1
|
Edling CE, Arevalo-Turrubiarte M, Premont A, Uribe MC, Forbes B, Kemp V, Weir J, Marr C, Lewis R, Jeevaratnam K. Gene expression patterns of the four cardiac chambers in the Thoroughbred horse. J Equine Vet Sci 2025; 149:105415. [PMID: 40068712 DOI: 10.1016/j.jevs.2025.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/30/2025]
Abstract
Athlete horses' contraction and conduction of the healthy heart influences racing performance. Gene expression patterns in the horse heart are not yet fully investigated. We aim to evaluate the gene expression of the four chambers of the heart overall and with focus on genes involved in the electrophysiology of the heart in Thoroughbred racehorses with no clinical cardiac abnormalities. Tissue was collected from the left atrium (LA), right atrium (RA), left ventricle (LV), and right ventricle (RV). Total RNA was analysed by microarray technique. We compared gene expression in the heart chambers by contrasting atrial against ventricular chambers (chamber related differences), and by contrasting left side to right side (left-to-right related differences). The pathway analyses revealed that RA was characterised by significantly lower expression of genes related to energy derivation and metabolism in comparison to both ventricles and left atria. LA, on the other hand, was characterised by higher expression of genes related to cardiac conduction, and less expression of cardiac morphogenesis, compared to ventricles. The left-to-right related comparisons indicated wider differences between the atria than between the ventricles. Mapping of the genes specifically involved in cardiac conduction and contraction indicated clear chamber related differences. Some potassium channels, KCNE1 and KCNJ2,3 and 4, showed distinct atrial-ventricular specificity and genes involved in calcium regulation were, as a group, more abundant in both atria compared to ventricles. Our results provide a general overview of the gene expression pattern in the healthy racehorse, with particular focus on the cardiac ion channels.
Collapse
Affiliation(s)
- Charlotte E Edling
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, Surrey GU2 7AL, United Kingdom
| | - Magdalena Arevalo-Turrubiarte
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, Surrey GU2 7AL, United Kingdom
| | - Antoine Premont
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, Surrey GU2 7AL, United Kingdom
| | | | - Bronte Forbes
- Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin New Territories, Hong Kong
| | - Victoria Kemp
- Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin New Territories, Hong Kong
| | - Joe Weir
- Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin New Territories, Hong Kong
| | - Celia Marr
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, United Kingdom
| | - Rebecca Lewis
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, Surrey GU2 7AL, United Kingdom
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, Surrey GU2 7AL, United Kingdom.
| |
Collapse
|
2
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Zhao J, Qin X, Yang L, Guo H, Chen S, Tian K, Guo Q, Zhao W, Zhang P, Jia Z, Yang Z, Kong D, Zhang W. Application of TCM network pharmacology and experimental verification to explore the mechanism of kaempferol against epilepsy. Brain Res Bull 2025; 220:111150. [PMID: 39608614 DOI: 10.1016/j.brainresbull.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Kaempferol (KF), the main active ingredient in identifying the authenticity of safflower, has a variety of pharmacological activities and neuroprotective effects. However, the mechanism of KF in the treatment of epilepsy remains unclear. This study aimed to investigate the protective effects of KF on epilepsy and its related mechanisms. METHODS Network pharmacology was used to explore the targets and mechanisms of safflower antiepileptic action. The protective effect of KF on epilepsy was assessed in the behavior and tissues of epileptic mice. Additionally, the impact of KF on the excitability and calcium transients of rat cortical neurons and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) were investigated using patch clamp and calcium imaging techniques. RESULTS Network pharmacology indicated safflower could be involved in calcium signaling pathways and calcium channel inhibitor activity. Experimental validation demonstrated that KF delayed seizure onset and mitigated neuronal damage in the prefrontal cortex of mice. It also reduced neuronal excitability, as indicated by action potential parameters, and suppressed Glutamate (Glu)-induced calcium transients. In tsA201 cells, KF inhibited AMPAR-mediated currents, suggesting a role in regulating [Ca2+]i homeostasis. CONCLUSION These results indicate that KF's anticonvulsant properties may arise from its neuroprotection against cell injury, edema, and necrosis, its reduction of neuronal hyperexcitability, and its prevention of calcium-induced cytotoxicity, potentially involving AMPAR modulation. This study positions KF as a promising candidate for epilepsy therapy, offering a scientific foundation for its clinical investigation.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Lei Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Keying Tian
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Qinghui Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Wenya Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China.
| |
Collapse
|
4
|
Kasuya G, Zempo B, Yamamoto Y, Ryu K, Ono F, Nakajo K. Identification of KCNE6, a new member of the KCNE family of potassium channel auxiliary subunits. Commun Biol 2024; 7:1662. [PMID: 39702752 DOI: 10.1038/s42003-024-07352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The KCNE family (KCNE1-5) is a group of single transmembrane auxiliary subunits for the voltage-gated K+ channel KCNQ1. The KCNQ1-KCNE complexes are crucial for numerous physiological processes including ventricular repolarization and K+ recycling in epithelial cells. We identified a new member of the KCNE family, "KCNE6", from zebrafish. We found that KCNE6 is expressed in the zebrafish heart and is involved in cardiac excitability. When co-expressed with KCNQ1, KCNE6 produces a slowly activating current like the slow delayed-rectifier K+ current (IKs) induced by KCNE1, despite the fact that the KCNE6 amino acid sequence has the highest similarity to that of KCNE3, which forms a constitutively open channel with KCNQ1. The kcne6 nucleotide sequences exist throughout vertebrates, including humans, although only the KCNE6 proteins of lower vertebrates, up to marsupials, can modulate KCNQ1, and it has become a pseudogene in eutherians. Our findings will facilitate a better understanding of how the KCNE family has evolved to modulate KCNQ1.
Collapse
Affiliation(s)
- Go Kasuya
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Buntaro Zempo
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yasuhiro Yamamoto
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Kaei Ryu
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Koichi Nakajo
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
5
|
Kjeldsen ST, Nissen SD, Saljic A, Hesselkilde EM, Carstensen H, Sattler SM, Jespersen T, Linz D, Hopster-Iversen C, Kutieleh R, Sanders P, Buhl R. Structural and electro-anatomical characterization of the equine pulmonary veins: implications for atrial fibrillation. J Vet Cardiol 2024; 52:1-13. [PMID: 38290222 DOI: 10.1016/j.jvc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION/OBJECTIVES Spontaneous pulmonary vein (PV) activity triggers atrial fibrillation (AF) in humans. Although AF frequently occurs in horses, the origin remains unknown. This study investigated the structural and electro-anatomical properties of equine PVs to determine the potential presence of an arrhythmogenic substrate. ANIMALS, MATERIALS AND METHODS Endocardial three-dimensional electro-anatomical mapping (EnSite Precision) using high-density (HD) catheters was performed in 13 sedated horses in sinus rhythm. Left atrium (LA) access was obtained retrogradely through the carotid artery. Post-mortem, tissue was harvested from the LA, right atrium (RA), and PVs for histological characterization and quantification of ion channel expression using immunohistochemical analysis. RESULTS Geometry, activation maps, and voltage maps of the PVs were created and a median of four ostia were identified. Areas of reduced conduction were found at the veno-atrial junction. The mean myocardial sleeve length varied from 28 ± 13 to 49 ± 22 mm. The PV voltage was 1.2 ± 1.4 mV and lower than the LA (3.4 ± 0.9 mV, P < 0.001). The fibrosis percentage was higher in PV myocardium (26.1 ± 6.6 %) than LA (14.5 ± 5.0 %, P = 0.003). L-type calcium channel (CaV1.2) expression was higher in PVs than LA (P = 0.001). T-type calcium channels (CaV3.3), connexin-43, ryanodine receptor-2, and small conductance calcium-activated potassium channel-3 was expressed in PVs. CONCLUSIONS The veno-atrial junction had lower voltages, increased structural heterogeneity and areas of slower conduction. Myocardial sleeves had variable lengths, and a different ion channel expression compared to the atria. Heterogeneous properties of the PVs interacting with the adjacent LA likely provide the milieu for re-entry and AF initiation.
Collapse
Affiliation(s)
- S T Kjeldsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark.
| | - S D Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - A Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - E M Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - H Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - S M Sattler
- Department of Cardiology, Herlev and Gentofte University Hospital, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - T Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - D Linz
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 632, 6229 ER Maastricht, Netherlands
| | - C Hopster-Iversen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - R Kutieleh
- Abbott Medical, 214 Greenhill Road, SA 5063, Australia
| | - P Sanders
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital and University of Adelaide, Port Rd, SA 5000, Australia
| | - R Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| |
Collapse
|
6
|
Premont A, Saadeh K, Edling C, Lewis R, Marr CM, Jeevaratnam K. Cardiac ion channel expression in the equine model - In-silico prediction utilising RNA sequencing data from mixed tissue samples. Physiol Rep 2022; 10:e15273. [PMID: 35880716 PMCID: PMC9316921 DOI: 10.14814/phy2.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023] Open
Abstract
Understanding cardiomyocyte ion channel expression is crucial to understanding normal cardiac electrophysiology and underlying mechanisms of cardiac pathologies particularly arrhythmias. Hitherto, equine cardiac ion channel expression has rarely been investigated. Therefore, we aim to predict equine cardiac ion channel gene expression. Raw RNAseq data from normal horses from 9 datasets was retrieved from ArrayExpress and European Nucleotide Archive and reanalysed. The normalised (FPKM) read counts for a gene in a mix of tissue were hypothesised to be the average of the expected expression in each tissue weighted by the proportion of the tissue in the mix. The cardiac-specific expression was predicted by estimating the mean expression in each other tissues. To evaluate the performance of the model, predicted gene expression values were compared to the human cardiac gene expression. Cardiac-specific expression could be predicted for 91 ion channels including most expressed Na+ channels, K+ channels and Ca2+ -handling proteins. These revealed interesting differences from what would be expected based on human studies. These differences included predominance of NaV 1.4 rather than NaV 1.5 channel, and RYR1, SERCA1 and CASQ1 rather than RYR2, SERCA2, CASQ2 Ca2+ -handling proteins. Differences in channel expression not only implicate potentially different regulatory mechanisms but also pathological mechanisms of arrhythmogenesis.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Charlotte Edling
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Rebecca Lewis
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Celia M. Marr
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
- Rossdales Equine Hospital and Diagnostic CentreExningSuffolkUK
| | | |
Collapse
|
7
|
Premont A, Balthes S, Marr CM, Jeevaratnam K. Fundamentals of arrhythmogenic mechanisms and treatment strategies for equine atrial fibrillation. Equine Vet J 2021; 54:262-282. [PMID: 34564902 DOI: 10.1111/evj.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is the most common pathological arrhythmia in horses. Although it is not usually a life-threatening condition on its own, it can cause poor performance and make the horse unsafe to ride. It is a complex multifactorial disease influenced by both genetic and environmental factors including exercise training, comorbidities or ageing. The interactions between all these factors in horses are still not completely understood and the pathophysiology of AF remains poorly defined. Exciting progress has been recently made in equine cardiac electrophysiology in terms of diagnosis and documentation methods such as cardiac mapping, implantable electrocardiogram (ECG) recording devices or computer-based ECG analysis that will hopefully improve our understanding of this disease. The available pharmaceutical and electrophysiological treatments have good efficacy and lead to a good prognosis for AF, but recurrence is a frequent issue that veterinarians have to face. This review aims to summarise our current understanding of equine cardiac electrophysiology and pathophysiology of equine AF while providing an overview of the mechanism of action for currently available treatments for equine AF.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samantha Balthes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Celia M Marr
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, UK
| | | |
Collapse
|
8
|
Trachsel DS, Calloe K, J Rgensen E, Lunddahl CS, Pedersen PJ, Kanters JRK, Klaerke DA, Buhl R. Evaluation of electrocardiographic repolarization parameters after administration of trimethoprim-sulfadiazine, detomidine, or their combination in horses. Am J Vet Res 2021; 82:207-217. [PMID: 33629897 DOI: 10.2460/ajvr.82.3.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether administration of trimethoprim-sulfadiazine (TMS), detomidine (DET), or TMS plus DET would be associated with changes in ECG repolarization parameters in horses. ANIMALS 9 healthy adult horses. PROCEDURES Each horse received 4 treatments in a blinded, randomized, crossover study design as follows: TMS, 16 to 24 mg/kg, IV; DET, 0.015 to 0.02 mg/kg, IV; TMS plus DET; and saline (0.9% NaCl) solution. Surface ECG traces were obtained over 24 hours, and repolarization parameters were measured at predefined time points after each treatment and compared with a 2-way ANOVA for repeated measures. RESULTS Heart rate-corrected QT intervals (QTc) were significantly increased after administration of DET (mean ± SD difference in QTc, 36.57 ± 23.07 milliseconds; increase of 7%) and TMS plus DET (44.96 ± 29.16 milliseconds; increase of 9%), compared with baseline (before treatment) values and values after administration of saline solution. Saline solution and TMS alone did not affect QTc. CONCLUSIONS AND CLINICAL RELEVANCE Administration of DET or TMS plus DET was associated with a significant and possibly clinically relevant prolongation of QTc, with prolongation of 7% to 9%, a range that is considered as a risk factor for the development of cardiac arrhythmias in people. Results were unexpected because DET is considered to be a safe sedative for horses.
Collapse
|
9
|
Tschirhart JN, Zhang S. Fentanyl-Induced Block of hERG Channels Is Exacerbated by Hypoxia, Hypokalemia, Alkalosis, and the Presence of hERG1b. Mol Pharmacol 2020; 98:508-517. [PMID: 32321735 DOI: 10.1124/mol.119.119271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 01/19/2023] Open
Abstract
Human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium current (IKr) important for repolarization of cardiac action potentials. Drug-induced disruption of hERG channel function is a main cause of acquired long QT syndrome, which can lead to ventricular arrhythmias and sudden death. Illicit fentanyl use is associated with sudden death. We have demonstrated that fentanyl blocks hERG current (IhERG) at concentrations that overlap with the upper range of postmortem blood concentrations in fentanyl-related deaths. Since fentanyl can cause respiratory depression and electrolyte imbalances, in the present study we investigated whether certain pathologic circumstances exacerbate fentanyl-induced block of IhERG Our results show that chronic hypoxia or hypokalemia additively reduced IhERG with fentanyl. As well, high pH potentiated the fentanyl-mediated block of hERG channels, with an IC50 at pH 8.4 being 7-fold lower than that at pH 7.4. Furthermore, although the full-length hERG variant, hERG1a, has been widely used to study hERG channels, coexpression with the short variant, hERG1b (which does not produce current when expressed alone), produces functional hERG1a/1b channels, which gate more closely resembling native IKr Our results showed that fentanyl blocked hERG1a/1b channels with a 3-fold greater potency than hERG1a channels. Thus, in addition to a greater susceptibility due to the presence of hERG1b in the human heart, hERG channel block by fentanyl can be exacerbated by certain conditions, such as hypoxia, hypokalemia, or alkalosis, which may increase the risk of fentanyl-induced ventricular arrhythmias and sudden death. SIGNIFICANCE STATEMENT: This work demonstrates that heterologously expressed human ether a-go-go-related gene (hERG) 1a/1b channels, which more closely resemble rapidly activating delayed rectifier potassium current in the human heart, are blocked by fentanyl with a 3-fold greater potency than the previously studied hERG1a expressed alone. Additionally, chronic hypoxia, hypokalemia, and alkalosis can increase the block of hERG current by fentanyl, potentially increasing the risk of cardiac arrhythmias and sudden death.
Collapse
Affiliation(s)
- Jared N Tschirhart
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Zhou L, Köhncke C, Hu Z, Roepke TK, Abbott GW. The KCNE2 potassium channel β subunit is required for normal lung function and resilience to ischemia and reperfusion injury. FASEB J 2019; 33:9762-9774. [PMID: 31162977 DOI: 10.1096/fj.201802519r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The KCNE2 single transmembrane-spanning voltage-gated potassium (Kv) channel β subunit is ubiquitously expressed and essential for normal function of a variety of cell types, often via regulation of the KCNQ1 Kv channel. A polymorphism upstream of KCNE2 is associated with reduced lung function in human populations, but the pulmonary consequences of KCNE2 gene disruption are unknown. Here, germline deletion of mouse Kcne2 reduced pulmonary expression of potassium channel α subunits Kcnq1 and Kcnb1 but did not alter expression of other Kcne genes. Kcne2 colocalized and coimmunoprecipitated with Kcnq1 in mouse lungs, suggesting the formation of pulmonary Kcnq1-Kcne2 potassium channel complexes. Kcne2 deletion reduced blood O2, increased CO2, increased pulmonary apoptosis, and increased inflammatory mediators TNF-α, IL-6, and leukocytes in bronchoalveolar lavage (BAL) fluids. Consistent with increased pulmonary vascular leakage, Kcne2 deletion increased plasma, BAL albumin, and the BAL:plasma albumin concentration ratio. Kcne2-/- mouse lungs exhibited baseline induction of the reperfusion injury salvage kinase pathway but were less able to respond via this pathway to imposed pulmonary ischemia/reperfusion injury (IRI). We conclude that KCNE2 regulates KCNQ1 in the lungs and is required for normal lung function and resistance to pulmonary IRI. Our data support a causal relationship between KCNE2 gene disruption and lung dysfunction.-Zhou, L., Köhncke, C., Hu, Z., Roepke, T. K., Abbott, G. W. The KCNE2 potassium channel β subunit is required for normal lung function and resilience to ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Leng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Clemens Köhncke
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Torsten K Roepke
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Clinic for Cardiology and Angiology, Charité-Berlin University of Medicine Campus Mitte, Berlin, Germany.,Clinic for Internal Medicine and Cardiology Klinikum Niederlausitz, Senftenberg, Germany
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
11
|
Antiarrhythmic Effects of Combining Dofetilide and Ranolazine in a Model of Acutely Induced Atrial Fibrillation in Horses. J Cardiovasc Pharmacol 2019; 71:26-35. [PMID: 29068807 PMCID: PMC5768216 DOI: 10.1097/fjc.0000000000000541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Antiarrhythmic compounds against atrial fibrillation (AF) often have reduced efficacy and may display cardiac and/or noncardiac toxicity. Efficacy can be improved by combining 2 compounds with distinct mechanisms, and it may be possible to use lower doses of each compound, thereby reducing the likelihood of adverse side effects. The purpose of this study was to investigate whether the effective doses of dofetilide and ranolazine can be reduced if the drugs are combined. Methods: Dofetilide, ranolazine, and a combination of these were administered in 4 incremental dosing regimens to horses with acutely pacing-induced AF. Time to cardioversion, atrial effective refractory period, and AF vulnerability and duration were assessed. Results: Of 8 horses, 6 cardioverted to sinus rhythm after infusion with a combination of 0.889 μg/kg dofetilide and 0.104 mg/kg ranolazine. Two horses cardioverted with 0.104 mg/kg ranolazine alone, and 3 cardioverted with 0.889 μg/kg dofetilide alone. The combination therapy decreased AF vulnerability (P < 0.05) and AF duration (P < 0.05). No change in atrial effective refractory period was detected with any of the drugs. Conclusions: The combination of dofetilide and ranolazine showed increased antiarrhythmic effects on acutely induced AF in horses, affecting time to cardioversion, AF vulnerability, and AF duration.
Collapse
|
12
|
Compounds commonly used in equine medicine inhibits the voltage-gated potassium channel K v11.1. Res Vet Sci 2019; 123:239-246. [PMID: 30685649 DOI: 10.1016/j.rvsc.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The voltage-gated K+-channel Kv11.1 has a central role in cardiac repolarization. Blockage of Kv11.1 has been linked to severe cardiovascular side effects, such as acquired long QT syndrome (aLQTS), torsade de pointes arrhythmia and sudden cardiac death (SCD). Kv11.1 is susceptible to unspecific drug interactions due to the presence of two aromatic amino acids residing in the inner vestibule of the pore. These aromatic residues are also present in the equine orthologue of Kv11.1. This suggests that equine Kv11.1 may also be prone to high-affinity block by a range of different chemical entities, which potentially could cause severe cardiac side effects and SCD in horses. AIM To screen a series of commonly used drugs in equine medicine for interaction with Kv11.1. METHODS High-throughput screening of selected compounds on human Kv11.1 expressed in a mammalian cell line was performed using an automated patch clamp system, the SyncroPatch 384PE (Nanion Technologies, Munich, Germany). Results were validated on equine Kv11.1 expressed in CHO-K1 cells by manual patch clamp. RESULTS Acepromazine maleat (IC50 = 0.5 μM) trimethoprim (IC50 = 100 μM), diphenhydramine hydrochloride (IC50 = 2 μM) and cyproheptadine hydrochloride (IC50 = 1.84 μM) inhibited equine Kv11.1 current at clinically relevant drug concentrations. CONCLUSION The results suggest that drug interaction with Kv11.1 can occur in horses and that some drugs potentially may induce repolarization disorders in horses.
Collapse
|
13
|
Calloe K. Doctoral Dissertation: The transient outward potassium current in healthy and diseased hearts. Acta Physiol (Oxf) 2019; 225 Suppl 717:e13225. [PMID: 30628199 DOI: 10.1111/apha.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kirstine Calloe
- Section for Anatomy; Biochemistry and Physiology; Department for Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
14
|
Trachsel DS, Tejada MA, Groesfjeld Christensen V, Pedersen PJ, Kanters JK, Buhl R, Calloe K, Klaerke DA. Effects of trimethoprim-sulfadiazine and detomidine on the function of equine Kv
11.1 channels in a two-electrode voltage-clamp (TEVC) oocyte model. J Vet Pharmacol Ther 2018; 41:536-545. [DOI: 10.1111/jvp.12502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/22/2018] [Indexed: 02/03/2023]
Affiliation(s)
- D. S. Trachsel
- Department of Veterinary and Animal Science; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
- Department of Veterinary Clinical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Taastrup Denmark
| | - M. A. Tejada
- Department of Veterinary and Animal Science; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - V. Groesfjeld Christensen
- Department of Veterinary and Animal Science; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - P. J. Pedersen
- Department of Veterinary and Animal Science; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - J. K. Kanters
- Laboratory of Experimental Cardiology; Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - R. Buhl
- Department of Veterinary Clinical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Taastrup Denmark
| | - K. Calloe
- Department of Veterinary and Animal Science; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - D. A. Klaerke
- Department of Veterinary and Animal Science; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| |
Collapse
|
15
|
Li M, Chadda KR, Matthews GDK, Marr CM, Huang CLH, Jeevaratnam K. Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features. PLoS One 2018. [PMID: 29522557 PMCID: PMC5844547 DOI: 10.1371/journal.pone.0194008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exercising horses uniquely accommodate 7–8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes.
Collapse
Affiliation(s)
- Mengye Li
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karan R. Chadda
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Celia M. Marr
- Rossdales Equine Hospital and Diagnostic Centre, Exning, Suffolk, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Pedersen PJ, Thomsen KB, Flak JB, Tejada MA, Hauser F, Trachsel D, Buhl R, Kalbfleisch T, DePriest MS, MacLeod JN, Calloe K, Klaerke DA. Molecular cloning and functional expression of the K + channel K V7.1 and the regulatory subunit KCNE1 from equine myocardium. Res Vet Sci 2017; 113:79-86. [PMID: 28917093 DOI: 10.1016/j.rvsc.2017.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/05/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The voltage-gated K+-channel KV7.1 and the subunit KCNE1, encoded by the KCNQ1 and KCNE1 genes, respectively, are responsible for termination of the cardiac action potential. In humans, mutations in these genes can predispose patients to arrhythmias and sudden cardiac death (SCD). AIM To characterize equine KV7.1/KCNE1 currents and compare them to human KV7.1/KCNE1 currents to determine whether KV7.1/KCNE1 plays a similar role in equine and human hearts. METHODS mRNA encoding KV7.1 and KCNE1 was isolated from equine hearts, sequenced, and cloned into expression vectors. The channel subunits were heterologously expressed in Xenopus laevis oocytes or CHO-K1 cells and characterized using voltage-clamp techniques. RESULTS Equine KV7.1/KCNE1 expressed in CHO-K1 cells exhibited electrophysiological properties that are overall similar to the human orthologs; however, a slower deactivation was found which could result in more open channels at fast rates. CONCLUSION The results suggest that the equine KV7.1/KCNE1 channel may be important for cardiac repolarization and this could indicate that horses are susceptible to SCD caused by mutations in KCNQ1 and KCNE1.
Collapse
Affiliation(s)
- Philip J Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kirsten B Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jon B Flak
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Maria A Tejada
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dagmar Trachsel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Theodore Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Michael Scott DePriest
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
| | - James N MacLeod
- Maxwell H., Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Dan A Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
17
|
Pedersen PJ, Karlsson M, Flethøj M, Trachsel DS, Kanters JK, Klaerke DA, Buhl R. Differences in the electrocardiographic QT interval of various breeds of athletic horses during rest and exercise. J Vet Cardiol 2016; 18:255-264. [PMID: 27068842 DOI: 10.1016/j.jvc.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/07/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Quantitative measurements of cardiac repolarization, defined as the electrocardiographic QT interval, have important diagnostic implications in humans, as irregularities can trigger potentially fatal ventricular tachyarrhythmia. In both humans and horses, cardiac repolarization is influenced to some extent by heart rate, age, body weight (BW), sex, autonomic tone, and environment. In horses, there is substantial inter-breed variation in size and training, and the aims of this study were therefore to determine the best model describing the QT to RR relationship in breeds of various athletic horses and to test for differences in the QT interval. ANIMALS Ten Icelandic horses, 10 Arabian horses, 10 Thoroughbreds, 10 Standardbreds, six Coldblood trotters, 10 Warmbloods (dressage) and 10 Warmbloods (show jumping). All horses were geldings. METHODS QT intervals were measured from resting to peak exercise level and plotted against RR intervals. Data points were fitted with relevant regression models, and the effect of breed, BW, and estimated exercise intensity was examined. RESULTS For all breeds in this study, the QT interval was best described as a function of RR by the piecewise linear regression model. The breed of horse had a significant effect on the model. There was no systematic effect of BW or estimated exercise intensity, but a high inter-horse variability was observed. CONCLUSIONS The equine QT interval should preferably be corrected for heart rate according to breed. In addition, the results indicate that equine studies of the QT interval must be designed to eliminate the influence of a large inter-horse variation.
Collapse
Affiliation(s)
- P J Pedersen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 100, 1870 Frederiksberg C, Denmark
| | - M Karlsson
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - M Flethøj
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - D S Trachsel
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 100, 1870 Frederiksberg C, Denmark; Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark.
| | - J K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Koebenhavn N, Denmark; Department of Cardiology, Herlev and Gentofte University Hospitals, Niels Andersens Vej, 2900 Hellerup, Denmark
| | - D A Klaerke
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 100, 1870 Frederiksberg C, Denmark
| | - R Buhl
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| |
Collapse
|
18
|
Abbott GW. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene 2015; 576:1-13. [PMID: 26410412 DOI: 10.1016/j.gene.2015.09.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
The human KCNE gene family comprises five genes encoding single transmembrane-spanning ion channel regulatory subunits. The primary function of KCNE subunits appears to be regulation of voltage-gated potassium (Kv) channels, and the best-understood KCNE complexes are with the KCNQ1 Kv α subunit. Here, we review the often opposite effects of KCNE1 and KCNE3 on Kv channel biology, with an emphasis on regulation of KCNQ1. Slow-activating IKs channel complexes formed by KCNQ1 and KCNE1 are essential for human ventricular myocyte repolarization, while constitutively active KCNQ1-KCNE3 channels are important in the intestine. Inherited sequence variants in human KCNE1 and KCNE3 cause cardiac arrhythmias but by different mechanisms, and each is important for hearing in unique ways. Because of their contrasting effects on KCNQ1 function, KCNE1 and KCNE3 have proved invaluable tools in the mechanistic understanding of how channel gating can be manipulated, and each may also provide a window into novel insights and new therapeutic opportunities in K(+) channel pharmacology. Finally, findings from studies of Kcne1(-/-) and Kcne3(-/-) mouse lines serve to illustrate the complexity of KCNE biology and KCNE-linked disease states.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology and Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA; 360 Medical Surge II, Dept. of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Pedersen PJ, Thomsen KB, Olander ER, Hauser F, Tejada MDLA, Poulsen KL, Grubb S, Buhl R, Calloe K, Klaerke DA. Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene) and the Regulatory Subunit KCNE2 from Equine Myocardium. PLoS One 2015; 10:e0138320. [PMID: 26376488 PMCID: PMC4574097 DOI: 10.1371/journal.pone.0138320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death—conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS.
Collapse
Affiliation(s)
- Philip Juul Pedersen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kirsten Brolin Thomsen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Emma Rie Olander
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria de los Angeles Tejada
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian Lundgaard Poulsen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Soren Grubb
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rikke Buhl
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kirstine Calloe
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Dan Arne Klaerke
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
20
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
21
|
Abstract
Abnormal functioning of cardiac ion channels can disrupt cardiac myocyte action potentials and thus cause potentially lethal cardiac arrhythmias. Ion channel dysfunction has been observed at all stages in channel ontogeny, from biogenesis to regulation, and arises from genetic or environmental factors, or both. Acquired arrhythmias - including those that are drug induced - are more common than solely inherited arrhythmias but, in some cases, also contain an identifiable genetic component. This interplay between the pharmacology and genetics - known as 'pharmacogenetics' - of cardiac ion channels and the systems that impact them presents both challenges and opportunities to academics, pharmaceutical companies and clinicians seeking to develop and utilize therapies for cardiac rhythm disorders. In this review, we discuss ion channel pharmacogenetics in the context of both causation and treatment of cardiac arrhythmias, focusing on the long QT syndromes.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Weill Medical College of Cornell University, Greenberg Division of Cardiology, Department of Medicine and Department of Pharmacology, 520 East 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
22
|
Du C, El Harchi A, Zhang H, Hancox JC. Modification by KCNE1 variants of the hERG potassium channel response to premature stimulation and to pharmacological inhibition. Physiol Rep 2013; 1:e00175. [PMID: 24400172 PMCID: PMC3871485 DOI: 10.1002/phy2.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/02/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
human Ether-à-go-go-Related Gene (hERG) encodes the pore-forming subunit of cardiac rapid delayed rectifier K(+) current (I Kr) channels, which play important roles in ventricular repolarization, in protecting the myocardium from unwanted premature stimuli, and in drug-induced Long QT Syndrome (LQTS). KCNE1, a small transmembrane protein, can coassemble with hERG. However, it is not known how KCNE1 variants influence the channel's response to premature stimuli or if they influence the sensitivity of hERG to pharmacological inhibition. Accordingly, whole-cell patch-clamp measurements of hERG current (I hERG) were made at 37°C from hERG channels coexpressed with either wild-type (WT) KCNE1 or with one of three KCNE1 variants (A8V, D76N, and D85N). Under both conventional voltage clamp and ventricular action potential (AP) clamp, the amplitude of I hERG was smaller for A8V, D76N, and D85N KCNE1 + hERG than for WT KCNE1 + hERG. Using paired AP commands, with the second AP waveform applied at varying time intervals following the first to mimic premature ventricular excitation, the response of I hERG carried by each KCNE1 variant was reduced compared to that with WT KCNE1 + hERG. The I hERG blocking potency of the antiarrhythmic drug quinidine was similar between WT KCNE1 and the three KCNE1 variants. However, the I hERG inhibitory potency of the antibiotic clarithromycin and of the prokinetic drug cisapride was altered by KCNE1 variants. These results demonstrate that naturally occurring KCNE1 variants can reduce the response of hERG channels to premature excitation and also alter the sensitivity of hERG channels to inhibition by some drugs linked to acquired LQTS.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester Manchester, M13 9PL, U.K
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| |
Collapse
|
23
|
Pedersen PJ, Kanters JK, Buhl R, Klaerke DA. Normal electrocardiographic QT interval in race-fit Standardbred horses at rest and its rate dependence during exercise. J Vet Cardiol 2013; 15:23-31. [PMID: 23434174 DOI: 10.1016/j.jvc.2012.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Cardiac repolarization, measured as QT and Tpeak to Tend (TpTe) intervals on the ECG, is important, as irregularities caused by diseases, ventricular hypertrophy, drugs and genetic defects can trigger arrhythmias which predispose human patients to syncope and sudden cardiac death. In horses, repolarization is not well described and therefore QT analysis cannot yet be used diagnostically. Therefore, we sought to describe reference values for the normal QT and TpTe intervals in Standardbreds and to determine the best method for heart rate (HR) correction. ANIMALS 30 Standardbreds. METHODS QT and TpTe intervals were measured during rest and exercise and plotted against HR converted to Rpeak to Rpeak interval (RR). Data were fitted with relevant regression models. Intra- and inter-observer agreement was assessed using Bland-Altman analyses. RESULTS Data were best described by a piecewise linear model (r(2) > 0.97). Average prediction error of this model was smaller than for both Bazett and Fridericia corrections. Coefficient of repeatability of intra- and inter-observer variability was 8.76 ms and 5.64 ms respectively and coefficient of variation was 1.77% and 2.76% respectively. TpTe increased with RR in stallions. CONCLUSIONS The QT interval in Standardbred horses shortens with decreasing RR interval (increasing HR) as in humans, but in a markedly different order as it clearly follows a piecewise linear model. The equine QT interval can be measured easily and there is small intra- and inter-observer variability. This model of the equine QT interval provides clinicians with a method that could support a diagnosis of repolarization disturbances in horses.
Collapse
Affiliation(s)
- Philip J Pedersen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
24
|
Abbott GW. KCNE genetics and pharmacogenomics in cardiac arrhythmias: much ado about nothing? Expert Rev Clin Pharmacol 2013; 6:49-60. [PMID: 23272793 PMCID: PMC4917007 DOI: 10.1586/ecp.12.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Voltage-gated ion channels respond to changes in membrane potential with conformational shifts that either facilitate or stem the movement of charged ions across the cell membrane. This controlled movement of ions is particularly important for the action potentials of excitable cells such as cardiac myocytes and therefore essential for timely beating of the heart. Inherited mutations in ion channel genes and in the genes encoding proteins that regulate them can cause lethal cardiac arrhythmias either by direct channel disruption or by altering interactions with therapeutic drugs, the best-understood example of both these scenarios being long QT syndrome (LQTS). Unsurprisingly, mutations in the genes encoding ion channel pore-forming α subunits underlie the large majority (~90%) of identified cases of inherited LQTS. Given that inherited LQTS is comparatively rare in itself (~0.04% of the US population), is pursuing study of the remaining known and unknown LQTS-associated genes subject to the law of diminishing returns? Here, with a particular focus on the KCNE family of single transmembrane domain K(+) channel ancillary subunits, the significance to cardiac pharmacogenetics of ion channel regulatory subunits is discussed.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Department of Pharmacology, Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
25
|
Wrobel E, Tapken D, Seebohm G. The KCNE Tango - How KCNE1 Interacts with Kv7.1. Front Pharmacol 2012; 3:142. [PMID: 22876232 PMCID: PMC3410610 DOI: 10.3389/fphar.2012.00142] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/29/2012] [Indexed: 12/23/2022] Open
Abstract
The classical tango is a dance characterized by a 2/4 or 4/4 rhythm in which the partners dance in a coordinated way, allowing dynamic contact. There is a surprising similarity between the tango and how KCNE β-subunits "dance" to the fast rhythm of the cell with their partners from the Kv channel family. The five KCNE β-subunits interact with several members of the Kv channels, thereby modifying channel gating via the interaction of their single transmembrane-spanning segment, the extracellular amino terminus, and/or the intracellular carboxy terminus with the Kv α-subunit. Best studied is the molecular basis of interactions between KCNE1 and Kv7.1, which, together, supposedly form the native cardiac I(Ks) channel. Here we review the current knowledge about functional and molecular interactions of KCNE1 with Kv7.1 and try to summarize and interpret the tango of the KCNEs.
Collapse
Affiliation(s)
- Eva Wrobel
- Cation Channel Group, Department of Biochemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum Bochum, Germany
| | | | | |
Collapse
|
26
|
Zhang W, Roederer MW, Chen WQ, Fan L, Zhou HH. Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics 2012; 13:223-31. [PMID: 22256871 DOI: 10.2217/pgs.11.137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The safety and efficacy of candidate compounds are critical factors during the development of drugs, and most drugs have been withdrawn from the market owing to severe adverse reactions. Individuals/populations with different genetic backgrounds may show significant differences in drug metabolism and efficacy, which can sometimes manifest as severe adverse drug reactions. With an emphasis on the mechanisms underlying abnormal drug effects caused by genetic mutations, pharmacogenetic studies may enhance the safety and effectiveness of drug use, provide more comprehensive delineations of the scope of usage, and change the fates of drugs withdrawn from the market.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | |
Collapse
|
27
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
28
|
Jonsson MKB, van der Heyden MAG, van Veen TAB. Deciphering hERG channels: molecular basis of the rapid component of the delayed rectifier potassium current. J Mol Cell Cardiol 2012; 53:369-74. [PMID: 22742967 DOI: 10.1016/j.yjmcc.2012.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/07/2012] [Accepted: 06/19/2012] [Indexed: 12/23/2022]
Abstract
The rapid component of the delayed rectifier potassium current (I(Kr)), encoded by the ether-a-go-go-related gene (ERG1, officially denominated as KCNH2), is a major contributor to repolarization in the mammalian heart. Acute (e.g. drug-induced) and chronic (e.g. inherited genetic disorder) disruptions of this current can lead to prolongation of the action potential and potentiate occurrence of lethal arrhythmias. Many cardiac and non-cardiac drugs show high affinity for the I(Kr) channel and it is therefore extensively studied during safety pharmacology. The unique biophysical and pharmacological properties of the I(Kr) channel are largely recapitulated by expressing the human variant (hERG1a) in overexpressing systems. hERG1a channels are tetramers consisting of four 1159 amino acid long proteins and have electrophysiological properties similar, but not identical, to native I(Kr). In the search for an explanation to the discrepancies between I(Kr) and hERG1a channels, two alternative hERG1 proteins have been found. Alternative transcription of hERG1 leads to a protein with a 56 amino acid shorter N-terminus, known as hERG1b. hERG1b can form channels alone or coassemble with hERG1a. Alternative splicing leads to an alternate C-terminus and a protein known as hERGuso. hERGuso and hERG1b regulate hERG1a channel trafficking, functional expression and channel kinetics. Expression of hERGuso leads to a reduced number of channels at the plasma membrane and thereby reduces current density. On the contrary, co-assembly with hERG1b alters channel kinetics resulting in more available channels and a larger current. These findings have implication for understanding mechanisms of disease, acute and chronic drug effects, and potential gender differences.
Collapse
Affiliation(s)
- Malin K B Jonsson
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
29
|
The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Rev Mol Med 2011; 13:e38. [DOI: 10.1017/s1462399411002092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single-pass transmembrane protein KCNE2 or MIRP1 was once thought to be the missing accessory protein that combined with hERG to fully recapitulate the cardiac repolarising current IKr. As a result of this role, it was an easy next step to associate mutations in KCNE2 to long QT syndrome, in which there is delayed repolarisation of the heart. Since that time however, KCNE2 has been shown to modify the behaviour of several other channels and currents, and its role in the heart and in the aetiology of long QT syndrome has become less clear. In this article, we review the known interactions of the KCNE2 protein and the resulting functional effects, and the effects of mutations in KCNE2 and their clinical role.
Collapse
|
30
|
Bas T, Gao GY, Lvov A, Chandrasekhar KD, Gilmore R, Kobertz WR. Post-translational N-glycosylation of type I transmembrane KCNE1 peptides: implications for membrane protein biogenesis and disease. J Biol Chem 2011; 286:28150-9. [PMID: 21676880 PMCID: PMC3151060 DOI: 10.1074/jbc.m111.235168] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/16/2011] [Indexed: 12/21/2022] Open
Abstract
N-Glycosylation of membrane proteins is critical for their proper folding, co-assembly and subsequent matriculation through the secretory pathway. Here, we examine the kinetics of N-glycan addition to type I transmembrane KCNE1 K(+) channel β-subunits, where point mutations that prevent N-glycosylation at one consensus site give rise to disorders of the cardiac rhythm and congenital deafness. We show that KCNE1 has two distinct N-glycosylation sites: a typical co-translational site and a consensus site ∼20 residues away that unexpectedly acquires N-glycans after protein synthesis (post-translational). Mutations that ablate the co-translational site concomitantly reduce glycosylation at the post-translational site, resulting in unglycosylated KCNE1 subunits that cannot reach the cell surface with their cognate K(+) channel. This long range inhibition is highly specific for post-translational N-glycosylation because mutagenic conversion of the KCNE1 post-translational site into a co-translational site restored both monoglycosylation and anterograde trafficking. These results directly explain how a single point mutation can prevent N-glycan attachment at multiple sites, providing a new biogenic mechanism for human disease.
Collapse
Affiliation(s)
- Tuba Bas
- From the Department of Biochemistry and Molecular Pharmacology and Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
| | - Grace Y. Gao
- From the Department of Biochemistry and Molecular Pharmacology and Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
| | - Anatoli Lvov
- From the Department of Biochemistry and Molecular Pharmacology and Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
| | - Kshama D. Chandrasekhar
- From the Department of Biochemistry and Molecular Pharmacology and Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
| | - Reid Gilmore
- From the Department of Biochemistry and Molecular Pharmacology and Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
| | - William R. Kobertz
- From the Department of Biochemistry and Molecular Pharmacology and Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
| |
Collapse
|
31
|
Chandrasekhar KD, Lvov A, Terrenoire C, Gao GY, Kass RS, Kobertz WR. O-glycosylation of the cardiac I(Ks) complex. J Physiol 2011; 589:3721-30. [PMID: 21669976 PMCID: PMC3171881 DOI: 10.1113/jphysiol.2011.211284] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/10/2011] [Indexed: 01/24/2023] Open
Abstract
Post-translational modifications of the KCNQ1–KCNE1 (Kv7) K+ channel complex are vital for regulation of the cardiac IKs current and action potential duration. Here, we show the KCNE1 regulatory subunit is O-glycosylated with mucin-type glycans in vivo. As O-linked glycosylation sites are not recognizable by sequence gazing, we designed a novel set of glycosylation mutants and KCNE chimeras and analysed their glycan content using deglycosylation enzymes. Our results show that KCNE1 is exclusively O-glycosylated at Thr-7, which is also required for N-glycosylation at Asn-5. For wild type KCNE1, the overlapping N- and O-glycosylation sites are innocuous for subunit biogenesis; however, mutation of Thr-7 to a non-hydroxylated residue yielded mostly unglycosylated protein and a small fraction of mono-N-glycosylated protein. The compounded hypoglycosylation was equally deleterious for KCNQ1–KCNE1 cell surface expression, demonstrating that KCNE1 O-glycosylation is a post-translational modification that is integral for the proper biogenesis and anterograde trafficking of the cardiac IKs complex. The enzymatic assays and panel of glycosylation mutants used here will be valuable for identifying the different KCNE1 glycoforms in native cells and determining the roles N- and O-glycosylation play in KCNQ1–KCNE1 function and localization in cardiomyocytes,
Collapse
Affiliation(s)
- Kshama D Chandrasekhar
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kim DG, Oh JH, Lee EH, Lee JH, Park HJ, Kim CY, Kwon MS, Yoon S. The stoichiometric relationship between KCNH-2 and KCNE-2 in IKr channel formation. Int J Cardiol 2010; 145:272-274. [DOI: 10.1016/j.ijcard.2009.09.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/25/2009] [Accepted: 09/09/2009] [Indexed: 11/27/2022]
|
33
|
Ng SY, Wong CK, Tsang SY. Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol 2010; 299:C1234-49. [PMID: 20844252 DOI: 10.1152/ajpcell.00402.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction has been the leading cause of morbidity and mortality in developed countries over the past few decades. The transplantation of cardiomyocytes offers a potential method of treatment. However, cardiomyocytes are in high demand and their supply is extremely limited. Embryonic stem cells (ESCs), which have been isolated from the inner cell mass of blastocysts, can self-renew and are pluripotent, meaning they have the ability to develop into any type of cell, including cardiomyocytes. This suggests that ESCs could be a good source of genuine cardiomyocytes for future therapeutic purposes. However, problems with the yield and purity of ESC-derived cardiomyocytes, among other hurdles for the therapeutic application of ESC-derived cardiomyocytes (e.g., potential immunorejection and tumor formation problems), need to be overcome before these cells can be used effectively for cell replacement therapy. ESC-derived cardiomyocytes consist of nodal, atrial, and ventricular cardiomyocytes. Specifically, for treatment of myocardial infarction, transplantation of a sufficient quantity of ventricular cardiomyocytes, rather than nodal or atrial cardiomyocytes, is preferred. Hence, it is important to find ways of increasing the yield and purity of specific types of cardiomyocytes. Atrial and ventricular cardiomyocytes have differential expression of genes (transcription factors, structural proteins, ion channels, etc.) and are functionally distinct. This paper presents a thorough review of differential gene expression in atrial and ventricular myocytes, their expression throughout development, and their regulation. An understanding of the molecular and functional differences between atrial and ventricular myocytes allows discussion of potential strategies for preferentially directing ESCs to differentiate into chamber-specific cells, or for fine tuning the ESC-derived cardiomyocytes into specific electrical and contractile phenotypes resembling chamber-specific cells.
Collapse
Affiliation(s)
- Sze Ying Ng
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
34
|
Levy DI, Cepaitis E, Wanderling S, Toth PT, Archer SL, Goldstein SAN. The membrane protein MiRP3 regulates Kv4.2 channels in a KChIP-dependent manner. J Physiol 2010; 588:2657-68. [PMID: 20498229 DOI: 10.1113/jphysiol.2010.191395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
MiRP3, the single-span membrane protein encoded by KCNE4, is localized by immunofluorescence microscopy to the transverse tubules of murine cardiac myocytes. MiRP3 is found to co-localize with Kv4.2 subunits that contribute to cardiac transient outward potassium currents (I(to)). Whole-cell, voltage-clamp recordings of human MiRP3 and Kv4.2 expressed in a clonal cell line (tsA201) reveal MiRP3 to modulate Kv4.2 current activation, inactivation and recovery from inactivation. MiRP3 shifts the half-maximal voltage for activation (V(1/2)) approximately 20 mV and slows time to peak approximately 100%. In addition, MiRP3 slows inactivation approximately 100%, speeds recovery from inactivation approximately 30%, and enhances restored currents so they 'overshoot' baseline levels. The cytoplasmic accessory subunit KChIP2 also assembles with Kv4.2 in tsA201 cells to increase peak current, shift V(1/2) approximately 5 mV, slow time to peak approximately 10%, slow inactivation approximately 100%, and speed recovery from inactivation approximately 250% without overshoot. Simultaneous expression of all three subunits yields a biophysical profile unlike either accessory subunit alone, abolishes MiRP3-induced overshoot, and allows biochemical isolation of the ternary complex. Thus, regional heterogeneity in cardiac expression of MiRP3, Kv4.2 and KChIP2 in health and disease may establish the local attributes and magnitude of cardiac I(to).
Collapse
Affiliation(s)
- Daniel I Levy
- Department of Medicine, Biological Sciences Division, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ehrlich JR. Cardiac delayed rectifiers--together as one? A patho-physiologically relevant interaction between IKr and IKs. Heart Rhythm 2010; 7:981-2. [PMID: 20398798 DOI: 10.1016/j.hrthm.2010.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Indexed: 01/30/2023]
|
36
|
Expression and immunolocalization of ERG1 potassium channels in the rat kidney. Histochem Cell Biol 2009; 133:189-99. [DOI: 10.1007/s00418-009-0658-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
|
37
|
Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med 2009; 1:2ra6. [PMID: 20368164 PMCID: PMC2951754 DOI: 10.1126/scitranslmed.3000289] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sudden unexplained death is a catastrophic complication of human idiopathic epilepsy, causing up to 18% of patient deaths. A molecular mechanism and an identified therapy have remained elusive. Here, we find that epilepsy occurs in mouse lines bearing dominant human LQT1 mutations for the most common form of cardiac long QT syndrome, which causes syncopy and sudden death. KCNQ1 encodes the cardiac KvLQT1 delayed rectifier channel, which has not been previously found in the brain. We have shown that, in these mice, this channel is found in forebrain neuronal networks and brainstem nuclei, regions in which a defect in the ability of neurons to repolarize after an action potential, as would be caused by this mutation, can produce seizures and dysregulate autonomic control of the heart. That long QT syndrome mutations in KCNQ1 cause epilepsy reveals the dual arrhythmogenic potential of an ion channelopathy coexpressed in heart and brain and motivates a search for genetic diagnostic strategies to improve risk prediction and prevention of early mortality in persons with seizure disorders of unknown origin.
Collapse
Affiliation(s)
- A M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ohno S, Toyoda F, Zankov DP, Yoshida H, Makiyama T, Tsuji K, Honda T, Obayashi K, Ueyama H, Shimizu W, Miyamoto Y, Kamakura S, Matsuura H, Kita T, Horie M. NovelKCNE3mutation reduces repolarizing potassium current and associated with long QT syndrome. Hum Mutat 2009; 30:557-63. [DOI: 10.1002/humu.20834] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
McCrossan ZA, Roepke TK, Lewis A, Panaghie G, Abbott GW. Regulation of the Kv2.1 potassium channel by MinK and MiRP1. J Membr Biol 2009; 228:1-14. [PMID: 19219384 PMCID: PMC2849987 DOI: 10.1007/s00232-009-9154-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/13/2009] [Indexed: 12/17/2022]
Abstract
Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.
Collapse
Affiliation(s)
| | | | - Anthony Lewis
- Greenberg Division of Cardiology, Departments of Medicine and Pharmacology, Weill Medical College of Cornell University, New York, NY
| | - Gianina Panaghie
- Greenberg Division of Cardiology, Departments of Medicine and Pharmacology, Weill Medical College of Cornell University, New York, NY
| | - Geoffrey W. Abbott
- Greenberg Division of Cardiology, Departments of Medicine and Pharmacology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
40
|
Fenton FH, Cherry EM, Kornreich BG. Termination of equine atrial fibrillation by quinidine: an optical mapping study. J Vet Cardiol 2008; 10:87-103. [PMID: 19036667 DOI: 10.1016/j.jvc.2008.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/30/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To perform the first optical mapping studies of equine atrium to assess the spatiotemporal dynamics of atrial fibrillation (AF) and of its termination by quinidine. ANIMALS Intact, perfused atrial preparations obtained from four horses with normal cardiovascular examinations. MATERIALS AND METHODS AF was induced by a rapid pacing protocol with or without acetylcholine perfusion, and optical mapping was used to determine spatial dominant frequency distributions, electrical activity maps, and single-pixel optical signals. Following induction of AF, quinidine gluconate was perfused into the preparation and these parameters were monitored during quinidine-induced termination of AF. RESULTS Equine AF develops in the context of spatial gradients in action potential duration (APD) and diastolic interval (DI) that produce alternans, conduction block, and Wenckebach conduction in different regions at fast pacing rates. Quinidine terminates AF and prevents subsequent reinduction by reducing the maximal frequency and increasing frequency homogeneity. CONCLUSIONS Heterogeneity of APD and DI promote alternans and conduction block at fast pacing rates in the equine atrium, predisposing to the development of AF. Quinidine terminates AF by reducing maximum frequency and increasing frequency homogeneity. Our results are consistent with the hypothesis that quinidine increases effective refractory period, thereby decreasing frequency.
Collapse
Affiliation(s)
- Flavio H Fenton
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
41
|
Wang X, Xu R, Abernathey G, Taylor J, Alzghoul M, Hannon K, Hockerman GH, Pond AL. Kv11.1 channel subunit composition includes minK and varies developmentally in mouse cardiac muscle. Dev Dyn 2008; 237:2430-7. [DOI: 10.1002/dvdy.21671] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
42
|
Okamura K, Sasaki N, Yamada M, Yamada H, Inokuma H. Effects of mosapride citrate, metoclopramide hydrochloride, lidocaine hydrochloride, and cisapride citrate on equine gastric emptying, small intestinal and caecal motility. Res Vet Sci 2008; 86:302-8. [PMID: 18723200 DOI: 10.1016/j.rvsc.2008.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/05/2008] [Accepted: 07/11/2008] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Although extensive work has been done to elucidate the beneficial and unfavorable effects of gastrointestinal prokinetic agents in humans, little is known on the effects of these agents in horses. In this study, we compared the effects of mosapride, metoclopramide, cisapride, and lidocaine on equine gastric emptying, jejunal and caecal motility and evaluated these agents' adverse drug reactions (ADRs). ANIMALS Seven healthy adult Thoroughbreds. PROCEDURE Mosapride 1.0mg/kg and 2.0mg/kg, metoclopramide 0.2mg/kg, and cisapride 1.0mg/kg were dissolved in 100mL distilled water for oral administration. Lidocaine 1.3mg/kg was mixed with 500 mL saline for a 30-min intravenous infusion. Oral administration of 100mL distilled water was used as control. Gastric emptying was evaluated using (13)CO(2) breath test, and jejunal and caecal motility was assessed by electrointestinography. RESULTS The present study demonstrates that mosapride at doses of 1.0mg/kg and 2.0mg/kg facilitates gastric emptying in horses. Improved jejunal motility was observed following administration of mosapride (1.0mg/kg and 2.0mg/kg), metoclopramide (0.2mg/kg), and cisapride (1.0mg/kg). Similarly, improved caecal motility was observed following administration of mosapride (2.0mg/kg). CONCLUSIONS AND CLINICAL RELEVANCE This study shows that among the prokinetic agents studied here, only mosapride (2.0mg/kg) promotes jejunal and caecal motility in horses. Considering mosapride ADRs profile, it is believed that this compound is useful in the treatment of diseases associated with decreased GI motility, including postoperative ileus.
Collapse
Affiliation(s)
- Koichi Okamura
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanago, Gifu-shi 501-1193, Japan
| | | | | | | | | |
Collapse
|
43
|
Levy DI, Wanderling S, Biemesderfer D, Goldstein SAN. MiRP3 acts as an accessory subunit with the BK potassium channel. Am J Physiol Renal Physiol 2008; 295:F380-7. [PMID: 18463315 DOI: 10.1152/ajprenal.00598.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MinK-related peptides (MiRPs) are single-span membrane proteins that assemble with specific voltage-gated K+ (Kv) channel alpha-subunits to establish gating kinetics, unitary conductance, expression level, and pharmacology of the mixed complex. MiRP3 (encoded by the KCNE4 gene) has been shown to alter the behavior of some Kv alpha-subunits in vitro but its natural partners and physiologic functions are unknown. Seeking in vivo partners for MiRP3, immunohistochemistry was used to localize its expression to a unique subcellular site, the apical membrane of renal intercalated cells, where one potassium channel type has been recorded, the calcium- and voltage-gated channel BK. Overlapping staining of these two proteins was found in rabbit intercalated cells, and MiRP3 and BK subunits expressed in tissue culture cells were found to form detergent-stable complexes. Electrophysiologic and biochemical evaluation showed MiRP3 to act on BK to reduce current density in two fashions: shifting the current-voltage relationship to more depolarized voltages in a calcium-dependent fashion ( approximately 10 mV at normal intracellular calcium levels) and accelerating degradation of MiRP3-BK complexes. The findings suggest a role for MiRP3 modulation of BK-dependent urinary potassium excretion.
Collapse
Affiliation(s)
- Daniel I Levy
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
44
|
Abbott GW, Xu X, Roepke TK. Impact of ancillary subunits on ventricular repolarization. J Electrocardiol 2007; 40:S42-6. [PMID: 17993327 PMCID: PMC2128763 DOI: 10.1016/j.jelectrocard.2007.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 05/14/2007] [Indexed: 01/19/2023]
Abstract
Voltage-gated potassium (Kv) channels generate the outward K(+) ion currents that constitute the primary force in ventricular repolarization. Voltage-gated potassium channels comprise tetramers of pore-forming alpha subunits and, in probably most cases in vivo, ancillary or beta subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation, and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as alpha subunits. Cytoplasmic ancillary subunits include the Kv beta subunits, which regulate a range of Kv channels and may link channel gating to redox potential, and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular I(to) current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv alpha subunit subfamilies, and the putative 12-transmembrane domain KCR1 protein, which modulates hERG. In some cases, such as the ventricular I(Ks) channel complex, it is well established that the KCNQ1 alpha subunit must coassemble with the MinK (KCNE1) single-transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating I(Ks) current. In other cases, it is not so clear-cut, and in particular, the roles of the other MiRPs (1-4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular I(Kr)) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, for example, KChIP2 and the epicardial-endocardial I(to) current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York, NY, USA.
| | | | | |
Collapse
|
45
|
Trepakova ES, Malik MG, Imredy JP, Penniman JR, Dech SJ, Salata JJ. Application of PatchXpress Planar Patch Clamp Technology to the Screening of New Drug Candidates for Cardiac KCNQ1/KCNE1 (I Ks) Activity. Assay Drug Dev Technol 2007; 5:617-27. [PMID: 17939752 DOI: 10.1089/adt.2007.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Um SY, McDonald TV. Differential association between HERG and KCNE1 or KCNE2. PLoS One 2007; 2:e933. [PMID: 17895974 PMCID: PMC1978535 DOI: 10.1371/journal.pone.0000933] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 09/04/2007] [Indexed: 12/16/2022] Open
Abstract
The small proteins encoded by KCNE1 and KCNE2 have both been proposed as accessory subunits for the HERG channel. Here we report our investigation into the cell biology of the KCNE-HERG interaction. In a co-expression system, KCNE1 was more readily co-precipitated with co-expressed HERG than was KCNE2. When forward protein trafficking was prevented (either by Brefeldin A or engineering an ER-retention/retrieval signal onto KCNE cDNA) the intracellular abundance of KCNE2 and its association with HERG markedly increased relative to KCNE1. HERG co-localized more completely with KCNE1 than with KCNE2 in all the membrane-processing compartments of the cell (ER, Golgi and plasma membrane). By surface labeling and confocal immunofluorescence, KCNE2 appeared more abundant at the cell surface compared to KCNE1, which exhibited greater co-localization with the ER-marker calnexin. Examination of the extracellular culture media showed that a significant amount of KCNE2 was extracellular (both soluble and membrane-vesicle-associated). Taken together, these results suggest that during biogenesis of channels HERG is more likely to assemble with KCNE1 than KCNE2 due to distinctly different trafficking rates and retention in the cell rather than differences in relative affinity. The final channel subunit constitution, in vivo, is likely to be determined by a combination of relative cell-to-cell expression rates and differential protein processing and trafficking.
Collapse
Affiliation(s)
- Sung Yon Um
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
47
|
Roepke TK, Abbott GW. Pharmacogenetics and cardiac ion channels. Vascul Pharmacol 2006; 44:90-106. [PMID: 16344000 DOI: 10.1016/j.vph.2005.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 07/01/2005] [Indexed: 12/19/2022]
Abstract
Ion channels control electrical excitability in living cells. In mammalian heart, the opposing actions of Na(+) and Ca(2+) ion influx, and K(+) ion efflux, through cardiac ion channels determine the morphology and duration of action potentials in cardiac myocytes, thus controlling the heartbeat. The last decade has seen a leap in our understanding of the molecular genetic origins of inherited cardiac arrhythmia, largely through identification of mutations in cardiac ion channels and the proteins that regulate them. Further, recent advances have shown that 'acquired arrhythmias', which occur more commonly than inherited arrhythmias, arise due to a variety of environmental factors including side effects of therapeutic drugs and often have a significant genetic component. Here, we review the pharmacogenetics of cardiac ion channels-the interplay between genetic and pharmacological factors that underlie human cardiac arrhythmias.
Collapse
Affiliation(s)
- Torsten K Roepke
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, 520 East 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
48
|
Lan WZ, Abbas H, Lemay AM, Briggs MM, Hill CE. Electrophysiological and molecular identification of hepatocellular volume-activated K+ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1668:223-33. [PMID: 15737333 DOI: 10.1016/j.bbamem.2004.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/26/2004] [Accepted: 12/17/2004] [Indexed: 11/30/2022]
Abstract
Although K+ channels are essential for hepatocellular function, it is not known which channels are involved in the regulatory volume decrease (RVD) in these cells. We have used a combination of electrophysiological and molecular approaches to describe the potential candidates for these channels. The dialysis of short-term cultured rat hepatocytes with a hypotonic solution containing high K+ and low Cl- concentration caused the slow activation of an outward, time-independent current under whole-cell configuration of the patch electrode voltage clamp. The reversal potential of this current suggested that K+ was the primary charge carrier. The swelling-induced K+ current (IKvol) occurred in the absence of Ca2+ and was inhibited with 1 microM Ca2+ in the pipette solution. The activation of IKvol required both Mg2+ and ATP and an increasing concentration of Mg-ATP from 0.25 through 0.5 to 0.9 mM activated IKvol increasingly faster and to a larger extent. The KCNQ1 inhibitor chromanol 293B reversibly depressed IKvol with an IC50 of 26 microM. RT-PCR detected the expression of members of the KCNQ family from KCNQ1 to KCNQ5 and of the accessory proteins KCNE1 to KCNE3 in the rat hepatocytes, but not KCNQ2 and KCNE2 in human liver. Western blotting showed KCNE3 expression in a plasma membrane-enriched fraction from rat hepatocytes. The results suggest that KCNQ1, probably with KCNE2 or KCNE3 as its accessory unit, provides a significant fraction of IKvol in rat hepatocytes.
Collapse
Affiliation(s)
- W-Z Lan
- GI Diseases Research Unit, Hotel Dieu Hospital and Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | | | | | | | |
Collapse
|
49
|
McCrossan ZA, Abbott GW. The MinK-related peptides. Neuropharmacology 2004; 47:787-821. [PMID: 15527815 DOI: 10.1016/j.neuropharm.2004.06.018] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 06/04/2004] [Accepted: 06/18/2004] [Indexed: 11/20/2022]
Abstract
Voltage-gated potassium (Kv) channels mediate rapid, selective diffusion of K+ ions through the plasma membrane, controlling cell excitability, secretion and signal transduction. KCNE genes encode a family of single transmembrane domain proteins called MinK-related peptides (MiRPs) that function as ancillary or beta subunits of Kv channels. When co-expressed in heterologous systems, MiRPs confer changes in Kv channel conductance, gating kinetics and pharmacology, and are fundamental to recapitulation of the properties of some native currents. Inherited mutations in KCNE genes are associated with diseases of cardiac and skeletal muscle, and the inner ear. This article reviews our current understanding of MiRPs--their functional roles, the mechanisms underlying their association with Kv alpha subunits, their patterns of native expression and emerging evidence of the potential roles of MiRPs in the brain. The ubiquity of MiRP expression and their promiscuous association with Kv alpha subunits suggest a prominent role for MiRPs in channel dependent systems.
Collapse
Affiliation(s)
- Zoe A McCrossan
- Greenberg Division of Cardiology, Department of Medicine, Department of Pharmacology, Weill Medical College of Cornell University, Starr 463, 520 East 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Loughrey CM, Smith GL, MacEachern KE. Comparison of Ca2+release and uptake characteristics of the sarcoplasmic reticulum in isolated horse and rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 2004; 287:H1149-59. [PMID: 15117716 DOI: 10.1152/ajpheart.00060.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both the cardiac action potential duration (APD) (0.6–1 s) and resting heart rate (30–40 beats/min) in the horse are significantly different from humans and smaller mammals, including the rabbit. This would be anticipated to have consequences for excitation-contraction (EC) coupling and require adaptation of the individual processes involved. The sarcoplasmic reticulum (SR) is one of the main components involved in EC coupling. This study examines and compares the activity of this organelle in the horse with that of the rabbit. In particular, the study focuses on SR Ca2+release via the Ca2+release channel/ryanodine receptor (RyR2) and Ca2+uptake via the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. Isolated cardiomyocytes from both horse and rabbit hearts were permeabilized, bathed in a mock intracellular solution, and exposed to a specified [Ca2+]. Rabbit cardiomyocytes exposed to 260 nM [Ca2+] produced spontaneous Ca2+release and propagated Ca2+waves. Horse cells failed to produce Ca2+waves; instead, only local release in the form of Ca2+sparks was evident. However, at 550 nM [Ca2+], Ca2+waves were produced in both species. Ca2+waves were four times less frequent yet ∼1.5 times greater in amplitude in the horse compared with the rabbit. Ca2+wave velocity was comparable between the species. The reason for this disparity in Ca2+wave characteristics is unknown. Separate measurements of oxalate-supported Ca2+uptake into the SR suggest that both horse and rabbit cardiomyocytes have comparable levels SERCA activity. The possible reasons for the observed differences in SR Ca2+release between the horse and rabbit are discussed.
Collapse
Affiliation(s)
- C M Loughrey
- Institute of Comparative Medicine, University of Glasgow Veterinary School, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|