1
|
Ahmed A, Abdel-Rahman D, Hantash EM. Role of canagliflozin in ameliorating isoprenaline induced cardiomyocyte oxidative stress via the heme oxygenase-1 mediated pathway. Biotech Histochem 2023; 98:593-605. [PMID: 37779487 DOI: 10.1080/10520295.2023.2262390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Canagliflozin (CZ) is commonly prescribed for management of type-2 diabetes mellitus (T2DM); it also can reduce the risk of myocardial infarction. We used 80 albino Wistar rats to investigate the cardioprotective potential of CZ against oxidative stress caused by administration of isoprenaline (ISO). We found that ISO stimulates production of reactive oxygen species and that CZ administration caused up-regulation of antioxidants and down-regulation of oxidants due to nuclear factor erythroid-2 related factor-2, as well as by enhancement of the heme oxygenase-1 mediated cascade. CZ monotherapy may play a cardioprotective role in diabetic patients. CZ possesses strong antioxidant potential that ameliorates cardiac damage induced by ISO administration.
Collapse
Affiliation(s)
- Ahmed Ahmed
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, Egypt
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Dina Abdel-Rahman
- Department of Pathology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ehab M Hantash
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Heras NDL, Galiana A, Ballesteros S, Quintela JC, Bonilauri I, Lahera V, Martín-Fernández B. Polyphenols and Triterpenes Combination in an In Vitro Model of Cardiac Damage: Protective Effects. Int J Mol Sci 2023; 24:7977. [PMID: 37175685 PMCID: PMC10178477 DOI: 10.3390/ijms24097977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Olive products contain high levels of monounsaturated fatty acids as well as other minor components such as triterpenic alcohols and other pentacyclic triterpenes, which together form the main triterpenes of virgin olive oil. Olive fruits and leaves contain significant amounts of hydrophilic and lipophilic bioactives including flavones, phenolic acids and phenolic alcohols, amongst others. Several studies have shown the benefits of these substances on the cardiovascular system. Regardless, little is known about the specific combination of bioactive compounds in cardiovascular health. Thus, we aimed to test the combination of a triterpenes (TT70) and a polyphenols (HT60) olive oil bioactive extract in H9c2 cells under stress conditions: LPS and H2O2 stimulation. To evaluate the effectiveness of the combination, we measured cell viability, superoxide production and protein expression of caspase 3, eNOS, peNOS, TNF-α and Il-6. Overall, cells stimulated with LPS or H2O2 and co-incubated with the combination of triterpenes and polyphenols had increased cell survival, lower levels of superoxide anion, lower protein expression of eNOS and higher expression of peNOS, increased protein expression of SOD-1 and lower protein expression of TNF-α and Il-6. The specific combination of HT60+TT70 is of great interest for further study as a possible treatment for cardiovascular damage.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | | | - Ileana Bonilauri
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
- Scientific Department, Natac Biotech, 28923 Madrid, Spain;
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
3
|
Peres EC, Victorio JA, Nunes-Souza V, Breithaupt-Faloppa AC, Rabelo LA, Tavares-de-Lima W, Davel AP, Rossoni LV. Simvastatin protects against intestinal ischemia/reperfusion-induced pulmonary artery dysfunction. Life Sci 2022; 306:120851. [PMID: 35926590 DOI: 10.1016/j.lfs.2022.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
AIMS The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1β and IL-6 in lung explants following II/R. SIGNIFICANCE The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.
Collapse
Affiliation(s)
- Emília C Peres
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Nunes-Souza
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiza A Rabelo
- Laboratory of Cardiovascular Reactivity, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Alagoas, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
OZMEN R, DEĞER N, KARABULUT D. Evaluation of the cytoprotective effects of thymoquinone on isoproterenol-induced rat aorta. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.995777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
5
|
Bernak-Oliveira Â, Guizoni DM, Chiavegatto S, Davel AP, Rossoni LV. The protective role of neuronal nitric oxide synthase in endothelial vasodilation in chronic β-adrenoceptor overstimulation. Life Sci 2021; 285:119939. [PMID: 34506836 DOI: 10.1016/j.lfs.2021.119939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that β-adrenergic (β-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular β-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following β-AR overstimulation. MAIN METHODS Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the β-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following β-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.
Collapse
Affiliation(s)
- Ângelo Bernak-Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil
| | - Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil; Department of Psychiatry, Institute of Psychiatry (IPq), University of Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil.
| |
Collapse
|
6
|
Moser B, Poetsch F, Estepa M, Luong TTD, Pieske B, Lang F, Alesutan I, Voelkl J. Increased β-adrenergic stimulation augments vascular smooth muscle cell calcification via PKA/CREB signalling. Pflugers Arch 2021; 473:1899-1910. [PMID: 34564739 PMCID: PMC8599266 DOI: 10.1007/s00424-021-02621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and β-adrenergic receptors. The present study explored the effects of β2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. β2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of β2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.
Collapse
Affiliation(s)
- Barbara Moser
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Zhang L, Li C, Yang L, Adzika GK, Machuki JO, Shi M, Sun Q, Sun H. Estrogen Protects Vasomotor Functions in Rats During Catecholamine Stress. Front Cardiovasc Med 2021; 8:679240. [PMID: 34222374 PMCID: PMC8241912 DOI: 10.3389/fcvm.2021.679240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of dysfunctional vasomotor diseases has mostly occurred in postmenopausal women but not in premenopausal women. Hence, this study sought to investigate the impact of estrogen deficiency during catecholamine stress on vasomotor function. Also, attempts were made to utilize estrogen replacement therapy to mitigate the adverse effects (pathological remodeling) of stress on the aortic vessels to preserve vasomotor functions. To do this, female Sprague-Dawley (SD) rats were ovariectomized (OVX) along with sham operations (Sham). Day 14 after OVX operation, 17-estradiol (E2) was subcutaneously implanted (OVX+E2). Day 35 after operation, stress was induced by isoproterenol (ISO) subcutaneous injections. Clinically relevant blood pressure indexes (systolic, diastolic, and mean atrial blood pressures) were assessed in the rats. Aortic vascular ring tensions were assessed in vitro to ascertain the impact of E2 on their vasomotor function. Aortic vascular rings (AVRs) from OVX+ISO exhibited a significant increase in contractility in response to phenylephrine than AVRs isolated from Sham+ISO rats. Also, sera levels of nitric oxide (NO) and endothelin-1 (ET-1) and the expression of p-eNOS/eNOS from vascular tissues were ascertained. We demonstrate that, during stress, E2 prevented excessive weight gain and OVX rats had higher blood pressures than those in the Sham group. Further, we showed that E2 decreases ET-1 expressions during stress while upregulating NO expressions via enhancing eNOS activities to facilitate vasomotor functions. Finally, histological assessment revealed the E2 treatments during stress preserved vasomotor functions by preventing excessive intima-media thickening and collagen depositions in the aortic vascular walls.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Chenfei Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Liting Yang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Flacourtia indica fruit extract modulated antioxidant gene expression, prevented oxidative stress and ameliorated kidney dysfunction in isoprenaline administered rats. Biochem Biophys Rep 2021; 26:101012. [PMID: 34041370 PMCID: PMC8142055 DOI: 10.1016/j.bbrep.2021.101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the effect of Flacourtia indica fruit extract against isoprenaline (ISO) induced renal damage in rats. This investigation showed that ISO administration in rats increased the level oxidative stress biomarkers such as malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP) in kidneys followed by a decrease in antioxidant enzymes functions. Flacourtia indica fruit extract, which is rich in strong antioxidants, also reduced the MDA, NO and APOP level in kidney of ISO administered rats. Inflammation and necrosis was also visible in kidney section of ISO administered rats which was significantly prevented by atenolol and Flacourtia indica fruit extract. Moreover, atenolol and Flacourtia indica fruit extract also modulated the genes expressions related to inflammation and oxidative stress in kidneys. The beneficial effects could be attributed to the presence of a number of phenolic antioxidants. This study suggests that Flacourtia indica fruit extract may prevent kidney dysfunction in ISO administered rats, probably by preventing oxidative stress and inflammation.
Collapse
|
9
|
Palatini P, Parati G, Virdis A, Reboldi G, Masi S, Mengozzi A, Casiglia E, Tikhonoff V, Cicero AFG, Ungar A, Rivasi G, Salvetti M, Barbagallo CM, Bombelli M, Dell'Oro R, Bruno B, Lippa L, D'Elia L, Verdecchia P, Angeli F, Mallamaci F, Cirillo M, Rattazzi M, Cirillo P, Gesualdo L, Mazza A, Giannattasio C, Maloberti A, Volpe M, Tocci G, Georgiopoulos G, Iaccarino G, Nazzaro P, Galletti F, Ferri C, Desideri G, Viazzi F, Pontremoli R, Muiesan ML, Grassi G, Borghi C. High heart rate amplifies the risk of cardiovascular mortality associated with elevated uric acid. Eur J Prev Cardiol 2021; 29:zwab023. [PMID: 33582757 DOI: 10.1093/eurjpc/zwab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/18/2023]
Abstract
AIMS Whether the association between uric acid (UA) and cardiovascular disease is influenced by some facilitating factors is unclear. The aim of this study was to investigate whether the risk of cardiovascular mortality (CVM) associated with elevated UA was modulated by the level of resting heart rate (HR). METHODS AND RESULTS Multivariable Cox analyses were made in 19 128 participants from the multicentre Uric acid Right for heArt Health study. During a median follow-up of 11.2 years, there were 1381 cases of CVM. In multivariable Cox models both UA and HR, either considered as continuous or categorical variables were independent predictors of CVM both improving risk discrimination (P ≤ 0.003) and reclassification (P < 0.0001) over a multivariable model. However, the risk of CVM related to high UA (≥5.5 mg/dL, top tertile) was much lower in the subjects with HR CONCLUSION This data suggest that the contribution of UA to determining CVM is modulated by the level of HR supporting the hypothesis that activation of the sympathetic nervous system facilitates the action of UA as a cardiovascular risk factor.
Collapse
Affiliation(s)
- Paolo Palatini
- Department of Medicine, Studium Patavinum, University of Padova, Via S. Fris 121, 31029 Vittorio Veneto, Italy
| | - Gianfranco Parati
- S. Luca Hospital, Istituto Auxologico Italiano & University of Milan-Bicocca, Milan, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianpaolo Reboldi
- Department of Medical and Surgical Science, University of Perugia, Perugia, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | - Andrea Ungar
- Department of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence, Florence, Italy
| | - Giulia Rivasi
- Department of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence, Florence, Italy
| | - Massimo Salvetti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo M Barbagallo
- Biomedical Department of Internal Medicine and Specialistics, University of Palermo, Palermo, Italy
| | - Michele Bombelli
- Department of Cardiovascular, Neural and Metabolic Sciences, Clinica Medica, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Dell'Oro
- Department of Cardiovascular, Neural and Metabolic Sciences, Clinica Medica, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Berardino Bruno
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luciano Lippa
- Italian Society of General, Medicine (SIMG), Avezzano, L'Aquila, Italy
| | - Lanfranco D'Elia
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Naples, Italy
| | | | - Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS Tradate, Varese, Italy
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Cal Unit, Reggio Calabria, Italy
| | - Massimo Cirillo
- Department of Public Health, "Federico II" University of Naples, Napoli, Italy
| | - Marcello Rattazzi
- Department of Medicine-DIMED, University of Padova, Medicina, Interna 1°, Ca' Foncello University Hospital, Treviso, Italy
| | - Pietro Cirillo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Alberto Mazza
- Department of Internal Medicine, Hypertension Unit, General Hospital, Rovigo, Italy
| | - Cristina Giannattasio
- Cardiology IV, 'A. De Gasperis' Department, Niguarda Ca' Granda Hospital, Milano, Italy
- Health Science Department, Milano-Bicocca University, Milano, Italy
| | - Alessandro Maloberti
- Cardiology IV, 'A. De Gasperis' Department, Niguarda Ca' Granda Hospital, Milano, Italy
- Health Science Department, Milano-Bicocca University, Milano, Italy
| | - Massimo Volpe
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giuliano Tocci
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Georgios Georgiopoulos
- First Department of Cardiology, 'Hippokration' Hospital, University of Athens, Medical School, Athens, Greece
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, Napoli, Italy
| | - Pietro Nazzaro
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Medical School, Bari, Italy
| | - Ferruccio Galletti
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Naples, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Guido Grassi
- Department of Cardiovascular, Neural and Metabolic Sciences, Clinica Medica, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Claudio Borghi
- Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Parvez F, Rahman MM, Khan F, Subhan N, Alam MA. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK-Akt-eNOS pathway in the isoprenaline-induced oxidative stress model. Sci Rep 2020; 10:14659. [PMID: 32887916 PMCID: PMC7474058 DOI: 10.1038/s41598-020-71599-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a leading cause of chronic kidney disease, and the high prevalence of sympathetic nervous system (SNS) hyperactivity in diabetic patients makes them further susceptible to SNS-mediated oxidative stress and accelerated kidney damage. Here, we investigated if canagliflozin can reverse isoprenaline (ISO)-induced renal oxidative damage in rats, a model that mimics SNS overstimulation-induced organ injuries in humans. We found that ISO administration elevates renal oxidative stress markers including malondialdehyde (MDA), advanced protein oxidation product (APOP), myeloperoxidase (MPO) and nitric oxide (NO), while depleting levels of endogenous antioxidants such as catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH). Strikingly, canagliflozin treatment of ISO-treated rats not only prevents elevation of oxidative stress markers but also rescues levels of depleted antioxidants. Our results also show that canagliflozin stimulates antioxidant/anti-inflammatory signaling pathways involving AMP-activated protein kinase (AMPK), Akt and eNOS, and inhibits iNOS and NADPH oxidase isoform 4 (NOX4), all of which are associated with oxidative stress and inflammation. Further, canagliflozin prevents ISO-induced apoptosis of kidney cells by inhibiting Bax protein upregulation and caspase-3 activation. Histological examination of kidney sections reveal that canagliflozin attenuates ISO-mediated increases in inflammatory cell infiltration, collagen deposition and fibrosis. Finally, consistent with these findings, canagliflozin treatment improves kidney function in ISO-treated rats, suggesting that the antioxidant effects may be clinically translatable.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, 30341, USA.
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Ahasanul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, 30341, USA
| | - Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, 30341, USA
| | - Mushfera Zamila
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Faisal Parvez
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
11
|
Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Chowdhury FI, Nayan SI, Rahman MM, Khan F, Subhan N, Alam MA. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. Sci Rep 2020; 10:14459. [PMID: 32879422 PMCID: PMC7468124 DOI: 10.1038/s41598-020-71449-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023] Open
Abstract
The antidiabetic drug canagliflozin is reported to possess several cardioprotective effects. However, no studies have investigated protective effects of canagliflozin in isoprenaline (ISO)-induced cardiac oxidative damage-a model mimicking sympathetic nervous system (SNS) overstimulation-evoked cardiac injuries in humans. Therefore, we investigated protective effects of canagliflozin in ISO-induced cardiac oxidative stress, and their underlying molecular mechanisms in Long-Evans rat heart and in HL-1 cardiomyocyte cell line. Our data showed that ISO administration inflicts pro-oxidative changes in heart by stimulating production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In contrast, canagliflozin treatment in ISO rats not only preserves endogenous antioxidants but also reduces cardiac oxidative stress markers, fibrosis and apoptosis. Our Western blotting and messenger RNA expression data demonstrated that canagliflozin augments antioxidant and anti-inflammatory signaling involving AMP-activated protein kinase (AMPK), Akt, endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). In addition, canagliflozin treatment attenuates pro-oxidative, pro-inflammatory and pro-apoptotic signaling mediated by inducible nitric oxide synthase (iNOS), transforming growth factor beta (TGF-β), NADPH oxidase isoform 4 (Nox4), caspase-3 and Bax. Consistently, canagliflozin treatment improves heart function marker in ISO-treated rats. In summary, we demonstrated that canagliflozin produces cardioprotective actions by promoting multiple antioxidant and anti-inflammatory signaling.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA.
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Ahasanul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Mushfera Zamila
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Faizul Islam Chowdhury
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Shariful Islam Nayan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
12
|
Yen C, Hsu C, Yang H, Lee C, Chi C, Chung W, Wang C, Pang JS, Wang C, Ko Y, Lu C. Treatment of epidermal growth factor receptor inhibitor‐induced severe paronychia with pyogenic granuloma‐like lesions with topical betaxolol: an open‐label observation study. Int J Dermatol 2019; 59:326-332. [DOI: 10.1111/ijd.14730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Chi‐Feng Yen
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Taoyuan Taiwan
- College of Medicine Chang Gung University Taoyuan Taiwan
| | - Chao‐Kai Hsu
- Department of Dermatology National Cheng Kung University Hospital College of Medicine National Cheng Kung University Tainan Taiwan
- International Research Center of Wound Repair and Regeneration (iWRR) National Cheng Kung University Tainan Taiwan
| | - Hsing‐San Yang
- Department of Dermatology National Cheng Kung University Hospital College of Medicine National Cheng Kung University Tainan Taiwan
| | - Chaw‐Ning Lee
- Department of Dermatology National Cheng Kung University Hospital College of Medicine National Cheng Kung University Tainan Taiwan
| | - Ching‐Chi Chi
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Taoyuan Taiwan
- College of Medicine Chang Gung University Taoyuan Taiwan
| | - Wen‐Hung Chung
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Taoyuan Taiwan
- College of Medicine Chang Gung University Taoyuan Taiwan
| | - Chih‐Liang Wang
- Division of Pulmonary Oncology and Interventional Bronchoscopy Department of Thoracic Medicine Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Jong‐Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences Chang Gung University Taoyuan Taiwan
- Department of Physical Medicine and Rehabilitation Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Chuang‐Wei Wang
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Taoyuan Taiwan
- College of Medicine Chang Gung University Taoyuan Taiwan
| | - Yu‐Shien Ko
- Cardiovascular Division Microscope Core Laboratory Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Chun‐Wei Lu
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Taoyuan Taiwan
- College of Medicine Chang Gung University Taoyuan Taiwan
| |
Collapse
|
13
|
Dipeptidyl peptidase-4 inhibition prevents vascular dysfunction induced by β-adrenergic hyperactivity. Biomed Pharmacother 2019; 113:108733. [DOI: 10.1016/j.biopha.2019.108733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/29/2023] Open
|
14
|
Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S. Anti-fibrotic Actions of Roselle Extract in Rat Model of Myocardial Infarction. Cardiovasc Toxicol 2019; 19:72-81. [PMID: 30128816 DOI: 10.1007/s12012-018-9478-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hibiscus/chemistry
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Inflammation Mediators/blood
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-6/blood
- Interleukin-6/genetics
- Isoproterenol
- Male
- Myocardial Infarction/chemically induced
- Myocardial Infarction/drug therapy
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Rats, Wistar
- Troponin T/blood
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Shafreena Shaukat Ali
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Fatimah Azaharah Mohamed
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nur Hafiqah Rozalei
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Yap Wei Boon
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Ghartavol MM, Gholizadeh-Ghaleh Aziz S, Babaei G, Hossein Farjah G, Hassan Khadem Ansari M. The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Mol Genet Genomic Med 2019; 7:e00579. [PMID: 30811871 PMCID: PMC6465653 DOI: 10.1002/mgg3.579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Myocardial infarction is one of the most common life threatening diseases that may lead to renal disorders via oxidative stress and inflammation. Betaine is a safe and well‐tolerated compound exhibiting beneficial antioxidant and anti‐inflammatory properties. Previous studies have demonstrated protective effects of betaine against myocardial infarction and renal injury. This study aimed to investigate the protective effect of betaine on tissue structure and renal function after isoprenaline‐induced myocardial infarction in rats. Methods Fifty Wistar strain male albino rats, weighing 200 ± 10, were selected for the study. The animals were housed individually under standard environmental conditions (Light–dark cycle, temperature and constant humidity) for 1 week. After acclimatization, they were randomly divided into five groups. G1, G2, and G3 groups received betaine at doses of 50, 150, and 250 mg/kg body weight/day via gavage for a period of 60 days. After 60 days, isoprenaline is injected subcutaneously (200 mg/kg body weight). In the isoprenaline group (G4), the rats were injected with isoprenaline (200 mg/kg body weight) and the control group (G5) received a standard diet (Without isoprenaline). Then, isoproterenol solution was used for induction of myocardial infarction. At the end, the expression of nitric oxide synthase (iNOS) protein was detected using immunohistochemical analysis and kidney tissues were assessed via histopathological analysis. In addition, serum level of TNF‐α and creatinine level were measured via ELISA test and colorimetric methods, respectively. Results The results of our study indicate that isoproterenol‐induced renal histopathological injury without changing creatinine level. Betaine has protective effects against renal injuries induced by isoprenaline and the expression of nitric oxide synthase (nNOS) protein showed no significant difference in all groups. Further, betaine reduced TNF‐α level significantly. Conclusion According to our results, betaine has protective effects on isoprenaline‐induced renal failure via a decrease in TNF‐α level and nitric oxide synthase.
Collapse
Affiliation(s)
- Mohammad Maram Ghartavol
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran.,Department of Anatomy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
16
|
Khan V, Sharma S, Bhandari U, Sharma N, Rishi V, Haque SE. Suppression of isoproterenol-induced cardiotoxicity in rats by raspberry ketone via activation of peroxisome proliferator activated receptor-α. Eur J Pharmacol 2018; 842:157-166. [PMID: 30431010 DOI: 10.1016/j.ejphar.2018.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptor-α (PPAR-α) controls the lipid and glucose metabolism and also affects inflammation, cell proliferation and apoptosis during cardiovascular disease. Raspberry ketone (RK) is a red raspberry (Rubusidaeus, Family-Rosaceae) plant constituent, which activates PPAR-α. This study was conducted to assess the cardioprotective action of RK against isoproterenol (ISO)-induced cardiotoxicity. Wistar rats were randomly divided into six groups (six rats/group). Rats were orally administered with RK (50, 100 and 200 mg/kg, respectively) and fenofibrate (standard, 80 mg/kg) for 28 days and ISO was administered (85 mg/kg, subcutaneously) on 27th and 28th day. Administration of ISO in rats significantly altered hemodynamic and electrocardiogram patterns, total antioxidant capacity, PPAR-α, and apolipoprotein C-III levels. These myocardial aberrations were further confirmed during infarct size, heart weight to body weight ratio and immunohistochemical assessments (caspase-3 and nuclear factor-κB). RK pretreatment (100 and 200 mg/kg) significantly protected rats against oxidative stress, inflammation, and dyslipidemia caused by ISO as demonstrated by change in hemodynamic, biochemical and histological parameters. The results so obtained were quite comparable with fenofibrate. Moreover, RK was found to have binding affinity with PPAR-α, as confirmed by docking analysis. PPAR-α expression and concentration was also found increased in presence of RK which gave impression that RK probably showed cardioprotection via PPAR-α activation, however direct binding study of RK with PPAR-α is needed to confirm this assumption.
Collapse
Affiliation(s)
- Vasim Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Nishtha Sharma
- National Agri-Food Biotechnology Institute, SAS Nagar, Punjab 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, SAS Nagar, Punjab 140306, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Ahmed AA, Ahmed AAE, El Morsy EM, Nofal S. Dimethyl fumarate interferes with MyD88-dependent toll-like receptor signalling pathway in isoproterenol-induced cardiac hypertrophy model. J Pharm Pharmacol 2018; 70:1521-1530. [DOI: 10.1111/jphp.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Objectives
To investigate the effect of dimethyl fumarate (DMF) on Toll-like receptor (TLR) signalling pathway in isoproterenol (ISO)-induced cardiac hypertrophy in rats.
Methods
Sixty adult male Sprague-Dawley rats were randomly allocated into three groups. group I: rats received the vehicles only; group II: rats were treated with ISO (5 mg/kg per day S.C.) to induce cardiac hypertrophy for 7 days; and group III: rats were given DMF (25 mg/kg per 12 h P.O.) for 28 days, and at the last 7 days, they were treated with ISO (5 mg/kg per day S.C.).
Key findings
Pretreatment with DMF decreased heart-to-body weight ratio, heart rate and blood pressure and improved the electrocardiographic patterns when compared with ISO group. DMF exhibited cardioprotective effect as evidenced by the reduction in cardiac troponin I, creatine kinase-MB and atrial natriuretic peptide levels. Moreover, DMF alleviated the changed oxidative stress and inflammatory biochemical markers through its anti-inflammatory and antioxidant effects. DMF interfered with TLR signalling pathway, evidenced by decreased levels of the TLR adaptor protein MyD88 and p-ERK1/2 and increased p-Akt level.
Conclusions
Dimethyl fumarate exerted cardioprotective effect against ISO-induced cardiac hypertrophy. This effect is suggested to be through interfering with TLR signalling pathway.
Collapse
Affiliation(s)
- Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Engy M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| |
Collapse
|
18
|
Nieto-Lima B, Cano-Martínez A, Rubio-Ruiz ME, Pérez-Torres I, Guarner-Lans V. Age-, Gender-, and in Vivo Different Doses of Isoproterenol Modify in Vitro Aortic Vasoreactivity and Circulating VCAM-1. Front Physiol 2018; 9:20. [PMID: 29416512 PMCID: PMC5787582 DOI: 10.3389/fphys.2018.00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022] Open
Abstract
Different human-like cardiomyopathies associated to β-adrenergic stimulation are experimentally modeled in animals through variations in dose, route, and duration of administration of different cardiotoxic drugs. However, associated changes in the vasculature and their relation to systemic inflammation, and the influence of cardiovascular diseases risk factors (gender and age) upon them are seldom analyzed. Here we studied the effect of age and gender on the vasoreactivity of aortas from mice subjected to in vivo repeated β-adrenergic stimulation with different doses of isoproterenol (ISO) in association with circulating inflammatory cytokines. Young (2 months) and old (18 months) male and female mice received 0 (control), 5, 40, 80 or 160 μg/g/d of ISO (7 days, s.c.). IL-1α, IL-4 and vascular cell adhesion molecule-1 (VCAM-1) were quantified in plasma. In vitro, norepinephrine-induced vasoconstriction and acetylcholine-induced relaxation were measured in aortas. No differences in contraction, relaxation, IL-1α, and IL-4 were found between control young males and females. Age decreased contraction in males and relaxation was lower in females and abolished in males. VCAM-1 was higher in young males than in females and increased in old mice. Vasoconstriction in ISO-treated mice results as a bell-shaped curve on contraction in young and old males, with lower values in the latter. In females, ISO-160 increased contraction in young females but decreased it in old females. Vasorelaxation was reduced in ISO-treated young males and females. ISO-80 and 160 reduced vasorelaxation in old females, and intermediate doses relaxed aortas from old males. VCAM-1 was higher in young and old males with ISO-80 and 160; while VCAM-1 was higher only with ISO-160 in old females. Our results demonstrate that repeated β-adrenergic stimulation modifies vascular reactivity depending on gender, age, and dose. Females were less sensitive to alterations in vasoreactivity, and young females required a higher amount of the adrenergic stimuli than old females to show vascular alterations. Changes were independent of IL-1α and IL-4. VCAM-1 only changed in old females stimulated with ISO 160. Our results highlight the relevance of considering and comparing in the same study females and aged organisms to improve the accuracy of applications to clinical studies.
Collapse
Affiliation(s)
- Betzabé Nieto-Lima
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - María E Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| |
Collapse
|
19
|
de Ponte MC, Casare FAM, Costa-Pessoa JM, Cardoso VG, Malnic G, Mello-Aires M, Volpini RA, Thieme K, Oliveira-Souza M. The Role of β-Adrenergic Overstimulation in the Early Stages of Renal Injury. Kidney Blood Press Res 2017; 42:1277-1289. [PMID: 29262407 DOI: 10.1159/000485931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To assess the possible contribution of the β-adrenergic overstimulation in early stages of renal injury, the present study evaluated, in rats, the effects of the β-adrenoceptor agonist isoproterenol (ISO) on renal function and morphology, as well as the renal mRNA and protein expression of the NADPH oxidase isoform 4 (Nox 4) and subunit p22phox, endoplasmic reticulum (ER) stress, pro-inflammatory, pro-apoptotic and renin-angiotensin system (RAS) components. METHODS Wistar rats received ISO (0.3 mg.kg-1.day-1 s.c.) or vehicle (control) for eight days. At the end of the treatment, food and water intake, urine output and body weight gain were evaluated and renal function studies were performed. Renal tissue was used for the morphological, quantitative PCR and immunohistochemical studies. RESULTS ISO did not change metabolic parameters or urine output. However it induced a decrease in renal blood flow and an increase in the filtration fraction. These changes were accompanied by increased cortical mRNA and protein expression for the renal oxidative stress components including Nox 4 and p22phox; ER stress, pro-inflamatory, pro-apoptotic as well as RAS components. ISO also induced a significant increase in medullar renin protein expression. CONCLUSION These findings support relevant information regarding the contribution of specific β-adrenergic hyperactivity in early stage of renal injury, indicating the reactive oxygen species, ER stress and intrarenal RAS as important factors in this process.
Collapse
Affiliation(s)
- Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, Brazil
| | | | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, Brazil
| | - Vanessa Gerolde Cardoso
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, Brazil
| | - Gerhard Malnic
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, Brazil
| | - Margarida Mello-Aires
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, Brazil
| | - Rildo Aparecido Volpini
- Laboratory of Basic Kidney Disease (LIM-12), Nephrology Department, Medical School, São Paulo, Brazil
| | - Karina Thieme
- Laboratory of Carbohydrates and Radioimmunoassays (LIM-18), Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, Brazil
| |
Collapse
|
20
|
Khan V, Sharma S, Bhandari U, Ali SM, Haque SE. Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sci 2017; 194:205-212. [PMID: 29225109 DOI: 10.1016/j.lfs.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
AIM The cardioprotective role of raspberry ketone (RK) against isoproterenol (ISO)-induced myocardial infarction (MI) in rats was assessed. MATERIALS AND METHODS Rats were randomly divided into Group I - Vehicle control; Group II - Toxic control ISO (85mg/kg, s.c.); Group III, IV and V - RK (50, 100 and 200mg/kg, respectively) with ISO; Group VI- RK (200mg/kg) alone; Group VII - Propranolol (10mg/kg) with ISO; and Group VIII - Propranolol (10mg/kg) alone. After twenty-four hours of the last dose, animals were sacrificed and creatine kinase-MB, lactate dehydrogenase, total cholesterol, triglycerides, high-density-lipoprotein, low-density-lipoprotein, very-low-density-lipoprotein, malondialdehyde, reduced glutathione, superoxide dismutase, catalase, Na+, K+-ATPase, nitric oxide, histopathological and immunohistochemical analysis (tumor necrosis factor-α and inducible nitric oxide synthase) were performed. KEY FINDINGS Treatment with ISO significantly deviated the biochemical parameters from the normal levels, which were considerably restored by RK at 100 and 200mg/kg doses. 50mg/kg dose, however, did not demonstrate any significant cardioprotective action. The histopathological and immunohistochemical analysis further substantiated these findings. SIGNIFICANCE Our study showed a dose-dependent reduction in oxidative stress, inflammation and dyslipidemia by RK in ISO-intoxicated rats, which signifies that RK from the European red raspberry plant might be a valuable entity for the management of MI.
Collapse
Affiliation(s)
- Vasim Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Milia Islamia, New Delhi 110025, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
21
|
da Silva Franco N, Lubaczeuski C, Guizoni DM, Victorio JA, Santos-Silva JC, Brum PC, Carneiro EM, Davel AP. Propranolol treatment lowers blood pressure, reduces vascular inflammatory markers and improves endothelial function in obese mice. Pharmacol Res 2017; 122:35-45. [DOI: 10.1016/j.phrs.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022]
|
22
|
Guzzoni V, Marqueti RDC, Durigan JLQ, Faustino de Carvalho H, Lino RLB, Mekaro MS, Costa Santos TO, Mecawi AS, Rodrigues JA, Hord JM, Lawler JM, Davel AP, Selistre-de-Araújo HS. Reduced collagen accumulation and augmented MMP-2 activity in left ventricle of old rats submitted to high-intensity resistance training. J Appl Physiol (1985) 2017; 123:655-663. [PMID: 28684598 DOI: 10.1152/japplphysiol.01090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 01/09/2023] Open
Abstract
Progressive fibrosis is a hallmark of the aging heart. Age-related fibrosis is modulated by endurance exercise training; however, little is known concerning the influence of resistance training (RT). Therefore we investigated the chronic effects of high-intensity RT on age-associated alterations of left ventricle (LV) structure, collagen content, matrix metalloproteinase-2 (MMP-2), and extracellular matrix-related gene expression, including transforming growth factor-β (TGF-β). Young adult (3 mo) and aged (21 mo) male Wistar rats were submitted to a RT protocol (ladder climbing with 65, 85, 95, and 100% load), three times a week for 12 wk. Forty-eight hours posttraining, arterial systolic and diastolic pressure, LV end-diastolic pressure (LVEDP) and dP/dt were recorded. LV morphology, collagen deposition, and gene expression of type I (COL-I) and type III (COL-III) collagen, MMP-2, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TGF-β1 were analyzed by quantitative reverse transcriptase-PCR. MMP-2 content was assessed by zymography. Increased collagen deposition was observed in LV from aged rats. These parameters were modulated by RT and were associated with increased MMP-2 activity and decreased COL-I, TGF-β1, and TIMP-1 mRNA content. Despite the effect of RT on collagen accumulation, there was no improvement on LVEDP and maximal negative LV dP/dt of aged rats. Cardiomyocyte diameter was preserved in all experimental conditions. In conclusion, RT attenuated age-associated collagen accumulation, concomitant to the increase in MMP-2 activity and decreased expression of COL-I, TGF-β1, and TIMP-1 in LV, illustrating a cardioprotective effect of RT on ventricular structure and function.NEW & NOTEWORTHY We demonstrated the beneficial resistance-training effect against age-related left ventricle collagen accumulation in the left ventricle, which was associated with decreased type I collagen (COL-I), transforming growth factor-β1 (TGF-β1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) gene expression and matrix metalloproteinase-2 (MMP-2) activity. Our findings suggest for the first time the potential effects of resistance training in modulating collagen accumulation and possibly fibrosis in the aging heart.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil;
| | | | | | | | | | - Marcelo S Mekaro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | | | - André Souza Mecawi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; and
| | - José Antunes Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; and
| | - Jeffrey M Hord
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Jonh M Lawler
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Ana Paula Davel
- Institute of Biology, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
23
|
Mesquita TRR, de Jesus ICG, Dos Santos JF, de Almeida GKM, de Vasconcelos CML, Guatimosim S, Macedo FN, Dos Santos RV, de Menezes-Filho JER, Miguel-Dos-Santos R, Matos PTD, Scalzo S, Santana-Filho VJ, Albuquerque-Júnior RLC, Pereira-Filho RN, Lauton-Santos S. Cardioprotective Action of Ginkgo biloba Extract against Sustained β-Adrenergic Stimulation Occurs via Activation of M 2/NO Pathway. Front Pharmacol 2017; 8:220. [PMID: 28553225 PMCID: PMC5426084 DOI: 10.3389/fphar.2017.00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
Ginkgo biloba is the most popular phytotherapic agent used worldwide for treatment of several human disorders. However, the mechanisms involved in the protective actions of Ginkgo biloba on cardiovascular diseases remain poorly elucidated. Taking into account recent studies showing beneficial actions of cholinergic signaling in the heart and the cholinergic hypothesis of Ginkgo biloba-mediated neuroprotection, we aimed to investigate whether Ginkgo biloba extract (GBE) promotes cardioprotection via activation of cholinergic signaling in a model of isoproterenol-induced cardiac hypertrophy. Here, we show that GBE treatment (100 mg/kg/day for 8 days, v.o.) reestablished the autonomic imbalance and baroreflex dysfunction caused by chronic β-adrenergic receptor stimulation (β-AR, 4.5 mg/kg/day for 8 days, i.p.). Moreover, GBE prevented the upregulation of muscarinic receptors (M2) and downregulation of β1-AR in isoproterenol treated-hearts. Additionally, we demonstrated that GBE prevents the impaired endothelial nitric oxide synthase activity in the heart. GBE also prevented the pathological cardiac remodeling, electrocardiographic changes and impaired left ventricular contractility that are typical of cardiac hypertrophy. To further investigate the mechanisms involved in GBE cardioprotection in vivo, we performed in vitro studies. By using neonatal cardiomyocyte culture we demonstrated that the antihypertrophic action of GBE was fully abolished by muscarinic receptor antagonist or NOS inhibition. Altogether, our data support the notion that antihypertrophic effect of GBE occurs via activation of M2/NO pathway uncovering a new mechanism involved in the cardioprotective action of Ginkgo biloba.
Collapse
Affiliation(s)
| | - Itamar C G de Jesus
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Fabrício N Macedo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | | | | | | | - Paulo T D Matos
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | - Sérgio Scalzo
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
24
|
Zhao L, Wu D, Sang M, Xu Y, Liu Z, Wu Q. Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. Int Immunopharmacol 2017; 48:102-109. [PMID: 28499193 DOI: 10.1016/j.intimp.2017.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Cardiac hypertrophy (CH), as one of the major causes of morbidity and mortality in the world, has become an independent and predictive risk factor for adverse cardiovascular events. However, progress in treatment remains sluggish in recent years. Therefore, compounds derived from non-toxic nature plants are urgently needed. Stachydrine (STA), which is isolated from Leonurus, has various activities, including resistance to cardiovascular disease, but little is known about its effect on CH or the mechanisms. We herein investigated the effect of STA on isoproterenol-induced CH and the underlying mechanisms. Treatment with STA significantly increased the ratios of heart weight/body weight, left ventricle weight/body weight and the cross-sectional areas of cardiomyocytes. In addition, STA significantly decreased the mRNA levels of atrial natriuretic peptide, B-type natriuretic peptide and β-myosin heavy chain. Furthermore, isoproterenol-induced fibrosis in rats receiving STA was significant attenuated, as evidenced by decreased ratio of fibrotic area/total area and decreased mRNA levels of collagens I and III. Given down-regulation of interleukin-6, tumor necrosis factor-α, interferon-γ (IFN-γ) and IFN-1β, treatment with STA significantly reversed the expressions of pro-inflammatory induced by isoproterenol. Moreover, STA attenuated the oxidative stress level in serum of isoproterenol-induced CH rats, as shown by increased activity of superoxide dismutase and decreased malondialdehyde level. STA inhibited the expressions of phosphorylated IκBα, NF-κB p65, JAK2 and STAT3 in vivo. Thus, both NF-κB and JAK/STAT signalings played essential roles in mediating the anti-CH effect of STA. Collectively, STA has a potent protective effect on isoproterenol-induced CH, with therapeutic implication for CH.
Collapse
Affiliation(s)
- Lingling Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Dawei Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Mengru Sang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yiming Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, China.
| |
Collapse
|
25
|
Gan S, Qiu S, Feng Y, Zhang Y, Qian Q, Wan Z, Tang J. Identification of genes associated with the effect of inflammation on the neurotransmission of vascular smooth muscle cell. Exp Ther Med 2017; 13:1303-1312. [PMID: 28413470 PMCID: PMC5377265 DOI: 10.3892/etm.2017.4138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/09/2016] [Indexed: 01/23/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) accumulation and hypertrophy are common in vascular disorders, and inflammation has a crucial role in the development of these diseases. To investigate the effect of inflammation on the neurotransmission of VSMC, bioinformatic analysis was performed, following next generation sequencing. Genes of lipopolysaccharide (LPS)-treated A7r5 cells and phosphate-buffered saline (PBS)-treated A7r5 cells were sequenced via next generation sequencing, and each assay was repeated three times. Differentially expressed genes (DEGs) were obtained using the NOISeq package in R. Subsequently, their potential functions were predicted by functional and pathway enrichment analyses using the Database for Annotation, Visualization and Integrated Discovery online tool. Interaction relationships of the proteins enriched in pathways associated with neurological diseases, the proteins which had interaction relationships with adrenoceptor α 1D (ADRA1D) or calcium voltage-gated channel subunit α1 S (CACNA1S), separately, were obtained from STRING, and protein-protein interaction (PPI) networks were constructed using Cytoscape software. A total of 2,038 DEGs, including 1,094 upregulated and 944 downregulated genes in the LPS treatment group were identified when compared with the control group. Enrichment analyses showed that NADH:Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2) was involved in several neurological diseases, including oxidative phosphorylation, Alzheimer's disease, Parkinson's disease and Huntington's disease. Furthermore, NDUFV2 (degree, 20) had a higher degree in the PPI network for DEGs enriched in pathways associated with neurological diseases. In the PPI network for ADRA1D, CACNA1S and the DEGs interacting with them, prohibitin (PHB), oxytocin receptor (OXTR), collapsin response mediator protein 1 (CRMP1) and dihydropyrimidinase like 2 (DPYSL2) had interaction relationships with both ADRA1D and CACNA1S. To conclude, the present study revealed that NDUFV2, PHB, OXTR, CRMP1 and DPYSL2 may have key roles in the effect of inflammation on neurotransmission of VSMC.
Collapse
Affiliation(s)
- Shujie Gan
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Shenlong Qiu
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yiwen Feng
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yanping Zhang
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Qin Qian
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhong Wan
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai 201399, P.R. China
| |
Collapse
|
26
|
The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats. Pharmacol Rep 2017; 69:798-805. [PMID: 28591668 DOI: 10.1016/j.pharep.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/27/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. METHODS We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. RESULTS Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. CONCLUSIONS Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women.
Collapse
|
27
|
Victorio JA, Fontes MT, Rossoni LV, Davel AP. Different Anti-Contractile Function and Nitric Oxide Production of Thoracic and Abdominal Perivascular Adipose Tissues. Front Physiol 2016; 7:295. [PMID: 27462277 PMCID: PMC4940415 DOI: 10.3389/fphys.2016.00295] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
Divergent phenotypes between the perivascular adipose tissue (PVAT) surrounding the abdominal and the thoracic aorta might be implicated in regional aortic differences, such as susceptibility to atherosclerosis. Although PVAT of the thoracic aorta exhibits anti-contractile function, the role of PVAT in the regulation of the vascular tone of the abdominal aorta is not well defined. In the present study, we compared the anti-contractile function, nitric oxide (NO) availability, and reactive oxygen species (ROS) formation in PVAT and vessel walls of abdominal and thoracic aorta. Abdominal and thoracic aortic tissue from male Wistar rats were used to perform functional and molecular experiments. PVAT reduced the contraction evoked by phenylephrine in the absence and presence of endothelium in the thoracic aorta, whereas this anti-contractile effect was not observed in the abdominal aorta. Abdominal PVAT exhibited a reduction in endothelial NO synthase (eNOS) expression compared with thoracic PVAT, without differences in eNOS expression in the vessel walls. In agreement with this result, NO production evaluated in situ using 4,5-diaminofluorescein was less pronounced in abdominal compared with thoracic aortic PVAT, whereas no significant difference was observed for endothelial NO production. Moreover, NOS inhibition with L-NAME enhanced the phenylephrine-induced contraction in endothelial-denuded rings with PVAT from thoracic but not abdominal aorta. ROS formation and lipid peroxidation products evaluated through the quantification of hydroethidine fluorescence and 4-hydroxynonenal adducts, respectively, were similar between PVAT and vessel walls from the abdominal and thoracic aorta. Extracellular superoxide dismutase (SOD) expression was similar between the vessel walls and PVAT of the abdominal and thoracic aorta. However, Mn-SOD levels were reduced, while CuZn-SOD levels were increased in abdominal PVAT compared with thoracic aortic PVAT. In conclusion, our results demonstrate that the anti-contractile function of PVAT is lost in the abdominal portion of the aorta through a reduction in eNOS-derived NO production compared with the thoracic aorta. Although relative SOD isoforms are different along the aorta, ROS formation, and lipid peroxidation seem to be similar. These findings highlight the specific regional roles of PVAT depots in the control of vascular function that can drive differences in susceptibility to vascular injury.
Collapse
Affiliation(s)
- Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas Campinas, Brazil
| | - Milene T Fontes
- Vascular Physiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Luciana V Rossoni
- Vascular Physiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas Campinas, Brazil
| |
Collapse
|
28
|
Xu C, Tang F, Lu M, Yang J, Han R, Mei M, Hu J, Zhou M, Wang H. Astragaloside IV improves the isoproterenol-induced vascular dysfunction via attenuating eNOS uncoupling-mediated oxidative stress and inhibiting ROS-NF-κB pathways. Int Immunopharmacol 2016; 33:119-27. [PMID: 26903414 DOI: 10.1016/j.intimp.2016.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/24/2015] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Oxidative stress and inflammation are regarded as two important triggers of endothelial dysfunction and play pivotal role in progression of vascular damage associated with cardiac hypertrophy. Our previous studies demonstrated that astragaloside IV (AsIV) could protect against cardiac hypertrophy in rats induced by isoproterenol (Iso), but its effects on the aorta are not known. In present study, we aimed to assess the effects of AsIV on Isoinduced vascular dysfunction. METHODS Sprague-Dawley (SD) rats were treated with Iso (10mg/kg/d) alone or in combination with AsIV (50mg/kg/d). RESULTS Compared with Isotreated alone, AsIV significantly reduced the ratios of heart weight/body weight and left ventricular weight/body weight. AsIV ameliorated the increased vasoconstriction response to phenylephrine induced by Iso and suppressed superoxide anion generation in rat aorta, increased endothelial nitric oxide synthase (eNOS) dimer/monomer ratio and its critical cofactor tetrahydrobiopterin (BH4) content in aorta as well as the NO production in the serum, reduced the plasmatic peroxynitrite (ONOO-). Moreover, in contrast with Isotreatment alone, AsIV decreased the ratio of nuclear-to-cytosolic protein expression of the NF-κB p65 subunit while enhanced its inhibited protein expression of IκB-α, down-regulated mRNA expression of IL-1β, IL-6 and TNF-α of the aorta. CONCLUSIONS The present study suggested that AsIV protects against Isoinduced vascular dysfunction probably via attenuating eNOS uncoupling-mediated oxidative stress and inhibiting ROS-NF-κB pathways.
Collapse
Affiliation(s)
- Chonghua Xu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Jing Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Ronghui Han
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Meng Mei
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Jin Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Mingsheng Zhou
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical College, Jinzhou 121001, China.
| |
Collapse
|
29
|
Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AOS. Early Changes in Cytochrome P450s and Their Associated Arachidonic Acid Metabolites Play a Crucial Role in the Initiation of Cardiac Hypertrophy Induced by Isoproterenol. Drug Metab Dispos 2015; 43:1254-66. [DOI: 10.1124/dmd.115.063776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 01/08/2023] Open
|
30
|
Enhanced endothelium-dependent relaxation of rat pulmonary artery following β-adrenergic overstimulation: involvement of the NO/cGMP/VASP pathway. Life Sci 2015; 125:49-56. [PMID: 25640757 DOI: 10.1016/j.lfs.2015.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/21/2022]
Abstract
AIMS The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. MAIN METHODS Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). KEY FINDINGS ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. SIGNIFICANCE The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Collapse
|
31
|
Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery. Integr Med Res 2014; 3:204-210. [PMID: 28664099 PMCID: PMC5481746 DOI: 10.1016/j.imr.2014.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023] Open
Abstract
The aim of this review was to understand the effects of β-adrenergic stimulation on oxidative stress, structural remodeling, and functional alterations in the heart and cerebral artery. Diverse stimuli activate the sympathetic nervous system, leading to increased levels of catecholamines. Long-term overstimulation of the β-adrenergic receptor (βAR) in response to catecholamines causes cardiovascular diseases, including cardiac hypertrophy, stroke, coronary artery disease, and heart failure. Although catecholamines have identical sites of action in the heart and cerebral artery, the structural and functional modifications differentially activate intracellular signaling cascades. βAR-stimulation can increase oxidative stress in the heart and cerebral artery, but has also been shown to induce different cytoskeletal and functional modifications by modulating various components of the βAR signal transduction pathways. Stimulation of βAR leads to cardiac dysfunction due to an overload of intracellular Ca2+ in cardiomyocytes. However, this stimulation induces vascular dysfunction through disruption of actin cytoskeleton in vascular smooth muscle cells. Many studies have shown that excessive concentrations of catecholamines during stressful conditions can produce coronary spasms or arrhythmias by inducing Ca2+-handling abnormalities and impairing energy production in mitochondria, In this article, we highlight the different fates caused by excessive oxidative stress and disruptions in the cytoskeletal proteome network in the heart and the cerebral artery in responsed to prolonged βAR-stimulation.
Collapse
|
32
|
Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJNN, Fernandes T, Couto GK, Rondon MUPB, Oliveira P, Lima M, Mathias W, Brum PC, Mady C, Almeida DR, Rossoni LV, Oliveira EM, Middlekauff HR, Negrao CE. Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol 2014; 307:H1655-66. [PMID: 25305179 DOI: 10.1152/ajpheart.00136.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies have demonstrated that muscle mechanoreflex and metaboreflex controls are altered in heart failure (HF), which seems to be due to changes in cyclooxygenase (COX) pathway and changes in receptors on afferent neurons, including transient receptor potential vanilloid type-1 (TRPV1) and cannabinoid receptor type-1 (CB1). The purpose of the present study was to test the hypotheses: 1) exercise training (ET) alters the muscle metaboreflex and mechanoreflex control of muscle sympathetic nerve activity (MSNA) in HF patients. 2) The alteration in metaboreflex control is accompanied by increased expression of TRPV1 and CB1 receptors in skeletal muscle. 3) The alteration in mechanoreflex control is accompanied by COX-2 pathway in skeletal muscle. Thirty-four consecutive HF patients with ejection fractions <40% were randomized to untrained (n = 17; 54 ± 2 yr) or exercise-trained (n = 17; 56 ± 2 yr) groups. MSNA was recorded by microneurography. Mechanoreceptors were activated by passive exercise and metaboreceptors by postexercise circulatory arrest (PECA). COX-2 pathway, TRPV1, and CB1 receptors were measured in muscle biopsies. Following ET, resting MSNA was decreased compared with untrained group. During PECA (metaboreflex), MSNA responses were increased, which was accompanied by the expression of TRPV1 and CB1 receptors. During passive exercise (mechanoreflex), MSNA responses were decreased, which was accompanied by decreased expression of COX-2, prostaglandin-E2 receptor-4, and thromboxane-A2 receptor and by decreased in muscle inflammation, as indicated by increased miRNA-146 levels and the stable NF-κB/IκB-α ratio. In conclusion, ET alters muscle metaboreflex and mechanoreflex control of MSNA in HF patients. This alteration with ET is accompanied by alteration in TRPV1 and CB1 expression and COX-2 pathway and inflammation in skeletal muscle.
Collapse
Affiliation(s)
| | - Thais S Nobre
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Raphaela V Groehs
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Tiago Fernandes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele K Couto
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Patricia Oliveira
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Marta Lima
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Wilson Mathias
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Charles Mady
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Dirceu R Almeida
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - Luciana V Rossoni
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Edilamar M Oliveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, Geffen School of Medicine at University of California, Los Angeles, California
| | - Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil;
| |
Collapse
|
33
|
Couto GK, Davel AP, Brum PC, Rossoni LV. Double disruption of α2A- and α2C-adrenoceptors induces endothelial dysfunction in mouse small arteries: role of nitric oxide synthase uncoupling. Exp Physiol 2014; 99:1427-38. [DOI: 10.1113/expphysiol.2014.079236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gisele K. Couto
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Ana P. Davel
- Department of Structural and Functional Biology; Institute of Biology; State University of Campinas; Campinas SP Brazil
| | - Patrícia C. Brum
- School of Physical Education and Sport; University of São Paulo; São Paulo SP Brazil
| | - Luciana V. Rossoni
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|
34
|
Desrois M, Kober F, Lan C, Dalmasso C, Cole M, Clarke K, Cozzone PJ, Bernard M. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart - a longitudinal MR study. NMR IN BIOMEDICINE 2014; 27:529-538. [PMID: 24677605 DOI: 10.1002/nbm.3088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
The chronic administration of the β-adrenoreceptor agonist isoproterenol (IsoP) is used in animals to study the mechanisms of cardiac hypertrophy and failure associated with a sustained increase in circulating catecholamines. Time-dependent changes in myocardial blood flow (MBF), morphological and functional parameters were assessed in rats in vivo using multimodal cardiac MRI. Energy metabolism, oxidative stress and the nitric oxide (NO) pathway were evaluated in isolated perfused rat hearts following 7 days of treatment. Male Wistar rats were infused for 7 days with IsoP or vehicle using osmotic pumps. Cine-MRI and arterial spin labeling were used to determine left ventricular morphology, function and MBF at days 1, 2 and 7 after pump implantation. Isolated hearts were then perfused, and high-energy phosphate compounds and intracellular pH were followed using ³¹P MRS with simultaneous measurement of contractile function. Total creatine and malondialdehyde (MDA) contents were measured by high-performance liquid chromatography. The NO pathway was evaluated by NO synthase isoform expression and total nitrate concentration (NO(x)). In IsoP-treated rats, left ventricular mass was increased at day 1 and maintained. Wall thickness was increased with a peak at day 2 and a tendency to return to baseline values at day 7. MBF was markedly increased at day 1 and returned to normal values between days 1 and 2. The rate-pressure product and phosphocreatine/adenosine triphosphate ratio in perfused hearts were reduced. MDA, endothelial NO synthase expression and NO(x) were increased. Sustained high cardiac function and normal MBF after 24 h of IsoP infusion indicate imbalance between functional demand and blood flow, leading to morphological changes. After 1 week, cardiac hypertrophy and decreased function were associated with impaired phosphocreatine, increased oxidative stress and up-regulation of the NO pathway. These results provide supplemental information on the evolution of the different contributing factors leading to morphological and functional changes in this model of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Martine Desrois
- Aix-Marseille Université UMR CNRS n°7339, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Faculté de Médecine, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Davel AP, Brum PC, Rossoni LV. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Giα-coupled β2-adrenoceptor signaling pathway. PLoS One 2014; 9:e91877. [PMID: 24622771 PMCID: PMC3951496 DOI: 10.1371/journal.pone.0091877] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Sustained β-adrenergic stimulation is a hallmark of sympathetic hyperactivity in cardiovascular diseases. It is associated with oxidative stress and altered vasoconstrictor tone. This study investigated the β-adrenoceptor subtype and the signaling pathways implicated in the vascular effects of β-adrenoceptor overactivation. METHODS AND RESULTS Mice lacking the β1- or β2-adrenoceptor subtype (β1KO, β2KO) and wild-type (WT) were treated with isoproterenol (ISO, 15 μg.g(-1) x day(-1), 7 days). ISO significantly enhanced the maximal vasoconstrictor response (Emax) of the aorta to phenylephrine in WT (+34%) and β1KO mice (+35%) but not in β2KO mice. The nitric oxide synthase (NOS) inhibitor L-NAME abolished the differences in phenylephrine response between the groups, suggesting that ISO impaired basal NO availability in the aorta of WT and β1KO mice. Superoxide dismutase (SOD), pertussis toxin (PTx) or PD 98,059 (p-ERK 1/2 inhibitor) incubation reversed the hypercontractility of aortic rings from ISO-treated WT mice; aortic contraction of ISO-treated β2KO mice was not altered. Immunoblotting revealed increased aortic expression of Giα-3 protein (+50%) and phosphorylated ERK1/2 (+90%) and decreased eNOS dimer/monomer ratio in ISO-treated WT mice. ISO enhanced the fluorescence response to dihydroethidium (+100%) in aortas from WT mice, indicating oxidative stress that was normalized by SOD, PTx and L-NAME. The ISO effects were abolished in β2KO mice. CONCLUSIONS The β2-adrenoceptor/Giα signaling pathway is implicated in the enhanced vasoconstrictor response and eNOS uncoupling-mediated oxidative stress due to ISO treatment. Thus, long-term β2-AR activation might results in endothelial dysfunction.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation/drug effects
- Gene Knockout Techniques
- Isoproterenol/pharmacology
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/chemistry
- Oxidative Stress/drug effects
- Phenylephrine/pharmacology
- Phosphorylation/drug effects
- Protein Multimerization/drug effects
- Protein Structure, Quaternary
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Ana P. Davel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana V. Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
36
|
Yang C, Yang H, Wu J, Meng Z, Xing R, Tian A, Tian X, Guo L, Zhang Y, Nie G, Li Z. No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart. Toxicol Lett 2013; 222:197-203. [PMID: 23906719 DOI: 10.1016/j.toxlet.2013.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
In this study, we investigated the cardiac biodistribution of polyethylene glycol (PEG)-coated AuNPs and their effects on cardiac function, structure and inflammation in both normal and cardiac remodeling mice. The model of cardiac remodeling was induced by subcutaneously injection of isoproterenol (ISO), a non-selective beta-adrenergic agonist, for 7 days. After AuNPs were injected intravenously in mice for 7 consecutive days, Au content in different organs was determined quantitatively by inductively coupled plasma mass spectrometry (ICP-MS), cardiac function and structure were measured by echocardiography, cardiac fibrosis was examined with picrosirius red staining, the morphology of cardiomyocytes was observed with hematoxylin and eosin (H & E) staining. The accumulation of AuNPs in hearts did not affect cardiac function or induce cardiac hypertrophy, cardiac fibrosis and cardiac inflammation under normal physiological condition. Cardiac AuNPs content was 6-fold higher in the cardiac remodeling mouse than normal mice. However, the increased accumulation of AuNPs in the heart did not aggravate ISO-induced cardiac hypertrophy, cardiac fibrosis or cardiac inflammation. These observations suggest that PEG-coated AuNPs possess excellent biocompatibility under both physiological and pathological conditions. Thus, AuNPs may be safe for cardiac patients and hold great promise for further development for various biomedical applications.
Collapse
Affiliation(s)
- Chengzhi Yang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Huang JL, Zhang YL, Wang CC, Zhou JR, Ma Q, Wang X, Shen XH, Jiang CL. Enhanced phosphorylation of MAPKs by NE promotes TNF-α production by macrophage through α adrenergic receptor. Inflammation 2012; 35:527-34. [PMID: 21590324 DOI: 10.1007/s10753-011-9342-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate whether norepinephrine (NE) could regulate macrophage production of tumor necrosis factor alpha (TNF-α) by influencing the phosphorylation of mitogen-activated protein kinases (MAPKs). Primary macrophages from male BALB/c mice were applied to explore the mechanism by which NE influences the the secretion of TNF-α when macrophages were activated by lipopolysaccharides (LPS). We found that NE could increase crophage production of TNF-α when macrophages were activated by LPS, and this effect could be inhibited by α adrenergic antagonist phentolamine. Also, NE could increase the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), and p38, through α receptor. Furthermore, JNK inhibitor SP600125, ERK inhibitor U0126, and p38 inhibitor SB203580 could all partially counteract NE's effect on the phosphorylation of MAPKs, as well as TNF-α production by macrophages. This study revealed that as macrophages were activated by LPS, NE promoted the secretion of inflammatory factors by increasing the phosphorylation of MAPKs through an α receptor-dependent pathway. Our results provide the evidence of a relationship between stress and diseases, as well as the mechanism by which stress induces or affects the inflammation-related diseases.
Collapse
Affiliation(s)
- Jun-Long Huang
- Department of Military Nautical Medicine, Laboratory of Stress Medicine, Faculty of Naval Medicine, Second Military Medical University, Xiangyin Road 800, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim HK, Park WS, Warda M, Park SY, Ko EA, Kim MH, Jeong SH, Heo HJ, Choi TH, Hwang YW, Lee SI, Ko KS, Rhee BD, Kim N, Han J. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery. PLoS One 2012; 7:e43884. [PMID: 22916309 PMCID: PMC3423383 DOI: 10.1371/journal.pone.0043884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022] Open
Abstract
Background and Purpose Beta adrenergic overstimulation may increase the vascular damage and stroke. However, the underlying mechanisms of beta adrenergic overstimulation in cerebrovascular dysfunctions are not well known. We investigated the possible cerebrovascular dysfunction response to isoproterenol induced beta-adrenergic overstimulation (ISO) in rabbit cerebral arteries (CAs). Methods ISO was induced in six weeks aged male New Zealand white rabbit (0.8–1.0 kg) by 7-days isoproterenol injection (300 μg/kg/day). We investigated the alteration of protein expression in ISO treated CAs using 2DE proteomics and western blot analysis. Systemic properties of 2DE proteomics result were analyzed using bioinformatics software. ROS generation and following DNA damage were assessed to evaluate deteriorative effect of ISO on CAs. Intracellular Ca2+ level change and vascular contractile response to vasoactive drug, angiotensin II (Ang II), were assessed to evaluate functional alteration of ISO treated CAs. Ang II-induced ROS generation was assessed to evaluated involvement of ROS generation in CA contractility. Results Proteomic analysis revealed remarkably decreased expression of cytoskeleton organizing proteins (e.g. actin related protein 1A and 2, α-actin, capping protein Z beta, and vimentin) and anti-oxidative stress proteins (e.g. heat shock protein 9A and stress-induced-phosphoprotein 1) in ISO-CAs. As a cause of dysregulation of actin-cytoskeleton organization, we found decreased level of RhoA and ROCK1, which are major regulators of actin-cytoskeleton organization. As functional consequences of proteomic alteration, we found the decreased transient Ca2+ efflux and constriction response to angiotensin II and high K+ in ISO-CAs. ISO also increased basal ROS generation and induced oxidative damage in CA; however, it decreased the Ang II-induced ROS generation rate. These results indicate that ISO disrupted actin cytoskeleton proteome network through down-regulation of RhoA/ROCK1 proteins and increased oxidative damage, which consequently led to contractile dysfunction in CA.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Mohamad Warda
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - So Youn Park
- Department of Pharmacology, College of Medicine and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Busan, Korea
| | - Eun A. Ko
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Min Hee Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Seung Hun Jeong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Hye-Jin Heo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Tae-Hoon Choi
- Department of Physical Education, Andong Science College, Andong, Korea
| | - Young-Won Hwang
- Department of Neurosurgery, College of Medicine, Inje University, Busan Paik Hospital, Busan, Korea
| | - Sun-Il Lee
- Department of Neurosurgery, College of Medicine, Inje University, Busan Paik Hospital, Busan, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
- * E-mail:
| |
Collapse
|
39
|
Davel AP, Ceravolo GS, Wenceslau CF, Carvalho MHC, Brum PC, Rossoni LV. Increased vascular contractility and oxidative stress in β₂-adrenoceptor knockout mice: the role of NADPH oxidase. J Vasc Res 2012; 49:342-52. [PMID: 22627472 DOI: 10.1159/000337486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/17/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS β(2)-adrenoceptor (β(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal β(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional β(2)-AR (β(2)KO), focusing on the role of NO and superoxide anion. METHODS AND RESULTS Isolated thoracic aortas from β(2)KO and wild-type mice (WT) were studied. β(2)KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between β(2)KO and WT mice. Basal NO availability was reduced in aortas from β(2)KO mice. Incubation of β(2)KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. β(2)KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in β(2)KO aortas. CONCLUSIONS The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of β(2)KO mice. This study extends the knowledge of the relevance of the endogenous activity of β(2)-AR to the maintenance of the vascular physiology.
Collapse
Affiliation(s)
- A P Davel
- Department of Anatomy, Institute of Biology, State University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Davel AP, Lemos M, Pastro LM, Pedro SC, de André PA, Hebeda C, Farsky SH, Saldiva PH, Rossoni LV. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology 2012; 295:39-46. [DOI: 10.1016/j.tox.2012.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/21/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
41
|
Martín-Fernández B, de las Heras N, Miana M, Ballesteros S, Valero-Muñoz M, Vassallo D, Davel AP, Rossoni LV, Cachofeiro V, Lahera V. Spironolactone prevents alterations associated with cardiac hypertrophy produced by isoproterenol in rats: involvement of serum- and glucocorticoid-regulated kinase type 1. Exp Physiol 2012; 97:710-8. [PMID: 22327331 DOI: 10.1113/expphysiol.2011.063230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Persistent β-adrenergic receptor stimulation with isoproterenol is associated with cardiac hypertrophy as well as cardiac synthesis of angiotensin II. Serum- and glucocorticoid-regulated kinase type 1 (SGK-1) is a key mediator in structural, functional and molecular cardiac effects of aldosterone in rats. This study was designed to investigate the cardiac effects of the mineralocorticoid receptor antagonist spironolactone on the response to isoproterenol treatment in rats, as well as the involvement of the main mediator of cellular aldosterone action, SGK-1, in the heart. Male Wistar rats received isoproterenol (3 mg kg(-1) day(-1)) or vehicle for 15 days. Half of the animals in each group were simultaneously treated with spironolactone (200 mg kg(-1) day(-1)). Systolic and diastolic blood pressures were not significantly different among groups. Treatment with spironolactone normalized the increased left ventricular end-diastolic pressure observed in isoproterenol-treated rats. Isoproterenol treatment induced cardiac hypertrophy and increased collagen content, both of which were normalized by spironolactone treatment. The mRNA levels of transforming growth factor β, connective tissue growth factor, matrix metalloprotease 2, matrix metalloprotease inhibitor 2, tumour necrosis factor α, interleukin 1β, p22phox and xanthine dehydrogenase were increased (P < 0.05) in isoproterenol-treated rats, and this effect was prevented by spironolactone (P < 0.05). Spironolactone also reduced the elevated SGK-1 expression in isoproterenol-treated rats. The observed reduction of the principal mediator of aldosterone cellular actions, SGK-1, by spironolactone in hearts from isoproterenol-treated rats suggests a role of mineralocorticoids in the cardiac hypertrophy, fibrosis, inflammation, oxidation and diastolic dysfunction induced by isoproterenol treatment in rats.
Collapse
|
42
|
Lobato NS, Filgueira FP, Akamine EH, Davel APC, Rossoni LV, Tostes RC, Carvalho MHC, Fortes ZB. Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: role of NO and prostanoids. Nutr Metab Cardiovasc Dis 2011; 21:808-816. [PMID: 20554176 DOI: 10.1016/j.numecd.2010.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIM given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. METHODS AND RESULTS Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. CONCLUSION Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations.
Collapse
Affiliation(s)
- N S Lobato
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Davel AP, Wenceslau CF, Akamine EH, Xavier FE, Couto GK, Oliveira HT, Rossoni LV. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update. Braz J Med Biol Res 2011; 44:920-32. [PMID: 21956535 DOI: 10.1590/s0100-879x2011007500104] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/01/2011] [Indexed: 11/22/2022] Open
Abstract
The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.
Collapse
Affiliation(s)
- A P Davel
- Departamento de Anatomia, Biologia Celular e Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
44
|
Camporez JPG, Akamine EH, Davel AP, Franci CR, Rossoni LV, Carvalho CRDO. Dehydroepiandrosterone protects against oxidative stress-induced endothelial dysfunction in ovariectomized rats. J Physiol 2011; 589:2585-96. [PMID: 21486789 DOI: 10.1113/jphysiol.2011.206078] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is less frequent in premenopausal women than in age-matched men or postmenopausal women. Moreover, the marked age-related decline in serum dehydroepiandrosterone (DHEA) level has been associated to cardiovascular disease. The aim of this study was to evaluate the effects of DHEA treatment on vascular function in ovariectomized rats. At 8 weeks of age, female Wistar rats were ovariectomized (OVX) or sham (SHAM) operated and 8 weeks after surgery both groups were treated with vehicle or DHEA (10mg kg⁻¹ week⁻¹) for 3 weeks. Aortic rings were used to evaluate the vasoconstrictor response to phenylephrine (PHE) and the relaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP). Tissue reactive oxygen species (ROS) production and SOD, NADPH oxidase and eNOS protein expression were analysed. PHE-induced contraction was increased in aortic rings from OVX compared to SHAM, associated with a reduction in NO bioavailability. Furthermore, the relaxation induced by ACh was reduced in arteries from OVX, while SNP relaxation did not change. The incubation of aortic rings with SOD or apocynin restored the enhanced PHE-contraction and the impaired ACh-relaxation only in OVX. DHEA treatment corrected the increased PHE contraction and the impaired ACh-induced relaxation observed in OVX by an increment in NO bioavailability and decrease in ROS production. Besides, DHEA treatment restores the reduced Cu/Zn-SOD protein expression and eNOS phosphorylation and the increased NADPH oxidase protein expression in the aorta of OVX rats. The present results suggest an important action of DHEA, improving endothelial function in OVX rats by acting as an antioxidant and enhancing the NO bioavailability.
Collapse
Affiliation(s)
- João Paulo Gabriel Camporez
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of S˜ao Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Oxidative stress and inflammatory mediators contribute to endothelial dysfunction in high-fat diet-induced obesity in mice. J Hypertens 2010; 28:2111-9. [DOI: 10.1097/hjh.0b013e32833ca68c] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Fenofibrate and Pioglitazone Do Not Ameliorate the Altered Vascular Reactivity in Aorta of Isoproterenol-treated Rats. J Cardiovasc Pharmacol 2008; 52:413-21. [DOI: 10.1097/fjc.0b013e31818a8927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|