-GlcNAc transferase. Free Radic Biol Med 2017. [PMID: 28625484 DOI: 10.1016/j.freeradbiomed.2017.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Nrf1 (Nuclear factor E2-related factor 1) transcription factor performs a critical role in regulating cellular homeostasis. Using a proteomic approach, we identified Host Cell Factor-1 (HCF1), a co-regulator of transcription, and O-GlcNAc transferase (OGT), the enzyme that mediates protein O-GlcNAcylation, as cellular partners of Nrf1a, an isoform of Nrf1. Nrf1a directly interacts with HCF1 through the HCF1 binding motif (HBM), while interaction with OGT is mediated through HCF1. Overexpression of HCF1 and OGT leads to increased Nrf1a protein stability. Addition of O-GlcNAc decreases ubiquitination and degradation of Nrf1a. Transcriptional activation by Nrf1a is increased by OGT overexpression and treatment with PUGNAc. Together, these data suggest that OGT can act as a regulator of Nrf1a.
Collapse
Affiliation(s)
- Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Joshua L Valdez
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Candy S Lee
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Xiaorong Wang
- Departments of Physiology and Biophysics, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Lan Huang
- Departments of Physiology and Biophysics, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
45
|
Frenkel-Pinter M, Shmueli MD, Raz C, Yanku M, Zilberzwige S, Gazit E, Segal D. Interplay between protein glycosylation pathways in Alzheimer's disease. SCIENCE ADVANCES 2017; 3:e1601576. [PMID: 28929132 PMCID: PMC5600531 DOI: 10.1126/sciadv.1601576] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/15/2017] [Indexed: 05/22/2023]
Abstract
Deviations from the normal nucleoplasmic protein O-GlcNAcylation, as well as from normal protein sialylation and N-glycosylation in the secretory pathway, have been reported in Alzheimer's disease (AD). However, the interplay between the cytoplasmic protein O-GlcNAcylation and the secretory N-/O-glycosylation in AD has not been described. We present a comprehensive analysis of the N-, O-, and O-GlcNAc-glycomes in AD-affected brain regions as well as in AD patient serum. We detected marked differences in levels of glycan involved in both protein O-GlcNAcylation and N-/O-glycosylation between patients and healthy individuals and revealed brain region-specific glycosylation-related pathology in patients. These alterations are not general for other neurodegenerative conditions, such as frontotemporal dementia and corticobasal degeneration. The alterations in the AD glycome in the serum could potentially lead to novel glyco-based biomarkers for AD progression. Strikingly, negative interrelationship was found between the pathways of protein O-GlcNAcylation and N-/O-glycosylation, suggesting a novel intracellular cross-talk.
Collapse
Affiliation(s)
| | | | - Chen Raz
- Department of Molecular Microbiology and Biotechnology, Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michaela Yanku
- Department of Molecular Microbiology and Biotechnology, Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
46
|
Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans 2017; 45:237-249. [PMID: 28202678 DOI: 10.1042/bst20160153] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O-GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O-GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O-GlcNAc, the mechanisms by which O-GlcNAc promotes cytoprotection, and the clinical significance of these data.
Collapse
|
47
|
Jiang M, Yu S, Yu Z, Sheng H, Li Y, Liu S, Warner DS, Paschen W, Yang W. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G. Stroke 2017; 48:1646-1654. [PMID: 28487326 DOI: 10.1161/strokeaha.117.016579] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. METHODS Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. RESULTS Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. CONCLUSIONS Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains.
Collapse
Affiliation(s)
- Meng Jiang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shu Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Zhui Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Huaxin Sheng
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Ying Li
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shuai Liu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - David S Warner
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Wulf Paschen
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| | - Wei Yang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| |
Collapse
|
48
|
Dassanayaka S, Brainard RE, Watson LJ, Long BW, Brittian KR, DeMartino AM, Aird AL, Gumpert AM, Audam TN, Kilfoil PJ, Muthusamy S, Hamid T, Prabhu SD, Jones SP. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 2017; 112:23. [PMID: 28299467 PMCID: PMC5555162 DOI: 10.1007/s00395-017-0612-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/-) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Robert E Brainard
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Lewis J Watson
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Angelica M DeMartino
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Allison L Aird
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Peter J Kilfoil
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Tariq Hamid
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA.
| |
Collapse
|
49
|
Groves JA, Maduka AO, O'Meally RN, Cole RN, Zachara NE. Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J Biol Chem 2017; 292:6493-6511. [PMID: 28232487 DOI: 10.1074/jbc.m116.760785] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
The dynamic post-translational modification O-linked β-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Jennifer A Groves
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Austin O Maduka
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, and
| | - Robert N O'Meally
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Natasha E Zachara
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185,
| |
Collapse
|
50
|
Hu J, Chen R, Jia P, Fang Y, Liu T, Song N, Xu X, Ji J, Ding X. Augmented O-GlcNAc signaling via glucosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats. Free Radic Biol Med 2017; 103:121-132. [PMID: 28017896 DOI: 10.1016/j.freeradbiomed.2016.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/27/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is an iatrogenic renal injury and associated with substantial morbidity and mortality in susceptible individuals. Despite extensive study of a variety of agents for renal protection, limited strategies have been shown to be effective in the reduction of CI-AKI. O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational regulatory modification of intracellular proteins and governs the function of numerous proteins, both cytosolic and nuclear. Increasing evidence suggests that O-GlcNAc levels are increased in response to stress and that acute augmentation of this reaction is cytoprotective. However, the underlying mechanisms by which augmented OGlcNAc signaling provides renoprotection against contrast media insults is still unknown. Here, we investigated the effect of augmented O-GlcNAc signaling via glucosamine on CI-AKI and explored the underlying molecular mechanisms, particularly its relationship with PI3-kinase (PI3K)/Akt signaling. We used a novel and reliable CI-AKI model consisting of 5/6 nephrectomized (NE) rats, and a low-osmolar contrast media (iohexol, 10mL/kg, 3.5gI) injected via the tail vein after dehydration for 48h. The results showed that augmented O-GlcNAc signaling by glucosamine prevented the kidneys against iohexol-induced injury characterized by the attenuation of renal dysfunction, tubular damage, apoptosis and oxidative stress. Furthermore, this renoprotection was blocked by treatment with alloxan, an O-GlcNAc transferase inhibitor. Augmented O-GlcNAc signaling also increased the protein expression levels of phospho-Akt (Ser473, but not Thr308 and Thr450), phospho-GSK-3β, Nrf2, and Bcl-2, and decreased the levels of Bax and cleaved caspase-3. Both alloxan and specific inhibitors of PI3K (Wortmannin and LY294002) blocked the protection of glucosamine via inhibiting Akt signaling pathway. We further identified O-GlcNAcylated Akt through immunoprecipitation and western blot. We confirmed that Akt was modified by O-GlcNAcylation, and glucosamine pretreatment increased the O-GlcNAcylation of Akt. Collectively, the results demonstrate that glucosamine induces renoprotection against CI-AKI through augmented O-GlcNAc and activation of PI3K/Akt signaling, making it a promising strategy for preventing CI-AKI.
Collapse
Affiliation(s)
- Jiachang Hu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Rongyi Chen
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Chang zhou No. 2 Hospital of Nanjing Medical College, Changzhou, Jiangsu 213003, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Jun Ji
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China.
| |
Collapse
|