1
|
Kistner BM, Tian Y, Douglas ES, Caron KM. Cardiac lymphatics undergo distinct remodeling during hypertrophic and nonhypertrophic pregnancy. Am J Physiol Heart Circ Physiol 2024; 327:H1155-H1161. [PMID: 39269453 PMCID: PMC11560070 DOI: 10.1152/ajpheart.00459.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Lymphatic vessels of the heart undergo dynamic remodeling in response to physiological and pathological cardiovascular events such as development, adult cardiac maintenance, and injury repair. During pregnancy, the cardiovascular system undergoes physiological changes to meet the increased demand for blood supply to the fetus. These extensive physiological changes make pregnancy and delivery a high-risk period in a woman's life. However, whether and how cardiac lymphatics change during pregnancy is largely undefined. Therefore, we used whole mount immunofluorescent labeling and quantitative morphometric analysis to characterize the changes in cardiac lymphatic vasculature during pregnancy using two genetically distinct inbred mouse strains, C57BL/6J and BALB/cJ. When compared with age-matched, nonpregnant C57BL/6J control mice, the hearts of C57BL/6J dams in late pregnancy [gestation day 17.5 (G17.5)] undergo physiological hypertrophy. However, there were no significant changes in the cardiac lymphatic vasculature. In contrast, BALB/cJ mice do not exhibit pregnancy-induced cardiac hypertrophy at G17.5 compared with age-matched, nonpregnant mice. Yet interestingly, the cardiac lymphatic vasculature of pregnant BALB/cJ dams undergoes extensive morphological changes, including decreased lymphatic length, number of end points, and vessel branch-point junctions on the ventral side of the heart. These findings underscore the complexity of genetic and physiological factors that contribute to the heterotypic remodeling of cardiac lymphatics during late pregnancy.NEW & NOTEWORTHY Cardiac lymphatics remodel in response to physiological and pathological stresses. This study is the first to investigate cardiac lymphatic vessel changes during pregnancy. BALB/cJ mice, which do not undergo pregnancy-induced cardiac hypertrophy, show decreased lymphatic length, number of end points, and junctions on the ventral side during pregnancy. In contrast, C57BL/6J mice, which undergo pregnancy-induced cardiac hypertrophy, had no such changes. These findings underscore the complexity of genetic and physiological factors contributing to cardiac lymphatic remodeling.
Collapse
Affiliation(s)
- Bryan M Kistner
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Elizabeth S Douglas
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
2
|
Keuters MH, Antila S, Immonen R, Plotnikova L, Wojciechowski S, Lehtonen S, Alitalo K, Koistinaho J, Dhungana H. The Impact of VEGF-C-Induced Dural Lymphatic Vessel Growth on Ischemic Stroke Pathology. Transl Stroke Res 2024:10.1007/s12975-024-01262-9. [PMID: 38822994 DOI: 10.1007/s12975-024-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice. We injected mice with a single intracerebroventricular dose of adeno-associated viral particles encoding VEGF-C before subjecting them to transient middle cerebral artery occlusion (tMCAo). Behavioral testing, Gadolinium (Gd) contrast agent-enhanced magnetic resonance imaging (MRI), and immunohistochemical analysis were performed to define the impact of VEGF-C on the post-stroke outcome. VEGF-C improved stroke-induced behavioral deficits, such as gait disturbances and neurological deficits, ameliorated post-stroke inflammation, and enhanced an alternative glial immune response. Importantly, VEGF-C treatment increased the drainage of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF), as shown by Gd-enhanced MRI. These outcomes were closely associated with an increase in the growth of dLVs around the region where we observed increased vefgc mRNA expression within the brain, including the olfactory bulb, cortex, and cerebellum. Strikingly, VEGF-C-treated ischemic mice exhibited a faster and stronger Gd-signal accumulation in ischemic core area and an enhanced fluid outflow via the cribriform plate. In conclusion, the VEGF-C-induced dLV growth improved the overall outcome post-stroke, indicating that VEGF-C has potential to be included in the treatment strategies of post-ischemic stroke. However, to maximize the therapeutic potential of VEGF-C treatment, further studies on the impact of an enhanced dural lymphatic system at clinically relevant time points are essential.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014, Helsinki, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Lidiia Plotnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland
| | - Hiramani Dhungana
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
3
|
Rossitto G, Bertoldi G, Rutkowski JM, Mitchell BM, Delles C. Sodium, Interstitium, Lymphatics and Hypertension-A Tale of Hydraulics. Hypertension 2024; 81:727-737. [PMID: 38385255 PMCID: PMC10954399 DOI: 10.1161/hypertensionaha.123.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.
Collapse
Affiliation(s)
- Giacomo Rossitto
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | - Giovanni Bertoldi
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | | | - Brett M. Mitchell
- Dept. of Medical Physiology, Texas A&M University School of Medicine, USA
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
4
|
Wu Q, Meng W, Zhu B, Chen X, Fu J, Zhao C, Liu G, Luo X, Lv Y, Zhao W, Wang F, Hu S, Zhang S. VEGFC ameliorates salt-sensitive hypertension and hypertensive nephropathy by inhibiting NLRP3 inflammasome via activating VEGFR3-AMPK dependent autophagy pathway. Cell Mol Life Sci 2023; 80:327. [PMID: 37837447 PMCID: PMC11072217 DOI: 10.1007/s00018-023-04978-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Salt-sensitivity hypertension (SSHTN) is an independent predictor for cardiovascular mortality. VEGFC has been reported to be a protective role in SSHTN and hypertensive kidney injury. However, the underlying mechanisms remain largely unclear. The current study aimed to explore the protective effects and mechanisms of VEGFC against SSHTN and hypertensive nephropathy. Here, we reported that VEGFC attenuated high blood pressure as well as protected against renal inflammation and fibrosis in SSHTN mice. Moreover, VEGFC suppressed the activation of renal NLRP3 inflammasome in SSHTN mice. In vitro, we found VEGFC inhibited NLRP3 inflammasome activation, meanwhile, upregulated autophagy in high-salt-induced macrophages, while these effects were reversed by an autophagy inhibitor 3MA. Furthermore, in vivo, 3MA pretreatment weakened the protective effects of VEGFC on SSHTN and hypertensive nephropathy. Mechanistically, VEGF receptor 3 (VEGFR3) kinase domain activated AMPK by promoting the phosphorylation at Thr183 via binding to AMPK, thus enhancing autophagy activity in the context of high-salt-induced macrophages. These findings indicated that VEGFC inhibited NLRP3 inflammasome activation by promoting VEGFR3-AMPK-dependent autophagy pathway in high-salt-induced macrophages, which provided a mechanistic basis for the therapeutic target in SSHTN and hypertensive kidney injury.
Collapse
Affiliation(s)
- Qiuwen Wu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Wei Meng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Bin Zhu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China
| | - Xi Chen
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Jiaxin Fu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Chunyu Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Gang Liu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Ying Lv
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Wenqi Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Fan Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Sining Hu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China.
| | - Shuo Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
5
|
Phillips EH, Bindokas VP, Jung D, Teamer J, Kitajewski JK, Solaro RJ, Wolska BM, Lee SSY. Three-dimensional spatial quantitative analysis of cardiac lymphatics in the mouse heart. Microcirculation 2023; 30:e12826. [PMID: 37605603 PMCID: PMC10592199 DOI: 10.1111/micc.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Three-dimensional (3D) microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and their association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). METHODS We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image-processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. RESULTS Chamber-specific pathological alterations of LyVs were identified, and significant changes were seen in the right atrium (RA). TG hearts had a higher volume percent of ER-TR7+ fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7+ volume percent and both LyV segment density and median diameter. CONCLUSIONS This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.
Collapse
Affiliation(s)
- Evan H. Phillips
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S. Wood, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois Chicago, 835 S. Wolcott, Chicago, IL, USA
| | - Vytautas P. Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, 900 E. 57, Chicago, IL, USA
| | - Dahee Jung
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S. Wood, Chicago, IL, USA
| | - Jay Teamer
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S. Wood, Chicago, IL, USA
| | - Jan K. Kitajewski
- Department of Physiology and Biophysics, University of Illinois Chicago, 835 S. Wolcott, Chicago, IL, USA
| | - R. John Solaro
- Department of Physiology and Biophysics, University of Illinois Chicago, 835 S. Wolcott, Chicago, IL, USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics, University of Illinois Chicago, 835 S. Wolcott, Chicago, IL, USA
- Department of Medicine, Division of Cardiology, Center for Cardiovascular Research, University of Illinois Chicago, 840 S. Wood, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S. Wood, Chicago, IL, USA
| |
Collapse
|
6
|
Zhuang T, Lei Y, Chang JJ, Zhou YP, Li Y, Li YX, Yang YF, Chen MH, Meng T, Fu SM, Huang LH, Cheang WS, Cooke JP, Dong ZH, Bai YN, Ruan CC. A2AR-mediated lymphangiogenesis via VEGFR2 signaling prevents salt-sensitive hypertension. Eur Heart J 2023; 44:2730-2742. [PMID: 37377160 PMCID: PMC10393074 DOI: 10.1093/eurheartj/ehad377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS Excess dietary sodium intake and retention lead to hypertension. Impaired dermal lymphangiogenesis and lymphatic dysfunction-mediated sodium and fluid imbalance are pathological mechanisms. The adenosine A2A receptor (A2AR) is expressed in lymphatic endothelial cells (LECs), while the roles and mechanisms of LEC-A2AR in skin lymphangiogenesis during salt-induced hypertension are not clear. METHODS AND RESULTS The expression of LEC-A2AR correlated with lymphatic vessel density in both high-salt diet (HSD)-induced hypertensive mice and hypertensive patients. Lymphatic endothelial cell-specific A2AR knockout mice fed HSD exhibited 17 ± 2% increase in blood pressure and 17 ± 3% increase in Na+ content associated with decreased lymphatic density (-19 ± 2%) compared with HSD-WT mice. A2AR activation by agonist CGS21680 increased lymphatic capillary density and decreased blood pressure in HSD-WT mice. Furthermore, this A2AR agonist activated MSK1 directly to promote VEGFR2 activation and endocytosis independently of VEGF as assessed by phosphoprotein profiling and immunoprecipitation assays in LECs. VEGFR2 kinase activity inhibitor fruquintinib or VEGFR2 knockout in LECs but not VEGF-neutralizing antibody bevacizumab suppressed A2AR activation-mediated decrease in blood pressure. Immunostaining revealed phosphorylated VEGFR2 and MSK1 expression in the LECs were positively correlated with skin lymphatic vessel density and A2AR level in hypertensive patients. CONCLUSION The study highlights a novel A2AR-mediated VEGF-independent activation of VEGFR2 signaling in dermal lymphangiogenesis and sodium balance, which might be a potential therapeutic target in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tao Zhuang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Yu Lei
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Jin-Jia Chang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China
| | - Yan-Ping Zhou
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pu-Jian Road, Shanghai 200032, China
| | - Yan Li
- Department of Cardiology, RuiJin Hospital/LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chong-Qing-Nan Road, Shanghai 200032, China
| | - Yan-Xiu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guang-Zhou Road, Nanjing 210000, China
| | - Yong-Feng Yang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Mei-Hua Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Ting Meng
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Shi-Man Fu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Li-Hao Huang
- Department of Chemistry and Institute of Metabolism and Integrative Biology, Shanghai Key Laboratory of Metabolic Remodeling and Health, Fudan University, 38 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Wai-San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Long-Ma Road, Macau 999078, China
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zhi-Hui Dong
- Department of Vascular Surgery, Zhongshan Hospital, and Center for Vascular Surgery and Wound Care, Jinshan Hospital, Fudan University, 180 Feng-Lin Road, Shanghai 200032, China
| | - Ying-Nan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Feng-Lin Road, Shanghai 200032, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| |
Collapse
|
7
|
Bi Y, Yang GH, Guo ZZ, Cai W, Chen SB, Zhou X, Li YM. Chronic high‑salt intake induces cardiomyocyte autophagic vacuolization during left ventricular maladaptive remodeling in spontaneously hypertensive rats. Exp Ther Med 2023; 25:148. [PMID: 36911373 PMCID: PMC9995711 DOI: 10.3892/etm.2023.11847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
The role of autophagy in high-salt (HS) intake associated hypertensive left ventricular (LV) remodeling remains unclear. The present study investigated the LV autophagic change and its association with the hypertensive LV remodeling induced by chronic HS intake in spontaneously hypertensive rats (SHR). Wistar Kyoto (WKY) rats and SHR were fed low-salt (LS; 0.5% NaCl) and HS (8.0% NaCl) diets and were subjected to invasive LV hemodynamic analysis after 8, 12 and 16 weeks of dietary intervention. Reverse transcription-quantitative PCR and western blot analysis were performed to investigate the expression of autophagy-associated key components. The LV morphologic staining was performed at the end of the study. The rat H9c2 ventricular myoblast cell-associated experiments were performed to explore the mechanism of HS induced autophagic change. A global autophagy-associated key component, as well as increased cardiomyocyte autophagic vacuolization, was observed after 12 weeks of HS intake. During this period, the heart from HS-diet-fed SHR exhibited a transition from compensated LV hypertrophy to decompensation, as shown by progressive impairment of LV function and interstitial fibrosis. Myocardial extracellular [Na+] and the expression of tonicity-responsive enhancer binding protein (TonEBP) was significantly increased in HS-fed rats, indicating myocardial interstitial hypertonicity by chronic HS intake. The global autophagic change and overt deterioration of LV function were not observed in LS-fed SHR and HS-fed WKY rats. The study of rat H9c2 cardiomyocytes demonstrated a cytosolic [Na+] elevation-mediated, reactive oxygen species-dependent the autophagic change occurred when exposed to an increased extracellular [Na+]. The present findings demonstrated that a myocardial autophagic change participates in the maladaptive LV remodeling induced by chronic HS intake in SHR, which provides a possible target for future intervention studies on HS-induced hypertensive LV remodeling.
Collapse
Affiliation(s)
- Ying Bi
- Department of Internal Medicine, Tianjin Corps Hospital of The Chinese People's Armed Police Forces, Tianjin 300163, P.R. China.,Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Guo-Hong Yang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Zhao-Zeng Guo
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Wei Cai
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Shao-Bo Chen
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Xin Zhou
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China.,Department of Cardiovascular Diseases, General Hospital Tianjin Medical University, Tianjin 300052, P.R. China
| | - Yu-Ming Li
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China.,Department of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin 300457, P.R. China
| |
Collapse
|
8
|
Phillips EH, Bindokas VP, Jung D, Teamer J, Kitajewski JK, Solaro RJ, Wolska BM, Lee SSY. Three-dimensional spatial quantitative analysis of cardiac lymphatics in the mouse heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526338. [PMID: 36778334 PMCID: PMC9915594 DOI: 10.1101/2023.02.01.526338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective 3D microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). Methods We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic (NTG) and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. Results Chamber-specific pathological alterations of LyVs were identified, but most significantly in the right atrium (RA). TG hearts had a higher volume fraction of ER-TR7 + fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7 + volume fraction and both LyV segment density and median diameter. Conclusions This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.
Collapse
|
9
|
Rossitto G, Delles C. Mechanisms of sodium-mediated injury in cardiovascular disease: old play, new scripts. FEBS J 2022; 289:7260-7273. [PMID: 34355504 DOI: 10.1111/febs.16155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
There is a strong association between salt intake and cardiovascular diseases, particularly hypertension, on the population level. The mechanisms that explain this association remain incompletely understood and appear to extend beyond blood pressure. In this review, we describe some of the 'novel' roles of Na+ in cardiovascular health and disease: energetic implications of sodium handling in the kidneys; local accumulation in tissue; fluid dynamics; and the role of the microvasculature, with particular focus on the lymphatic system. We describe the interplay between these factors that involves body composition, metabolic signatures, inflammation and composition of the extracellular and intracellular milieus.
Collapse
Affiliation(s)
- Giacomo Rossitto
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK.,Department of Medicine (DIMED), University of Padua, Italy
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
10
|
Moskalik A, Ratajska A, Majchrzak B, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Niderla-Bielińska J. miR-31-5p-Modified RAW 264.7 Macrophages Affect Profibrotic Phenotype of Lymphatic Endothelial Cells In Vitro. Int J Mol Sci 2022; 23:13193. [PMID: 36361979 PMCID: PMC9657882 DOI: 10.3390/ijms232113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Cardiac lymphatic vessel (LyV) remodeling as a contributor to heart failure has not been extensively evaluated in metabolic syndrome (MetS). Our studies have shown structural changes in cardiac LyV in MetS that contribute to the development of edema and lead to myocardial fibrosis. Tissue macrophages may affect LyV via secretion of various substances, including noncoding RNAs. The aim of the study was to evaluate the influence of macrophages modified by miR-31-5p, a molecule that regulates fibrosis and lymphangiogenesis, on lymphatic endothelial cells (LECs) in vitro. The experiments were carried out on the RAW 264.7 macrophage cell line and primary dermal lymphatic endothelial cells. RAW 264.7 macrophages were transfected with miR-31-5p and supernatant from this culture was used for LEC stimulation. mRNA expression levels for genes associated with lymphangiogenesis and fibrosis were measured with qRT-PCR. Selected results were confirmed with ELISA or Western blotting. miR-31-5p-modified RAW 264.7 macrophages secreted increased amounts of VEGF-C and TGF-β and a decreased amount of IGF-1. The supernatant from miR-31-5p-modified RAW 264.7 downregulated the mRNA expression for genes regulating endothelial-to-mesenchymal transition (EndoMT) and fibrosis in LECs. Our results suggest that macrophages under the influence of miR-31-5p show the potential to inhibit LEC-dependent fibrosis. However, more studies are needed to confirm this effect in vivo.
Collapse
Affiliation(s)
- Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Bartkowiak
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of History of Medicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
11
|
Mamazhakypov A, Sartmyrzaeva M, Sarybaev AS, Schermuly R, Sydykov A. Clinical and Molecular Implications of Osteopontin in Heart Failure. Curr Issues Mol Biol 2022; 44:3573-3597. [PMID: 36005141 PMCID: PMC9406846 DOI: 10.3390/cimb44080245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The matricellular protein osteopontin modulates cell-matrix interactions during tissue injury and healing. A complex multidomain structure of osteopontin enables it not only to bind diverse cell receptors but also to interact with various partners, including other extracellular matrix proteins, cytokines, and growth factors. Numerous studies have implicated osteopontin in the development and progression of myocardial remodeling in diverse cardiac diseases. Osteopontin influences myocardial remodeling by regulating extracellular matrix production, the activity of matrix metalloproteinases and various growth factors, inflammatory cell recruitment, myofibroblast differentiation, cardiomyocyte apoptosis, and myocardial vascularization. The exploitation of osteopontin loss- and gain-of-function approaches in rodent models provided an opportunity for assessment of the cell- and disease-specific contribution of osteopontin to myocardial remodeling. In this review, we summarize the recent knowledge on osteopontin regulation and its impact on various cardiac diseases, as well as delineate complex disease- and cell-specific roles of osteopontin in cardiac pathologies. We also discuss the current progress of therapeutics targeting osteopontin that may facilitate the development of a novel strategy for heart failure treatment.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Meerim Sartmyrzaeva
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay Sh. Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Schermuly
- Department of Internal Medicine, German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
12
|
Heron C, Dumesnil A, Houssari M, Renet S, Lemarcis T, Lebon A, Godefroy D, Schapman D, Henri O, Riou G, Nicol L, Henry JP, Valet M, Pieronne-Deperrois M, Ouvrard-Pascaud A, Hägerling R, Chiavelli H, Michel JB, Mulder P, Fraineau S, Richard V, Tardif V, Brakenhielm E. Regulation and impact of cardiac lymphangiogenesis in pressure-overload-induced heart failure. Cardiovasc Res 2022; 119:492-505. [PMID: 35689481 PMCID: PMC10064842 DOI: 10.1093/cvr/cvac086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
AIMS Lymphatics are essential for cardiac health, and insufficient lymphatic expansion (lymphangiogenesis) contributes to development of heart failure (HF) after myocardial infarction. However, the regulation and impact of lymphangiogenesis in non-ischemic cardiomyopathy following pressure-overload remains to be determined. Here, we investigated cardiac lymphangiogenesis following transversal aortic constriction (TAC) in C57Bl/6 and Balb/c mice, and in end-stage HF patients. METHODS & RESULTS Cardiac function was evaluated by echocardiography, and cardiac hypertrophy, lymphatics, inflammation, edema, and fibrosis by immunohistochemistry, flow cytometry, microgravimetry, and gene expression analysis. Treatment with neutralizing anti-VEGFR3 antibodies was applied to inhibit cardiac lymphangiogenesis in mice.We found that VEGFR3-signaling was essential to prevent cardiac lymphatic rarefaction after TAC in C57Bl/6 mice. While anti-VEGFR3-induced lymphatic rarefaction did not significantly aggravate myocardial edema post-TAC, cardiac immune cell levels were increased, notably myeloid cells at 3 weeks and T lymphocytes at 8 weeks. Moreover, whereas inhibition of lymphangiogenesis did not aggravate interstitial fibrosis, it increased perivascular fibrosis and accelerated development of left ventricular (LV) dilation and dysfunction. In clinical HF samples, cardiac lymphatic density tended to increased, although lymphatic sizes decreased, notably in patients with dilated cardiomyopathy. Similarly, comparing C57Bl/6 and Balb/c mice, lymphatic remodeling post-TAC was linked to LV dilation rather than to hypertrophy. The striking lymphangiogenesis in Balb/c was associated with reduced cardiac levels of macrophages, B cells, and perivascular fibrosis at 8 weeks post-TAC, as compared with C57Bl/6 mice that displayed weak lymphangiogenesis. Surprisingly, however, it did not suffice to resolve myocardial edema, nor prevent HF development.
Collapse
Affiliation(s)
- C Heron
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - A Dumesnil
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - M Houssari
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - S Renet
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - T Lemarcis
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - A Lebon
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France
| | - D Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France
| | - D Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France
| | - O Henri
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - G Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France
| | - L Nicol
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - J P Henry
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - M Valet
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - M Pieronne-Deperrois
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - A Ouvrard-Pascaud
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - R Hägerling
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical and Human Genetics, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - H Chiavelli
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - J B Michel
- UMR 1148, Inserm-Paris University, X. Bichat Hospital, Paris, France
| | - P Mulder
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - S Fraineau
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - V Richard
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - V Tardif
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - E Brakenhielm
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| |
Collapse
|
13
|
Cardiac lymphatics: state of the art. Curr Opin Hematol 2022; 29:156-165. [PMID: 35220321 DOI: 10.1097/moh.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.
Collapse
|
14
|
Goodlett BL, Kang CS, Yoo E, Navaneethabalakrishnan S, Balasubbramanian D, Love SE, Sims BM, Avilez DL, Tate W, Chavez DR, Baranwal G, Nabity MB, Rutkowski JM, Kim D, Mitchell BM. A Kidney-Targeted Nanoparticle to Augment Renal Lymphatic Density Decreases Blood Pressure in Hypertensive Mice. Pharmaceutics 2021; 14:pharmaceutics14010084. [PMID: 35056980 PMCID: PMC8780399 DOI: 10.3390/pharmaceutics14010084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic interstitial inflammation and renal infiltration of activated immune cells play an integral role in hypertension. Lymphatics regulate inflammation through clearance of immune cells and excess interstitial fluid. Previously, we demonstrated increasing renal lymphangiogenesis prevents hypertension in mice. We hypothesized that targeted nanoparticle delivery of vascular endothelial growth factor-C (VEGF-C) to the kidney would induce renal lymphangiogenesis, lowering blood pressure in hypertensive mice. A kidney-targeting nanoparticle was loaded with a VEGF receptor-3-specific form of VEGF-C and injected into mice with angiotensin II-induced hypertension or LNAME-induced hypertension every 3 days. Nanoparticle-treated mice exhibited increased renal lymphatic vessel density and width compared to hypertensive mice injected with VEGF-C alone. Nanoparticle-treated mice exhibited decreased systolic blood pressure, decreased pro-inflammatory renal immune cells, and increased urinary fractional excretion of sodium. Our findings demonstrate that pharmacologically expanding renal lymphatics decreases blood pressure and is associated with favorable alterations in renal immune cells and increased sodium excretion.
Collapse
Affiliation(s)
- Bethany L. Goodlett
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Chang Sun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; (C.S.K.); (E.Y.); (D.K.)
| | - Eunsoo Yoo
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; (C.S.K.); (E.Y.); (D.K.)
| | - Shobana Navaneethabalakrishnan
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Dakshnapriya Balasubbramanian
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Sydney E. Love
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Braden M. Sims
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Daniela L. Avilez
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Winter Tate
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Delilah R. Chavez
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Gaurav Baranwal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA;
| | - Joseph M. Rutkowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77843, USA; (C.S.K.); (E.Y.); (D.K.)
| | - Brett M. Mitchell
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (B.L.G.); (S.N.); (D.B.); (S.E.L.); (B.M.S.); (D.L.A.); (W.T.); (D.R.C.); (G.B.); (J.M.R.)
- Correspondence: ; Tel.:+1-979-436-0751
| |
Collapse
|
15
|
Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021; 8:738325. [PMID: 34504884 PMCID: PMC8421775 DOI: 10.3389/fcvm.2021.738325] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
Collapse
Affiliation(s)
- Yan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Yu FF, Yang GH, Chen SB, Niu XL, Cai W, Tao YY, Wang XJ, Li M, Li YM, Zhao JH. Pseudolaric Acid B Attenuates High Salt Intake-Induced Hypertensive Left Ventricular Remodeling by Modulating Monocyte/Macrophage Phenotypes. Med Sci Monit 2021; 27:e932404. [PMID: 34493698 PMCID: PMC8434772 DOI: 10.12659/msm.932404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Studies in ApoE knockout mice have shown that pseudolaric acid B (PB) can act as an immunomodulatory drug and attenuate atherosclerosis progression by modulating monocyte/macrophage phenotypes. Our previous study demonstrated that high salt intake could shift the phenotype of monocytes/macrophages to an inflammatory phenotype, and that this shift was related to hypertension and hypertensive left ventricular (LV) remodeling. However, no comprehensive assessment of the effects of PB on hypertensive LV remodeling has been conducted. Material/Methods In this study, RAW264.7 macrophages cultured with different concentrations of NaCl were used to investigate the modulating effects of PB on macrophage phenotype. Furthermore, N-nitro-l-arginine methyl ester hypertensive mice were used to investigate the modulating effects of PB on monocyte phenotype. LV remodeling was investigated by echocardiography. LV morphologic staining (for cardiomyocyte hypertrophy and collagen deposition) was performed at the time of sacrifice. Results The results showed that PB significantly improved the viability of RAW264.7 cells, suppressed their phagocytic and migration abilities, and inhibited their phenotypic shift to M1 macrophages. In addition, the blood pressure of PB-treated mice was significantly decreased relative to that of control mice. Furthermore, after PB treatment, the percentage of Ly6Chi monocytes was significantly decreased while that of Ly6Clo monocytes was apparently increased. Moreover, PB preserved LV function and alleviated myocardial fibrosis and cardiomyocyte hypertrophy as measured at the end of the experimental period. The transfer of monocytes from PB-treated mice to hypertensive mice achieved the same effects. Conclusions Together, these findings indicate that PB exerts its protective effects on hypertensive LV remodeling by modulating monocyte/macrophage phenotypes and warrants further investigation.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Guo-Hong Yang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Shao-Bo Chen
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Xiu-Long Niu
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Wei Cai
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Yan-Yan Tao
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Xiu-Juan Wang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Ming Li
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Yu-Ming Li
- Department of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin, China (mainland)
| | - Ji-Hong Zhao
- Military General Medical Department, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| |
Collapse
|
17
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
18
|
High-salt intake affects retinal vascular tortuosity in healthy males: an exploratory randomized cross-over trial. Sci Rep 2021; 11:801. [PMID: 33436709 PMCID: PMC7803999 DOI: 10.1038/s41598-020-79753-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
The retinal microcirculation is increasingly receiving credit as a relatively easily accessible microcirculatory bed that correlates closely with clinical cardiovascular outcomes. The effect of high salt (NaCl) intake on the retinal microcirculation is currently unknown. Therefore, we performed an exploratory randomized cross-over dietary intervention study in 18 healthy males. All subjects adhered to a two-week high-salt diet and low-salt diet, in randomized order, after which fundus photographs were taken and assessed using a semi-automated computer-assisted program (SIVA, version 4.0). Outcome parameters involved retinal venular and arteriolar tortuosity, vessel diameter, branching angle and fractal dimension. At baseline, participants had a mean (SD) age of 29.8 (4.4) years and blood pressure of 117 (9)/73 (5) mmHg. Overall, high-salt diet significantly increased venular tortuosity (12.2%, p = 0.001). Other retinal parameters were not significantly different between diets. Changes in arteriolar tortuosity correlated with changes in ambulatory systolic blood pressure (r = - 0.513; p = 0.04). In conclusion, high-salt diet increases retinal venular tortuosity, and salt-induced increases in ambulatory systolic blood pressure associate with decreases in retinal arteriolar tortuosity. Besides potential eye-specific consequences, both phenomena have previously been associated with hypertension and other cardiovascular risk factors, underlining the deleterious microcirculatory effects of high salt intake.
Collapse
|
19
|
Le bilan du sodium : nouveaux aspects. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Res Cardiol 2020; 115:39. [PMID: 32451732 PMCID: PMC7248044 DOI: 10.1007/s00395-020-0798-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous disease for which our pathophysiological understanding is still limited and specific prevention and treatment strategies are lacking. HFpEF is characterised by diastolic dysfunction and cardiac remodelling (fibrosis, inflammation, and hypertrophy). Recently, microvascular dysfunction and chronic low-grade inflammation have been proposed to participate in HFpEF development. Furthermore, several recent studies demonstrated the occurrence of generalized lymphatic dysfunction in experimental models of risk factors for HFpEF, including obesity, hypercholesterolaemia, type 2 diabetes mellitus (T2DM), hypertension, and aging. Here, we review the evidence for a combined role of coronary (micro)vascular dysfunction and lymphatic vessel alterations in mediating key pathological steps in HFpEF, including reduced cardiac perfusion, chronic low-grade inflammation, and myocardial oedema, and their impact on cardiac metabolic alterations (oxygen and nutrient supply/demand imbalance), fibrosis, and cardiomyocyte stiffness. We focus primarily on HFpEF caused by metabolic risk factors, such as obesity, T2DM, hypertension, and aging.
Collapse
|
21
|
Abstract
OBJECTIVE Hypertension is associated with renal immune cell accumulation and sodium retention. Lymphatic vessels provide a route for immune cell trafficking and fluid clearance. Whether specifically increasing renal lymphatic density can treat established hypertension, and whether renal lymphatics are involved in mechanisms of blood pressure regulation remain undetermined. Here, we tested the hypothesis that augmenting renal lymphatic density can attenuate blood pressure in established hypertension. METHODS Transgenic mice with inducible kidney-specific overexpression of VEGF-D ('KidVD+' mice) and KidVD- controls were administered a nitric oxide synthase inhibitor, L-NAME, for 4 weeks, with doxycycline administration beginning at the end of week 1. To identify mechanisms by which renal lymphatics alter renal Na handling, Na excretion was examined in KidVD+ mice during acute and chronic salt loading conditions. RESULTS Renal VEGF-D induction for 3 weeks enhanced lymphatic density and significantly attenuated blood pressure in KidVD+ mice whereas KidVD- mice remained hypertensive. No differences were identified in renal immune cells, however, the urinary Na excretion was increased significantly in KidVD+ mice. KidVD+ mice demonstrated normal basal sodium handling, but following chronic high salt loading, KidVD+ mice had a significantly lower blood pressure along with increased urinary fractional excretion of Na. Mechanistically, KidVD+ mice demonstrated decreased renal abundance of total NCC and cleaved ENaCα Na transporters, increased renal tissue fluid volume, and increased plasma ANP. CONCLUSION Our findings demonstrate that therapeutically augmenting renal lymphatics increases natriuresis and reduces blood pressure under sodium retention conditions.
Collapse
|
22
|
Balasubbramanian D, Lopez Gelston CA, Rutkowski JM, Mitchell BM. Immune cell trafficking, lymphatics and hypertension. Br J Pharmacol 2018; 176:1978-1988. [PMID: 29797446 DOI: 10.1111/bph.14370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Activated immune cell infiltration into organs contributes to the development and maintenance of hypertension. Studies targeting specific immune cell populations or reducing their inflammatory signalling have demonstrated a reduction in BP. Lymphatic vessels play a key role in immune cell trafficking and in resolving inflammation, but little is known about their role in hypertension. Studies from our laboratory and others suggest that inflammation-associated or induction of lymphangiogenesis is organ protective and anti-hypertensive. This review provides the basis for hypertension as a disease of chronic inflammation in various tissues and highlights how renal lymphangiogenesis is a novel regulator of kidney health and BP. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | | | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| |
Collapse
|
23
|
Yang GH, Zhou X, Ji WJ, Liu JX, Sun J, Shi R, Jiang TM, Li YM. Effects of a low salt diet on isolated systolic hypertension: A community-based population study. Medicine (Baltimore) 2018; 97:e0342. [PMID: 29620663 PMCID: PMC5902269 DOI: 10.1097/md.0000000000010342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that long-term sodium reduction can not only reduce blood pressure, but also provide cardiovascular benefits. To date, there is little evidence related to the effects of salt reduction on isolated systolic hypertension (ISH).A total of 126 hypertensive patients were divided into an ISH group (n = 51) and a non-ISH (NISH) group (n = 75). The members of each group were then randomly assigned to low sodium salt (LSSalt) or normal salt (NSalt) diets for 6 months. Their blood pressure was measured every 2 months. Serum plasma renin-angiotensin activity, blood biochemical assays and urinary measurements were determined at the baseline and at the end of the 6 months.At the end of the study, the mean systolic blood pressure (SBP) of the ISH LSSalt group had significantly decreased by 10.18 mm Hg (95% confidence interval (CI): 3.13 to 17.2, P = .006) compared with that of the ISH NSalt group, while the mean SBP only decreased by 5.10 mm Hg (95% CI: -2.02 to 12.2, P = .158) in the NISH LSSalt group compared with that of the NISH NSalt group. The mean diastolic blood pressure (DBP) had no significant differences in the ISH and NISH groups. No obvious renin angiotensin system activation was found after LSSalt intervention. Regarding the urinary excretion of electrolytes and blood biochemical assays, the LSSalt treatment had the same effects on the ISH group as on the NISH group.The present study showed that the SBP of ISH patients was significantly decreased with the LSSalt intervention, while neither the SBP of the NISH patients nor the DBP of either group were similarly decreased, which indicated that ISH patients were more sensitive to salt restriction.
Collapse
|
24
|
Lopez Gelston CA, Balasubbramanian D, Abouelkheir GR, Lopez AH, Hudson KR, Johnson ER, Muthuchamy M, Mitchell BM, Rutkowski JM. Enhancing Renal Lymphatic Expansion Prevents Hypertension in Mice. Circ Res 2018; 122:1094-1101. [PMID: 29475981 DOI: 10.1161/circresaha.118.312765] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
Abstract
RATIONALE Hypertension is associated with renal infiltration of activated immune cells; however, the role of renal lymphatics and immune cell exfiltration is unknown. OBJECTIVE We tested the hypotheses that increased renal lymphatic density is associated with 2 different forms of hypertension in mice and that further augmenting renal lymphatic vessel expansion prevents hypertension by reducing renal immune cell accumulation. METHODS AND RESULTS Mice with salt-sensitive hypertension or nitric oxide synthase inhibition-induced hypertension exhibited significant increases in renal lymphatic vessel density and immune cell infiltration associated with inflammation. Genetic induction of enhanced lymphangiogenesis only in the kidney, however, reduced renal immune cell accumulation and prevented hypertension. CONCLUSIONS These data demonstrate that renal lymphatics play a key role in immune cell trafficking in the kidney and blood pressure regulation in hypertension.
Collapse
Affiliation(s)
| | | | | | - Alexandra H Lopez
- From the Department of Medical Physiology, Texas A&M College of Medicine, College Station
| | - Kayla R Hudson
- From the Department of Medical Physiology, Texas A&M College of Medicine, College Station
| | - Eric R Johnson
- From the Department of Medical Physiology, Texas A&M College of Medicine, College Station
| | - Mariappan Muthuchamy
- From the Department of Medical Physiology, Texas A&M College of Medicine, College Station
| | - Brett M Mitchell
- From the Department of Medical Physiology, Texas A&M College of Medicine, College Station.
| | - Joseph M Rutkowski
- From the Department of Medical Physiology, Texas A&M College of Medicine, College Station
| |
Collapse
|
25
|
Sahutoglu T, Sakaci T, Hasbal NB, Ahbap E, Kara E, Sumerkan MC, Sevinc M, Akgol C, Koc Y, Basturk T, Unsal A. Serum VEGF-C levels as a candidate biomarker of hypervolemia in chronic kidney disease. Medicine (Baltimore) 2017; 96:e6543. [PMID: 28471955 PMCID: PMC5419901 DOI: 10.1097/md.0000000000006543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Attaining and maintaining optimal "dry weight" is one of the principal goals during maintenance hemodialysis (MHD). Recent studies have shown a close relationship between Na load and serum vascular endothelial growth factor-C (VEGF-C) levels; thus, we aimed to investigate the role of VEGF-C as a candidate biomarker of hypervolemia. Physical examination, basic laboratory tests, N-terminal pro b-type natriuretic peptide (NT-ProBNP), echocardiography, and bioimpedance spectroscopy data of 3 groups of study subjects (euvolemic MHD patients, healthy controls, and hypervolemic chronic kidney disease [CKD] patients) were analyzed. Research data for MHD patients were obtained both before the first and after the last hemodialysis (HD) sessions of the week. Data of 10 subjects from each study groups were included in the analysis. Serum VEGF-C levels were significantly higher in hypervolemic CKD versus in MHD patients both before the first and after the last HD sessions (P = .004 and P = .000, respectively). Healthy controls had serum VEGF-C levels similar to and higher than MHD patients before the first and after the last HD sessions of the week (P = .327 and P = .021, respectively). VEGF-C levels were correlated with bioimpedance spectroscopy results (r 0.659, P = .000) and edema (r 0.494, P =0.006), but not with ejection fraction (EF) (r -0.251, P = .134), blood pressures (systolic r 0.037, P = 0.824, diastolic r -0.067, P = .691), and NT-ProBNP (r -0.047, P = .773). These findings suggest that serum VEGF-C levels could be a potential new biomarker of hypervolemia. The lack of correlation between VEGF-C and EF may hold a promise to eliminate this common confounder. Further studies are needed to define the clinical utility of VEGF-C in volume management.
Collapse
Affiliation(s)
- Tuncay Sahutoglu
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Tamer Sakaci
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Nuri B. Hasbal
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Elbis Ahbap
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Ekrem Kara
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize
| | - Mutlu C. Sumerkan
- Department of Cardiology, Sisli Hamidiye Etfal Educational and Research Hospital, Istanbul, Turkey
| | - Mustafa Sevinc
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Cuneyt Akgol
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Yener Koc
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Taner Basturk
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Abdulkadir Unsal
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| |
Collapse
|
26
|
Ma Y, Zou H, Zhu XX, Pang J, Xu Q, Jin QY, Ding YH, Zhou B, Huang DS. Transforming growth factor β: A potential biomarker and therapeutic target of ventricular remodeling. Oncotarget 2017; 8:53780-53790. [PMID: 28881850 PMCID: PMC5581149 DOI: 10.18632/oncotarget.17255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that is synthesized by many types of cells and regulates the cell cycle. Increasing evidence has led to TGF-β receiving increased and deserved attention in recent years because it may play a potentially novel and critical role in the development and progression of myocardial fibrosis and the subsequent progress of ventricular remodeling (VR). Numerous studies have highlighted a crucial role of TGF-β in VR and suggest potential therapeutic targets of the TGF-β signaling pathways for VR. Changes in TGF-β activity may elicit anti-VR activity and may serve as a novel therapeutic target for VR therapy. This review we discusses the smad-dependent signaling pathway, such as TGF-β/Smads, TGF-β/Sirtuins, TGF-β/BMP, TGF-β/miRNAs, TGF-β/MAPK, and Smad-independent signaling pathway of TGF-β, such as TGF-β/PI3K/Akt, TGF-β/Rho/ROCK,TGF-β/Wnt/β-catenin in the cardiac fibrosis and subsequent progression of VR. Furthermore, agonists and antagonists of TGF-β as potential therapeutic targets in VR are also described.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xing-Xing Zhu
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Pang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiang Xu
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qin-Yang Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bing Zhou
- Department of Cardiac Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
27
|
Kneedler SC, Phillips LE, Hudson KR, Beckman KM, Lopez Gelston CA, Rutkowski JM, Parrish AR, Doris PA, Mitchell BM. Renal inflammation and injury are associated with lymphangiogenesis in hypertension. Am J Physiol Renal Physiol 2017; 312:F861-F869. [PMID: 28228406 PMCID: PMC5451556 DOI: 10.1152/ajprenal.00679.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Lymphatic vessels are vital for the trafficking of immune cells from the interstitium to draining lymph nodes during inflammation. Hypertension is associated with renal infiltration of activated immune cells and inflammation; however, it is unknown how renal lymphatic vessels change in hypertension. We hypothesized that renal macrophage infiltration and inflammation would cause increased lymphatic vessel density in hypertensive rats. Spontaneously hypertensive rats (SHR) that exhibit hypertension and renal injury (SHR-A3 strain) had significantly increased renal lymphatic vessel density and macrophages at 40 wk of age compared with Wistar-Kyoto (WKY) controls. SHR rats that exhibit hypertension but minimal renal injury (SHR-B2 strain) had significantly less renal lymphatic vessel density compared with WKY rats. The signals for lymphangiogenesis, VEGF-C and its receptor VEGF-R3, and proinflammatory cytokine genes increased significantly in the kidneys of SHR-A3 rats but not in SHR-B2 rats. Fischer 344 rats exhibit normal blood pressure but develop renal injury as they age. Kidneys from 24-mo- and/or 20-mo-old Fischer rats had significantly increased lymphatic vessel density, macrophage infiltration, VEGF-C and VEGF-R3 expression, and proinflammatory cytokine gene expression compared with 4-mo-old controls. These data together demonstrate that renal immune cell infiltration and inflammation cause lymphangiogenesis in hypertension- and aging-associated renal injury.
Collapse
Affiliation(s)
- Sterling C Kneedler
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Lauren E Phillips
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Kayla R Hudson
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Katharine M Beckman
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Catalina A Lopez Gelston
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Peter A Doris
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center-Houston, Houston, Texas
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas;
| |
Collapse
|
28
|
Chao Z, Liuyang T, Nan L, Qi C, Zhongqi C, Yang L, Yuqi L. Mitochondrial tRNA mutation with high-salt stimulation on cardiac damage: underlying mechanism associated with change of Bax and VDAC. Am J Physiol Heart Circ Physiol 2016; 311:H1248-H1257. [PMID: 27638882 DOI: 10.1152/ajpheart.00874.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/21/2016] [Indexed: 12/31/2022]
Abstract
Mitochondrial transfer RNA (tRNA) mutation with high-salt stimulation can cause high blood pressure. However, the underlying mechanisms remain unclear. In the present study, we examined the potential molecular mechanisms of cardiac damage caused by mitochondrial tRNA mutation with high-salt stimulation in spontaneously hypertensive rats (SHR). Unanesthetized, 44-wk-old, male, SHR were divided into four groups: SHR, SHR with high-salt stimulation for 8 wk (SHR + NaCl), SHR carrying tRNA mutations (SHR + M), and SHR + M with high-salt stimulation for 8 wk (SHR + M + NaCl). Healthy Wistar-Kyoto (WKY) rats were used as controls. Left ventricular mass and interventricular septum were highest in the SHR + M + NaCl group ( P < 0.05), while ejection fraction was lowest in the SHR + M + NaCl group ( P < 0.05). Hematoxylin and eosin staining showed myocardial cell hypertrophy with interstitial fibrosis and localized inflammatory cell infiltration, in the hypertensive groups, particularly in the SHR + M + NaCl group. Electron microscopy showed different degrees of mitochondrial cavitation in heart tissue of the hypertensive groups, which was highest in the SHR + M + NaCl group. In hypertensive animals, levels of reactive oxygen species were highest in the SHR + M + NaCl group ( P < 0.05). Expression of the voltage-dependent anion channel (VDAC) and the apoptosis regulator Bax were highest in the SHR + M + NaCl group ( P < 0.05), which also showed evidence of VDAC and Bax colocalization ( P < 0.05). Overall, these data suggest that mitochondrial tRNA mutation with high-salt stimulation can aggravate cardiac damage, potentially because of increased expression and interaction between Bax and VDAC and increased reactive oxygen species formation and initiation of apoptosis.
Collapse
Affiliation(s)
- Zhu Chao
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tian Liuyang
- Medical College of Nan Kai University, Tianjing, China; and
| | - Li Nan
- Medical College of Nan Kai University, Tianjing, China; and
| | - Chen Qi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cai Zhongqi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Yang
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Institute of Geriatric Cardiology, and Chinese PLA General Hospital, Beijing, China
| | - Liu Yuqi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Textbook theory holds that blood pressure (BP) is regulated by the brain, by blood vessels, or by the kidney. Recent evidence suggests that BP could be regulated in the skin. RECENT FINDINGS The skin holds a complex capillary counter current system, which controls body temperature, skin perfusion, and apparently systemic BP. Epidemiological data suggest that sunlight exposure plays a role in controlling BP. Ultraviolet A radiation produces vasodilation and a fall in BP. Keratinocytes and immune cells control blood flow in the extensive countercurrent loop system of the skin by producing nitric oxide, a key regulator of vascular tone. The balance between hypoxia-inducible factor-1α and hypoxia-inducible factor-2α activity in keratinocytes controls skin perfusion, systemic thermoregulation, and systemic BP by nitric oxide-dependent mechanisms. Furthermore, the skin accumulates Na which generates a barrier to promote immunological host defense. Immune cells control skin Na metabolism and the clearance of Na via the lymphatic system. Reduced lymphatic clearance increases BP. SUMMARY Apart from the well-known role of the brain, blood vessels, and the kidney, the skin is important for systemic BP control in humans and in experimental animals.
Collapse
|
30
|
Hamar P, Kerjaschki D. Blood capillary rarefaction and lymphatic capillary neoangiogenesis are key contributors to renal allograft fibrosis in an ACE inhibition rat model. Am J Physiol Heart Circ Physiol 2016; 311:H981-H990. [PMID: 27496878 DOI: 10.1152/ajpheart.00320.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Chronic allograft fibrosis is the major cause of graft loss in kidney transplantation. Progression can only be reduced by inhibition of the renin-angiotensin system (RAS). We tested the hypothesis that the protection provided by angiotensin-converting enzyme (ACE) inhibition also decreases capillary rarefaction, lymphangiogenesis, and podocyte injury in allograft fibrosis. Fisher kidneys were transplanted into bilaterally nephrectomized Lewis rats treated with enalapril (60 mg/kg per day) (ACE inhibitor, ACEi) or vehicle. Proteinuria, blood urea nitrogen, and plasma creatinine were regularly assessed, and grafts were harvested for morphological and immunohistological analysis at various times up to 32 wk. In the vehicle group, many new lymphatic capillaries and severe and diffuse mononuclear infiltration of allografts were observed already 1 wk after transplantation. Lymphangiogenesis increased until week 4, by which time inflammatory infiltration became focal. Lymphatic capillaries were often located at sites of inflammation. Progressive interstitial fibrosis, glomerulosclerosis, capillary rarefaction, and proteinuria appeared later, at weeks 4-12 The number of lymphatic capillary cross sections strongly correlated with the interstitial fibrosis score. Podoplanin immunostaining, a marker of healthy podocytes, disappeared from inflamed or sclerotic glomerular areas. ACEi protected from lymphangiogenesis and associated inflammation, preserved glomerular podoplanin protein expression, and reduced glomerulosclerosis, proteinuria, tubulointerstitial fibrosis, and blood capillary rarefaction at 32 wk. In conclusion, ACEi considerably decreased and/or delayed both glomerulosclerosis and tubulointerstitial injury. Prevention of glomerular podoplanin loss and proteinuria could be attributed to the known intraglomerular pressure-lowering effects of ACEi. Reduction of lymphangiogenesis could contribute to amelioration of tubulointerstitial fibrosis and inflammatory infiltration after ACEi.
Collapse
Affiliation(s)
- Péter Hamar
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; and
| | | |
Collapse
|
31
|
Nasrallah R, Hassouneh R, Hébert RL. PGE2, Kidney Disease, and Cardiovascular Risk: Beyond Hypertension and Diabetes. J Am Soc Nephrol 2015; 27:666-76. [PMID: 26319242 DOI: 10.1681/asn.2015050528] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An important measure of cardiovascular health is obtained by evaluating the global cardiovascular risk, which comprises a number of factors, including hypertension and type 2 diabetes, the leading causes of illness and death in the world, as well as the metabolic syndrome. Altered immunity, inflammation, and oxidative stress underlie many of the changes associated with cardiovascular disease, diabetes, and the metabolic syndrome, and recent efforts have begun to elucidate the contribution of PGE2 in these events. This review summarizes the role of PGE2 in kidney disease outcomes that accelerate cardiovascular disease, highlights the role of cyclooxygenase-2/microsomal PGE synthase 1/PGE2 signaling in hypertension and diabetes, and outlines the contribution of PGE2 to other aspects of the metabolic syndrome, particularly abdominal adiposity, dyslipidemia, and atherogenesis. A clearer understanding of the role of PGE2 could lead to new avenues to improve therapeutic options and disease management strategies.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramzi Hassouneh
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang YD, Ma YQ, Zhao JH, Li YM. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 2014; 308:H500-9. [PMID: 25527775 DOI: 10.1152/ajpheart.00381.2014] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging evidence suggests a potential role of neutrophil extracellular traps (NETs) in linking sterile inflammation and thrombosis. We hypothesized that NETs would be induced during myocardial ischemia-reperfusion (I/R), and NET-mediated microthrombosis may contribute to myocardial "no-reflow". Male Wistar rats were randomly divided into I/R control, DNase (DNase I, 20 μg/rat), recombinant tissue-type plasminogen activator (rt-PA, 420 μg/rat), DNase + rt-PA, and sham control groups after 45-min myocardial ischemia. In situ NET formation, the anatomic "no re-flow" area, and infarct size were evaluated immediately after 3 h of reperfusion. Long-term left ventricular (LV) functional and histological analyses were performed 45 days after operation. Compared with the I/R controls, the DNase + rt-PA group exhibited reduced NET density [8.38 ± 1.98 vs. 26.86 ± 3.07 (per 200 × field), P < 0.001] and "no-flow" area (15.22 ± 0.06 vs. 34.6 ± 0.05%, P < 0.05) in the ischemic region, as well as reduced infarct size (38.39 ± 0.05 vs. 71.00 ± 0.03%, P < 0.001). Additionally, compared with the I/R controls, DNase + rt-PA treatment significantly ameliorated I/R injury-induced LV remodeling (LV ejection fraction: 64.22 ± 3.37 vs. 33.81 ± 2.98%, P < 0.05; LV maximal slope of the LV systolic pressure increment: 3,785 ± 216 vs. 2,596 ± 299 mmHg/s, P < 0.05). The beneficial effect was not observed in rats treated with DNase I or rt-PA alone. Our study provides evidence for the existence of NETs in I/R-challenged myocardium and confirms the long-term benefit of a novel DNase-based reperfusion strategy (DNase I + rt-PA), which might be a promising option for the treatment of myocardial I/R injury and coronary no-reflow.
Collapse
Affiliation(s)
- Lan Ge
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Rui-Yi Lu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Yan Zhang
- Institute of Molecular Medicine, Peking University, Peking, China
| | - Yi-Dan Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Yong-Qiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Ji-Hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| |
Collapse
|
33
|
Li X, Xing W, Wang Y, Mi C, Zhang Z, Ma H, Zhang H, Gao F. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats. Life Sci 2014; 113:31-9. [PMID: 25086377 DOI: 10.1016/j.lfs.2014.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/03/2023]
Abstract
AIMS Endothelial dysfunction and hypertension is more common in individuals with diabetes than in the general population. This study was aimed to investigate the underlying mechanisms responsible for endothelial dysfunction of type 1 diabetic rats fed with high-salt diet. MAIN METHODS Type 1 diabetes (DM) was induced by intraperitoneal injection of streptozotocin (70 mg·kg(-1)). Normal or diabetic rats were randomly fed high-salt food (HS, 8% NaCl) or standard food (CON) for 6 weeks. KEY FINDINGS Both HS (143±10 mmHg) and DM+HS (169±11 mmHg) groups displayed significantly higher systolic blood pressure than those in the CON group (112±12 mmHg, P<0.01). DM+HS rats exhibited more pronounced impairment of vasorelaxation to acetylcholine and insulin compared with either DM or HS. Akt/endothelial nitric oxide synthase (eNOS) phosphorylation levels and nitric oxide (NO) concentration in DM+HS were significantly lower than in DM. The levels of caveolin-1 (cav-1) in DM+HS were significantly higher than that in DM and HS. Co-immunoprecipitation results showed increased interaction between cav-1 and eNOS in the DM+HS group. In the presence of cav-1 small interfering RNA (siRNA), eNOS phosphorylations in human umbilical vein endothelial cells (HUVEC) were significantly increased compared with control siRNA. Cav-1 was slightly but not significantly lower in HUVEC cultured with high glucose and high-salt buffer solution and pretreated with wortmannin or l-nitro-arginine methyl ester. SIGNIFICANCE Impaired endothelial Akt activation and increased cav-1 expression and resultant decreased eNOS activation contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in DM rats.
Collapse
Affiliation(s)
- Xu Li
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China; Department of Physiology, Renji College, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Wang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chunjuan Mi
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengrui Zhang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Heng Ma
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
34
|
Abstract
An essential link between the kidney and blood pressure control has long been known. Here, we review evidence supporting the premise that an impaired capacity of the kidney to excrete sodium in response to elevated blood pressure is a major contributor to hypertension, irrespective of the initiating cause. In this regard, recent work suggests that novel pathways controlling key sodium transporters in kidney epithelia have a critical impact on hypertension pathogenesis, supporting a model in which impaired renal sodium excretion is a final common pathway through which vascular, neural, and inflammatory responses raise blood pressure. We also address recent findings calling into question long-standing notions regarding the relationship between sodium intake and changes in body fluid volume. Expanded understanding of the role of the kidney as both a cause and target of hypertension highlights key aspects of pathophysiology and may lead to identification of new strategies for prevention and treatment.
Collapse
|