1
|
Inoue K, Soya H, Murakumo K, Araki Y, Hiraga T, Soya S, Okamoto M. Setting Treadmill Intensity for Rat Aerobic Training Using Lactate and Gas Exchange Thresholds. Med Sci Sports Exerc 2025; 57:434-446. [PMID: 39350357 DOI: 10.1249/mss.0000000000003562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
PURPOSE To open up new horizons of translational research, we studied the lactate threshold (LT)-dependent physiological responses and adaptations to exercise in rats, highlighting the importance of intensity-specific studies for optimizing exercise prescriptions. LT is physiologically related to the noninvasive gas exchange threshold (GET), and both thresholds are moderate-heavy-intensity boundary indices in determining an effective intensity of aerobic training in humans. Although their practical utility is presumed to extend to rats, the actual existence of GET, the thresholds' relations to maximal oxygen consumption (V̇O 2max ), and whether aerobic adaptations by training differ around the LT intensity remain uncertain. METHODS This study sought to identify the GET using our previously established rat LT model by combining the use of a metabolic chamber and the V-slope method, and to confirm the thresholds' relations to V̇O 2max . We investigated changes in the thresholds and V̇O 2max following 6 wk of endurance training at below or above LT intensity. RESULTS GET and LT were significantly correlated and agreed with high precision, although with a fixed bias. Untrained rats exhibited GET and LT at 56% and 52% of their V̇O 2max , respectively. Endurance training at supra-, but not below-, the LT intensity significantly improved V̇O 2max and both thresholds; however, their %V̇O 2max remained unaltered. CONCLUSIONS GET in rats is identifiable as a threshold associated with LT using the V-slope method. Furthermore, both thresholds can serve as moderate-heavy-intensity boundary indices for the aerobic training of rats. This study advances our understanding of exercise intensity regulation in rats, thereby contributing to the development of a more nuanced and effective model for exercise prescription, with implications for human health and fitness.
Collapse
Affiliation(s)
| | | | - Kei Murakumo
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | - Yusuke Araki
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | - Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | | | | |
Collapse
|
2
|
Turkel I, Kubat GB, Fatsa T, Acet O, Ozerklig B, Yazgan B, Simsek G, Singh KK, Kosar SN. Acute treadmill exercise induces mitochondrial unfolded protein response in skeletal muscle of male rats. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149532. [PMID: 39675514 DOI: 10.1016/j.bbabio.2024.149532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPRmt), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPRmt, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPRmt signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPRmt markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPRmt markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPRmt signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ozgu Acet
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Canada
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Guzzoni V, Emerich de Abreu ICM, Bertagnolli M, Mendes RH, Belló-Klein A, Casarini DE, Flues K, Cândido GO, Paulini J, De Angelis K, Marcondes FK, Irigoyen MC, Sousa Cunha T. Aerobic training increases renal antioxidant defence and reduces angiotensin II levels, mitigating the high mortality in SHR-STZ model. Arch Physiol Biochem 2024; 130:992-1004. [PMID: 39016681 DOI: 10.1080/13813455.2024.2377381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
OBJECTVE The purpose of the research was to investigate the effects of aerobic training on renal function, oxidative stress, intrarenal renin-angiotensin system, and mortality of hypertensive and diabetic (SHR-STZ) rats. MATERIALS AND METHODS Blood pressure, creatinine, urea levels, urinary glucose, urine volume, and protein excretion were reduced in trained SHR-STZ rats. RESULTS Aerobic training not only attenuated oxidative stress but also elevated the activity of antioxidant enzymes in the kid'ney of SHR-STZ rats. Training increased intrarenal levels of angiotensin-converting enzymes (ACE and ACE2) as well as the neprilysin (NEP) activity, along with decreased intrarenal angiotensin II (Ang II) levels. Aerobic training significantly improved the survival of STZ-SHR rats. CONCLUSION The protective role of aerobic training was associated with improvements in the renal antioxidative capacity, reduced urinary protein excretion along with reduced intrarenal Ang II and increased NEP activity. These findings might reflect a better survival under the combined pathological conditions, hypertension, and diabetes.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Roberta Hack Mendes
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karin Flues
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Geórgia Orsi Cândido
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Janaína Paulini
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Kátia De Angelis
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP - UNICAMP), Piracicaba, Brazil
| | - Maria Cláudia Irigoyen
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
4
|
Wang Y, Li Y, Chen C, Zhang H, Liu W, Wu C, Chen H, Li R, Wang J, Shi Y, Wang S, Gao C. Moderate-intensity aerobic exercise inhibits cell pyroptosis to improve myocardial ischemia-reperfusion injury. Mol Biol Rep 2024; 52:5. [PMID: 39570295 DOI: 10.1007/s11033-024-10065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MI/RI) significantly impacts the patients with acute myocardial infarction (AMI), with the NLRP3-mediated necrosis exacerbates the pathological progression of myocardial infarction. Exercise, recognized as a crucial approach for both disease prevention and treatment, is widely utilized in clinical practice worldwide and has demonstrated broad effectiveness in cardiovascular disease (CVD) prevention. PURPOSE To explore the cardio protective effect of exercise preconditioning and the mechanism by which exercise modulation of NLRP3 improves myocardial ischemia and reperfusion injury. METHODS AND RESULTS In this study, C57BL/6 N mice were employed to establish an exercise preconditioning model and a MI/RI model. The exercise intervention involved moderate-intensity aerobic exercise on a treadmill (50-70% VO2max) for small animals. Our research findings indicate that moderate-intensity aerobic exercise intervention improved cardiac function, reduced myocardial injury and inflammatory response, decreased myocardial infarction area and degree of cell apoptosis in mice compared to those raised under conventional conditions. Additionally, the expression of NLRP3 in the myocardial tissue of mice with MI/RI was reduced after exercise intervention. Moreover, exercise inhibited the activation of apoptosis related proteins such as Caspase-1 and GSDMD, while reducing the levels of inflammatory factors such as IL-1β and IL-18. CONCLUSIONS This study found that moderate-intensity aerobic exercise can reduce the inflammatory response, reduce the degree of cell pyroptosis, reduce myocardial ischemia and reperfusion injury, and achieve endogenous protective effects on the myocardium.
Collapse
Affiliation(s)
- Yu Wang
- Henan University People's Hospital, Zhengzhou, China
- School of Physical Education, Henan University, Zhengzhou, China
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yushan Li
- School of Physical Education, Henan University, Zhengzhou, China
| | - Chaofan Chen
- School of Physical Education, Henan University, Zhengzhou, China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Schocolate of Medicine, Henan University, Kaifeng, China
| | - Weili Liu
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Henan Provincial Center for Cardiovascular Epidemiology, Zhengzhou, China
| | - Chao Wu
- School of Physical Education, Henan University, Zhengzhou, China
| | - Haonan Chen
- School of Physical Education, Henan University, Zhengzhou, China
| | - Ran Li
- School of Physical Education, Henan University, Zhengzhou, China
| | - Jinghan Wang
- School of Physical Education, Henan University, Zhengzhou, China
| | - Yingchao Shi
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Shengfang Wang
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Henan Key Lab for Prevention and Control of Coronary Heart Disease, Zhengzhou, China
| | - Chuanyu Gao
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.
- Henan Provincial Center for Cardiovascular Epidemiology, Zhengzhou, China.
- Henan Key Lab for Prevention and Control of Coronary Heart Disease, Zhengzhou, China.
| |
Collapse
|
5
|
Li Y, Luo M, Chang Q, Cao S, Wang Y, Chen Z, Yang J, Liu G. High-intensity interval training and moderate-intensity continuous training alleviate vascular dysfunction in spontaneously hypertensive rats through the inhibition of pyroptosis. Heliyon 2024; 10:e39505. [PMID: 39559220 PMCID: PMC11570304 DOI: 10.1016/j.heliyon.2024.e39505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Evidence-based guidelines suggest that High-Intensity Interval Training (HIIT) is more beneficial than aerobic exercise for patients with cardiovascular disease, but the differences in underlying pathophysiological mechanisms require further confirmation. The comparison between HIIT and Moderate-Intensity Continuous Training (MICT) in regulating vascular dysfunction in spontaneously hypertensive rats (SHR), along with their underlying mechanisms, has not been previously reported. The purpose of this study is to provide an experimental basis for exercise prescription therapy in hypertensive patients. In this study, six-week-old male SHR were randomly assigned to a HIIT group, MICT group, or sedentary group. Wistar Kyoto rats (WKY) of the same age were used as the control group. The weight, heart rate, and blood pressure of the rats were monitored weekly throughout twelve weeks of treadmill training. At the end of the protocol, serum and aortic vascular tissues were collected for further vascular function tests and molecular and biochemical analyses. The results show that MICT is more favorable for weight control than HIIT, while both forms of exercise offer equal protection against hypertension. However, MICT demonstrates a greater benefit in preserving vascular morphology, whereas HIIT is more effective in reducing oxidative stress. Both HIIT and MICT ameliorate vascular dysfunction in SHR by suppressing nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3)-induced pyroptosis. The superior effect of HIIT on vascular dysfunction may be related to the inhibition of oxidative stress injury through AMPKα-SIRT1 activation. This study provides insight into the dose-effect relationship of exercise for cardiovascular health and offers foundational evidence for the development of exercise prescription therapies.
Collapse
Affiliation(s)
- Yongjian Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chang
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyuan Cao
- The College of Basic Medicine,Chongqing Medical University, Chongqing, China
| | - Yang Wang
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Jitang Yang
- College of Foreign Languages, Chongqing Medical University, Chongqing China
| | - Guochun Liu
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Li M, McKeon BA, Gu S, Prasad RR, Zhang H, Kumar S, Riddle S, Irwin DC, Stenmark KR. Honokiol and Nicotinamide Adenine Dinucleotide Improve Exercise Endurance in Pulmonary Hypertensive Rats Through Increasing SIRT3 Function in Skeletal Muscle. Int J Mol Sci 2024; 25:11600. [PMID: 39519152 PMCID: PMC11545838 DOI: 10.3390/ijms252111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary hypertension (PH) significantly impairs exercise capacity and the quality of life in patients, which is influenced by dysfunctions in multiple organ systems, including the right ventricle, lungs, and skeletal muscles. Recent research has identified metabolic reprogramming and mitochondrial dysfunction as contributing factors to reduced exercise tolerance in PH patients. In this study, we investigated the therapeutic potential of enhancing mitochondrial function through the activation of the mitochondrial deacetylase SIRT3, using SIRT3 activator Honokiol combined with the SIRT3 co-factor nicotinamide adenine dinucleotide (NAD), in a Sugen/Hypoxia-induced PH rat model. Our results show that Sugen/Hypoxia-induced PH significantly impairs RV, lung, and skeletal muscle function, leading to reduced exercise capacity. Treatment with Honokiol and NAD notably improved exercise endurance, primarily by restoring SIRT3 levels in skeletal muscles, reducing proteolysis and atrophy in the gastrocnemius, and enhancing mitochondrial complex I levels in the soleus. These effects were independent of changes in cardiopulmonary hemodynamics. We concluded that targeting skeletal muscle dysfunction may be a promising approach to improving exercise capacity and overall quality of life in PH patients.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Tanguy S, Cambier A, Fontana-Pires L, Flenet T, Eynard C, Fontecave-Jalon J, Gumery PY, Boucher F. Jacketed telemetry in rats: a novel non-invasive method for cardiorespiratory phenotyping during treadmill exercise. Lab Anim 2024:236772241259857. [PMID: 39344488 DOI: 10.1177/00236772241259857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of alternative methods for monitoring cardiorespiratory function without restraint or surgical implantation is attracting growing interest for both ethical and scientific reasons. For this purpose, a new non-invasive jacketed telemetry tool consisting in a radio device maintained in a jacket worn by the animal was previously developed to improve cardiorespiratory monitoring. It allows simultaneous monitoring of cardiac activity by surface electrocardiagram, respiratory function by respiratory inductive plethysmography, and locomotor activity by accelerometry. However, this tool has only been validated under conditions of low/intermediate activity levels or in anesthetized animals. This study aimed to evaluate the feasibility of using this system in the challenging conditions of an exertion protocol. Male Wistar rats (n = 10, 8-9 weeks old) were subjected to an incremental treadmill exercise protocol including speed levels from 5 to 40 cm s-1 separated by 30-s breaks. Heart rate (HR) and minute ventilation (assessed by minute volume; MV) were continuously monitored. At the end of each running level and during the 30-s breaks, HR and MV showed a significant increase compared to resting values. They returned to the baseline within 60 min of post-exercise recovery. Overall, our results demonstrated (i) the ability of the animal to run while wearing the device and (ii) the ability of the device to reliably monitor cardiorespiratory adaptation to treadmill exercise despite significant mechanical disturbances. In conclusion, this study highlights the possibility of non-invasively monitoring cardiorespiratory functional variables that were previously unattainable under conditions of high activity in freely moving animals.
Collapse
Affiliation(s)
- Stéphane Tanguy
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, T IMC, 38000 Grenoble, France
| | | | - Leandro Fontana-Pires
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, T IMC, 38000 Grenoble, France
- Etisense SAS, Lyon, France
| | | | | | - Julie Fontecave-Jalon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, T IMC, 38000 Grenoble, France
| | - Pierre-Yves Gumery
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, T IMC, 38000 Grenoble, France
| | - François Boucher
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, T IMC, 38000 Grenoble, France
| |
Collapse
|
8
|
Negrini KA, Lin D, Shah D, Wu H, Wehrung KM, Thompson HJ, Whitcomb T, Sturgeon KM. Role of Oncostatin M in Exercise-Induced Breast Cancer Prevention. Cancers (Basel) 2024; 16:2716. [PMID: 39123444 PMCID: PMC11311664 DOI: 10.3390/cancers16152716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Moderate-to-vigorous-intensity physical activity decreases the risk of breast cancer. The muscle-derived cytokine (myokine), oncostatin M (OSM), has been shown to decrease breast cancer cell proliferation. We hypothesized that OSM is involved in physical activity-induced breast cancer prevention, and that OSM antibody (Anti-OSM) administration would mitigate the effect of physical activity in a rat model of mammary carcinoma. Female Sprague Dawley rats were injected with 50 mg/kg N-methyl-N-nitrosourea to induce mammary carcinogenesis. During the 20-week study, rats were exercise trained (EX) or remained sedentary (SED). Additional groups were treated with Anti-OSM antibody (SED + Anti-OSM and EX + Anti-OSM) to explore the impact of OSM blockade on tumor latency. Exercise training consisted of treadmill acclimation and progressive increases in session duration, speed, and grade, until reaching 30 min/day, 20 m/min at 15% incline. Experimentally naïve, age-matched, female rats also completed an acute exercise test (AET) with time course blood draws to evaluate OSM plasma concentrations. Relative tumor-free survival time was significantly longer in EX animals (1.36 ± 0.39) compared to SED animals (1.00 ± 0.17; p = 0.009), SED + Anti-OSM animals (0.90 ± 0.23; p = 0.019), and EX + Anti-OSM animals (0.93 ± 0.74; p = 0.004). There were no significant differences in relative tumor latency between SED, SED + Anti-OSM, or EX + Anti-OSM animals. Following the AET, OSM plasma levels trended higher compared to baseline OSM levels (p = 0.080). In conclusion, we observed that exercise-induced delay of mammary tumor development was mitigated through Anti-OSM administration. Thus, future studies of the OSM mechanism are required to lay the groundwork for developing novel chemo-prevention strategies in women who are unable or unwilling to exercise.
Collapse
Affiliation(s)
- Kara A. Negrini
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Dan Lin
- Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA (K.M.S.)
| | - Dhruvil Shah
- Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Hongke Wu
- Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA (K.M.S.)
| | - Katherine M. Wehrung
- Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Henry J. Thompson
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tiffany Whitcomb
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Kathleen M. Sturgeon
- Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA (K.M.S.)
| |
Collapse
|
9
|
Dong W, Luo M, Li Y, Chen X, Li L, Chang Q. MICT ameliorates hypertensive nephropathy by inhibiting TLR4/NF-κB pathway and down-regulating NLRC4 inflammasome. PLoS One 2024; 19:e0306137. [PMID: 39052650 PMCID: PMC11271930 DOI: 10.1371/journal.pone.0306137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hypertensive nephropathy (HN) is one of the main causes of end-stage renal disease (ESRD), leading to serious morbidity and mortality in hypertensive patients. However, existing treatment for hypertensive nephropathy are still very limited. It has been demonstrated that aerobic exercise has beneficial effects on the treatment of hypertension. However, the underlying mechanisms of exercise in HN remain unclear. METHODS The spontaneously hypertensive rats (SHR) were trained for 8 weeks on a treadmill with different exercise prescriptions. We detected the effects of moderate intensity continuous training (MICT) and high intensity interval training (HIIT) on inflammatory response, renal function, and renal fibrosis in SHR. We further investigated the relationship between TLR4 and the NLRC4 inflammasome in vitro HN model. RESULTS MICT improved renal fibrosis and renal injury, attenuating the inflammatory response by inhibiting TLR4/NF-κB pathway and the activation of NLRC4 inflammasome. However, these changes were not observed in the HIIT group. Additionally, repression of TLR4/NF-κB pathway by TAK-242 inhibited activation of NLRC4 inflammasome and alleviated the fibrosis in Ang II-induced HK-2 cells. CONCLUSION MICT ameliorated renal damage, inflammatory response, and renal fibrosis via repressing TLR4/NF-κB pathway and the activation of NLRC4 inflammasome. This study might provide new references for exercise prescriptions of hypertension.
Collapse
Affiliation(s)
- Wenyu Dong
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yun Li
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Xinhua Chen
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Lingang Li
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Qing Chang
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
10
|
Schenk S, Sagendorf TJ, Many GM, Lira AK, de Sousa LGO, Bae D, Cicha M, Kramer KS, Muehlbauer M, Hevener AL, Rector RS, Thyfault JP, Williams JP, Goodyear LJ, Esser KA, Newgard CB, Bodine SC. Physiological Adaptations to Progressive Endurance Exercise Training in Adult and Aged Rats: Insights from the Molecular Transducers of Physical Activity Consortium (MoTrPAC). FUNCTION 2024; 5:zqae014. [PMID: 38984994 PMCID: PMC11245678 DOI: 10.1093/function/zqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 07/11/2024] Open
Abstract
While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.
Collapse
Affiliation(s)
- Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gina M Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ana K Lira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luis G O de Sousa
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dam Bae
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Cicha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle S Kramer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - R Scott Rector
- Research Service,
Harry S. Truman Memorial Veterans’ Medical Center, Columbia, MO 65201, USA
- NextGen Precision Health,
University of Missouri, Columbia, MO 65201, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John P Williams
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD 20898, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism,
Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Sue C Bodine
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Banasadegh S, Shahrbanian S, Gharakhanlou R, Kordi MR, Mohammad Soltani B. Enhancing brain health: Swimming-induced BDNF release and epigenetic influence in MS female mouse models. J Ethn Subst Abuse 2024:1-17. [PMID: 38900673 DOI: 10.1080/15332640.2024.2365230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multiple sclerosis (MS) is a condition characterized by inflammation in the central nervous system (CNS), impacting sensory, motor, and cognitive abilities. Globally, around three million individuals are affected by MS, with up to 97,000 cases in Iran attributed to genetic predispositions along with various environmental factors like smoking. Cognitive impairment affects a significant portion of patients, ranging from 45% to 70%. This study investigates the impact of regular aerobic swimming exercise for four weeks, mild cognitive impairment induced by encephalomyelitis, and their combination on the expression of microRNA-142-3p and its correlation with the release of brain-derived neurotrophic factor (BDNF) in relation to spatial memory. Twenty-one C57BL/6 mice were divided into three groups. RT-PCR was used for microRNA expression analysis, and BDNF levels were assessed via western blotting. Clinical scores and animal weights were monitored daily. EAE induction led to an increase in microRNA-142-3p expression and a decrease in BDNF levels compared to the control group. Exercise inversed them significantly, and improved spatial memory. Our findings indicate that engaging in regular swimming exercise can counteract the up-regulation of miR-142-3p in brain tissue, which likely contributes to mild cognitive impairment induced by MS. Additionally, the increase in BDNF following exercise appears to be associated with miR-142-3p and the enhancement of cognitive function. Thus, the therapeutic benefits of exercise, particularly in releasing BDNF to improve cognitive function in MS patients, warrant consideration. Lifestyle modifications have the potential to effectively modulate environmental influences and ethnicity, underscoring their significance in MS management.
Collapse
|
12
|
Favere K, Van Hecke M, Eens S, Bosman M, Delputte PL, De Sutter J, Fransen E, Roskams T, Guns PJ, Heidbuchel H. The influence of endurance exercise training on myocardial fibrosis and arrhythmogenesis in a coxsackievirus B3 myocarditis mouse model. Sci Rep 2024; 14:12653. [PMID: 38825590 PMCID: PMC11144711 DOI: 10.1038/s41598-024-61874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium.
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610, Antwerp, Belgium.
- Department of Cardiology, Antwerp University Hospital, 2650, Antwerp, Belgium.
- Department of Internal Medicine, Ghent University, 9000, Ghent, Belgium.
| | - Manon Van Hecke
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000, Leuven, Belgium
| | - Sander Eens
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Antwerp, Belgium
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, 9000, Ghent, Belgium
| | - Erik Fransen
- Centre for Medical Genetics, University of Antwerp, 2610, Antwerp, Belgium
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000, Leuven, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, 2650, Antwerp, Belgium
| |
Collapse
|
13
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
14
|
Turkel I, Tahtalioglu S, Celik E, Yazgan B, Kubat GB, Ozerklig B, Kosar SN. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats. Mol Biol Rep 2024; 51:667. [PMID: 38780696 DOI: 10.1007/s11033-024-09637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1β, Tnf-α, and Tgfβ1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1β, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfβ1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfβ1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Sema Tahtalioglu
- Department of Biotechnology, Institute of Sciences, Amasya University, Amasya, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
George SA, Trampel KA, Brunner K, Efimov IR. Moderate Endurance Exercise Increases Arrhythmia Susceptibility and Modulates Cardiac Structure and Function in a Sexually Dimorphic Manner. J Am Heart Assoc 2024; 13:e033317. [PMID: 38686869 PMCID: PMC11179941 DOI: 10.1161/jaha.123.033317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Although moderate endurance exercise has been reported to improve cardiovascular health, its effects on cardiac structure and function are not fully characterized, especially with respect to sexual dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice. METHODS AND RESULTS C57BL/6J mice of both sexes were run on a treadmill for 6 weeks. ECG and echocardiography were performed every 2 weeks. After 6 weeks of exercise, mice were euthanized, and triple parametric optical mapping was performed on Langendorff perfused hearts to assess cardiac electrophysiology. Arrhythmia inducibility was tested by programmed electrical stimulation. Left ventricular tissue was fixed, and RNA sequencing was performed to determine exercise-induced transcriptional changes. Exercise-induced left ventricular dilatation was observed in female mice alone, as evidenced by increased left ventricular diameter and reduced left ventricular wall thickness. Increased cardiac output was also observed in female exercised mice but not males. Optical mapping revealed further sexual dimorphism in exercise-induced modulation of cardiac electrophysiology. In female mice, exercise prolonged action potential duration and reduced voltage-calcium influx delay. In male mice, exercise reduced the calcium decay constant, suggesting faster calcium reuptake. Exercise increased arrhythmia inducibility in both male and female mice; however, arrhythmia duration was increased only in females. Lastly, exercise-induced transcriptional changes were sex dependent: females and males exhibited the most significant changes in contractile versus metabolism-related genes, respectively. CONCLUSIONS Our data suggest that moderate endurance exercise can significantly alter multiple aspects of cardiac physiology in a sex-dependent manner. Although some of these effects are beneficial, like improved cardiac mechanical function, others are potentially proarrhythmic.
Collapse
Affiliation(s)
- Sharon A. George
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
| | - Katy Anne Trampel
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
| | - Kelsey Brunner
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
| | - Igor R. Efimov
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
- Department of MedicineNorthwestern UniversityChicagoIL
| |
Collapse
|
16
|
Herrera JJ, McAllister CM, Szczesniak D, Goddard R, Day SM. High-intensity exercise training using a rotarod instrument (RotaHIIT) significantly improves exercise capacity in mice. Physiol Rep 2024; 12:e15997. [PMID: 38697937 PMCID: PMC11065697 DOI: 10.14814/phy2.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Voluntary or forced exercise training in mice is used to assess functional capacity as well as potential disease-modifying effects of exercise over a range of cardiovascular disease phenotypes. Compared to voluntary wheel running, forced exercise training enables precise control of exercise workload and volume, and results in superior changes in cardiovascular performance. However, the use of a shock grid with treadmill-based training is associated with stress and risk of injury, and declining compliance with longer periods of training time for many mouse strains. With these limitations in mind, we designed a novel, high-intensity interval training modality (HIIT) for mice that is carried out on a rotarod. Abbreviated as RotaHIIT, this protocol establishes interval workload intensities that are not time or resource intensive, maintains excellent training compliance over time, and results in improved exercise capacity independent of sex when measured by treadmill graded exercise testing (GXT) and rotarod specific acceleration and endurance testing. This protocol may therefore be useful and easily implemented for a broad range of research investigations. As RotaHIIT training was not associated cardiac structural or functional changes, or changes in oxidative capacity in cardiac or skeletal muscle tissue, further studies will be needed to define the physiological adaptations and molecular transducers that are driving the training effect of this exercise modality.
Collapse
Affiliation(s)
- Jonathan J. Herrera
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Medical Scientist Training ProgramUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Christopher M. McAllister
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Danielle Szczesniak
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Rose‐Carmel Goddard
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sharlene M. Day
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Mouskeftara T, Deda O, Papadopoulos G, Chatzigeorgiou A, Gika H. Lipidomic Analysis of Liver and Adipose Tissue in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice Model Reveals Alterations in Lipid Metabolism by Weight Loss and Aerobic Exercise. Molecules 2024; 29:1494. [PMID: 38611773 PMCID: PMC11013466 DOI: 10.3390/molecules29071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Detailed investigation of the lipidome remodeling upon normal weight conditions, obesity, or weight loss, as well as the influence of physical activity, can help to understand the mechanisms underlying dyslipidemia in metabolic conditions correlated to the emergence and progression of non-alcoholic fatty liver disease (NAFLD). C57BL/6 male mice were fed a normal diet (ND) or a high-fat diet (HFD) for 20 weeks. Subgroups within the high-fat diet (HFD) group underwent different interventions: some engaged in exercise (HFDex), others were subjected to weight loss (WL) by changing from the HFD to ND, and some underwent a combination of weight loss and exercise (WLex) during the final 8 weeks of the 20-week feeding period. To support our understanding, not only tissue-specific lipid remodeling mechanisms but also the cross-talk between different tissues and their impact on the systemic regulation of lipid metabolism are essential. Exercise and weight loss-induced specific adaptations in the liver and visceral adipose tissue lipidomes of mice were explored by the UPLC-TOF-MS/MS untargeted lipidomics methodology. Lipidomic signatures of ND and HFD-fed mice undergoing weight loss were compared with animals with and without physical exercise. Several lipid classes were identified as contributing factors in the discrimination of the groups by multivariate analysis models, such as glycerolipids, glycerophospholipids, sphingolipids, and fatty acids, with respect to liver samples, whereas triglycerides were the only lipid class identified in visceral adipose tissue. Lipids found to be dysregulated in HFD animals are related to well-established pathways involved in the biosynthesis of PC, PE, and TG metabolism. These show a reversing trend back to basic levels of ND when animals change to a normal diet after 12 weeks, whereas the impact of exercise, though in some cases it slightly enhances the reversing trend, is not clear.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (G.P.); (A.C.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (G.P.); (A.C.)
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
18
|
Yu S, Liu L, Li M, He S, Hu Y, Sun S, Yan Y, Zhao F, Cheng X, Li J, Gao F, Liu Y, Zhang X. Swimming behavior indicates stress and adaptations to exercise. Front Physiol 2024; 15:1357120. [PMID: 38468702 PMCID: PMC10925659 DOI: 10.3389/fphys.2024.1357120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: Behaviors of swimming rodents are not uniform, exhibiting large variations, which may underlie the individual differences in swimming exercise-induced benefits. The study aimed to monitor individualized swimming behavior and evaluate its biological significance. Methods: A swimming tank which can monitor individualized rodent swimming behavior during exercise was established. A total of 45 mice were subjected to swimming training for 1 month (1 h per day) and the swimming behaviors of each mouse were recorded. Results: The swimming behaviors of mice displayed considerable variations in aspects of distance, velocity, and area preference. For example, nearly one-third of mice preferred to swim in central area and most of the mice exhibited an even area distribution. Long-term exercise training improved cardiac systolic function and decreased blood pressure in mice, but hardly changed swimming behaviors. Analyses of the relationship between swimming behavior and cardiovascular adaptations to exercise training revealed that swimming behavior indicated the biological effects of swimming training. Specifically, mice which preferred swimming at the central zone or were trainable in behavior during 1-month training exhibited better outcomes in cardiac function and blood pressure post long-term exercise. Mechanistically, a centralized swimming behavior indicated a smaller stress during exercise, as evidenced by a milder activation of hypothalamic-pituitary-adrenal axis. Discussion: These results suggest that swimming behavior during training indicates individualized adaptations to long-term exercise, and highlight a biological significance of swimming behavior monitoring in animal studies.
Collapse
Affiliation(s)
- Sen Yu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lantao Liu
- Department of Medical Electronics, School of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Min Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Siyan He
- Chengdu Techman Software Co., Ltd., Chengdu, China
| | - Yang Hu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Shichao Sun
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yizhen Yan
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Fangfang Zhao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | | | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yong Liu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Department of Rehabilitation, Air Force Medical Center, Beijing, China
| |
Collapse
|
19
|
Cahuê FLC, Maia PDDS, de Brito LR, da Silva VPF, Gomes DV, Pierucci APTR. Enhancing satiety and aerobic performance with beer microparticles-based non-alcoholic drinks: exploring dose and duration effects. Front Nutr 2024; 10:1225189. [PMID: 38235440 PMCID: PMC10791988 DOI: 10.3389/fnut.2023.1225189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Beer is an alcoholic beverage, rich in carbohydrates, amino acids, vitamins and polyphenols, consumed worldwide as a social drink. There is a large number of beer styles which depends on the ingredients and brewing process. The consumption of beer as a fluid replacement after sport practice is a current discussion in literature. A non-alcoholic pale-ale microparticles-based beverage (PABM) have been previously designed, however, its phenolic profile and ergogenic effect remain unknown. Thus, this study aims to verify the ergogenic potential (increase of running performance) of PAMB in male Wistar rats. Beer microparticles were obtained by spray drying and beverages with different concentrations were prepared in water. Wistar rats were subjected to a training protocol on a treadmill (5 times/week, 60 min/day) and daily intake of PABM (20 mg.kg-1 or 200 mg.kg-1) or water by gavage. Chlorogenic acid was found to be the main component in the phenolic profile (12.28 mg·g-1) of PABM analyzed with high-performance liquid chromatography and mass spectrometry. An increase in the aerobic performance was observed after 4 weeks in the 20 mg.kg-1 group, but the same dose after 8 weeks and a higher dose (200 mg.kg-1) blunted this effect. A higher dose was also related to decrease in food intake. These data suggest that PABM can improve satiety and aerobic performance, but its effect depends on the dose and time of consumption.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Paola T. R. Pierucci
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Otis C, Bouet E, Keita-Alassane S, Frezier M, Delsart A, Guillot M, Bédard A, Pelletier JP, Martel-Pelletier J, Lussier B, Beaudry F, Troncy E. Face and Predictive Validity of MI-RAT ( Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. Int J Mol Sci 2023; 24:16341. [PMID: 38003530 PMCID: PMC10671647 DOI: 10.3390/ijms242216341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Emilie Bouet
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Sokhna Keita-Alassane
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Marilyn Frezier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Aliénor Delsart
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 1C1, Canada;
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Bertrand Lussier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| |
Collapse
|
21
|
Tajima Y, Seow CY, Dong SJ, Tsutsui M, Cheung CY, Welch I, Mowbray L, Imlach B, Hildebrandt R, Apperloo K, Ryomoto B, Goodacre E, Myrdal C, Machan L, Wolff K, Elizur E, Vasilescu DM, Sin DD. Development of a unilateral porcine emphysema model induced by porcine pancreatic elastase. J Appl Physiol (1985) 2023; 135:1001-1011. [PMID: 37767558 DOI: 10.1152/japplphysiol.00801.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Emphysema is one of the pathological hallmarks of chronic obstructive pulmonary disease. We have recently reported that radiofrequency therapy improves lung function in rodent models of emphysema. However, preclinical data using large animals is necessary for clinical translation. Here, we describe the work performed to establish a unilateral porcine emphysema model. Different doses of porcine pancreatic elastase (PPE) were instilled into the left lung of 10 Yucatan pigs. Three additional pigs were used as controls. Six weeks after instillation, lungs were harvested. Lung compliance was measured by a water displacement method and plethysmography. Systematic uniform random sampling of the left and right lungs was performed independently to measure alveolar surface area using micro-computed tomography (micro-CT) and histology. In pigs instilled with 725-750 U/kg of PPE (PPE group, n = 6), the compliance of the left lung was significantly higher by 37.6% than that of the right lung (P = 0.03) using the water displacement method. With plethysmography, the volume of the left lung was significantly larger than that of the right lung at 3, 5, and 10 cmH2O. Measurements from either micro-CT or histology images showed a significant decrease in alveolar surface area by 14.2% or 14.5% (P = 0.031) in the left lung compared with the right lung of the PPE group. A unilateral model for mild emphysema in Yucatan pigs has been established, which can now be used for evaluating novel therapeutics and interventional strategies.NEW & NOTEWORTHY For clinical translation, preclinical data using large animal models is necessary. However, papers describing an emphysema model in pigs, which are anatomically and physiologically similar to humans, are lacking. Here, we report success in creating a unilateral mild-emphysema model in pigs with only one single dose of porcine pancreatic elastase. This model will be useful in bringing novel technologies and therapies from small animals to humans with emphysema.
Collapse
Affiliation(s)
- Yuki Tajima
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shou-Jin Dong
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Respiratory Department, Chengdu First People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mai Tsutsui
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chung Y Cheung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Welch
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Mowbray
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brittany Imlach
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rhonda Hildebrandt
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kayla Apperloo
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Ryomoto
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Goodacre
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Corey Myrdal
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Lindsay Machan
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Kim Wolff
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Eran Elizur
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Dragoș M Vasilescu
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
23
|
Rosenkranz SC, Ploughman M, Hvid LG, Zimmer P, Erickson K, Stellmann JP, Centonze D, Friese MA. The MoxFo initiative-Mechanisms of action: Biomarkers in multiple sclerosis exercise studies. Mult Scler 2023; 29:1569-1577. [PMID: 37880953 PMCID: PMC10637103 DOI: 10.1177/13524585231204453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2023] [Accepted: 02/15/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND As exercise exerts neurobiological and immunomodulatory effects, it might also act as a disease-modifying intervention in MS. However, a clear mechanistic link between exercise and disease-modifying effects in MS has yet to be established. OBJECTIVE Establish recommendations for future mechanistic exercise studies in MS. METHODS In regular meetings, members of the mechanisms of action group within the MoXFo (Moving eXercise research Forward in MS) initiative evaluated gaps of knowledge and discussed unmet needs in mechanistic MS research. RESULTS We concluded that biomarkers assessed in translational studies in humans and animals are essential to decipher the underlying mechanisms of exercise in MS. Consequently, we defined clear definitions of different types of biomarkers examined in MS exercise studies and operationalized their use to align with the research question and optimal testing time points. Furthermore, we provide key considerations to improve the rigor of translational studies and defined minimal reporting criteria for animal studies. CONCLUSION The resulting recommendations are intended to improve the quality of future mechanistic exercise studies in MS and consequently lead to a better understanding of therapeutic approaches.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Lars G Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- The Danish MS Hospitals in Ry and Haslev, Haslev, Denmark
| | - P. Zimmer
- Division of Performance and Health (Sports Medicine) Institute for Sport and Sport Science TU Dortmund University, Germany
| | - K. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- Aix Marseille University, CNRS, CRMBM, UMR, Marseille, France
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Orsi JB, Araujo LS, Scariot PPM, Polisel EEC, Cardoso LO, Gobatto CA, Manchado-Gobatto FB. Critical Velocity, Maximal Lactate Steady State, and Muscle MCT1 and MCT4 after Exhaustive Running in Mice. Int J Mol Sci 2023; 24:15753. [PMID: 37958736 PMCID: PMC10648804 DOI: 10.3390/ijms242115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Although the critical velocity (CV) protocol has been used to determine the aerobic capacity in rodents, there is a lack of studies that compare CV with maximal lactate steady state intensity (iMLSS) in mice. As a consequence, their physiological and molecular responses after exercise until exhaustion at CV intensity remain unclear. Thus, we aimed to compare and correlate CV with iMLSS in running mice, following different mathematical models for CV estimation. We also evaluated their physiological responses and muscle MCT1 and MCT4 after running until exhaustion at CV. Thirty C57BL/6J mice were divided into two groups (exercised-E and control-C). Group E was submitted to a CV protocol (4 days), using linear (lin1 and lin2) and hyperbolic (hyp) mathematical models to determine the distance, velocity, and time to exhaustion (tlim) of each predictive CV trial, followed by an MLSS protocol. After a running effort until exhaustion at CV intensity, the mice were immediately euthanized, while group C was euthanized at rest. No differences were observed between iMLSS (21.1 ± 1.1 m.min-1) and CV estimated by lin1 (21.0 ± 0.9 m.min-1, p = 0.415), lin2 (21.3 ± 0.9 m.min-1, p = 0.209), and hyp (20.6 ± 0.9 m.min-1, p = 0.914). According to the results, CV was significantly correlated with iMLSS. After running until exhaustion at CV (tlim = 28.4 ± 8,29 min), group E showed lower concentrations of hepatic and gluteal glycogen than group C, but no difference in the content of MCT1 (p = 0.933) and MCT4 (p = 0.123) in soleus muscle. Significant correlations were not found between MCT1 and MCT4 and tlim at CV intensity. Our results reinforce that CV is a valid and non-invasive protocol to estimate the maximal aerobic capacity in mice and that the content of MCT1 and MCT4 was not decisive in determining the tlim at CV, at least when measured immediately after the running effort.
Collapse
Affiliation(s)
- Juan B Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Lara S Araujo
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Pedro P M Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Emanuel E C Polisel
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Luisa O Cardoso
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Claudio A Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Fúlvia B Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| |
Collapse
|
25
|
Dun Y, Hu Z, You B, Du Y, Zeng L, Zhao Y, Liu Y, Wu S, Cui N, Yang F, Liu S. Exercise prevents fatal stress-induced myocardial injury in obese mice. Front Endocrinol (Lausanne) 2023; 14:1223423. [PMID: 37711889 PMCID: PMC10497866 DOI: 10.3389/fendo.2023.1223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction This study aimed to explore whether aerobic exercise (AE) can prevent fatal stress-induced myocardial injury. Methods Thirty C57BL/6J mice were divided into either a normal diet, high-fat diet, or high-fat diet plus AE (n=10 per group). The AE protocol consisted of eight weeks of swimming. At the end of the diet and AE interventions, the mice were stimulated with fatal stress caused by exhaustive exercise (forced weight-loaded swimming until exhaustion), after which cardiac function was evaluated using echocardiography, myocardial ultrastructure was examined using transmission electron microscopy, and myocardial apoptosis was assessed using western blotting and TUNEL. Mitophagy, mitochondrial biogenesis and dynamics, and activation of the macrophage migration inhibitor factor (MIF)/AMP-activated protein kinase (AMPK) pathway were evaluated using quantitative PCR and western blotting. Obesity phenotypes were assessed once per week. Results AE reversed high-fat diet-induced obesity as evidenced by reductions in body weight and visceral fat compared to obese mice without AE. Obesity exacerbated fatal stress-induced myocardial damage, as demonstrated by impaired left ventricular ejection fraction and myocardial structure. The apoptotic rate was also elevated upon fatal stress, and AE ameliorated this damage. Obesity suppressed mitophagy, mitochondrial fission and fusion, and mitochondrial biogenesis, and these effects were accompanied by suppression of the MIF/AMPK pathway in the myocardium of mice subjected to fatal stress. AE alleviated or reversed these effects. Conclusion This study provides evidence that AE ameliorated fatal stress-induced myocardial injury in obese mice. The cardioprotective effect of AE in obese mice might be attributed to improved mitochondrial quality.
Collapse
Affiliation(s)
- Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zihang Hu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Du
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Shaoping Wu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Yang J, Guo X, Li T, Xie Y, Wang D, Yi L, Mi M. Sulforaphane Inhibits Exhaustive Exercise-Induced Liver Injury and Transcriptome-Based Mechanism Analysis. Nutrients 2023; 15:3220. [PMID: 37513640 PMCID: PMC10386178 DOI: 10.3390/nu15143220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Exhaustive exercise (EE) induces liver injury and has recently gained much attention. Sulforaphane (SFN) can protect the liver from inflammation and oxidative stress. However, the effects of SFN on EE-induced liver injury and its underlying mechanisms are still unclear. C57BL/6J mice swimming to exhaustion for seven days were used to simulate the liver injury caused by EE. Different doses of SFN (10, 30, 90 mg/kg body weight) were gavage-fed one week before and during the exercise. SFN intervention significantly reduced the EE-induced lactate dehydrogenase (LDH), creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum, as well as attenuating liver tissue morphological abnormality, oxidative stress injury, and inflammation. Liver transcriptomic analysis showed that the differentially expressed genes altered by SFN intervention in the exercise model were mainly enriched in glucose and lipid metabolism pathways. The most altered gene by SFN intervention screened by RNA-seq and validated by qRT-PCR is Ppp1r3g, a gene involved in regulating hepatic glycogenesis, which may play a vital role in the protective effects of SFN in EE-induced liver damage. SFN can protect the liver from EE-induced damage, and glucose and lipid metabolism may be involved in the mechanism of the protective effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
27
|
Szabó R, Börzsei D, Hoffmann A, Kiss V, Nagy A, Török S, Veszelka M, Almási N, Varga C. The Interplay of Lifestyle and Adipokines in the Non-Obese Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel) 2023; 12:1450. [PMID: 37507988 PMCID: PMC10376584 DOI: 10.3390/antiox12071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Although the morphological features and functions of adipose tissue are well-described in obesity-prone animal models, less information is available on animals such as the stroke-prone spontaneously hypertensive (SHRSP) strain with cardiovascular abnormalities, which is not characterized by excessive adiposity. Our aim was to focus on lifestyle-induced (type of diet and physical exercise) effects on adipokine profile and lipid peroxidation in SHRSP rats. In our study, male Wistar-kyoto (control) and SHRSP rats were used. SHRSP rats were fed either standard chow or a high-fat diet with 40% fat content (HFD). One group of the animals was placed into cages fitted with a running-wheel; thus, the dietary and training period started at the same time and lasted for 12 weeks. At the end of the experimental period, adiponectin, leptin, omentin, and chemerin concentrations were determined from adipose tissue and serum. Besides adipokines, malondialdehyde (MDA) levels were also measured. Twelve weeks of HFD significantly decreased adiponectin and omentin concentrations of both adipose tissue and serum, which were ameliorated by physical exercise. Serum leptin, chemerin, and MDA values were elevated in HFD groups; however, physical exercise was able to mitigate these adverse changes. Our results underpin the crosstalk between lifestyle changes and dysfunctional adipose tissue in SHRSP rats.
Collapse
Affiliation(s)
- Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Viktória Kiss
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - András Nagy
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
28
|
Montalvo RN, Boeno FP, Dowllah IM, Moritz CEJ, Nguyen BL, Doerr V, Bomkamp MP, Smuder AJ. Exercise and Doxorubicin Modify Markers of Iron Overload and Cardiolipin Deficiency in Cardiac Mitochondria. Int J Mol Sci 2023; 24:ijms24097689. [PMID: 37175395 PMCID: PMC10177936 DOI: 10.3390/ijms24097689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent highly effective at limiting cancer progression. Despite the efficacy of this anticancer drug, the clinical use of DOX is limited due to cardiotoxicity. The cardiac mitochondria are implicated as the primary target of DOX, resulting in inactivation of electron transport system complexes, oxidative stress, and iron overload. However, it is established that the cardiac mitochondrial subpopulations reveal differential responses to DOX exposure, with subsarcolemmal (SS) mitochondria demonstrating redox imbalance and the intermyofibrillar (IMF) mitochondria showing reduced respiration. In this regard, exercise training is an effective intervention to prevent DOX-induced cardiac dysfunction. Although it is clear that exercise confers mitochondrial protection, it is currently unknown if exercise training mitigates DOX cardiac mitochondrial toxicity by promoting beneficial adaptations to both the SS and IMF mitochondria. To test this, SS and IMF mitochondria were isolated from sedentary and exercise-preconditioned female Sprague Dawley rats exposed to acute DOX treatment. Our findings reveal a greater effect of exercise preconditioning on redox balance and iron handling in the SS mitochondria of DOX-treated rats compared to IMF, with rescue of cardiolipin synthase 1 expression in both subpopulations. These results demonstrate that exercise preconditioning improves mitochondrial homeostasis when combined with DOX treatment, and that the SS mitochondria display greater protection compared to the IMF mitochondria. These data provide important insights into the molecular mechanisms that are in part responsible for exercise-induced protection against DOX toxicity.
Collapse
Affiliation(s)
- Ryan N Montalvo
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Franccesco P Boeno
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Imtiaz M Dowllah
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Cesar E Jacintho Moritz
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Branden L Nguyen
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Vivian Doerr
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Matthew P Bomkamp
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Ashley J Smuder
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Butenas ALE, Copp SW, Hageman KS, Poole DC, Musch TI. Effects of comorbid type II diabetes mellitus and heart failure on rat hindlimb and respiratory muscle blood flow during treadmill exercise. J Appl Physiol (1985) 2023; 134:846-857. [PMID: 36825642 PMCID: PMC10042612 DOI: 10.1152/japplphysiol.00770.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In rats with type II diabetes mellitus (T2DM) compared with nondiabetic healthy controls, muscle blood flow (Q̇m) to primarily glycolytic hindlimb muscles and the diaphragm muscle are elevated during submaximal treadmill running consequent to lower skeletal muscle mass, a finding that held even when muscle mass was normalized to body mass. In rats with heart failure with reduced ejection fraction (HF-rEF) compared with healthy controls, hindlimb Q̇m was lower, whereas diaphragm Q̇m is elevated during submaximal treadmill running. Importantly, T2DM is the most common comorbidity present in patients with HF-rEF, but the effect of concurrent T2DM and HF-rEF on limb and respiratory Q̇m during exercise is unknown. We hypothesized that during treadmill running (20 m·min-1; 10% incline), hindlimb and diaphragm Q̇m would be higher in T2DM Goto-Kakizaki rats with HF-rEF (i.e., HF-rEF + T2DM) compared with nondiabetic Wistar rats with HF-rEF. Ejection fractions were not different between groups (HF-rEF: 30 ± 5; HF-rEF + T2DM: 28 ± 8%; P = 0.617), whereas blood glucose was higher in HF-rEF + T2DM (209 ± 150 mg/dL) compared with HF-rEF rats (113 ± 28 mg/dL; P = 0.040). Hindlimb muscle mass normalized to body mass was lower in rats with HF-rEF + T2DM (36.3 ± 1.6 mg/g) than in nondiabetic HF-rEF counterparts (40.3 ± 2.7 mg/g; P < 0.001). During exercise, Q̇m was elevated in rats with HF-rEF + T2DM compared with nondiabetic counterparts to the hindlimb (HF-rEF: 100 ± 28; HF-rEF + T2DM: 139 ± 23 mL·min-1·100 g-1; P < 0.001) and diaphragm (HF-rEF: 177 ± 66; HF-rEF + T2DM: 215 ± 93 mL·min-1·100g-1; P = 0.035). These data suggest that the pathophysiological consequences of T2DM on hindlimb and diaphragm Q̇m during treadmill running in the GK rat persist even in the presence of HF-rEF.NEW & NOTEWORTHY Herein, we demonstrate that rats comorbid with heart failure with reduced ejection fraction (HF-rEF) and type II diabetes mellitus (T2DM) have a higher hindlimb and respiratory muscle blood flow during submaximal treadmill running (20 m·min-1; 10% incline) compared with nondiabetic HF-rEF counterparts. These data may carry important clinical implications for roughly half of all patients with HF-rEF who present with T2DM.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
30
|
Ayari S, Abellard A, Carayol M, Guedj É, Gavarry O. A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals' models with mild cognitive impairment or dementia. Exp Gerontol 2023; 175:112141. [PMID: 36898593 DOI: 10.1016/j.exger.2023.112141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To investigate which type, frequency, duration, intensity, and volume of chronic exercise might more strongly reduce pro-inflammatory cytokines and enhance anti-inflammatory cytokines in human and animal models with Mild Cognitive Impairment (MCI) or dementia. DESIGN A systematic review. DATA SOURCE English-language search of 13 electronic databases: Web of Science, PubMed/Medline, Sport Discus, Scopus, Cochrane, Psych Net, Springer, ScienceDirect, Pascal & Francis, Sage journals, Pedro, Google Scholar, and Sage. INCLUSION CRITERIA (i) human and animal studies that included exercise, physical activity, or fitness training as an experimental intervention, (ii) studies that addressed MCI, dementia, or AD, (iii) studies that focused on measuring cytokines and/or other inflammatory and/or neuroinflammatory immune markers, (iii) studies that examined inflammatory indicators in blood, CSF (Cerebrospinal Fluid), and brain tissue. RESULTS Of the 1290 human and animal studies found, 38 were included for qualitative analysis, 11 human articles, 27 animal articles, and two articles addressing both human and animal protocols. In the animal model, physical exercise decreased pro-inflammatory markers in 70.8 % of the articles and anti-inflammatory cytokines: IL -4, IL -10, IL-4β, IL -10β, and TGF-β in 26 % of articles. Treadmill running, resistance exercise, and swimming exercise reduce pro-inflammatory cytokines and increase anti-inflammatory cytokines. In the human model, 53.9 % of items reduced pro-inflammatory proteins and 23 % increased anti-inflammatory proteins. Cycling exercise, multimodal, and resistance training effectively decreased pro-inflammatory cytokines. CONCLUSION In rodent animal models with AD phenotype, treadmill, swimming, and resistance training remain good interventions that can delay various mechanisms of dementia progression. In the human model, aerobic, multimodal, and resistance training are beneficial in both MCI and AD. Multimodal training of moderate to high intensity multimodal exercise is effective for MCI. Voluntary cycling training, moderate- or high-intensity aerobic exercise is effective in mild AD patients.
Collapse
Affiliation(s)
- Sawsen Ayari
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Alexandre Abellard
- Mediterranean Institute of Information and Communication Sciences, Toulon, France.
| | - Marion Carayol
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Éric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France.
| | - Olivier Gavarry
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| |
Collapse
|
31
|
Cendali FI, Nemkov T, Lisk C, Lacroix IS, Nouraie SM, Zhang Y, Gordeuk VR, Buehler PW, Irwin D, D’Alessandro A. Metabolic correlates to critical speed in murine models of sickle cell disease. Front Physiol 2023; 14:1151268. [PMID: 37007990 PMCID: PMC10053510 DOI: 10.3389/fphys.2023.1151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Exercise intolerance is a common clinical manifestation in patients with sickle cell disease (SCD), though the mechanisms are incompletely understood. Methods: Here we leverage a murine mouse model of sickle cell disease, the Berkeley mouse, to characterize response to exercise via determination of critical speed (CS), a functional measurement of mouse running speed upon exerting to exhaustion. Results: Upon observing a wide distribution in critical speed phenotypes, we systematically determined metabolic aberrations in plasma and organs-including heart, kidney, liver, lung, and spleen-from mice ranked based on critical speed performances (top vs. bottom 25%). Results indicated clear signatures of systemic and organ-specific alterations in carboxylic acids, sphingosine 1-phosphate and acylcarnitine metabolism. Metabolites in these pathways showed significant correlations with critical speed across all matrices. Findings from murine models were thus further validated in 433 sickle cell disease patients (SS genotype). Metabolomics analyses of plasma from 281 subjects in this cohort (with HbA < 10% to decrease confounding effects of recent transfusion events) were used to identify metabolic correlates to sub-maximal exercise test performances, as measure by 6 min walking test in this clinical cohort. Results confirmed strong correlation between test performances and dysregulated levels of circulating carboxylic acids (especially succinate) and sphingosine 1-phosphate. Discussion: We identified novel circulating metabolic markers of exercise intolerance in mouse models of sickle cell disease and sickle cell patients.
Collapse
Affiliation(s)
- Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Christina Lisk
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Seyed-Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul W. Buehler
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Center for Blood Oxygen Transport, Department of Pediatrics, Baltimore, MD, United States
| | - David Irwin
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
32
|
Elming PB, Busk M, Wittenborn TR, Bussink J, Horsman MR, Lønbro S. The effect of single bout and prolonged aerobic exercise on tumor hypoxia in mice. J Appl Physiol (1985) 2023; 134:692-702. [PMID: 36727633 DOI: 10.1152/japplphysiol.00561.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
The objectives of this study were to investigate 1) the effect of acute aerobic exercise on tumor hypoxia and blood perfusion, 2) the impact of exercise intensity, 3) the duration of the effect, and 4) the effect of prolonged training on tumor hypoxia and tumor growth. Female CDF1 mice were inoculated with the C3H mammary carcinoma either in the mammary fat pad or subcutaneously in the back. For experiments on the effect of different intensities in a single exercise bout, mice were randomized to 30-min treadmill running at low-, moderate-, or high-intensity speeds or no exercise. To investigate the prolonged effect on hypoxia and tumor growth, tumor-bearing mice were randomized to no exercise (CON) or daily 30-min high-intensity exercise averaging 2 wk (EX). Tumor hypoxic fraction was quantified using the hypoxia marker Pimonidazole. Initially, high-intensity exercise reduced tumor hypoxic fraction by 37% compared with CON [P = 0.046; 95% confidence interval (CI): 0.1; 10.3] in fat pad tumors. Low- and moderate-intensity exercises did not. Following experiments investigating the duration of the effect-as well as experiments in mice with back tumors-failed to show any exercise-induced changes in hypoxia. Interestingly, prolonged daily training significantly reduced hypoxic fraction by 60% (P = 0.002; 95% CI: 2.5; 10.1) compared with CON. Despite diverging findings on the acute effect of exercise on hypoxia, our data indicate that if exercise has a diminishing effect, high-intensity exercise is needed. Prolonged training reduced tumor hypoxic fraction-cautiously suggesting a potential clinical potential.NEW & NOTEWORTHY This study provides novel information on the effects of acute and chronic exercise on tumor hypoxia in mice. In contrast to the few related existing studies, diverging findings on tumor hypoxia after acute exercise were observed, suggesting that tumor model and location should be considered in future studies. Highly significant reductions in tumor hypoxia following chronic high-intensity exercise propose a future clinical potential but this should be investigated in patients.
Collapse
Affiliation(s)
| | - Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Rea Wittenborn
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Lønbro
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Section for Sports Science, Department of Public Health, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Zhong X, He R, You S, Liu B, Wang X, Mao J. The Roles of Aerobic Exercise and Folate Supplementation in Hyperhomocysteinemia-Accelerated Atherosclerosis. ACTA CARDIOLOGICA SINICA 2023; 39:309-318. [PMID: 36911543 PMCID: PMC9999187 DOI: 10.6515/acs.202303_39(2).20221027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 03/14/2023]
Abstract
Background Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. Effective interventions to reduce HHcy-accelerated atherosclerosis are required. Objectives This study aimed to investigate the effects of aerobic exercise (AE) and folate (FA) supplementation on plasma homocysteine (Hcy) level and atherosclerosis development in a mouse model. Methods Six-week-old female apoE-/- mice were grouped into five groups (N = 6-8): HHcy (1.8 g/L DL-homocysteine (DL-Hcy) in drinking water), HHcy + AE (1.8 g/L DL-Hcy and aerobic exercise training on a treadmill), HHcy + FA (1.8 g/L DL-Hcy and 0.006% folate in diet), HHcy + AE + FA (1.8 g/L DL-Hcy, 0.006% folate, and aerobic exercise training on a treadmill), and a control group (regular water and diet). All treatment was sustained for 8 weeks. Triglyceride, cholesterol, lipoprotein, and Hcy levels were determined enzymatically. Plaque and monocyte chemoattractant protein-1 (MCP-1) expression levels in mouse aortic roots were evaluated by immunohistochemistry. Results Compared to the HHcy group (18.88 ± 6.13 μmol/L), plasma Hcy concentration was significantly reduced in the HHcy + AE (14.79 ± 3.05 μmol/L, p = 0.04), HHcy + FA (9.4 ± 3.85 μmol/L, p < 0.001), and HHcy + AE + FA (9.33 ± 2.21 μmol/L, p < 0.001) groups. Significantly decreased aortic root plaque area and plaque burden were found in the HHcy + AE and HHcy + AE + FA groups compared to those in the HHcy group (both p < 0.05). Plasma MCP-1 level and MCP-1 expression in atherosclerotic lesions were significantly decreased in the HHcy + AE and HHcy + AE + FA groups compared to the HHcy group (all p < 0.05). Conclusions AE reduced atherosclerosis development in HHcy apoE-/- mice independently of reducing Hcy levels. FA supplementation decreased plasma Hcy levels without attenuating HHcy-accelerated atherosclerosis. AE and FA supplementation have distinct mechanisms in benefiting atherosclerosis.
Collapse
Affiliation(s)
- Xingming Zhong
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Rong He
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Shaohua You
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Bo Liu
- Department of Physiology, Peking University Health Center
| | - Xiujie Wang
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Jieming Mao
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
34
|
Marichal G, Trigo P, Soto C, Meikle A, Suárez G. Hydroelectrolytic and Acid-Base Parameters after 80 to 115 km Endurance Races (Raid Uruguayo) and Their Association with the Comfort Index. Animals (Basel) 2023; 13:ani13040670. [PMID: 36830457 PMCID: PMC9951660 DOI: 10.3390/ani13040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The Raid Uruguayo (RAID) is an equestrian endurance competition. This study characterized the hydroelectrolytic parameters (Na+, K+, Cl-, tCa++, and iCa++), hematocrit (Ht), total plasma protein (TPP), and blood pH from 900 equine athletes (finishers and non-finishers) competing over distances of 80 to 115 km under different climate conditions. Paired blood samples were taken prior to the start of the competition (sample 1) and at the end of the race or at the time of leaving the competition (sample 2). The association of the comfort index (CI: low, moderate, and high) with blood parameters was evaluated. Of the 900 horses included, 550 were not able to finish the trial. The comfort index was not associated with success in completing the race. In the horses that finished the race, the CI was not associated with Ht, pH, TPP, or Na+ concentrations in samples taken after finishing the RAID. In contrast, the decreases in chloride, K+, tCa++, and iCa++ concentrations found after the race were more pronounced at moderate and high CI values when compared with low CI values. In horses that did not finish the race, the CI was associated with all variables except for Ht. The data confirmed the relevance of considering the impact of the comfort index in hydroelectrolytic losses in the RAID, as it influence ssuccess or failure in the performance of endurance horses finishing the competition.
Collapse
Affiliation(s)
- Gonzalo Marichal
- Unidad de Clínica y Cirugía de Equinos, Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (G.M.); (G.S.)
| | - Pablo Trigo
- IGEVET CONICET CC La Plata, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Carlos Soto
- Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Meikle
- Laboratorio de Endocrinología y Metabolismo Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
| | - Gonzalo Suárez
- Unidad de Farmacología y Terapéutica, Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (G.M.); (G.S.)
| |
Collapse
|
35
|
Wang D, Li ZX, Jiang DM, Liu YZ, Wang X, Liu YP. Magnesium ions improve vasomotor function in exhausted rats. PLoS One 2023; 18:e0279318. [PMID: 36780490 PMCID: PMC9925009 DOI: 10.1371/journal.pone.0279318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 02/15/2023] Open
Abstract
To observe the effect of magnesium ion on vascular function in rats after long-term exhaustive exercise. Forty male SD rats were divided into two groups, the control group (CON group, n = 20) and the exhaustive exercise group (EEE group, n = 20). Exhausted rats performed 1W adaptive swimming exercise (6 times/W, 15min/time), and then followed by 3W formal exhaustive exercise intervention. Hematoxylin and eosin (HE) staining was used to detect the morphological changes of rat thoracic aorta. The contents of interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum of rats were determined by enzyme-linked immunosorbent assay (ELISA), and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO) and endothelin 1 (ET-1) in serum of rats were determined by biochemical kit. Vascular ring test detects vascular function. Compared with the CON group, the smooth muscle layer of the EEE group became thicker, the cell arrangement was disordered, and the integrity of endothelial cells was destroyed; the serum Mg2+ in EEE group was decreased; the serum levels of IL-1β, TNF-α, MDA and ROS in EEE group were significantly higher than those in the CON group (P are all less than 0.05); the serum NO content in EEE group was significantly decreased, and the ratio of NO/ET-1 was significantly decreased. In the exhaustion group, the vasoconstriction response to KCl was increased, and the relaxation response to Ach was weakened, while 4.8mM Mg2+ could significantly improve this phenomenon (P are all less than 0.01). The damage of vascular morphology and function in rats after exhaustion exercise may be related to the significant increase of serum IL-1β, TNF-α, ROS, MDA and ET-1/NO ratio in rats after exhaustion exercise, while Mg2+ can significantly improve the vasomotor function of rats after exhaustion exercise.
Collapse
Affiliation(s)
- Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Zong-Xiang Li
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Dong-Mou Jiang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Yan-Zhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- * E-mail:
| |
Collapse
|
36
|
Luo M, Luo S, Xue Y, Chang Q, Yang H, Dong W, Zhang T, Cao S. Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience 2023; 26:105990. [PMID: 36798442 PMCID: PMC9926087 DOI: 10.1016/j.isci.2023.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
To determine the effect of aerobic exercise in different intensities on renal injury and epithelial-mesenchymal transformation (EMT) in the kidney of spontaneously hypertensive rats (SHR) and explore possible mechanisms, we subjected SHR to different levels of 14-week aerobic treadmill training. We tested the effects of aerobic exercise on irisin level, renal function, and EMT modulators in the kidney. We also treated angiotensin II-induced HK-2 cells with irisin and tested the changes in EMT levels. The data showed low and moderate aerobic exercise improved renal function and inhibited EMT through promoting irisin expression in SHR. However, high-intensity exercise training had no effect on renal injury and EMT in SHR but did significantly activate STAT3 phosphorylation in the kidney. These results clarify the mechanisms of exercise in improving hypertension-related renal injury and suggest that irisin might be a therapeutic target for patients with kidney injury.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
| | - Hui Yang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyu Dong
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- Corresponding author
| |
Collapse
|
37
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
38
|
Abstract
Circadian rhythms drive our daily behaviors to coincide with the earth's rotation on an approximate 24-h cycle. The circadian clock mechanism present in nearly every cell is responsible for our circadian rhythms and is comprised of a transcriptional-translational feedback loop in mammals. The central clock resides in the hypothalamus responding to external light cues, whereas peripheral clocks receive signals from the central clock and are also sensitive to cues from feeding and activity. Of the peripheral clocks, the skeletal muscle clock is particularly sensitive to exercise which has shown to be an important time-cue with the ability to influence and adjust the muscle clock phase in response to exercise timing. Since the skeletal muscle clock is also involved in the expression of tissue-specific gene expression-including glucoregulatory genes-this might suggest a role for exercise timing as a therapeutic strategy in metabolic diseases, like type 2 diabetes. Notably, those with type 2 diabetes have accompanied disruptions in their skeletal muscle clock mechanism which may also be related to the increased risk of type 2 diabetes seen among shift workers. Therefore, the direct influence of exercise on the skeletal muscle clock might support the use of exercise timing to provide disease-mitigating effects. Here, we highlight the potential use of time-of-day exercise as a chronotherapeutic tool within circadian medicine to improve the metabolic profile of type 2 diabetes and support long-term glycemic control, potentially working through the skeletal muscle clock and circadian physiology.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Rodrigues Oliveira SM, Dias E, Girol AP, Silva H, Pereira MDL. Exercise Training and Verbena officinalis L. Affect Pre-Clinical and Histological Parameters. PLANTS (BASEL, SWITZERLAND) 2022; 11:3115. [PMID: 36432843 PMCID: PMC9699298 DOI: 10.3390/plants11223115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Verbena officinalis L. or vervain is an herbal medicine and dietary supplement used worldwide. It is used for antidepressant and anticonvulsant purposes, as well as to treat inflammatory disorders, skin burns, abrasions, and gastric diseases, among others. Here, we investigated the biochemical, antioxidant, and histopathological effects of vervain against chronic physical stress. Male Wistar rats were submitted to chronic physical training and oral administration of 200 mg/kg of extract for 7 weeks. Control animals were not treated with either stress or vervain. Body weight was monitored during the study. Liver, kidney, spleen, testis, epididymis, heart, skeletal muscle, and brain samples were collected. Blood cholesterol, lactate dehydrogenase (LDH), bilirubin, and creatinine kinase (CREA), among others, were studied. Glutathione peroxidase (GPox) and superoxide dismutase (SOD) antioxidant activity was analyzed in the blood, liver, and kidney. Testosterone measurements were also performed on whole testis extracts. We found significant weight ratios differences in the epididymis, brain, and heart. Animals submitted to training showed hemorrhagic livers. Kidney histology was affected by both stress and vervain. Cell disruption and vacuolization were observed in the testes and epididymis of animals submitted to stress. Hematological and biochemical markers as CREA, LDH, TP, CKI, URCA, γGT, and glucose revealed statistically significantly differences. Additionally, the activity of glutathione peroxide (GPox) and superoxide dismutase (SOD) in the blood was also impacted. Both stress and vervain have significant in vivo effects. Infusions of vervain include phenylpropanoids, iridoids, verbenalin, hastatoside, and flavonoids, amongst others, which interact synergistically to produce the preclinical effects reported here.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Elsa Dias
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Hospital Center of Baixo Vouga, 3810-193 Aveiro, Portugal
| | - Ana Paula Girol
- Padre Albino University Centre, Catanduva 15806-310, São Paulo, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, São Paulo, Brazil
| | - Helena Silva
- Department of Biology & CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
40
|
Jasińska-Stroschein M. Training programs in preclinical studies. The example of pulmonary hypertension. Systematic review and meta-analysis. PLoS One 2022; 17:e0276875. [PMCID: PMC9665399 DOI: 10.1371/journal.pone.0276875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background
Exercise and cardiopulmonary exercise testing are essential in the evaluation of physiological, biochemical, and molecular responses in the experimental studies on chronic diseases such as diabetes, heart failure and hypertension. The exercise tolerance and seem to be a valuable contribution to the experiments that are performed in animal models of pulmonary hypertension (PH), as well. The current survey uses detailed quantitative analyses to assess the advantages of exercise training programs performed in preclinical studies based on outcomes such as exercise capacity, cardiopulmonary hemodynamics, and mortality.
Methods
Articles were identified through search engines in the online electronic databases Pubmed/Medline, Web of Science following the PRISMA Protocol. Studies conducted between 1991 and 2022 without language restrictions were included in this study. Heterogeneity was assessed using the Cochrane Q-test and I2 test statistics. Subgroup analysis was employed with evidence of heterogeneity. Quality assessment was carried out using SYRCLE’s risk of bias tool for animal studies. Publication bias across studies was determined using the funnel plot and Egger’s regression test statistic.
Results
The available protocols typically included treadmill running, swimming, and voluntary wheel running with a different series of intensities, times and durations; these were also used in studies examining the efficacy of chronic training programs. In 66 interventions, PH induction reduced exercise endurance by half compared to healthy subjects, while exposure to tested medical agents normalized exercise capacity. The other 58 interventions demonstrated the advantages of various exercise training programs for PH. Induction of PH reduced exercise endurance by half compared to healthy subjects (R = 0.52; 0.48 − 0.55 95%CI; P<0.0001; I2 = 98.9%), while the exposure to tested medical agents normalized exercise capacity (R = 1.75; 1.61 − 1.91 95%CI; P<0.0001; I2 = 97.8%).
Conclusion
Despite a wide spectrum of study protocols to measure exercise endurance in animals with PH, there is a significant correlation between worsening of exercise-related parameters and PH development, manifested by alterations in haemodynamic and remodeling parameters. Familiarization with exercise, training program schedule, method used for PH induction, or detailed training parameters such as slope, exercise intensity or individualization, can influence the final outcome. This in turn can impact on the diversity and reproducibility of results being obtained in particular experimental studies.
Collapse
|
41
|
Riyono A, Tinduh D, Othman Z, Herawati L. Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic high-calorie diet (HCD) combined with physical inactivity promotes obesity and insulin resistance (IR). This study aimed to analyse the comparable effect of moderate-intensity continuous training (MICT) and moderate-intensity interval training (MIIT) on visceral fat weight and IR in subjects exposed to HCD. This randomised post-test research used only a control group design with female rats (Wistar norvegicus), 8 weeks old and 100-200 g of bodyweight. They were randomly divided into four groups: standard diet group (C), HCD group (C1), HCD combined with MICT group (C2) and HCD combined with MIIT group (C3). Each group consisted of six rats. HCD consisted of ad libitum standard diet plus dextrose solution by oral gavage for 4 weeks. The MICT was conducted by swimming plus 6% load of body weight for 10 min in the first week, for 20 min in the second week and 30 min in the third and fourth week. The MIIT was conducted by swimming in a ratio between swimming and rest time at 2:1 plus 6% load of BW, performed 5×/week for 4 weeks, and increased progressively. The mean body weight pre-intervention was 152.79±13.280 g and 150.12±9.195 g post-intervention (P=0.115). The mean fasting blood glucose pre-intervention was 79±8.668 mg/dl, and post-intervention 86.29±12.142 mg/dl (P=0.142). The mean visceral fat weight between C (1.94±0.66 g), C1 (1.45±0.47 g), C2 (1.41±0.44 g), and C3 (1.22±0.59 g) was not significant (P=0.179). The mean triglyceride level for C (173.33±30.30 mg/dl), C1 (157.16±47.32 mg/dl), C2 (112.83±25.49 mg/dl), and C3 (80.33±23.47 mg/dl) was significant (P=0.000). The mean IR model for C (4.796±0.070), C1 (4.728±0.125), C2 (4.620±0.123), C3 (4.360±0.143) was significant (P=0.000). In conclusion, both MICT and MIIT have an effect to improve IR and TG. The MIIT was more effective to improve IR compared to MICT in the female rats exposed to an HCD.
Collapse
Affiliation(s)
- A. Riyono
- Master Program of Basic Medicine Science, Faculty of Medicine, Universitas Airlangga, Jalan Mayjend Prof. Dr. Moestopo No. 4-8, Surabaya 60131, Indonesia
| | - D. Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga, Jalan Mayjend Prof. Dr. Moestopo No. 4-8, Surabaya 60131, Indonesia
| | - Z. Othman
- Faculty of Health and Life Science, Management and Science University, Shah Alam, Selangor 40100, Malaysia
| | - L. Herawati
- Departement of Physiology, Faculty of Medicine, Universitas Airlangga, Jl Prof Dr Moestopo 47, Surabaya 60131, Indonesia
| |
Collapse
|
42
|
Borzykh AA, Gaynullina DK, Shvetsova AA, Kiryukhina OO, Kuzmin IV, Selivanova EK, Nesterenko AM, Vinogradova OL, Tarasova OS. Voluntary wheel exercise training affects locomotor muscle, but not the diaphragm in the rat. Front Physiol 2022; 13:1003073. [PMID: 36388097 PMCID: PMC9643685 DOI: 10.3389/fphys.2022.1003073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 12/07/2024] Open
Abstract
Introduction: Functional tests and training regimens intensity-controlled by an individual are used in sport practice, clinical rehabilitation, and space medicine. The model of voluntary wheel running in rats can be used to explore molecular mechanisms of such training regimens in humans. Respiratory and locomotor muscles demonstrate diverse adaptations to treadmill exercise, but the effects of voluntary exercise training on these muscle types have not been compared yet. Therefore, this work aimed at the effects of voluntary ET on rat triceps brachii and diaphragm muscles with special attention to reactive oxygen species, which regulate muscle plasticity during exercise. Methods: Male Wistar rats were distributed into exercise trained (ET) and sedentary (Sed) groups. ET group had free access to running wheels, running activity was continuously recorded and analyzed using the original hardware/software complex. After 8 weeks, muscle protein contents were studied using Western blotting. Results: ET rats had increased heart ventricular weights but decreased visceral/epididymal fat weights and blood triglyceride level compared to Sed. The training did not change corticosterone, testosterone, and thyroid hormone levels, but decreased TBARS content in the blood. ET rats demonstrated higher contents of OXPHOS complexes in the triceps brachii muscle, but not in the diaphragm. The content of SOD2 increased, and the contents of NOX2 and SOD3 decreased in the triceps brachii muscle of ET rats, while there were no such changes in the diaphragm. Conclusion: Voluntary wheel running in rats is intensive enough to govern specific adaptations of muscle fibers in locomotor, but not respiratory muscle.
Collapse
Affiliation(s)
- Anna A. Borzykh
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dina K. Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Oxana O. Kiryukhina
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kuzmin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexey M. Nesterenko
- Federal Center of Brain Research and Biotechnologies FMBA, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Olga L. Vinogradova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga S. Tarasova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
43
|
Bartra C, Jager LA, Alcarraz A, Meza-Ramos A, Sangüesa G, Corpas R, Guasch E, Batlle M, Sanfeliu C. Antioxidant Molecular Brain Changes Parallel Adaptive Cardiovascular Response to Forced Running in Mice. Antioxidants (Basel) 2022; 11:1891. [PMID: 36290614 PMCID: PMC9598430 DOI: 10.3390/antiox11101891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 10/03/2023] Open
Abstract
Physically active lifestyle has huge implications for the health and well-being of people of all ages. However, excessive training can lead to severe cardiovascular events such as heart fibrosis and arrhythmia. In addition, strenuous exercise may impair brain plasticity. Here we investigate the presence of any deleterious effects induced by chronic high-intensity exercise, although not reaching exhaustion. We analyzed cardiovascular, cognitive, and cerebral molecular changes in young adult male mice submitted to treadmill running for eight weeks at moderate or high-intensity regimens compared to sedentary mice. Exercised mice showed decreased weight gain, which was significant for the high-intensity group. Exercised mice showed cardiac hypertrophy but with no signs of hemodynamic overload. No morphological changes in the descending aorta were observed, either. High-intensity training induced a decrease in heart rate and an increase in motor skills. However, it did not impair recognition or spatial memory, and, accordingly, the expression of hippocampal and cerebral cortical neuroplasticity markers was maintained. Interestingly, proteasome enzymatic activity increased in the cerebral cortex of all trained mice, and catalase expression was significantly increased in the high-intensity group; both first-line mechanisms contribute to maintaining redox homeostasis. Therefore, physical exercise at an intensity that induces adaptive cardiovascular changes parallels increases in antioxidant defenses to prevent brain damage.
Collapse
Affiliation(s)
- Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Lars Andre Jager
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Anna Alcarraz
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Aline Meza-Ramos
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Gemma Sangüesa
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Rubén Corpas
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Eduard Guasch
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red-Cardiovascular (CIBERCV), 28029 Madrid, Spain
| | - Montserrat Batlle
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red-Cardiovascular (CIBERCV), 28029 Madrid, Spain
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
44
|
但 晴, 白 婧, 蔡 钟, 林 琨, 李 泱. [Changes of myocardial calcium currents in rats with myocardial injury induced by running exercise during acute hypoxia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1359-1366. [PMID: 36210709 PMCID: PMC9550543 DOI: 10.12122/j.issn.1673-4254.2022.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes in myocardial calcium currents in rats subjected to forced running exercise during acute hypoxia and their association with myocardial injury. METHODS Forty SD rats were randomized into quiescent group and running group either in normal oxygen (NQ and NR groups, respectively) or in acute hypoxia (HQ and HR groups, respectively). Hypoxia was induced by keeping the rats in a hypobaric oxygen chamber (PaO2=61.6kpa) for 4 h a day; the rats in the two running groups were forced to run on running wheels for 4 h each day. Rat ventricular myocytes was isolated by enzymatic digestion for recording action potentials and currents using patch clamp technique, and confocal Ca2+ imaging was used to monitor intracellular Ca2+ levels. The expressions of Cav1.2 channel and the cardiac ryanodine receptor (RyR2) were determined using Western blotting. RESULTS Compared with those in NQ group, the rats in HR group showed significantly decreased SOD activity (P < 0.01), increased h-FABP, hs-CRP and IMA levels (P < 0.05 or 0.01), obvious myocardial pathology, and prolonged APD50 and APD90 (P < 0.05). Of the different stress conditions, forced running in acute hypoxia resulted in the most prominent increase of the densities of ICa, L currents, causing also a significant left shift of the steady state activation curve and a significant right shift of the steady state inactivation curve. Compared with those in NQ group, the rats in NR, HQ and HR groups all exhibited higher rates of spontaneous calcium wave events in the cardiac myocytes, increased frequency of calcium sparks with lowered amplitude, enhanced calcium release amplitude in the ventricular myocytes, and delayed calcium ion reabsorption; in particular, these changes were the most conspicuous in HR group (P < 0.05 or 0.01). There was also a significant increase in the protein levels of Cav1.2 channel and RyR2 receptor in HR group (P < 0.05 or 0.01). CONCLUSIONS The mechanism of myocardial injury in rats subjected to forced running in acute hypoxia may involve the increase of oxidative stress and calcium current and intracellular calcium overload.
Collapse
Affiliation(s)
- 晴 但
- 解放军总医院第一医学中心心血管内科,北京 100039Department of Cardiology, Fist Medical Center, Chinese PLA General Hospital, Beijing 100000, China
| | - 婧 白
- 郑州大学第一附属医院心血管内科,河南 郑州 450052Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - 钟奇 蔡
- 中国人民解放军南部战区总医院干部病房,广东 广州 510014Cadre's Ward, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, China
| | - 琨 林
- 解放军总医院第一医学中心心血管内科,北京 100039Department of Cardiology, Fist Medical Center, Chinese PLA General Hospital, Beijing 100000, China
| | - 泱 李
- 解放军总医院第六医学中心心血管 病医学部,北京 100048Department of Cardiology, Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
45
|
Ivonin AG, Smirnova SL, Roshchevskaya IM. Body Surface Potential Mapping during Ventricular Depolarization in Rats after Acute Exhaustive Exercise. Arq Bras Cardiol 2022; 119:S0066-782X2022005014203. [PMID: 36102423 PMCID: PMC9750213 DOI: 10.36660/abc.20211058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/03/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Exhaustive physical exercise can cause substantial changes in the electrical properties of the myocardium. OBJECTIVE To evaluate, using body surface potential mapping, the electrical activity of the heart in rats during ventricular depolarization after acute exhaustive exercise. METHODS Twelve-week-old male rats were submitted to acute treadmill exercise at 36 m/min until exhaustion. Unipolar electrocardiograms (ECGs) from the torso surface were recorded in zoletil-anesthetized rats three to five days before (Pre-Ex), 5 and 10 minutes after exhaustive exercise (Post-Ex 5 and Post-Ex 10, respectively) simultaneously with ECGs in limb leads. The instantaneous body surface potential maps (BSPMs) were analyzed during ventricular depolarization. P values <0.05 were considered statistically significant. RESULTS Compared with Pre-Ex, an early completion of the second inversion of potential distributions, an early completion of ventricular depolarization, as well as a decrease in the duration of the middle phase and the total duration of ventricular depolarization on BSPMs were revealed at Post-Ex 5. Also, compared with Pre-Ex, an increase in the amplitude of negative BSPM extremum at the R-wave peak on the ECG in lead II (RII-peak) and a decrease in the amplitude of negative BSPM extremum at 3 and 4 ms after RII-peak were showed at Post-Ex 5. At Post-Ex 10, parameters of BSPMs did not differ from those at Pre-Ex. CONCLUSION In rats, acute exhaustive exercise causes reversible changes in the temporal and amplitude characteristics of BSPMs during ventricular depolarization, most likely related to alterations in the excitation of the main mass of the ventricular myocardium.
Collapse
Affiliation(s)
- Alexey G. Ivonin
- Department of Comparative CardiologyKomi Scientific Centre of the Ural BranchRussian Academy of SciencesSyktyvkarFederação Russa Department of Comparative Cardiology – Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences , Syktyvkar – Federação Russa
| | - Svetlana L. Smirnova
- Department of Comparative CardiologyKomi Scientific Centre of the Ural BranchRussian Academy of SciencesSyktyvkarFederação Russa Department of Comparative Cardiology – Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences , Syktyvkar – Federação Russa
| | - Irina M. Roshchevskaya
- Department of Comparative CardiologyKomi Scientific Centre of the Ural BranchRussian Academy of SciencesSyktyvkarFederação Russa Department of Comparative Cardiology – Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences , Syktyvkar – Federação Russa
- Laboratory of Pharmacological ScreeningResearch Zakusov Institute of PharmacologyMoscowFederação Russa Laboratory of Pharmacological Screening – Research Zakusov Institute of Pharmacology , Moscow – Federação Russa
| |
Collapse
|
46
|
Ivonin AG, Smirnova SL, Roshchevskaya IM. Heart Electrical Activity during Ventricular Repolarization in Rats after Acute Exhaustive Treadmill Running. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther 2022; 7:306. [PMID: 36050310 PMCID: PMC9437103 DOI: 10.1038/s41392-022-01153-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Exercise training has been widely recognized as a healthy lifestyle as well as an effective non-drug therapeutic strategy for cardiovascular diseases (CVD). Functional and mechanistic studies that employ animal exercise models as well as observational and interventional cohort studies with human participants, have contributed considerably in delineating the essential signaling pathways by which exercise promotes cardiovascular fitness and health. First, this review summarizes the beneficial impact of exercise on multiple aspects of cardiovascular health. We then discuss in detail the signaling pathways mediating exercise's benefits for cardiovascular health. The exercise-regulated signaling cascades have been shown to confer myocardial protection and drive systemic adaptations. The signaling molecules that are necessary for exercise-induced physiological cardiac hypertrophy have the potential to attenuate myocardial injury and reverse cardiac remodeling. Exercise-regulated noncoding RNAs and their associated signaling pathways are also discussed in detail for their roles and mechanisms in exercise-induced cardioprotective effects. Moreover, we address the exercise-mediated signaling pathways and molecules that can serve as potential therapeutic targets ranging from pharmacological approaches to gene therapies in CVD. We also discuss multiple factors that influence exercise's effect and highlight the importance and need for further investigations regarding the exercise-regulated molecules as therapeutic targets and biomarkers for CVD as well as the cross talk between the heart and other tissues or organs during exercise. We conclude that a deep understanding of the signaling pathways involved in exercise's benefits for cardiovascular health will undoubtedly contribute to the identification and development of novel therapeutic targets and strategies for CVD.
Collapse
Affiliation(s)
- Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yihua Bei
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
48
|
Suarez PZ, Natali AJ, Mill JG, de Rezende LMT, Soares LL, Drummond FR, Cardoso LCC, Reis ECC, Lavorato VN, Carneiro-Júnior MA. Effects of moderate-continuous and high-intensity interval aerobic training on cardiac function of spontaneously hypertensive rats. Exp Biol Med (Maywood) 2022; 247:1691-1700. [PMID: 35880885 PMCID: PMC9597206 DOI: 10.1177/15353702221110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to verify the effects of moderate-intensity continuous (MICT) and high-intensity interval (HIIT) aerobic training on cardiac morphology and function and the mechanical properties of single cardiomyocytes in spontaneously hypertensive rats (SHR) in the compensated phase of hypertension. Sixteen-week-old male SHR and normotensive Wistar (WIS) rats were allocated to six groups of six animals each: SHR CONT or WIS CONT (control); SHR MICT or WIS MICT (underwent MICT, 30 min/day, five days per week for eight weeks); and SHR HIIT or WIS HIIT (underwent HIIT, 30 min/day, five days per week for eight weeks). Total exercise time until fatigue and maximum running speed were determined using a maximal running test before and after the experimental period. Systolic (SAP), diastolic (DAP), and mean (MAP) blood pressures were measured using tail plethysmography before and after the experimental period. Echocardiographic evaluations were performed at the end of the experimental period. The rats were euthanized after in vivo assessments, and left ventricular myocytes were isolated to evaluate global intracellular Ca2+ transient ([Ca2+]i) and contractile function. Cellular measurements were performed at basal temperature (~37°C) at 3, 5, and 7 Hz. The results showed that both training programs increased total exercise time until fatigue and, consequently, maximum running speed. In hypertensive rats, MICT decreased SAP, DAP, MAP, interventricular septal thickness during systole and diastole, and the contraction amplitude at 5 Hz. HIIT increased heart weight and left ventricular wall thickness during systole and diastole and reduced SAP, MAP, and the time to peak [Ca2+]i at all pacing frequencies. In conclusion, both aerobic training protocols promoted beneficial adaptations to cardiac morphology, function, and mechanical properties of single cardiomyocytes in SHR.
Collapse
Affiliation(s)
- Pedro Z Suarez
- Laboratory of Exercise Biology,
Department of Physical Education, Universidade Federal de Viçosa (UFV), Viçosa
36570-000, Brazil
| | - Antônio J Natali
- Laboratory of Exercise Biology,
Department of Physical Education, Universidade Federal de Viçosa (UFV), Viçosa
36570-000, Brazil
| | - José G Mill
- Department of Physiological Sciences,
Universidade Federal do Espírito Santo (UFES), Vitória 29075-210, Brazil
| | - Leonardo MT de Rezende
- Laboratory of Exercise Biology,
Department of Physical Education, Universidade Federal de Viçosa (UFV), Viçosa
36570-000, Brazil
| | - Leôncio L Soares
- Laboratory of Exercise Biology,
Department of Physical Education, Universidade Federal de Viçosa (UFV), Viçosa
36570-000, Brazil
| | - Filipe R Drummond
- Department of General Biology,
Universidade Federal de Viçosa (UFV), Viçosa 36570-000, Brazil
| | - Lucas CC Cardoso
- Laboratory of Exercise Biology,
Department of Physical Education, Universidade Federal de Viçosa (UFV), Viçosa
36570-000, Brazil
| | - Emily CC Reis
- Department of Veterinary Medicine,
Universidade Federal de Viçosa (UFV), Viçosa 36570-000, Brazil
| | - Victor N Lavorato
- Department of Physical Education,
Centro Universitário Governador Ozanam Coelho (UNIFAGOC), Ubá 36506-022,
Brazil
| | - Miguel A Carneiro-Júnior
- Laboratory of Exercise Biology,
Department of Physical Education, Universidade Federal de Viçosa (UFV), Viçosa
36570-000, Brazil,Miguel A Carneiro-Júnior.
| |
Collapse
|
49
|
Luo M, Cao S, Lv D, He L, He Z, Li L, Li Y, Luo S, Chang Q. Aerobic Exercise Training Improves Renal Injury in Spontaneously Hypertensive Rats by Increasing Renalase Expression in Medulla. Front Cardiovasc Med 2022; 9:922705. [PMID: 35898283 PMCID: PMC9309879 DOI: 10.3389/fcvm.2022.922705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
We aimed to examine the effects of aerobic exercise training on renal function in spontaneously hypertensive rats (SHR) and elucidate their possible mechanisms. Adult male SHR and age-matched Wistar-Kyoto rats (WKY) were divided into four groups: WKY sedentary group, SHR sedentary group, low-intensity training group, and medium-intensity training group. Using molecular and biochemical approaches, we investigated the effects of 14-week training on renalase (RNLS) protein levels, renal function, and apoptosis and oxidative stress modulators in kidney tissues. In vitro, angiotensin II (Ang II)-induced human kidney proximal epithelial cells (HK-2) were treated with RNLS, and changes in apoptosis and oxidative stress levels were observed. Our results show that moderate training improved renal function decline in SHR. In addition, aerobic exercise therapy significantly increased levels of RNLS in the renal medulla of SHR. We observed in vitro that RNLS significantly inhibited the increase of Ang II-inducedapoptosis and oxidative stress levels in HK-2. In conclusion, aerobic exercise training effectively improved renal function in SHR by promoting RNLS expression in the renal medulla. These results explain the possible mechanism in which exercise improves renal injury in hypertensive patients and suggest RNLS as a novel therapy for kidney injury patients.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Longlin He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingang Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Qing Chang
| |
Collapse
|
50
|
Hyatt JK. MOTS-c increases in skeletal muscle following long-term physical activity and improves acute exercise performance after a single dose. Physiol Rep 2022; 10:e15377. [PMID: 35808870 PMCID: PMC9270643 DOI: 10.14814/phy2.15377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle adapts to aerobic exercise training, in part, through fast-to-slow phenotypic shifts and an expansion of mitochondrial networks. Recent research suggests that the local and systemic benefits of exercise training also may be modulated by the mitochondrial-derived peptide, MOTS-c. Using a combination of acute and chronic exercise challenges, the goal of the present study was to characterize the interrelationship between MOTS-c and exercise. Compared to sedentary controls, 4-8 weeks of voluntary running increased MOTS-c protein expression ~1.5-5-fold in rodent plantaris, medial gastrocnemius, and tibialis anterior muscles and is sustained for 4-6 weeks of detraining. This MOTS-c increase coincides with elevations in mtDNA reflecting an expansion of the mitochondrial genome to aerobic training. In a second experiment, a single dose (15 mg/kg) of MOTS-c administered to untrained mice improved total running time (12% increase) and distance (15% increase) during an acute exercise test. In a final experiment, MOTS-c protein translocated from the cytoplasm into the nucleus in two of six mouse soleus muscles 1 h following a 90-min downhill running challenge; no nuclear translocation was observed in the plantaris muscles from the same animals. These findings indicate that MOTS-c protein accumulates within trained skeletal muscle likely through a concomitant increase in mtDNA. Furthermore, these data suggest that the systemic benefits of exercise are, in part, mediated by an expansion of the skeletal muscle-derived MOTS-c protein pool. The benefits of training may persist into a period of inactivity (e.g., detraining) resulting from a sustained increase in intramuscular MOTS-c proteins levels.
Collapse
|