1
|
Maitz T, Shah S, Gupta R, Goel A, Sreenivasan J, Hajra A, Vyas AV, Lavie CJ, Hawwa N, Lanier GM, Kapur NK. Pathophysiology, diagnosis and management of right ventricular failure: A state of the art review of mechanical support devices. Prog Cardiovasc Dis 2024; 85:103-113. [PMID: 38944261 DOI: 10.1016/j.pcad.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The function of the right ventricle (RV) is to drive the forward flow of blood to the pulmonary system for oxygenation before returning to the left ventricle. Due to the thin myocardium of the RV, its function is easily affected by decreased preload, contractile motion abnormalities, or increased afterload. While various etiologies can lead to changes in RV structure and function, sudden changes in RV afterload can cause acute RV failure which is associated with high mortality. Early detection and diagnosis of RV failure is imperative for guiding initial medical management. Echocardiographic findings of reduced tricuspid annular plane systolic excursion (<1.7) and RV wall motion (RV S' <10 cm/s) are quantitatively supportive of RV systolic dysfunction. Medical management commonly involves utilizing diuretics or fluids to optimize RV preload, while correcting the underlying insult to RV function. When medical management alone is insufficient, mechanical circulatory support (MCS) may be necessary. However, the utility of MCS for isolated RV failure remains poorly understood. This review outlines the differences in flow rates, effects on hemodynamics, and advantages/disadvantages of MCS devices such as intra-aortic balloon pump, Impella, centrifugal-flow right ventricular assist devices, extracorporeal membrane oxygenation, and includes a detailed review of the latest clinical trials and studies analyzing the effects of MCS devices in acute RV failure.
Collapse
Affiliation(s)
- Theresa Maitz
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA, USA
| | - Swara Shah
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA.
| | - Akshay Goel
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | | | - Adrija Hajra
- Department of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Apurva V Vyas
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Oshner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Nael Hawwa
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| | - Gregg M Lanier
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - Navin K Kapur
- Cardiovascular Center, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Meinert-Krause JP, Mechelinck M, Hein M, Habigt MA. Intrinsic mechanisms of right ventricular autoregulation. Sci Rep 2024; 14:9356. [PMID: 38654031 DOI: 10.1038/s41598-024-59787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
To elucidate the adaptation of the right ventricle to acute and intermittently sustained afterload elevation, targeted preload reductions and afterload increases were implemented in a porcine model involving 12 pigs. Preload reduction was achieved via balloon occlusion of the inferior vena cava before, immediately and 5 min after acute afterload elevation induced by pulmonary artery occlusion or thromboxane A2 analog (U46619) infusion. Ventricular response was monitored by registration of pressure-volume (PV) loops using a conductance catheter. The end-systolic pressure-volume relationship (ESPVR) during pure preload reduction was adequately described by linear regression (mean and SEM slope of ESPVR (Ees) 0.414 ± 0.064 mmHg/ml), reflecting the classical Frank-Starling mechanism (FSM). The ESPVR during acute afterload elevation exhibited a biphasic trajectory with significantly distinct slopes (mean and SEM Ees bilin1: 1.256 ± 0.066 mmHg ml; Ees bilin2: 0.733 ± 0.063 mmHg ml, p < 0.001). The higher slope during the first phase in the absence of ventricular dilation could be explained by a reduced amount of shortening deactivation (SDA). The changes in PV-loops during the second phase were similar to those observed with a preload intervention. The persistent increase in afterload resulted in an increase in the slopes of ESPVR and preload recruitable stroke work (PRSW) with a slight decrease in filling state, indicating a relevant Anrep effect. This effect became more pronounced after 5 min or TXA infusion. This study demonstrates, for the first time, the relevance of intrinsic mechanisms of cardiac autoregulation in the right ventricle during the adaptation to load. The SDA, FSM, and Anrep effect could be differentiated and occurred successively, potentially with some overlap. Notably, the Anrep effect serves to prevent ventricular dilation.
Collapse
Affiliation(s)
- Jan-Pit Meinert-Krause
- Faculty of Medicine, Anaesthesiology Clinic, University Hospital RWTH Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mare Mechelinck
- Faculty of Medicine, Anaesthesiology Clinic, University Hospital RWTH Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Marc Hein
- Faculty of Medicine, Anaesthesiology Clinic, University Hospital RWTH Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Moriz A Habigt
- Faculty of Medicine, Anaesthesiology Clinic, University Hospital RWTH Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Dokuchaev A, Kursanov A, Balakina-Vikulova NA, Katsnelson LB, Solovyova O. The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes. Front Physiol 2023; 14:1187956. [PMID: 37362439 PMCID: PMC10285544 DOI: 10.3389/fphys.2023.1187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Populations of in silico electrophysiological models of human cardiomyocytes represent natural variability in cell activity and are thoroughly calibrated and validated using experimental data from the human heart. The models have been shown to predict the effects of drugs and their pro-arrhythmic risks. However, excitation and contraction are known to be tightly coupled in the myocardium, with mechanical loads and stretching affecting both mechanics and excitation through mechanisms of mechano-calcium-electrical feedback. However, these couplings are not currently a focus of populations of cell models. Aim: We investigated the role of cardiomyocyte mechanical activity under different mechanical conditions in the generation, calibration, and validation of a population of electro-mechanical models of human cardiomyocytes. Methods: To generate a population, we assumed 11 input parameters of ionic currents and calcium dynamics in our recently developed TP + M model as varying within a wide range. A History matching algorithm was used to generate a non-implausible parameter space by calibrating the action potential and calcium transient biomarkers against experimental data and rejecting models with excitation abnormalities. The population was further calibrated using experimental data on human myocardial force characteristics and mechanical tests involving variations in preload and afterload. Models that passed the mechanical tests were validated with additional experimental data, including the effects of drugs with high or low pro-arrhythmic risk. Results: More than 10% of the models calibrated on electrophysiological data failed mechanical tests and were rejected from the population due to excitation abnormalities at reduced preload or afterload for cell contraction. The final population of accepted models yielded action potential, calcium transient, and force/shortening outputs consistent with experimental data. In agreement with experimental and clinical data, the models demonstrated a high frequency of excitation abnormalities in simulations of Dofetilide action on the ionic currents, in contrast to Verapamil. However, Verapamil showed a high frequency of failed contractions at high concentrations. Conclusion: Our results highlight the importance of considering mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests allow a more thorough assessment of the effects of interventions on cardiac function, including drug testing.
Collapse
Affiliation(s)
- Arsenii Dokuchaev
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander Kursanov
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Nathalie A. Balakina-Vikulova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Leonid B. Katsnelson
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Olga Solovyova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
4
|
Chotalia M, Patel JM, Bangash MN, Parekh D. Cardiovascular Subphenotypes in ARDS: Diagnostic and Therapeutic Implications and Overlap with Other ARDS Subphenotypes. J Clin Med 2023; 12:jcm12113695. [PMID: 37297890 DOI: 10.3390/jcm12113695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a highly heterogeneous clinical condition. Shock is a poor prognostic sign in ARDS, and heterogeneity in its pathophysiology may be a barrier to its effective treatment. Although right ventricular dysfunction is commonly implicated, there is no consensus definition for its diagnosis, and left ventricular function is neglected. There is a need to identify the homogenous subgroups within ARDS, that have a similar pathobiology, which can then be treated with targeted therapies. Haemodynamic clustering analyses in patients with ARDS have identified two subphenotypes of increasingly severe right ventricular injury, and a further subphenotype of hyperdynamic left ventricular function. In this review, we discuss how phenotyping the cardiovascular system in ARDS may align with haemodynamic pathophysiology, can aid in optimally defining right ventricular dysfunction and can identify tailored therapeutic targets for shock in ARDS. Additionally, clustering analyses of inflammatory, clinical and radiographic data describe other subphenotypes in ARDS. We detail the potential overlap between these and the cardiovascular phenotypes.
Collapse
Affiliation(s)
- Minesh Chotalia
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| | - Jaimin M Patel
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| | - Mansoor N Bangash
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| |
Collapse
|
5
|
Tanner BCW, Awinda PO, Agonias KB, Attili S, Blair CA, Thompson MS, Walker LA, Kampourakis T, Campbell KS. Sarcomere length affects Ca2+ sensitivity of contraction in ischemic but not non-ischemic myocardium. J Gen Physiol 2023; 155:213800. [PMID: 36633584 PMCID: PMC9859763 DOI: 10.1085/jgp.202213200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In healthy hearts, myofilaments become more sensitive to Ca2+ as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank-Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca2+-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca2+-activated force increased at longer SL for all groups. Ca2+ sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Keinan B Agonias
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Mindy S Thompson
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky , Lexington, KY, USA.,Division of Cardiovascular Medicine, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
6
|
Koenig SN, Cavus O, Williams J, Bernier M, Tonniges J, Sucharski H, Dew T, Akel M, Baker P, Madiai F, De Giorgi F, Scietti L, Faravelli S, Forneris F, Mohler PJ, Bradley EA. New mechanistic insights to PLOD1-mediated human vascular disease. Transl Res 2022; 239:1-17. [PMID: 34400365 PMCID: PMC8671190 DOI: 10.1016/j.trsl.2021.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. In vitro assays demonstrated that wild-type PLOD1 is capable of processing UDP-glycan donor substrates, and that the variant affects the folding stability of the glycosyltransferase domain and associated enzymatic functions. The PLOD1 substrate lysine was elevated in the proband, however the enzymatic product hydroxylysine and total collagen content was not different, albeit despite collagen fibril narrowing and preservation of collagen turnover. In VSMCs overexpressing wild-type PLOD1, there was upregulation in procollagen gene expression (secretory function) which was attenuated in the variant, consistent with loss-of-function. In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.
Collapse
Affiliation(s)
- Sara N Koenig
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Omer Cavus
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Jordan Williams
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Matthew Bernier
- The Ohio State University Mass Spectrometry and Proteomics Facility, Office of Research, Columbus, Ohio
| | - Jeff Tonniges
- The Ohio State University Microscopy and Imaging Facility (CMIF), Office of Research, Columbus, Ohio
| | - Holly Sucharski
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Trevor Dew
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Muhannad Akel
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Peter Baker
- Nationwide Children's Hospital, Department of Pathology, Columbus, Ohio
| | - Francesca Madiai
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Peter J Mohler
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Elisa A Bradley
- The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio; The Ohio State University College of Medicine and Wexner Medical Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Columbus, Ohio.
| |
Collapse
|
7
|
Mashali MA, Saad NS, Canan BD, Elnakish MT, Milani-Nejad N, Chung JH, Schultz EJ, Kiduko SA, Huang AW, Hare AN, Peczkowski KK, Fazlollahi F, Martin BL, Murray JD, Campbell CM, Kilic A, Whitson BA, Mokadam NA, Mohler PJ, Janssen PML. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J Mol Cell Cardiol 2021; 156:7-19. [PMID: 33766524 PMCID: PMC8217133 DOI: 10.1016/j.yjmcc.2021.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with highly significant morbidity, mortality, and health care costs. Despite the significant advances in therapies and prevention, HF remains associated with poor clinical outcomes. Understanding the contractile force and kinetic changes at the level of cardiac muscle during end-stage HF in consideration of underlying etiology would be beneficial in developing targeted therapies that can help improve cardiac performance. OBJECTIVE Investigate the impact of the primary etiology of HF (ischemic or non-ischemic) on left ventricular (LV) human myocardium force and kinetics of contraction and relaxation under near-physiological conditions. METHODS AND RESULTS Contractile and kinetic parameters were assessed in LV intact trabeculae isolated from control non-failing (NF; n = 58) and end-stage failing ischemic (FI; n = 16) and non-ischemic (FNI; n = 38) human myocardium under baseline conditions, length-dependent activation, frequency-dependent activation, and response to the β-adrenergic stimulation. At baseline, there were no significant differences in contractile force between the three groups; however, kinetics were impaired in failing myocardium with significant slowing down of relaxation kinetics in FNI compared to NF myocardium. Length-dependent activation was preserved and virtually identical in all groups. Frequency-dependent activation was clearly seen in NF myocardium (positive force frequency relationship [FFR]), while significantly impaired in both FI and FNI myocardium (negative FFR). Likewise, β-adrenergic regulation of contraction was significantly impaired in both HF groups. CONCLUSIONS End-stage failing myocardium exhibited impaired kinetics under baseline conditions as well as with the three contractile regulatory mechanisms. The pattern of these kinetic impairments in relation to NF myocardium was mainly impacted by etiology with a marked slowing down of kinetics in FNI myocardium. These findings suggest that not only force development, but also kinetics should be considered as a therapeutic target for improving cardiac performance and thus treatment of HF.
Collapse
Affiliation(s)
- Mohammed A Mashali
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nancy S Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Nima Milani-Nejad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Eric J Schultz
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Salome A Kiduko
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda W Huang
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Austin N Hare
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kyra K Peczkowski
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Farbod Fazlollahi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Brit L Martin
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jason D Murray
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Courtney M Campbell
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ahmet Kilic
- Division of Cardiac Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Bryan A Whitson
- Division of Cardiac Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nahush A Mokadam
- Division of Cardiac Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Peter J Mohler
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
8
|
Liu J, Yang S, Wang W, Zhang Y, Wang Q, Sun X, Tan N, Du K, Wang Y, Zhao H. Use of Qishen granule for the treatment of heart failure: A systematic review and meta-analysis of animal studies. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Balakina-Vikulova NA, Panfilov A, Solovyova O, Katsnelson LB. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J Physiol Sci 2020; 70:12. [PMID: 32070290 PMCID: PMC7028825 DOI: 10.1186/s12576-020-00741-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Experiments on animal hearts (rat, rabbit, guinea pig, etc.) have demonstrated that mechano-calcium feedback (MCF) and mechano-electric feedback (MEF) are very important for myocardial self-regulation because they adjust the cardiomyocyte contractile function to various mechanical loads and to mechanical interactions between heterogeneous myocardial segments in the ventricle walls. In in vitro experiments on these animals, MCF and MEF manifested themselves in several basic classical phenomena (e.g., load dependence, length dependence of isometric twitches, etc.), and in the respective responses of calcium transients and action potentials. However, it is extremely difficult to study simultaneously the electrical, calcium, and mechanical activities of the human heart muscle in vitro. Mathematical modeling is a useful tool for exploring these phenomena. We have developed a novel model to describe electromechanical coupling and mechano-electric feedbacks in the human cardiomyocyte. It combines the ‘ten Tusscher–Panfilov’ electrophysiological model of the human cardiomyocyte with our module of myocardium mechanical activity taken from the ‘Ekaterinburg–Oxford’ model and adjusted to human data. Using it, we simulated isometric and afterloaded twitches and effects of MCF and MEF on excitation–contraction coupling. MCF and MEF were found to affect significantly the duration of the calcium transient and action potential in the human cardiomyocyte model in response to both smaller afterloads as compared to bigger ones and various mechanical interventions applied during isometric and afterloaded twitches.
Collapse
Affiliation(s)
- Nathalie A Balakina-Vikulova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia. .,Ural Federal University, Ekaterinburg, Russia.
| | - Alexander Panfilov
- Ural Federal University, Ekaterinburg, Russia.,Ghent University, Ghent, Belgium
| | - Olga Solovyova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Ural Federal University, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
10
|
Lookin O, Protsenko Y. Length-Dependent Activation of Contractility and Ca-Transient Kinetics in Auxotonically Contracting Isolated Rat Ventricular Cardiomyocytes. Front Physiol 2019; 10:1473. [PMID: 31920687 PMCID: PMC6917588 DOI: 10.3389/fphys.2019.01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Length-dependent activation (LDA) of contraction is an important mechanism of proper myocardial function that is often blunted in diseases accompanied by deficient contractility and impaired calcium homeostasis. We evaluated how the extent of LDA is related to the decreased force in healthy rat myocardium under negative inotropic conditions that affect the calcium cycle. The length-dependent effects on auxotonic twitch and Ca-transient were compared in isolated rat ventricular cardiomyocytes at room temperature (“25C”) and near-physiological temperature (“35C”) in normal Tyrode and at 25°C with thapsigargin-depleted sarcoplasmic reticulum (“25C + Thap”). At the slack length, a similar negative inotropy in “35C” and “25C + Thap” was accompanied by totally different changes in Ca-transient amplitude, time-to-peak, and time-to-decline from peak to 50% amplitude. End-systolic/end-diastolic tension-sarcomere length relationships were obtained for each individual cell, and the ratio of their slopes, the dimensionless Frank-Starling Gain index, was 2.32 ± 0.16, 1.78 ± 0.09, and 1.37 ± 0.06 in “25C,” “35C” and “25C + Thap,” respectively (mean ± S.E.M.). Ca-transient diastolic level and amplitude did not differ between “25C” and “35C” at any SL, but in “35C” it developed and declined significantly faster. In contrast, thapsigargin-induced depletion of SERCA2a significantly attenuated and retarded Ca-transient. The relative amount of Ca2+ utilized by troponin C, evaluated by the integral magnitude of a short-lived component of Ca-transient decline (“bump”), increased by ~25% per each 0.05 μm increase in SL in all groups. The kinetics of the Ca-TnC dissociation, evaluated by the bump time-to-peak, was significantly faster in “35C” and slower in “25C + Thap” vs. “25C” (respectively, 63.7 ± 5.3 and 253.6 ± 8.3% of the value in “25C,” mean ± S.E.M.). In conclusion, a similar inotropic effect can be observed in rat ventricular myocardium under totally different kinetics of free cytosolic calcium. The extent of LDA is not determined by actual peak systolic tension but is regulated by the level of peak systolic calcium and the kinetics of Ca-transient decline which, in turn, are governed by Ca-TnC dissociation and Ca2+ reuptake by the sarcoplasmic reticulum. Altogether, these findings constitute new evidence about the role of the length-dependent modulation of Ca2+ homeostasis in the mechanisms of calcium regulation of contraction and mechano-calcium feedback in the myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia.,Center for Fundamental Biotechnology and Bioengineering, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Yuri Protsenko
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
11
|
Chung JH, Canan BD, Whitson BA, Kilic A, Janssen PML. Force-frequency relationship and early relaxation kinetics are preserved upon sarcoplasmic blockade in human myocardium. Physiol Rep 2019; 6:e13898. [PMID: 30350481 PMCID: PMC6198135 DOI: 10.14814/phy2.13898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the quantitative and qualitative role of the sarcoplasmic reticulum (SR) in the regulation of the force-frequency relationship (FFR). We blocked the function of SR with cyclopiazonic acid (CPA) and ryanodine and measured twitch kinetics and developed force at various stimulation frequencies in nonfailing and failing intact human right ventricular trabeculae. We found that developed forces are only slightly reduced upon SR blockade, while the positive FFR in nonfailing trabeculae and negative FFR in failing trabeculae were both preserved. The contraction kinetics (dF/dt, dF/dt/F, and time to peak), however, were significantly slower at all frequencies tested. Kinetics of first 50% of relaxation (RT50) was not affected by SR blockade. Kinetics of entire relaxation process (RT90) was overall slower at low frequencies, but not at high frequencies. From our findings, we conclude that the SR is not essential for FFR, and its role in regulation of FFR lies mostly in contraction kinetics. Unlike small rodents, human myocardium contractile function is near-normal in absence of a functional SR with little changes in contractile force, and with preservation with the main regulation of FFR.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bryan A Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ahmet Kilic
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
12
|
Chung JH, Milani-Nejad N, Davis JP, Weisleder N, Whitson BA, Mohler PJ, Janssen PML. Impact of heart rate on cross-bridge cycling kinetics in failing and nonfailing human myocardium. Am J Physiol Heart Circ Physiol 2019; 317:H640-H647. [PMID: 31347914 DOI: 10.1152/ajpheart.00163.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The force-frequency relationship (FFR) is an important regulatory mechanism that increases the force-generating capacity as well as the contraction and relaxation kinetics in human cardiac muscle as the heart rate increases. In human heart failure, the normally positive FFR often becomes flat, or even negative. The rate of cross-bridge cycling, which has been reported to affect cardiac output, could be potentially dysregulated and contribute to blunted or negative FFR in heart failure. We recently developed and herein use a novel method for measuring the rate of tension redevelopment. This method allows us to obtain an index of the rate of cross-bridge cycling in intact contracting cardiac trabeculae at physiological temperature and assess physiological properties of cardiac muscles while preserving posttranslational modifications representative of those that occur in vivo. We observed that trabeculae from failing human hearts indeed exhibit an impaired FFR and a reduced speed of relaxation kinetics. However, stimulation frequencies in the lower spectrum did not majorly affect cross-bridge cycling kinetics in nonfailing and failing trabeculae when assessed at maximal activation. Trabeculae from failing human hearts had slightly slower cross-bridge kinetics at 3 Hz as well as reduced capacity to generate force upon K+ contracture at this frequency. We conclude that cross-bridge kinetics at maximal activation in the prevailing in vivo heart rates are not majorly impacted by frequency and are not majorly impacted by disease.NEW & NOTEWORTHY In this study, we confirm that cardiac relaxation kinetics are impaired in filing human myocardium and that cross-bridge cycling rate at resting heart rates does not contribute to this impaired relaxation. At high heart rates, failing myocardium cross-bridge rates are slower than in nonfailing myocardium.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bryan A Whitson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
13
|
Sewanan LR, Schwan J, Kluger J, Park J, Jacoby DL, Qyang Y, Campbell SG. Extracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes. JACC Basic Transl Sci 2019; 4:495-505. [PMID: 31468004 PMCID: PMC6712054 DOI: 10.1016/j.jacbts.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
The goal of this study was to examine the effects of diseased extracellular matrix on the behavior of healthy heart cells. Myocardium was harvested from a genetically engineered miniature pig carrying the hypertrophic cardiomyopathy mutation MYH7 R403Q and from a wild-type littermate. Engineered heart tissues were created by seeding healthy human induced pluripotent stem cell–derived cardiomyocytes onto thin strips of decellularized porcine myocardium. Engineered heart tissues made from the extracellular matrix of hypertrophic cardiomyopathy hearts exhibit increased stiffness, impaired relaxation, and increased force development. This suggests that diseased extracellular matrix can provoke abnormal contractile behavior in otherwise healthy cardiomyocytes.
Hypertrophic cardiomyopathy (HCM) is often caused by single sarcomeric gene mutations that affect muscle contraction. Pharmacological correction of mutation effects prevents but does not reverse disease in mouse models. Suspecting that diseased extracellular matrix is to blame, we obtained myocardium from a miniature swine model of HCM, decellularized thin slices of the tissue, and re-seeded them with healthy human induced pluripotent stem cell–derived cardiomyocytes. Compared with cardiomyocytes grown on healthy extracellular matrix, those grown on the diseased matrix exhibited prolonged contractions and poor relaxation. This outcome suggests that extracellular matrix abnormalities must be addressed in therapies targeting established HCM.
Collapse
Key Words
- CM, cardiomyocyte
- ECM, extracellular matrix
- EHT, engineered heart tissue
- H&E, hematoxylin and eosin
- HCM, hypertrophic cardiomyopathy
- MTR, Masson trichrome
- MUT, minipig carrying MYH7 R403Q mutation
- MYH7 mutation
- RT50, time from peak tension to 50% relaxation
- SR, Sirius red
- TTP, time to peak tension
- WT, wild-type
- cDNA, complementary deoxyribonucleic acid
- diastolic dysfunction
- engineered heart tissue
- fibrosis
- hypertrophic cardiomyopathy
- iPSC, induced pluripotent stem cell
- iPSC-derived cardiomyocyte
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jonathan Kluger
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - Daniel L Jacoby
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Barefield DY, McNamara JW, Lynch TL, Kuster DWD, Govindan S, Haar L, Wang Y, Taylor EN, Lorenz JN, Nieman ML, Zhu G, Luther PK, Varró A, Dobrev D, Ai X, Janssen PML, Kass DA, Jones WK, Gilbert RJ, Sadayappan S. Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. J Mol Cell Cardiol 2019; 129:236-246. [PMID: 30862451 PMCID: PMC7222036 DOI: 10.1016/j.yjmcc.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood. Therefore, we aimed to determine if abrogation of cMyBP-C proteolysis in association with calpain, a calcium-activated protease, confers cardioprotection during I/R injury. Calpain is activated in both human ischemic heart samples and ischemic mouse myocardium where cMyBP-C is dephosphorylated and undergoes proteolysis. Moreover, cMyBP-C is a substrate for calpain proteolysis and cleaved by calpain at residues 272-TSLAGAGRR-280, a domain termed as the calpain-target site (CTS). Cardiac-specific transgenic (Tg) mice in which the CTS motif was ablated were bred into a cMyBP-C null background. These Tg mice were conclusively shown to possess a normal basal structure and function by analysis of histology, electron microscopy, immunofluorescence microscopy, Q-space MRI of tissue architecture, echocardiography, and hemodynamics. However, the genetic ablation of the CTS motif conferred resistance to calpain-mediated proteolysis of cMyBP-C. Following I/R injury, the loss of the CTS reduced infarct size compared to non-transgenic controls. Collectively, these findings demonstrate the physiological significance of calpain-targeted cMyBP-C proteolysis and provide a rationale for studying inhibition of calpain-mediated proteolysis of cMyBP-C as a therapeutic target for cardioprotection.
Collapse
Affiliation(s)
- David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Center for Genetic Medicine, Northwestern University, Chicago, IL, USA.
| | - James W McNamara
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Thomas L Lynch
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Diederik W D Kuster
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Suresh Govindan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Lauren Haar
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Yang Wang
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Erik N Taylor
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andras Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University, Chicago, IL, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Walter Keith Jones
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center and Brown University, Providence, RI, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Breithaupt JJ, Pulcastro HC, Awinda PO, DeWitt DC, Tanner BCW. Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats. J Gen Physiol 2018; 151:66-76. [PMID: 30523115 PMCID: PMC6314387 DOI: 10.1085/jgp.201812158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Contraction of cardiac muscle is regulated by sarcomere length and proteins that comprise the sarcomeric filaments. Breithaupt et al. find that phosphorylation of myosin regulatory light chain augments length-dependent activation of contraction when β-cardiac myosin heavy chain predominates. Force production by actin–myosin cross-bridges in cardiac muscle is regulated by thin-filament proteins and sarcomere length (SL) throughout the heartbeat. Prior work has shown that myosin regulatory light chain (RLC), which binds to the neck of myosin heavy chain, increases cardiac contractility when phosphorylated. We recently showed that cross-bridge kinetics slow with increasing SLs, and that RLC phosphorylation amplifies this effect, using skinned rat myocardial strips predominantly composed of the faster α-cardiac myosin heavy chain isoform. In the present study, to assess how RLC phosphorylation influences length-dependent myosin function as myosin motor speed varies, we used a propylthiouracil (PTU) diet to induce >95% expression of the slower β-myosin heavy chain isoform in rat cardiac ventricles. We measured the effect of RLC phosphorylation on Ca2+-activated isometric contraction and myosin cross-bridge kinetics (via stochastic length perturbation analysis) in skinned rat papillary muscle strips at 1.9- and 2.2-µm SL. Maximum tension and Ca2+ sensitivity increased with SL, and RLC phosphorylation augmented this response at 2.2-µm SL. Subtle increases in viscoelastic myocardial stiffness occurred with RLC phosphorylation at 2.2-µm SL, but not at 1.9-µm SL, thereby suggesting that RLC phosphorylation increases β-myosin heavy chain binding or stiffness at longer SLs. The cross-bridge detachment rate slowed as SL increased, providing a potential mechanism for prolonged cross-bridge attachment to augment length-dependent activation of contraction at longer SLs. Length-dependent slowing of β-myosin heavy chain detachment rate was not affected by RLC phosphorylation. Together with our previous studies, these data suggest that both α- and β-myosin heavy chain isoforms show a length-dependent activation response and prolonged myosin attachment as SL increases in rat myocardial strips, and that RLC phosphorylation augments length-dependent activation at longer SLs. In comparing cardiac isoforms, however, we found that β-myosin heavy chain consistently showed greater length-dependent sensitivity than α-myosin heavy chain. Our work suggests that RLC phosphorylation is a vital contributor to the regulation of myocardial contractility in both cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - David C DeWitt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
16
|
Janssen PML. Myocardial relaxation in human heart failure: Why sarcomere kinetics should be center-stage. Arch Biochem Biophys 2018; 661:145-148. [PMID: 30447209 DOI: 10.1016/j.abb.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
Myocardial relaxation is critical for the heart to allow for adequate filling of the ventricles prior to the next contraction. In human heart failure, impairment of myocardial relaxation is a major problem, and impacts most patients suffering from end-stage failure. Furthering our understanding of myocardial relaxation is critical in developing future treatment strategies. This review highlights processes involved in myocardial relaxation, as well as governing processes that modulate myocardial relaxation, with a focus on impairment of myocardium-level relaxation in human end-stage heart failure.
Collapse
Affiliation(s)
- Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
17
|
Janssen PM, Canan BD, Kilic A, Whitson BA, Baker AJ. Human Myocardium Has a Robust α1A-Subtype Adrenergic Receptor Inotropic Response. J Cardiovasc Pharmacol 2018; 72:136-142. [PMID: 29923888 PMCID: PMC6126952 DOI: 10.1097/fjc.0000000000000604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies report that a single subtype of α1-adrenergic receptor (α1-AR), the α1A-subtype, mediates robust cardioprotective effects in multiple experimental models of heart failure, suggesting that the α1A-subtype is a potential therapeutic target for an agonist to treat heart failure. Moreover, we recently found that the α1A-subtype is present in human heart. The goal of this study was to assess the inotropic response mediated by the α1A-subtype in human myocardium, and to determine whether the response is downregulated in myocardium from failing human heart. We measured in vitro contractile responses of cardiac muscle preparations (trabeculae) isolated from the right ventricle from nonfailing and failing human hearts. Addition of the α1A-subtype agonist A61603 (100 nM) resulted in a large positive inotropic response (force increased ≈ 2-fold). This response represented ≈70% of the response mediated by the β-adrenergic receptor agonist isoproterenol (1 μM). Moreover, in myocardium from failing hearts, α1A-subtype responses remained robust, and only slightly reduced relative to nonfailing hearts. We conclude that α1A-subtype-mediated inotropy could represent a significant source of inotropic support in the human heart. Furthermore, the α1A-subtype remains functional in myocardium from failing human hearts and thus, might be a therapeutic target to support cardioprotective effects in patients with heart failure.
Collapse
Affiliation(s)
- Paul M.L. Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Benjamin D. Canan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Ahmet Kilic
- Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Bryan A Whitson
- Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Anthony J. Baker
- Veterans Affairs Medical Center, San Francisco, and Department of Medicine, Univ. Calif. San Francisco, San Francisco
| |
Collapse
|
18
|
Lookin ON, Protsenko YL. Deficiency of Length-Dependent Activation of Contraction in the Cardiac Muscle of Rats with Heart Failure: Assessment of the Muscle Strip and Single Cell Levels. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918030132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Affiliation(s)
- Paul M L Janssen
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus.
| | - Brandon J Biesiadecki
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| | - Mark T Ziolo
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| | - Jonathan P Davis
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| |
Collapse
|
20
|
Etiology-dependent impairment of relaxation kinetics in right ventricular end-stage failing human myocardium. J Mol Cell Cardiol 2018; 121:81-93. [PMID: 29981798 DOI: 10.1016/j.yjmcc.2018.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND In patients with end-stage heart failure, the primary etiology often originates in the left ventricle, and eventually the contractile function of the right ventricle (RV) also becomes compromised. RV tissue-level deficits in contractile force and/or kinetics need quantification to understand involvement in ischemic and non-ischemic failing human myocardium. METHODS AND RESULTS The human population suffering from heart failure is diverse, requiring many subjects to be studied in order to perform an adequately powered statistical analysis. From 2009-present we assessed live tissue-level contractile force and kinetics in isolated myocardial RV trabeculae from 44 non-failing and 41 failing human hearts. At 1 Hz stimulation rate (in vivo resting state) the developed active force was not different in non-failing compared to failing ischemic nor non-ischemic failing trabeculae. In sharp contrast, the kinetics of relaxation were significantly impacted by disease, with 50% relaxation time being significantly shorter in non-failing vs. non-ischemic failing, while the latter was still significantly shorter than ischemic failing. Gender did not significantly impact kinetics. Length-dependent activation was not impacted. Although baseline force was not impacted, contractile reserve was critically blunted. The force-frequency relation was positive in non-failing myocardium, but negative in both ischemic and non-ischemic myocardium, while the β-adrenergic response to isoproterenol was depressed in both pathologies. CONCLUSIONS Force development at resting heart rate is not impacted by cardiac pathology, but kinetics are impaired and the magnitude of the impairment depends on the underlying etiology. Focusing on restoration of myocardial kinetics will likely have greater therapeutic potential than targeting force of contraction.
Collapse
|
21
|
Guha S, Harikrishnan S, Ray S, Sethi R, Ramakrishnan S, Banerjee S, Bahl VK, Goswami KC, Banerjee AK, Shanmugasundaram S, Kerkar PG, Seth S, Yadav R, Kapoor A, Mahajan AU, Mohanan PP, Mishra S, Deb PK, Narasimhan C, Pancholia AK, Sinha A, Pradhan A, Alagesan R, Roy A, Vora A, Saxena A, Dasbiswas A, Srinivas BC, Chattopadhyay BP, Singh BP, Balachandar J, Balakrishnan KR, Pinto B, Manjunath CN, Lanjewar CP, Jain D, Sarma D, Paul GJ, Zachariah GA, Chopra HK, Vijayalakshmi IB, Tharakan JA, Dalal JJ, Sawhney JPS, Saha J, Christopher J, Talwar KK, Chandra KS, Venugopal K, Ganguly K, Hiremath MS, Hot M, Das MK, Bardolui N, Deshpande NV, Yadava OP, Bhardwaj P, Vishwakarma P, Rajput RK, Gupta R, Somasundaram S, Routray SN, Iyengar SS, Sanjay G, Tewari S, G S, Kumar S, Mookerjee S, Nair T, Mishra T, Samal UC, Kaul U, Chopra VK, Narain VS, Raj V, Lokhandwala Y. CSI position statement on management of heart failure in India. Indian Heart J 2018; 70 Suppl 1:S1-S72. [PMID: 30122238 PMCID: PMC6097178 DOI: 10.1016/j.ihj.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Santanu Guha
- Chairman, CSI Guidelines Committee; Medical College Kolkata, India
| | - S Harikrishnan
- Chief Coordinator, CSI HF Position Statement; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India.
| | - Saumitra Ray
- Convenor, CSI Guidelines Committee; Vivekananda Institute of Medical Sciences, Kolkata
| | - Rishi Sethi
- Joint Coordinator, CSI HF Position Statement; KG Medical University, Lucknow
| | - S Ramakrishnan
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Suvro Banerjee
- Joint Convenor, CSI Guidelines Committee; Apollo Hospitals, Kolkata
| | - V K Bahl
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - K C Goswami
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Amal Kumar Banerjee
- Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - S Shanmugasundaram
- Department of Cardiology, Tamil Nadu Medical University, Billroth Hospital, Chennai, Tamil Nadu, India
| | | | - Sandeep Seth
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Yadav
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
| | - Ajaykumar U Mahajan
- Department of Cardiology, LokmanyaTilak Municipal Medical College and General Hospital, Mumbai, Maharashtra, India
| | - P P Mohanan
- Department of Cardiology, Westfort Hi Tech Hospital, Thrissur, Kerala, India
| | - Sundeep Mishra
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - P K Deb
- Daffodil Hospitals, Kolkata, West Bengal, India
| | - C Narasimhan
- Department of Cardiology & Chief of Electro Physiology Department, Care Hospitals, Hyderabad, Telangana, India
| | - A K Pancholia
- Clinical & Preventive Cardiology, Arihant Hospital & Research Centre, Indore, Madhya Pradesh, India
| | | | - Akshyaya Pradhan
- Department of Cardiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - R Alagesan
- The Tamil Nadu Dr.M.G.R. Medical University, Tamil Nadu, India
| | - Ambuj Roy
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Amit Vora
- Arrhythmia Associates, Mumbai, Maharashtra, India
| | - Anita Saxena
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - B P Singh
- Department of Cardiology, IGIMS, Patna, Bihar, India
| | | | - K R Balakrishnan
- Cardiac Sciences, Fortis Malar Hospital, Adyar, Chennai, Tamil Nadu, India
| | - Brian Pinto
- Holy Family Hospitals, Mumbai, Maharashtra, India
| | - C N Manjunath
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | | | - Dharmendra Jain
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dipak Sarma
- Cardiology & Critical Care, Jorhat Christian Medical Centre Hospital, Jorhat, Assam, India
| | - G Justin Paul
- Department of Cardiology, Madras Medical College, Chennai, Tamil Nadu, India
| | | | | | - I B Vijayalakshmi
- Bengaluru Medical College and Research Institute, Bengaluru, Karnataka, India
| | - J A Tharakan
- Department of Cardiology, P.K. Das Institute of Medical Sciences, Vaniamkulam, Palakkad, Kerala, India
| | - J J Dalal
- Kokilaben Hospital, Mumbai, Maharshtra, India
| | - J P S Sawhney
- Department of Cardiology, Dharma Vira Heart Center, Sir Ganga Ram Hospital, New Delhi, India
| | - Jayanta Saha
- Chairman, CSI Guidelines Committee; Medical College Kolkata, India
| | | | - K K Talwar
- Max Healthcare, Max Super Speciality Hospital, Saket, New Delhi, India
| | - K Sarat Chandra
- Indo-US Super Speciality Hospital & Virinchi Hospital, Hyderabad, Telangana, India
| | - K Venugopal
- Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala, India
| | - Kajal Ganguly
- Department of Cardiology, N.R.S. Medical College, Kolkata, West Bengal, India
| | | | - Milind Hot
- Department of CTVS, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mrinal Kanti Das
- B.M. Birla Heart Research Centre & CMRI, Kolkata, West Bengal, India
| | - Neil Bardolui
- Department of Cardiology, Excelcare Hospitals, Guwahati, Assam, India
| | - Niteen V Deshpande
- Cardiac Cath Lab, Spandan Heart Institute and Research Center, Nagpur, Maharashtra, India
| | - O P Yadava
- National Heart Institute, New Delhi, India
| | - Prashant Bhardwaj
- Department of Cardiology, Military Hospital (Cardio Thoracic Centre), Pune, Maharashtra, India
| | - Pravesh Vishwakarma
- Joint Coordinator, CSI HF Position Statement; KG Medical University, Lucknow
| | | | - Rakesh Gupta
- JROP Institute of Echocardiography, New Delhi, India
| | | | - S N Routray
- Department of Cardiology, SCB Medical College, Cuttack, Odisha, India
| | - S S Iyengar
- Manipal Hospitals, Bangalore, Karnataka, India
| | - G Sanjay
- Chief Coordinator, CSI HF Position Statement; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
| | | | - Soumitra Kumar
- Convenor, CSI Guidelines Committee; Vivekananda Institute of Medical Sciences, Kolkata
| | - Soura Mookerjee
- Chairman, CSI Guidelines Committee; Medical College Kolkata, India
| | - Tiny Nair
- Department of Cardiology, P.R.S. Hospital, Trivandrum, Kerala, India
| | - Trinath Mishra
- Department of Cardiology, M.K.C.G. Medical College, Behrampur, Odisha, India
| | | | - U Kaul
- Batra Heart Center & Batra Hospital and Medical Research Center, New Delhi, India
| | - V K Chopra
- Heart Failure Programme, Department of Cardiology, Medanta Medicity, Gurugram, Haryana, India
| | - V S Narain
- Joint Coordinator, CSI HF Position Statement; KG Medical University, Lucknow
| | - Vimal Raj
- Narayana Hrudayalaya Hospital, Bangalore, Karnataka, India
| | - Yash Lokhandwala
- Mumbai & Visiting Faculty, Sion Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts. Sci Rep 2018; 8:2957. [PMID: 29440728 PMCID: PMC5811450 DOI: 10.1038/s41598-018-21199-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is defined by compromised contractile function and is associated with changes in excitation-contraction (EC) coupling and cardiomyocyte organisation. Tissue level changes often include fibrosis, while changes within cardiomyocytes often affect structures critical to EC coupling, including the ryanodine receptor (RyR), the associated protein junctophilin-2 (JPH2) and the transverse tubular system architecture. Using a novel approach, we aimed to directly correlate the influence of structural alterations with force development in ventricular trabeculae from failing human hearts. Trabeculae were excised from explanted human hearts in end-stage failure and immediately subjected to force measurements. Following functional experiments, each trabecula was fixed, sectioned and immuno-stained for structural investigations. Peak stress was highly variable between trabeculae from both within and between failing hearts and was strongly correlated with the cross-sectional area occupied by myocytes (MCSA), rather than total trabecula cross-sectional area. At the cellular level, myocytes exhibited extensive microtubule densification which was linked via JPH2 to time-to-peak stress. Trabeculae fractional MCSA variability was much higher than that in adjacent free wall samples. Together, these findings identify several structural parameters implicated in functional impairment in human HF and highlight the structural variability of ventricular trabeculae which should be considered when interpreting functional data.
Collapse
|
23
|
Kempton A, Cefalu M, Justice C, Baich T, Derbala M, Canan B, Janssen PML, Mohler PJ, Smith SA. Altered regulation of cardiac ankyrin repeat protein in heart failure. Heliyon 2018; 4:e00514. [PMID: 29560432 PMCID: PMC5857524 DOI: 10.1016/j.heliyon.2018.e00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Background Left ventricular assist devices (LVADs) have revolutionized and improved the care of the sickest heart failure (HF) patients, and it is imperative that they receive appropriate ventricular unloading. Assessing this critical parameter with current methodologies (labs, imaging) is usually suboptimal in this patient population. Hence it is imperative to elucidate the molecular underpinnings involved in ventricular unloading. We have previously identified the cytoskeletal protein βII spectrin as an essential nodal protein involved in post-translational targeting and βII spectrin protein levels are significantly altered in multiple forms of human and animal HF. We therefore hypothesized that the βII spectrin pathway would play a critical role in LVAD remodeling. Methods Human heart failure samples were obtained from patients undergoing heart transplantation. Wild type (WT) mice and our previously validated βII spectrin conditional knock out (βII cKO) mice were used for animal experiments. Transaortic constriction (TAC) was performed on WT mice. Protein expression was assessed via immunoblots, and protein interactions were assessed with co-immunoprecipitation. Transcriptome analysis was performed using isolated whole hearts from control adult WT mice (n = 3) compared to βII cKO spectrin mice (n = 3). Results We report that hearts from mice selectively lacking βII spectrin expression in cardiomyocytes displayed altered transcriptional regulation of cardiac ankyrin repeat protein (CARP). Notably, CARP protein expression is increased after TAC. Additionally, our findings illustrate that prior to LVAD support, CARP levels are elevated in HF patients compared to normal healthy controls. Further, for the first time in a LVAD population, we show that elevated CARP levels in HF patients return to normal following LVAD support. Conclusion Our findings illustrate that CARP is a dynamic molecule that responds to reduced afterload and stress, and has the potential to serve as a prognostic biomarker to assess for an adequate response to LVAD therapy.
Collapse
Affiliation(s)
- Amber Kempton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matt Cefalu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cody Justice
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tesla Baich
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mohamed Derbala
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin Canan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Defining the molecular signatures of human right heart failure. Life Sci 2018; 196:118-126. [PMID: 29366750 DOI: 10.1016/j.lfs.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
Abstract
AIMS Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. MATERIALS AND METHODS We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. KEY FINDINGS Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. SIGNIFICANCE This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure.
Collapse
|
25
|
Monasky MM, Torres CAA, Janssen PML. Length-Dependent Prolongation of Force Relaxation Is Unaltered by Delay of Intracellular Calcium Decline in Early-Stage Rabbit Right Ventricular Hypertrophy. Front Physiol 2017; 8:945. [PMID: 29255420 PMCID: PMC5723014 DOI: 10.3389/fphys.2017.00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic pressure overload can result in ventricular hypertrophy and eventually diastolic dysfunction. In normal myocardium, the time from peak tension to 50% relaxation of isolated cardiac myocardium is not directly determined by the time for calcium decline. This study aims to determine whether the time for calcium decline is altered with a change in preload in early-stage hypertrophied myocardium, and whether this change in time for calcium decline alters the rate of relaxation of the myocardium. Young New Zealand white rabbits underwent a pulmonary artery banding procedure and were euthanized 10 weeks later. Twitch contractions and calibrated bis-fura-2 calcium transients were measured in isolated thin right ventricular trabeculae at optimal length and with the muscle taut. Systolic calcium, calcium transient amplitude, and time from peak tension to 50% relaxation all increased with an increase in preload for both hypertrophied and sham groups. Time for intracellular calcium decline increased both with an increase in preload and an increase in extracellular calcium concentration in hypertrophied myocardium but not in sham, while time from peak tension to 50% relaxation did not significantly change between groups under either condition. Also, time for intracellular calcium decline generally decreased with an increase in extracellular calcium for both hypertrophied and sham groups, while time from peak tension to 50% relaxation generally did not significantly change in either group. Combined, these results indicate that the mild hypertrophy significantly changes calcium handling, but does not impact on the rate of force relaxation. This implies that the rate-limiting step in force relaxation is not directly related to calcium transient decline.
Collapse
Affiliation(s)
- Michelle M Monasky
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Carlos A A Torres
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, United States.,Department of Emergency Medicine, Ohio State University, Columbus, OH, United States
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Milani-Nejad N, Chung JH, Canan BD, Fedorov VV, Whitson BA, Kilic A, Mohler PJ, Janssen PML. Increased cross-bridge recruitment contributes to transient increase in force generation beyond maximal capacity in human myocardium. J Mol Cell Cardiol 2017; 114:116-123. [PMID: 29141185 DOI: 10.1016/j.yjmcc.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 11/17/2022]
Abstract
Cross-bridge attachment allows force generation to occur, and rate of tension redevelopment (ktr) is a commonly used index of cross-bridge cycling rate. Tension overshoots have been observed briefly after a slack-restretch ktr maneuver in various species of animal models and humans. In this study, we set out to determine the properties of these overshoots and their possible underlying mechanism. Utilizing human cardiac trabeculae, we have found that tension overshoots are temperature-dependent and that they do not occur at resting states. In addition, we have found that myosin cross-bridge cycle is vital to these overshoots as inhibition of the cycle results in the blunting of the overshoots and the magnitude of the overshoots are dependent on the level of myofilament activation. Lastly, we show that the number of cross-bridges transiently increase during tension overshoots. These findings lead us to conclude that tension overshoots are likely due to a transient enhancement of the recruitment of myosin heads into the cross-bridge cycling, regulated by the myocardium, and with potential physiological significance in determining cardiac output. NEWS AND NOTEWORTHY We show that isolated human myocardium is capable of transiently increasing its maximal force generation capability by increasing cross-bridge recruitment following slack-restretch maneuver. This process can potentially have important implications and significance in cardiac contraction in vivo.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, USA
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, USA
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Bryan A Whitson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, USA
| | - Ahmet Kilic
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
27
|
Mohler PJ, Fowler LA, Abraham WT, Ryan T. The Davis Heart and Lung Research Institute: Building a Sustainable Platform for Translation. Circ Res 2017; 120:1068-1071. [PMID: 28360344 DOI: 10.1161/circresaha.117.310399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter J Mohler
- From The Dorothy M. Davis Heart and Lung Research Institute (P.J.M., L.A.F., W.T.A., T.R.) and Departments of Internal Medicine (P.J.M., W.T.A., T.R.) and Physiology & Cell Biology (P.J.M., W.T.A.), The Ohio State University Heart and Vascular Center, The Ohio State University Wexner Medical Center, Columbus.
| | - Lorri A Fowler
- From The Dorothy M. Davis Heart and Lung Research Institute (P.J.M., L.A.F., W.T.A., T.R.) and Departments of Internal Medicine (P.J.M., W.T.A., T.R.) and Physiology & Cell Biology (P.J.M., W.T.A.), The Ohio State University Heart and Vascular Center, The Ohio State University Wexner Medical Center, Columbus
| | - William T Abraham
- From The Dorothy M. Davis Heart and Lung Research Institute (P.J.M., L.A.F., W.T.A., T.R.) and Departments of Internal Medicine (P.J.M., W.T.A., T.R.) and Physiology & Cell Biology (P.J.M., W.T.A.), The Ohio State University Heart and Vascular Center, The Ohio State University Wexner Medical Center, Columbus
| | - Thomas Ryan
- From The Dorothy M. Davis Heart and Lung Research Institute (P.J.M., L.A.F., W.T.A., T.R.) and Departments of Internal Medicine (P.J.M., W.T.A., T.R.) and Physiology & Cell Biology (P.J.M., W.T.A.), The Ohio State University Heart and Vascular Center, The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
28
|
Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PML. Myofilament Calcium Sensitivity: Role in Regulation of In vivo Cardiac Contraction and Relaxation. Front Physiol 2016; 7:562. [PMID: 28018228 PMCID: PMC5159616 DOI: 10.3389/fphys.2016.00562] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Myofilament calcium sensitivity is an often-used indicator of cardiac muscle function, often assessed in disease states such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). While assessment of calcium sensitivity provides important insights into the mechanical force-generating capability of a muscle at steady-state, the dynamic behavior of the muscle cannot be sufficiently assessed with a force-pCa curve alone. The equilibrium dissociation constant (Kd) of the force-pCa curve depends on the ratio of the apparent calcium association rate constant (kon) and apparent calcium dissociation rate constant (koff) of calcium on TnC and as a stand-alone parameter cannot provide an accurate description of the dynamic contraction and relaxation behavior without the additional quantification of kon or koff, or actually measuring dynamic twitch kinetic parameters in an intact muscle. In this review, we examine the effect of length, frequency, and beta-adrenergic stimulation on myofilament calcium sensitivity and dynamic contraction in the myocardium, the effect of membrane permeabilization/mechanical- or chemical skinning on calcium sensitivity, and the dynamic consequences of various myofilament protein mutations with potential implications in contractile and relaxation behavior.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
29
|
Effects of zacopride, a moderate I K1 channel agonist, on triggered arrhythmia and contractility in human ventricular myocardium. Pharmacol Res 2016; 115:309-318. [PMID: 27914945 DOI: 10.1016/j.phrs.2016.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/13/2016] [Accepted: 11/20/2016] [Indexed: 11/23/2022]
Abstract
Ventricular tachycardia is the leading cause of sudden arrhythmic death in the U.S. Recently, the moderate IK1 channel activator, zacopride, was shown to suppress triggered ventricular tachycardia in rats. Nonetheless, concerns were raised about the possibility of pro-arrhythmic activity after IK1 channel stimulation based on the promising anti-arrhythmic strategy of IK1 blockade in other animal models. Therefore, the goal of the current study was to investigate the ex-vivo effects of zacopride on triggered arrhythmia and contractility in ventricular human myocardium in order to validate data that was solely obtained from animal models. Application of 100nmol/L isoproterenol and 0.5mmol/L caffeine led to triggered arrhythmia in isolated cardiac muscles from non-failing and end-stage failing hearts. However, the occurrence of arrhythmia in muscles of non-failing hearts was markedly higher than those of end-stage failing hearts. Interestingly, zacopride eliminated the ex-vivo triggered arrhythmia in these muscles of non-failing and failing hearts in a concentration-dependent manner, with an effective IC50 in the range of 28-40μmol/L. Conversely, in the absence of isoproterenol/caffeine, zacopride led to a negative inotropic effect in a concentration-dependent manner. Reduced cardiac contraction was clearly observed at high zacopride concentration of 200μmol/L, along with the occurrence of contractile alternans in muscles of non-failing and failing hearts. Zacopride shows promising antiarrhythmic effects against triggered arrhythmia in human ventricular myocardium. However, in the absence of Ca2+ overload/arrhythmia, zacopride, albeit at high concentrations, decreases the force of contraction and increases the likelihood of occurrence of contractile alternans, which may predispose the heart to contractile dysfunction and/or arrhythmia. Overall, our results represent a key step in translating this drug from the benchtop to the bedside in the research area.
Collapse
|
30
|
DeAguero JL, McKown EN, Zhang L, Keirsey J, Fischer EG, Samedi VG, Canan BD, Kilic A, Janssen PML, Delfín DA. Altered protein levels in the isolated extracellular matrix of failing human hearts with dilated cardiomyopathy. Cardiovasc Pathol 2016; 26:12-20. [PMID: 27837684 DOI: 10.1016/j.carpath.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is associated with extensive pathological cardiac remodeling and involves numerous changes in the protein expression profile of the extracellular matrix of the heart. We obtained seven human, end-stage, failing hearts with DCM (DCM-failing) and nine human, nonfailing donor hearts and compared their extracellular matrix protein profiles. We first showed that the DCM-failing hearts had indeed undergone extensive remodeling of the left ventricle myocardium relative to nonfailing hearts. We then isolated the extracellular matrix from a subset of these hearts and performed a proteomic analysis on the isolated matrices. We found that the levels of 26 structural proteins were altered in the DCM-failing isolated cardiac extracellular matrix compared to nonfailing isolated cardiac extracellular matrix. Overall, most of the extracellular matrix proteins showed reduced levels in the DCM-failing hearts, while all of the contractile proteins showed increased levels. There was a mixture of increased and decreased levels of cytoskeletal and nuclear transport proteins. Using immunoprobing, we verified that collagen IV (α2 and α6 isoforms), zyxin, and myomesin protein levels were reduced in the DCM-failing hearts. We expect that these data will add to the understanding of the pathology associated with heart failure with DCM.
Collapse
Affiliation(s)
- Joshua L DeAguero
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Elizabeth N McKown
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Liwen Zhang
- The Ohio State University Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, 460 W. 12th Ave., Room 250 Biomedical Research Tower, Columbus, OH 43210, USA.
| | - Jeremy Keirsey
- The Ohio State University Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, 460 W. 12th Ave., Room 250 Biomedical Research Tower, Columbus, OH 43210, USA.
| | - Edgar G Fischer
- The University of New Mexico School of Medicine, Department of Pathology, MSC08 4640, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Von G Samedi
- The University of New Mexico School of Medicine, Department of Pathology, MSC08 4640, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Benjamin D Canan
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology and the Davis Heart Lung Research Institute, 200 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210.
| | - Ahmet Kilic
- The Ohio State University College of Medicine, Department of Surgery and the Davis Heart Lung Research Institute, Richard M. Ross Heart Hospital, 452 West 10th Ave., Columbus, OH 43210.
| | - Paul M L Janssen
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology and the Davis Heart Lung Research Institute, 200 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210.
| | - Dawn A Delfín
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
31
|
Elson EL, Genin GM. Tissue constructs: platforms for basic research and drug discovery. Interface Focus 2016; 6:20150095. [PMID: 26855763 DOI: 10.1098/rsfs.2015.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review.
Collapse
Affiliation(s)
- Elliot L Elson
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St Louis, MO 63110 , USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science , Washington University , St Louis, MO 63130 , USA
| |
Collapse
|
32
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|