1
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Ohdachi T, Matsushima M, Ohara M, Kawashima H, Inoue G, Atsumi K, Tsubosaki Y, Takekoshi M, Ueyama J, Hashimoto N, Sato M, Hasegawa Y, Ishii M, Kawabe T. Degranulation and expression of cytokines were modulated by diazinon in activated mast cells. Toxicology 2024; 506:153882. [PMID: 38971550 DOI: 10.1016/j.tox.2024.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Diazinon is an organophosphorus (OP) insecticides used in agriculture, home gardening and indoor pest control in Japan. It can activate macrophages and induce pro-inflammatory responses and has been reported to cause airway hyper-reactivity, suggesting the possibility of asthma exacerbation from exposure to OP insecticides. Despite the correlation between insecticide use and the pathogenesis of allergic diseases, there have been no reports on the effects of diazinon on mast cell function. Therefore, in this study, we investigated the effects of diazinon on mast cell function in rat basophilic leukemia (RBL)-2H3 cells. Surprisingly, we found that diazinon inhibited mast cell activation, although the degree of inhibition varied with concentration. Diazinon induced reactive oxygen species (ROS) generation and HO-1 expression at a concentration of 150 µM without affecting cell viability. Diazinon inhibited A23187-mediated degranulation and Tnf and Il4 expression in RBL-2H3 cells but did not affect calcium influx. Suppression of degranulation by diazinon was reversed when the culture supernatant was removed. As a signaling event downstream of calcium influx, diazinon inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) induced by A23187, whereas the phosphorylation of p38 had little effect. IgE cross-linking-mediated degranulation as well as the induction of Tnf and IL4 expression was significantly inhibited by diazinon, while diazinon had little effect on calcium influx. In conclusion, diazinon inhibited mast cell activation, including degranulation and cytokine expression. When evaluating the in vivo effects of diazinon, its potential to inhibit mast cell activation should be considered in the pathophysiology and development of allergic diseases in terms of basic and clinical aspects, respectively, although the effect of diazinon varies depending on the cell type.
Collapse
Affiliation(s)
- Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Miyoko Matsushima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan.
| | - Moeko Ohara
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Hina Kawashima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Goki Inoue
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Kazuko Atsumi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Yuka Tsubosaki
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Masahiro Takekoshi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Jun Ueyama
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan; National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| |
Collapse
|
3
|
Chatterjee T, Arora I, Underwood L, Gryshyna A, Lewis TL, Masjoan Juncos JX, Goodin BR, Heath S, Aggarwal S. High Heme and Low Heme Oxygenase-1 Are Associated with Mast Cell Activation/Degranulation in HIV-Induced Chronic Widespread Pain. Antioxidants (Basel) 2023; 12:1213. [PMID: 37371943 PMCID: PMC10295513 DOI: 10.3390/antiox12061213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
An overwhelming number of people with HIV (PWH) experience chronic widespread pain (CWP) throughout their lifetimes. Previously, we demonstrated that PWH with CWP have increased hemolysis and attenuated heme oxygenase 1 (HO-1) levels. HO-1 degrades reactive, cell-free heme into antioxidants like biliverdin and carbon monoxide (CO). We found that high heme or low HO-1 caused hyperalgesia in animals, likely through multiple mechanisms. In this study, we hypothesized that high heme or low HO-1 caused mast cell activation/degranulation, resulting in the release of pain mediators like histamine and bradykinin. PWH who self-report CWP were recruited from the University of Alabama at Birmingham HIV clinic. Animal models included HO-1-/- mice and hemolytic mice, where C57BL/6 mice were injected intraperitoneally with phenylhydrazine hydrochloride (PHZ). Results demonstrated that plasma histamine and bradykinin were elevated in PWH with CWP. These pain mediators were also high in HO-1-/- mice and in hemolytic mice. Both in vivo and in vitro (RBL-2H3 mast cells), heme-induced mast cell degranulation was inhibited by treatment with CORM-A1, a CO donor. CORM-A1 also attenuated mechanical and thermal (cold) allodynia in hemolytic mice. Together, the data suggest that mast cell activation secondary to high heme or low HO-1 seen in cells and animals correlates with elevated plasma levels of heme, histamine, and bradykinin in PWH with CWP.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.C.); (L.U.); (A.G.); (T.L.L.); (J.X.M.J.)
| | - Itika Arora
- Division of Developmental Biology and the Reproductive Sciences Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Lilly Underwood
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.C.); (L.U.); (A.G.); (T.L.L.); (J.X.M.J.)
| | - Anastasiia Gryshyna
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.C.); (L.U.); (A.G.); (T.L.L.); (J.X.M.J.)
| | - Terry L. Lewis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.C.); (L.U.); (A.G.); (T.L.L.); (J.X.M.J.)
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.C.); (L.U.); (A.G.); (T.L.L.); (J.X.M.J.)
| | - Burel R. Goodin
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 98105, USA;
| | - Sonya Heath
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.C.); (L.U.); (A.G.); (T.L.L.); (J.X.M.J.)
| |
Collapse
|
4
|
Stevenson DK, Vreman HJ, Wong RJ. Heme, Heme Oxygenase-1, Statins, and SARS-CoV-2. Antioxidants (Basel) 2023; 12:antiox12030614. [PMID: 36978862 PMCID: PMC10044896 DOI: 10.3390/antiox12030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Heme, a metalloporphyrin, or more specifically, a tetrapyrrole containing ferrous iron, is an ancient molecule [...]
Collapse
|
5
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
6
|
Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11:antiox11030465. [PMID: 35326116 PMCID: PMC8944570 DOI: 10.3390/antiox11030465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.
Collapse
|
7
|
McCarty MF, Lerner A, DiNicolantonio JJ, Benzvi C. Nutraceutical Aid for Allergies - Strategies for Down-Regulating Mast Cell Degranulation. J Asthma Allergy 2021; 14:1257-1266. [PMID: 34737578 PMCID: PMC8558634 DOI: 10.2147/jaa.s332307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Interactions of antigens with the mast cell FcεRI-IgE receptor complex induce degranulation and boost synthesis of pro-inflammatory lipid mediators and cytokines. Activation of spleen tyrosine kinase (Syk) functions as a central hub in this signaling. The tyrosine phosphatase SHP-1 opposes Syk activity; stimulation of NADPH oxidase by FcεRI activation results in the production of oxidants that reversibly inhibit SHP-1, up-regulating the signal from Syk. Activated AMPK can suppress Syk activation by the FcεRI receptor, possibly reflecting its ability to phosphorylate the FcεRI beta subunit. Cyclic GMP, via protein kinase G II, enhances the activity of SHP-1 by phosphorylating its C-terminal region; this may explain its inhibitory impact on mast cell activation. Hydrogen sulfide (H2S) likewise opposes mast cell activation; H2S can boost AMPK activity, up-regulate cGMP production, and trigger Nrf2-mediated induction of Phase 2 enzymes - including heme oxygenase-1, whose generation of bilirubin suppresses NADPH oxidase activity. Phycocyanobilin (PCB), a chemical relative of bilirubin, shares its inhibitory impact on NADPH oxidase, rationalizing reported anti-allergic effects of PCB-rich spirulina ingestion. Phase 2 inducer nutraceuticals can likewise oppose the up-regulatory impact of NADPH oxidase on FcεRI signaling. AMPK can be activated with the nutraceutical berberine. High-dose biotin can boost cGMP levels in mast cells via direct stimulation of soluble guanylate cyclase. Endogenous generation of H2S in mast cells can be promoted by administering N-acetylcysteine and likely by taurine, which increases the expression of H2S-producing enzymes in the vascular system. Mast cell stabilization by benifuuki green tea catechins may reflect the decreased surface expression of FcεRI.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| | - James J DiNicolantonio
- Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA
- Advanced Ingredients for Dietary Products, AIDP, City of Industry, CA, USA
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
8
|
Li Y, Ma K, Han Z, Chi M, Sai X, Zhu P, Ding Z, Song L, Liu C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front Med (Lausanne) 2021; 8:708453. [PMID: 34504854 PMCID: PMC8421649 DOI: 10.3389/fmed.2021.708453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023] Open
Abstract
Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yunlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyalatu Sai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Linjiang Song
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
McCarty MF, DiNicolantonio JJ, Lerner A. Review - Nutraceuticals Can Target Asthmatic Bronchoconstriction: NADPH Oxidase-Dependent Oxidative Stress, RhoA and Calcium Dynamics. J Asthma Allergy 2021; 14:685-701. [PMID: 34163181 PMCID: PMC8214517 DOI: 10.2147/jaa.s307549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Activation of various isoforms of NADPH oxidase contributes to the pathogenesis of asthma at multiple levels: promoting hypercontractility, hypertrophy, and proliferation of airway smooth muscle; enabling lung influx of eosinophils via VCAM-1; and mediating allergen-induced mast cell activation. Free bilirubin, which functions physiologically within cells as a feedback inhibitor of NADPH oxidase complexes, has been shown to have a favorable impact on each of these phases of asthma pathogenesis. The spirulina chromophore phycocyanobilin (PhyCB), a homolog of bilirubin’s precursor biliverdin, can mimic the inhibitory impact of biliverdin/bilirubin on NADPH oxidase activity, and spirulina’s versatile and profound anti-inflammatory activity in rodent studies suggests that PhyCB may have potential as a clinical inhibitor of NADPH oxidase. Hence, spirulina or PhyCB-enriched spirulina extracts merit clinical evaluation in asthma. Promoting biosynthesis of glutathione and increasing the expression and activity of various antioxidant enzymes – as by supplementing with N-acetylcysteine, Phase 2 inducers (eg, lipoic acid), selenium, and zinc – may also blunt the contribution of oxidative stress to asthma pathogenesis. Nitric oxide (NO) and hydrogen sulfide (H2S) work in various ways to oppose pathogenic mechanisms in asthma; supplemental citrulline and high-dose folate may aid NO synthesis, high-dose biotin may mimic and possibly potentiate NO’s activating impact on soluble guanylate cyclase, and NAC and taurine may boost H2S synthesis. The amino acid glycine has a hyperpolarizing effect on airway smooth muscle that is bronchodilatory. Insuring optimal intracellular levels of magnesium may modestly blunt the stimulatory impact of intracellular free calcium on bronchoconstriction. Nutraceutical regimens or functional foods incorporating at least several of these agents may have utility as nutraceutical adjuvants to standard clinical management of asthma.
Collapse
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, MO, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, 5262000, Israel
| |
Collapse
|
10
|
Wang J, Zhang Y, Hu S, Ge S, Jia M, Wang N. Resveratrol inhibits MRGPRX2-mediated mast cell activation via Nrf2 pathway. Int Immunopharmacol 2021; 93:107426. [PMID: 33550032 DOI: 10.1016/j.intimp.2021.107426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are crucial effectors in inflammation and allergic reactions. The Mas-related G-protein-coupled receptor X2 (MRGPRX2) was the MC-specific receptor and play a key role in IgE-independent allergic reactions. The activation of the Nuclear factor erythroid derived 2-related factor 2 (Nrf2) is involved in IgE-mediated MC degranulation. Resveratrol (Res) is a polyphenolic compound in red wine and has been reported to exert a variety of pharmacological effects. In the current study, we investigated the effect of Res in regulating MRGPRX2-mediated MC activation and its underlyingmechanism. We demonstrated that Res reduced compound 48/80 (C48/80)-induced calcium flux in MCs and inhibited MCs degranulation in vitro. Res also suppressed C48/80-induced hind paw extravasation, active systemic anaphylaxis, and MCs degranulation in mouse models of pseudo-allergy in vivo. Furthermore, PCR and immunohistochemistry assay suggest that Res up-regulates Nrf2 expression and Nrf2 inhibitor attenuates the protective effects of Res. In conclusion, Res exerts an inhibitory effect on MRGPRX2-mediated MCs activation by targeting Nrf2 pathway and may present a promising new therapeutic agent for the treatment of MRGPRX2-dependent anaphylactoid reactions.
Collapse
Affiliation(s)
- Jue Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yongjing Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiling Hu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuai Ge
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Nan Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
11
|
Li QS, Wang YQ, Liang YR, Lu JL. The anti-allergic potential of tea: a review of its components, mechanisms and risks. Food Funct 2020; 12:57-69. [PMID: 33241826 DOI: 10.1039/d0fo02091e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Qing-Sheng Li
- Tea Research Institute, Zhejiang University, China. and Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, China.
| | | | | |
Collapse
|
12
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
13
|
Funes SC, Rios M, Fernández-Fierro A, Covián C, Bueno SM, Riedel CA, Mackern-Oberti JP, Kalergis AM. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front Immunol 2020; 11:1467. [PMID: 32849503 PMCID: PMC7396584 DOI: 10.3389/fimmu.2020.01467] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is the primary antioxidant enzyme involved in heme group degradation. A variety of stimuli triggers the expression of the inducible HO-1 isoform, which is modulated by its substrate and cellular stressors. A major anti-inflammatory role has been assigned to the HO-1 activity. Therefore, in recent years HO-1 induction has been employed as an approach to treating several disorders displaying some immune alterations components, such as exacerbated inflammation or self-reactivity. Many natural compounds have shown to be effective inductors of HO-1 without cytotoxic effects; among them, most are chemicals present in plants used as food, flavoring, and medicine. Here we discuss some naturally derived compounds involved in HO-1 induction, their impact in the immune response modulation, and the beneficial effect in diverse autoimmune disorders. We conclude that the use of some compounds from natural sources able to induce HO-1 is an attractive lifestyle toward promoting human health. This review opens a new outlook on the investigation of naturally derived HO-1 inducers, mainly concerning autoimmunity.
Collapse
Affiliation(s)
- Samanta C Funes
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Covián
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Millenium Institute on Immunolgy and Immunotherapy, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU CCT Mendoza- CONICET, Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Chen L, Zhong JL. MicroRNA and heme oxygenase-1 in allergic disease. Int Immunopharmacol 2020; 80:106132. [DOI: 10.1016/j.intimp.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
15
|
Ye J, Piao H, Jiang J, Jin G, Zheng M, Yang J, Jin X, Sun T, Choi YH, Li L, Yan G. Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways. Sci Rep 2017; 7:11895. [PMID: 28928455 PMCID: PMC5605538 DOI: 10.1038/s41598-017-12252-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-dependently reduced the pigmentation of Evans blue in the PCA model and decreased the concentration of serum histamine in PSA model, and attenuated the degranulation of mast cells without generating cytotoxicity. PD decreased pro-inflammatory cytokine expression (TNF-α, IL-4, IL-1β, and IL-8). PD directly inhibited activity of Lyn and Syk kinases and down-regulated downstream signaling pathway including MAPK, PI3K/AKT and NF-kB. In addition, PD also targets Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. In conclusion, the study demonstrates that PD is a possible therapeutic candidate for allergic inflammatory diseases. It directly inhibited activity of Lyn and Syk kinases and down-regulates the signaling pathway of MAPK, PI3K/AKT and NF-κB, and up-regulates the signaling pathway of Nrf2/HO-1 to inhibit the degranulation of mast cells.
Collapse
Affiliation(s)
- Jing Ye
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China
| | - Hongmei Piao
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, P.R. China
| | - Jingzhi Jiang
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China
| | - Guangyu Jin
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, P.R. China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Jinshi Yang
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Xiang Jin
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Tianyi Sun
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Liangchang Li
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China.
| | - Guanghai Yan
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China.
| |
Collapse
|
16
|
Ma YY, Yang MQ, He ZG, Fan MH, Huang M, Teng F, Wei Q, Li JY. Upregulation of heme oxygenase-1 in Kupffer cells blocks mast cell degranulation and inhibits dendritic cell migration in vitro. Mol Med Rep 2017; 15:3796-3802. [PMID: 28393189 DOI: 10.3892/mmr.2017.6448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Kupffer cells (KCs) influence liver allografts by interacting with other non‑parenchymal cells. However, the exact mechanism remains unclear. Upregulation of heme oxygenase-1 (HO-1) in KCs upon interaction with mast cells (MCs), and the effects on dendritic cell (DC) function, were investigated in the present study. KCs, MCs and DCs were prepared from 8‑10‑week‑old C57BL/6 mice. KCs were pretreated with PBS, dimethyl sulfoxide, hemin (50 µM; HO‑1 inducer), and zinc protoporphyrin (50 µM; HO‑1 inhibitor) for 8 h. Reverse transcription‑polymerase chain reaction and western blotting was performed to determine HO‑1 mRNA and protein levels in KCs, respectively. C‑C motif chemokine receptor 7 (CCR7) surface molecules were measured using flow cytometry, and prostaglandin E2 (PGE2), C‑C motif chemokine ligand (CCL) 19 and CCL21 were measured by ELISA. The Transwell model was used to investigate the migration of DCs. Pretreatment of KCs with hemin induced HO‑1 transcription and protein expression, and interacted with and stabilized MC membranes. When co‑cultured with MCs, the expression of CCR7 on DCs was reduced, and PGE2, CCL19 and CCL21 were similarly decreased. DC migration was also impaired. Upregulation of HO‑1 in KCs blocked MC degranulation and reduced DC migration.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Pathology, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Mu-Qing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Zhi-Gang He
- Department of General Surgery, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Mao-Hong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Man Huang
- Department of Good Clinical Practice, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Fei Teng
- Department of Good Clinical Practice, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Ji-Yu Li
- Department of General Surgery, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| |
Collapse
|
17
|
Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of reactive oxygen species in mast cell degranulation. BIOCHEMISTRY (MOSCOW) 2016; 81:1564-1577. [DOI: 10.1134/s000629791612018x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Durante W. Protective Role of Heme Oxygenase-1 in Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Yang HS, Choi YJ, Oh HH, Jo JH, Jung HK, Seo KS, Park TY, Jin SW, Huh CK. Anti-inflammatory effects of Ganoderma lucidum water extracts fermented using lactic acid bacteria based on HO-1 expression in LPS-stimulated RAW 264.7 macrophages. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Schumacher A, Zenclussen AC. Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Front Pharmacol 2015; 5:288. [PMID: 25610397 PMCID: PMC4285018 DOI: 10.3389/fphar.2014.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 12/14/2022] Open
Abstract
The heme-degrading enzyme heme oxygenase-1 (HO-1) has cytoprotective, antioxidant, and anti-inflammatory properties. Moreover, HO-1 is reportedly involved in suppressing destructive immune responses associated with inflammation, autoimmune diseases, and allograft rejection. During pregnancy, maternal tolerance to foreign fetal antigens is a prerequisite for successful embryo implantation and fetal development. Here, HO-1 has been implicated in counteracting the overwhelming inflammatory immune responses towards fetal allo-antigens, thereby contributing to fetal acceptance. Accordingly, HO-1 ablation negatively impacts the critical steps of pregnancy such as fertilization, implantation, placentation, and fetal growth. In the present review, we summarize recent data on the immune modulatory capacity of HO-1 towards allo-antigens expressed by the semi-allogeneic fetus and organ allografts. In this regard, HO-1 has been shown to promote alloantigen tolerance by blocking dendritic cell maturation resulting in reduced T cell responses and increased numbers of regulatory T cells. Moreover, HO-1 is suggested to shift the uterine cytokine milieu towards a protective Th2 profile and protects fetal tissue from apoptosis by upregulating anti-apoptotic molecules. Thus, HO-1 is not only a pivotal regulator of the initial steps of pregnancy; but also, an important player in supporting the maternal immune system in tolerating the fetus.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Ana C Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
21
|
Ma YY, Yang MQ, Wang CF, Ding J, Li JY. Inhibiting mast cell degranulation by HO-1 affects dendritic cell maturation in vitro. Inflamm Res 2014; 63:527-37. [PMID: 24604352 DOI: 10.1007/s00011-014-0722-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/05/2014] [Accepted: 02/12/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN Mast cell (MC) degranulation can break peripheral immune tolerance. However, its mechanism remains unclear. Our goal was to study the stabilization of MC membranes by heme oxygenase-1 (HO-1) in order to influence dendritic cell (DC) function. MATERIAL Mast cells and dendritic cells were prepared from 8-week-old to 10-week-old C57BL/6 mice; spleen mononuclear cells (SMCs) were prepared from 8-week-old to 10-week-old C57BL/6 and Balb/c mice. TREATMENT Mast cells were pretreated with PBS, DMSO, Hemin (50 μl/ml), and Znpp (50 μl/ml) for 8 h. METHOD Real-time PCR and western-blot tested the HO-1 of MC mRNA and protein. The co-stimulatory molecules of DCs (CD80, CD86, CD40) were measured by flow cytometry, and levels of TNF-α, IL-6, and IFN-γ were measured by ELISA. We set up a one-way mixed lymphocyte reaction (MLR) model to test the proliferation of SMCs after MC/DC interaction. *P < 0.05 (t test) was taken as the level of statistical significance. RESULT MCs pretreated with hemin induced HO-1 mRNA and protein expression, then interacted with DCs; expression of the co-stimulatory molecules was attenuated. The TNF-α, IL-6, and IFN-γ levels in the co-culture system were decreased. These DCs couldn't stimulate the proliferation of SMCs. CONCLUSION Inhibiting MC degranulation by HO-1 restrained DC maturation and attenuated the proliferation of SMCs.
Collapse
Affiliation(s)
- Yuan-yuan Ma
- Department of General Surgery, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai, China
| | | | | | | | | |
Collapse
|
22
|
Onyiah JC, Sheikh SZ, Maharshak N, Otterbein LE, Plevy SE. Heme oxygenase-1 and carbon monoxide regulate intestinal homeostasis and mucosal immune responses to the enteric microbiota. Gut Microbes 2014; 5:220-4. [PMID: 24637794 PMCID: PMC4063848 DOI: 10.4161/gmic.27290] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heme oxygenase-1 (HO-1) and its enzymatic by-product carbon monoxide (CO) have emerged as important regulators of acute and chronic inflammation. Mechanisms underlying their anti-inflammatory effects are only partially understood. In this addendum, we summarize current understanding of the role of the HO-1/CO pathway in regulation of intestinal inflammation with a focus on innate immune function. In particular, we highlight our recent findings that HO-1 and CO ameliorate intestinal inflammation through promotion of bacterial clearance. Our work and that of many others support further investigation of this global homeostatic pathway in the human inflammatory bowel diseases (IBDs).
Collapse
Affiliation(s)
- Joseph C Onyiah
- Departments of Medicine, Microbiology, and Immunology; University of North Carolina School Medicine; Chapel Hill, NC USA
| | - Shehzad Z Sheikh
- Departments of Medicine, Microbiology, and Immunology; University of North Carolina School Medicine; Chapel Hill, NC USA
| | - Nitsan Maharshak
- Departments of Medicine, Microbiology, and Immunology; University of North Carolina School Medicine; Chapel Hill, NC USA,Department of Gastroenterology and Liver Diseases; Tel Aviv Sourasky Medical Center; Tel Aviv University; Tel Aviv, Israel
| | - Leo E Otterbein
- Department of Surgery; Transplant Institute; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Scott E Plevy
- Departments of Medicine, Microbiology, and Immunology; University of North Carolina School Medicine; Chapel Hill, NC USA,Correspondence to: Scott E Plevy,
| |
Collapse
|
23
|
Hinds TD, Sodhi K, Meadows C, Fedorova L, Puri N, Kim DH, Peterson SJ, Shapiro J, Abraham NG, Kappas A. Increased HO-1 levels ameliorate fatty liver development through a reduction of heme and recruitment of FGF21. Obesity (Silver Spring) 2014; 22:705-12. [PMID: 23839791 PMCID: PMC3830593 DOI: 10.1002/oby.20559] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/06/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Obese leptin deficient (ob/ob) mice are a model of adiposity that displays increased levels of fat, glucose, and liver lipids. Our hypothesis is that HO-1 overexpression ameliorates fatty liver development. METHODS Obese mice were administered cobalt protoporphyrin (CoPP) and stannic mesoporphyrin (SnMP) for 6 weeks. Heme, HO-1, HO activity, PGC1α, FGF21, glycogen content, and lipogenesis were assessed. RESULTS CoPP administration increased hepatic HO-1 protein levels and HO activity, decreased hepatic heme, body weight gain, glucose levels, and resulted in decreased steatosis. Increased levels of HO-1 produced a decrease in lipid droplet size, Fatty acid synthase (FAS) levels involving recruitment of FGF21, PPARα, and Glut 1. These beneficial effects were reversed by inhibition of HO activity. CONCLUSION Increased levels of HO-1 and HO activity reduced the levels of obesity by reducing hepatic heme and lipid accumulation. These changes were manifested by decreases in cellular heme, increases in FGF21, glycogen content, and fatty liver. The beneficial effect of HO-1 induction results from an increase in PPARα and FGF21 levels and a decrease in PGC1α, levels they were reversed by SnMP. Low levels of HO-1 and HO activity are responsible for fatty liver.
Collapse
Affiliation(s)
| | - Komal Sodhi
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755
| | - Charles Meadows
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755
| | | | | | - Dong Hyun Kim
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755
| | - Stephen J. Peterson
- Department of Medicine, New York Methodist-Weill Cornell Medical College, New York, NY 10065
| | - Joseph Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755
| | - Nader G. Abraham
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755
- The Rockefeller University, New York, NY 10065
| | | |
Collapse
|
24
|
Wang CF, Wang ZY, Li JY. Dual protective role of HO-1 in transplanted liver grafts: A review of experimental and clinical studies. World J Gastroenterol 2011; 17:3101-8. [PMID: 21912452 PMCID: PMC3158409 DOI: 10.3748/wjg.v17.i26.3101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/02/2011] [Accepted: 02/09/2011] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is considered as the most effective treatment for end-stage liver disease. However, serious complications still exist, particularly in two aspects: ischemia and subsequent reperfusion of the liver, causing postoperative hepatic dysfunction and even failure; and acute and chronic graft rejections, affecting the allograft survival. Heme oxygenase (HO), a stress-response protein, is believed to exert a protective function on both the development of ischemia-reperfusion injury (IRI) and graft rejection. In this review of current researches on allograft protection, we focused on the HO-1. We conjecture that HO-1 may link these two main factors affecting the prognosis of liver transplantations. In this review, the following aspects were emphasized: the basic biological functions of HO-1, its roles in IRI and allograft rejection, as well as methods to induce HO-1 and the prospects of a therapeutic application of HO-1 in liver transplantation.
Collapse
|
25
|
Durante W. Protective role of heme oxygenase-1 against inflammation in atherosclerosis. Front Biosci (Landmark Ed) 2011; 16:2372-88. [PMID: 21622183 DOI: 10.2741/3860] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting step in the metabolism of free heme into equimolar amounts of ferrous iron, carbon monoxide (CO), and biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. HO-1 has recently been identified as a promising therapeutic target in the treatment of vascular inflammatory disease, including atherosclerosis. HO-1 represses inflammation by removing the pro-inflammatory molecule heme and by generating CO and the bile pigments, biliverdin and bilirubin. These HO-1 reaction products are capable of blocking innate and adaptive immune responses by modifying the activation, differentiation, maturation, and/or polarization of numerous immune cells, including endothelial cells, monocytes/macrophages, dendritic cells, T lymphocytes, mast cells, and platelets. These cellular actions by CO and bile pigments result in diminished leukocyte recruitment and infiltration, and pro-inflammatory mediator production within atherosclerotic lesions. This review highlights the mechanisms by which HO-1 suppresses vascular inflammation in atherosclerosis, and explores possible therapeutic modalities by which HO-1 and its reaction products can be employed to ameliorate vascular inflammatory disease.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
26
|
Blancou P, Tardif V, Simon T, Rémy S, Carreño L, Kalergis A, Anegon I. Immunoregulatory properties of heme oxygenase-1. Methods Mol Biol 2011; 677:247-268. [PMID: 20941616 DOI: 10.1007/978-1-60761-869-0_18] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Heme oxygenase-1 (HO-1) is one of the three isoforms of the heme oxygenase enzyme that catabolyzes the degradation of heme into biliverdin with the production of free iron and CO. HO-1 is induced by its substrate and by other stimuli, including agents involved in oxidative stress and proinflammatory cytokines as well as several anti-inflammatory stimuli. A growing body of evidence points toward the capacity of this molecule to inhibit immune reactions and the pivotal role of HO-1 in inflammatory diseases. We will first review the physiological role of HO-1 as determined by the analysis of HO-1-deficient individuals. This will be followed by an examination of the effect of HO-1 within immunopathological contexts such as immune disorders (autoimmunity and allergy) or infections. A section will be devoted to the use of an HO-1 inducer as an immunosuppressive molecule in transplantation. Finally, we will review the molecular basis of HO-1 actions on different immune cells.
Collapse
|
27
|
Navarathna DH, Roberts DD. Candida albicans heme oxygenase and its product CO contribute to pathogenesis of candidemia and alter systemic chemokine and cytokine expression. Free Radic Biol Med 2010; 49:1561-73. [PMID: 20800092 PMCID: PMC2952735 DOI: 10.1016/j.freeradbiomed.2010.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 01/08/2023]
Abstract
Mammalian heme oxygenases play important roles in immune regulation by producing immunosuppressive CO. The pathogenic yeast Candida albicans encodes a heme oxygenase, Hmx1, that is specifically induced by the host protein hemoglobin, suggesting a role in the pathogenesis of disseminated bloodstream infections. We show that exposing mice to therapeutic levels of CO increases C. albicans virulence, whereas an HMX1 null strain has decreased virulence in murine disseminated candidiasis. Levels of several regulatory cytokines and chemokines are decreased in mice infected with the null strain, and initial lesions in the kidney are more rapidly cleared after polymorphonuclear leukocyte infiltration. Reconstitution of one or both alleles restores virulence to the level of wild type. Growth in vitro and initial organ burdens in infected mice are not decreased and host iron overload does not restore virulence for the null strain, suggesting that early growth in the host is not limited by Hmx1-mediated iron scavenging. In contrast, inhaled CO partially reverses the virulence defect of the null strain and restores several host cytokine responses to wild-type levels. Collectively, these results show that C. albicans Hmx1 expression and CO production limit the host immune response and contribute to the pathogenesis of candidemia.
Collapse
Affiliation(s)
| | - David D. Roberts
- Correspondence: NIH, Building 10 Room 2A33, 10 Center Drive, Bethesda, MD 20892-1500, Tel: 301-496-6264, Fax: 301-402-0043,
| |
Collapse
|
28
|
Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-κB in human keratinocytes. Arch Pharm Res 2010; 33:1867-76. [PMID: 21116791 DOI: 10.1007/s12272-010-1120-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/03/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SFN) from broccoli has been used a chemopreventive photochemical as detoxification of xenobiotics and anti-inflammatory, however, there is no studies for Th2 chemokine expression through heme oxygenase-1 and NF-κB in keratinocytes. Atopic dermatitis is a chronically relapsing pruritic inflammatory skin disease. SFN is demonstrated to have anti-inflammatory and anti-oxidant effects. This study aimed to define whether and how SFN regulates Th2-related chemokine production in human HaCaT keratinocytes. The level of chemokine expression was measured by reverse transcription polymerase chain reaction (RT-PCR) and signaling study was performed by Western blot analysis. Chemokine production was determined by enzyme-linked immunosorbent assay. Pretreatment with SFN suppressed interferon-γ (IFN-γ) and tumor necrosis factor (TNF)-α- induced thymus- and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) production in HaCaT keratinocytes. SFN inhibited IFN-γ and TNF-α-induced NF-κB activation as well as STAT1 activation. Interestingly, pretreatment with SFN result in significantly suppressed IFN-γ and TNF-α-induced TARC/CCL17 and MDC/CCL22 production through the induction of HO-1. This suppression was completely abolished by HO-1 siRNA. Furthermore, Carbon monoxide, but not other end products of HO-1 activity, also suppressed IFN-γ and TNF-α-induced TARC/CCL17 and MDC/CCL22 production. These results demonstrate that SFN has an inhibitory role in IFN-γ and TNF-α-induced production of TARC/CCL17 and MDC/CCL22 in human HaCaT cells by inhibition of NF-κB activation and induction of HO-1.
Collapse
|
29
|
Sun X, Suzuki K, Nagata M, Kawauchi Y, Yano M, Ohkoshi S, Matsuda Y, Kawachi H, Watanabe K, Asakura H, Aoyagi Y. Rectal administration of tranilast ameliorated acute colitis in mice through increased expression of heme oxygenase-1. Pathol Int 2010; 60:93-101. [PMID: 20398193 DOI: 10.1111/j.1440-1827.2009.02490.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mast cells play a key role in the pathophysiology of inflammatory bowel disease (IBD). Tranilast, a mast cell stabilizer, has been empirically used for IBD in Japan, but its precise role in the treatment of IBD is largely unknown. To investigate the role of tranilast for the treatment of IBD, tranilast was administered intrarectally to mice with dextran sulfate sodium (DSS)-induced colitis. Tranilast ameliorated DSS colitis clinically and pathologically, as demonstrated by decreased number and degranulation of mast cells in the colon. mRNA expression was increased for tumor necrosis factor-alpha, interferon-gamma and interleukin (IL)-6, and decreased for IL-10 in the colon of DSS colitis mice. In contrast, tranilast markedly decreased expression of mRNAs for the pro-inflammatory cytokines, and increased that of the anti-inflammatory cytokines. Moreover, tranilast increased heme oxygenase (HO)-1 expression on colonic epithelial cells as well as on colon-infiltrating cells of DSS colitis. In conclusion, tranilast ameliorated DSS colitis by regulating mast cell degranulation, decreasing inflammatory cytokines and increasing anti-inflammatory cytokines. Tranilast might exert these effects partly through enhanced HO-1 expression in the colon, suggesting a potential adjunctive therapy for IBD.
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS, Theoharides TC. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. THE JOURNAL OF IMMUNOLOGY 2009; 183:6313-9. [PMID: 19846869 DOI: 10.4049/jimmunol.0803422] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are immune effector cells that are involved in allergies and inflammation through the release of mediators such as histamine, PGs, and cytokines. Uncoupling protein 2 (UCP2) is a mitochondrial protein that inhibits insulin secretion from beta cells, possibly through down-regulation of reactive oxygen species production. We hypothesized that UCP2 could also regulate mast cell activation. In this study, we show that mouse bone marrow mast cells (BMMCs) and human leukemic LAD2 mast cells express UCP2. BMMCs from Ucp2(-/-) mice exhibited greater histamine release, whereas overexpression of UCP2 in LAD2 cells reduced histamine release after both allergic and nonallergic triggers. Ucp2(-/-) BMMCs also had elevated histamine content and histidine decarboxylase expression. Histamine content was reduced by overexpression of UCP2 or treatment with the mitochondrial-targeted superoxide dismutase-mimetic (TBAP) tetrakis(4-benzoic acid) porphyrin manganese(III). Furthermore, Ucp2(-/-) BMMCs also had greater production of both IL-6 and PGD(2) as well as ERK phosphorylation, which is known to regulate PG synthesis. Intradermal administration of substance P, an activator of skin mast cells, and challenge with DNP-human serum albumin after passive sensitization induced significantly greater vascular permeability in the skin of Ucp2(-/-) mice in vivo. Our results suggest that UCP2 can regulate mast cell activation.
Collapse
Affiliation(s)
- Michael Tagen
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ohtsubo T, Matsumura K, Sakagami K, Fujii K, Tsuruya K, Noguchi H, Rovira II, Finkel T, Iida M. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 2009; 54:868-76. [PMID: 19667249 DOI: 10.1161/hypertensionaha.109.135152] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xanthine oxidoreductase (XOR) is an enzyme responsible for purine degradation, reactive oxygen species production, and adipogenesis. XOR gene-disrupted (XOR(-/-)) mice demonstrate renal failure and early death within several months. The aim of this study was to elucidate the mechanism of renal damage in XOR(-/-) mice and to determine the physiological role of XOR in the kidney. Histological analysis revealed that renal tubular damage in XOR(-/-) mice was accompanied by deposition of crystals and lipid-rich substances. Triglyceride content in renal homogenates was significantly increased in XOR(-/-) mice. The level of lipogenesis-related gene expression was comparable in XOR(+/+) and XOR(-/-) mice, whereas the expression of adipogenesis-related gene expression was significantly elevated in XOR(-/-) mice. Urinary excretions of xanthine and hypoxanthine were markedly elevated in XOR(-/-) mice. Immunohistochemical analysis, Western blotting, and real time RT-PCR revealed that various markers of fibrosis, inflammation, ischemia, and oxidative stress were increased in XOR(-/-) mice. Finally, we demonstrate that primary renal epithelial cells from XOR(-/-) mice are more readily transformed to myofibroblasts, which is a marker of increased epithelial mesenchymal transition. These results suggest that XOR gene disruption induced the depletion of uric acid and the accumulation of triglyceride-rich substances, xanthine, and hypoxanthine in the renal tubules. We believe that these changes contribute to a complex cellular milieu characterized by inflammation, tissue hypoxia, and reactive oxygen species production, ultimately resulting in renal failure through increased renal interstitial fibrosis.
Collapse
Affiliation(s)
- Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells. Inflamm Res 2009; 58:705-15. [PMID: 19390785 DOI: 10.1007/s00011-009-0039-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE AND DESIGN We investigated the involvement of heme oxygenase (HO)-1 in the anti-allergic action of quercetin against degranulation of rat basophilic leukemia (RBL-2H3) cells, rat peritoneal mast cells, and mouse bone marrow-derived mast cells. METHODS The strength of allergic reaction was evaluated by the extent of degranulation in mast cells sensitized with various stimulants. The levels of HO-1, HO-2, and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions were determined by quantitative RT-PCR, western blotting, or immunocytochemistry. RESULTS Heme oxygenase activity was upregulated after short exposure to quercetin, followed by the induction of HO-1 expression after long exposure to quercetin. The inhibition of degranulation by quercetin was reversed using tin protoporphyrin IX (SnPP), an HO-1 inhibitor. HO-1 metabolites, bilirubin and CO, led to inhibit degranulation, and quercetin translocated Nrf2 from cytoplasm into nucleus in RBL-2H3 cells. CONCLUSION These results strongly suggest that quercetin exerted anti-allergic actions via activation of Nrf2-HO-1 pathway.
Collapse
|
33
|
Pae HO, Chung HT. Heme oxygenase-1: its therapeutic roles in inflammatory diseases. Immune Netw 2009; 9:12-9. [PMID: 20107533 PMCID: PMC2803295 DOI: 10.4110/in.2009.9.1.12] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 01/05/2023] Open
Abstract
Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Ock Pae
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Korea
| | | |
Collapse
|
34
|
Hirose E, Matsushima M, Takagi K, Ota Y, Ishigami K, Hirayama T, Hayashi Y, Nakamura T, Hashimoto N, Imaizumi K, Baba K, Hasegawa Y, Kawabe T. Involvement of Heme Oxygenase-1 in Kaempferol-Induced Anti-Allergic Actions in RBL-2H3 Cells. Inflammation 2009; 32:99-108. [DOI: 10.1007/s10753-009-9108-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Hadzijusufovic E, Rebuzzi L, Gleixner KV, Ferenc V, Peter B, Kondo R, Gruze A, Kneidinger M, Krauth MT, Mayerhofer M, Samorapoompichit P, Greish K, Iyer AK, Pickl WF, Maeda H, Willmann M, Valent P. Targeting of heat-shock protein 32/heme oxygenase-1 in canine mastocytoma cells is associated with reduced growth and induction of apoptosis. Exp Hematol 2008; 36:1461-70. [PMID: 18723263 DOI: 10.1016/j.exphem.2008.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Advanced mast cell (MC) neoplasms are usually resistant to conventional therapy. Therefore, current research focuses on new targets in neoplastic MC and development of respective targeted drugs. Mastocytomas in dogs often behave as aggressive tumors. We report that heat-shock protein 32 (Hsp32), also known as heme oxygenase-1, is a survival-enhancing molecule and new target in canine mastocytoma cells. MATERIALS AND METHODS As assessed by reverse transcriptase polymerase chain reaction, Northern blotting, immunocytochemistry, and Western blotting, primary neoplastic dog MC, and the canine mastocytoma-derived cell line C2 expressed Hsp32 mRNA and the Hsp32 protein in a constitutive manner. RESULTS The KIT-targeting drug midostaurin inhibited expression of Hsp32, as well as survival in C2 cells. Confirming the functional role of Hsp32, the inhibitory effect of midostaurin on C2 cells was markedly reduced by the Hsp32-inductor hemin. Two pharmacologic Hsp32-inhibitors, styrene maleic-acid micelle-encapsulated ZnPP (SMA-ZnPP) and pegylated zinc-protoporphyrin (PEG-ZnPP) were applied. Both drugs were found to inhibit proliferation of C2 cells as well as growth of primary neoplastic canine MC. The growth-inhibitory effects of SMA-ZnPP and PEG-ZnPP were dose- and time-dependent (IC(50): 1-10 muM) and found to be associated with induction of apoptosis. CONCLUSIONS Hsp32 is an important survival factor and interesting new target in neoplastic canine MC. Trials with Hsp32-targeted drugs are now warranted to define the clinical efficacy of these drugs.
Collapse
Affiliation(s)
- Emir Hadzijusufovic
- Department of Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xia ZW, Xu LQ, Zhong WW, Wei JJ, Li NL, Shao J, Li YZ, Yu SC, Zhang ZL. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor- 1. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1904-14. [PMID: 17991714 DOI: 10.2353/ajpath.2007.070096] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cumulative evidence suggests the up-regulation of interleukin (IL)-10 and T-regulatory (Treg) cells is implicated in anti-inflammatory effect of heme oxygenase-1 (HO-1). Thus, we postulated that induction of HO-1 could augment IL-10 and transforming growth factor (TGF)-beta production and foxp3+CD4+CD25+ Treg cell function, thereby leading to attenuation of airway inflammation. In this study, CD4+CD25+ Treg cells isolated from mouse spleen were either transfected with a HO-1 expression vector (pcDNA3HO-1) or treated with a HO-1 inducer (hemin). Up-regulation of HO-1 enhanced foxp3 expression and IL-10 secretion in the Treg cells in vitro. Next, BALB/c, C57/B6.129, and IL-10-deficient B6.129P2-Il10tm1Cgn/J mice were challenged by ovalbumin to induce airway inflammation. Consistent with in vitro findings, hemin treatment resulted in induction of HO-1 and foxp3 and production of IL-10 and membrane-bound TGF-beta1 in vivo. This was further correlated with decrease of ovalbumin-specific immunoglobulin E level and eosinophil infiltration in bronchial alveolar lavage fluid from the asthmatic mice. Furthermore, hemin significantly enhanced the biological activity of CD4+CD25+ Treg cells. This protective effect was specifically blocked by Sn-protoporphyrin, a HO-1 enzymatic inhibitor. Finally, hemin failed to up-regulate the function of CD4+CD25+ Treg cells from IL-10-deficient mice. Our study indicates that HO-1 exerts its protective effect on asthma through a mechanism mediated by foxp3+CD4+CD25+ Treg cells, IL-10, and membrane-bound TGF-beta1.
Collapse
Affiliation(s)
- Zhen-Wei Xia
- Department of Pediatrics, Ruijin Hospital, Ruijin 2nd Rd. 197, Shanghai 200025, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McCarty MF. ''Iatrogenic Gilbert syndrome''--a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 2007; 69:974-94. [PMID: 17825497 DOI: 10.1016/j.mehy.2006.12.069] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/11/2023]
Abstract
The catabolism of heme, generating biliverdin, carbon monoxide, and free iron, is mediated by heme oxygenase (HO). One form of this of this enzyme, heme oxygenase-1, is inducible by numerous agents which promote oxidative stress, and is now known to provide important antioxidant protection, as demonstrated in many rodent models of free radical-mediated pathogenesis, and suggested by epidemiology observing favorable health outcomes in individuals carrying high-expression alleles of the HO-1 gene. The antioxidant impact of HO-1 appears to be mediated by bilirubin, generated rapidly from biliverdin by ubiquitously expressed biliverdin reductase. Bilirubin efficiently scavenges a wide range of physiological oxidants by electron donation. In the process, it is often reconverted to biliverdin, but biliverdin reductase quickly regenerates bilirubin, thereby greatly boosting its antioxidant potential. There is also suggestive evidence that bilirubin inhibits the activity or activation of NADPH oxidase. Increased serum bilirubin is associated with reduced risk for atherogenic disease in epidemiological studies, and more limited data show an inverse correlation between serum bilirubin and cancer risk. Gilbert syndrome, a genetic variant characterized by moderate hyperbilirubinemia attributable to reduced hepatic expression of the UDP-glucuronosyltransferase which conjugates bilirubin, has been associated with a greatly reduced risk for ischemic heart disease and hypertension in a recent study. Feasible strategies for boosting serum bilirubin levels may include administration of HO-1 inducers, supplementation with bilirubin or biliverdin, and administration of drugs which decrease the efficiency of hepatic bilirubin conjugation. The well-tolerated uricosuric drug probenecid achieves non-competitive inhibition of hepatic glucuronidation reactions by inhibiting the transport of UDP-glucuronic acid into endoplasmic reticulum; probenecid therapy is included in the differential diagnosis of hyperbilirubinemia, and presumably could be used to induce an ''iatrogenic Gilbert syndrome''. Other drugs, such as rifampin, can raise serum bilirubin through competitive inhibition of hepatocyte bilirubin uptake--although unfortunately rifampin is not as safe as probenecid. Measures which can safely achieve moderate serum elevations of bilirubin may prove to have value in the prevention and/or treatment of a wide range of disorders in which oxidants play a prominent pathogenic role, including many vascular diseases, cancer, and inflammatory syndromes. Phycobilins, algal biliverdin metabolites that are good substrates for biliverdin reductase, may prove to have clinical antioxidant potential comparable to that of bilirubin.
Collapse
|
38
|
Kondo R, Gleixner KV, Mayerhofer M, Vales A, Gruze A, Samorapoompichit P, Greish K, Krauth MT, Aichberger KJ, Pickl WF, Esterbauer H, Sillaber C, Maeda H, Valent P. Identification of heat shock protein 32 (Hsp32) as a novel survival factor and therapeutic target in neoplastic mast cells. Blood 2007; 110:661-9. [PMID: 17420286 DOI: 10.1182/blood-2006-10-054411] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Systemic mastocytosis (SM) is a myeloid neoplasm characterized by increased survival and accumulation of neoplastic mast cells (MCs). In most patients, the D816V-mutated variant of KIT is detectable. We report here that heat shock protein 32 (Hsp32), also known as heme oxygenase-1 (HO-1), is a novel KIT-inducible survival factor in neoplastic MCs. As assessed by reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and Western blotting, the KIT D816V(+) MC line HMC-1.2 as well as highly enriched primary neoplastic MCs were found to express Hsp32 mRNA and the Hsp32 protein. Moreover, KIT D816V and stem cell factor (SCF)-activated wild-type KIT were found to induce Hsp32 promoter activity, expression of Hsp32 mRNA, and expression of the Hsp32 protein in Ba/F3 cells. Correspondingly, the KIT D816V-targeting drug PKC412 decreased the expression of Hsp32 as well as proliferation/survival in neoplastic MCs. The inhibitory effects of PKC412 on the survival of HMC-1.2 cells were counteracted by the HO-1 inductor hemin or lentiviral-transduced HO-1. Moreover, 2 Hsp32-targeting drugs, pegylated zinc protoporphyrin (PEG-ZnPP) and styrene maleic acid copolymer micelle-encapsulated ZnPP (SMA-ZnPP), were found to inhibit proliferation and to induce apoptosis in neoplastic MCs. Furthermore, both drugs were found to cooperate with PKC412 in producing growth inhibition. Together, these data show that Hsp32 is an important survival factor and interesting new therapeutic target in neoplastic MCs.
Collapse
Affiliation(s)
- Rudin Kondo
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yasui Y, Nakamura M, Onda T, Uehara T, Murata S, Matsui N, Fukuishi N, Akagi R, Suematsu M, Akagi M. Heme oxygenase-1 inhibits cytokine production by activated mast cells. Biochem Biophys Res Commun 2007; 354:485-90. [PMID: 17234154 DOI: 10.1016/j.bbrc.2006.12.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 12/29/2006] [Indexed: 01/20/2023]
Abstract
Heme oxygenase-1 (HO-1) is thought to contribute to host defense reactions against various stresses. In addition, recent reports have suggested that HO-1 modulates immunocyte activation and functions. HO-1 suppresses mast cell degranulation, but whether HO-1 suppresses cytokine synthesis as well is not yet known. We examined whether rat HO-1 cDNA transfected rat basophilic leukemia (RBL)-2H3 cells have altered cytokine production in response to stimulation with anti-ovalbumin (OA) serum/OA compared to Mock transfected RBL-2H3 cells. HO-1 inhibited anti-OA serum/OA-induced IL-3 and TNF-alpha production. Inhibition of HO-1 activity by Zn (II) protoporphyrin IX, a specific HO-1 inhibitor, prevented the suppression of TNF-alpha production. The cytokine inhibition by HO-1 was associated with selective suppression of the DNA-binding activity of AP-1 transcription factors. The suppression of mast cell cytokine production by HO-1 may be an important aspect of the processes that lead to resolution of allergic inflammation.
Collapse
Affiliation(s)
- Yumiko Yasui
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Tokushima-shi, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Quan S, Kaminski PM, Yang L, Morita T, Inaba M, Ikehara S, Goodman AI, Wolin MS, Abraham NG. Heme oxygenase-1 prevents superoxide anion-associated endothelial cell sloughing in diabetic rats. Biochem Biophys Res Commun 2004; 315:509-16. [PMID: 14766238 DOI: 10.1016/j.bbrc.2004.01.086] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Indexed: 12/26/2022]
Abstract
Heme oxygenase-1 (HO-1) represents a key defense mechanism against oxidative injury. Hyperglycemia has been linked to increased oxidative stress, leading to endothelial dysfunction, delayed cell replication, and enhanced apoptosis. The effect of streptozotocin (STZ)-induced diabetes on HO activity, HO-1 promoter activity, superoxide anion (O*-2, and the number of circulating endothelial cells was measured. The expression of HO-1/HO-2 protein was unchanged, but HO activity was decreased in aortas of diabetic rats compared with control (p < 0.05). High glucose decreased HO-1 promoter activity (p < 0.05). Hyperglycemia increased O*-2 and this increase was augmented with HO-1 inhibition and diminished with HO-1 upregulation (p < 0.05). Circulating endothelial cells were significantly higher in diabetic rats and were decreased or increased with administration of the HO-1 inducer (CoPP) or inhibitor (SnMP), respectively (p<0.05). In conclusion, HO-1 upregulation in diabetic rats brings about an increase in serum bilirubin, a reduction in O*-2 production, and a decrease in endothelial cell sloughing.
Collapse
Affiliation(s)
- Shou Quan
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lindenblatt N, Bordel R, Schareck W, Menger MD, Vollmar B. Vascular heme oxygenase-1 induction suppresses microvascular thrombus formation in vivo. Arterioscler Thromb Vasc Biol 2004; 24:601-6. [PMID: 14739126 DOI: 10.1161/01.atv.0000118279.74056.8a] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE By heme degradation, heme oxygenase-1 (HO-1) provides endogenous carbon monoxide and bilirubin, both of which play major roles in vascular biology. The current study aimed to examine whether induction of HO-1 and its byproducts modulate the process of microvascular thrombus formation in vivo. METHODS AND RESULTS In individual microvessels of mouse cremaster muscle preparations, ferric chloride-induced thrombus formation was analyzed using intravital fluorescence microscopy. When mice were pretreated with an intraperitoneal injection of hemin, a HO-1 inducer, immunohistochemistry and Western blot protein analysis of cremaster muscle tissue displayed a marked induction of HO-1. In these animals, superfusion with ferric chloride solution induced arteriolar and venular thrombus formation, which, however, was significantly delayed when compared with thrombus formation in animals without HO-1 induction. The delay in thrombus formation in hemin-treated mice was completely blunted by tin protoporphyrin-IX, a HO-1 inhibitor, but not by copper protoporphyrin-IX, which does not inhibit the enzyme. Coadministration of the vitamin E analogue Trolox in HO-1-blocked animals almost completely restored the delay in thrombus formation, implying that, besides CO, the antioxidant HO pathway metabolite bilirubin mainly contributes to the antithrombotic property of HO-1. This was further supported by the fact that bilirubin was found as effective as hemin in delay of ferric chloride-induced thrombus formation. Animals with HO-1 induction revealed reduced P-selectin protein expression in cremaster muscle tissue, which most probably presented the molecular basis for delayed thrombus growth. CONCLUSIONS Local induction of HO-1 activity may be of preventive and therapeutic value for clinical disorders with increased risk of thrombotic events.
Collapse
Affiliation(s)
- N Lindenblatt
- Department of Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
42
|
Suematsu M, Suganuma K, Kashiwagi S. Mechanistic probing of gaseous signal transduction in microcirculation. Antioxid Redox Signal 2003; 5:485-92. [PMID: 13678537 DOI: 10.1089/152308603768295230] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitric oxide (NO) and carbon monoxide (CO) serve as activators of soluble guanylate cyclase (sGC) in vitro, and the latter serves as a microvascular relaxant for the liver, a major organ for heme oxygenase-dependent heme degradation and gas generation. Another important determinant of local sGC activities is superoxide anion, which scavenges NO and/or activates sGC directly. Altered bioavailability of the oxygen-derived species and its functional outcomes remain unknown, because information on amounts and distribution of these molecules has hardly been examined in vivo. Our recent studies provided evidence for such complex actions of multiple gases in vivo. Intravital visualization of NO in microcirculation revealed that two distinct sources, NO synthase-1 and -3, play a major role in the maintenance of NO in arteriolar and venular walls, respectively. Besides its vasorelaxing action in the hepatic microcirculation, CO could induce vasoconstriction in the resistant artery where NO is abundantly available; systemic blood pressure was elevated in transgenic mice overexpressing heme oxygenase-1 site-specifically in vascular smooth muscle cells. Such a relationship between the gases has also been demonstrated by mechanistic bioprobing of sGC function using novel monoclonal antibodies. This article aims to provide an overview of advances in visual assessment of the generation and reception of oxygen-derived gaseous mediators in vivo.
Collapse
Affiliation(s)
- Makoto Suematsu
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
43
|
Morita T, Imai T, Yamaguchi T, Sugiyama T, Katayama S, Yoshino G. Induction of heme oxygenase-1 in monocytes suppresses angiotensin II-elicited chemotactic activity through inhibition of CCR2: role of bilirubin and carbon monoxide generated by the enzyme. Antioxid Redox Signal 2003; 5:439-47. [PMID: 13678532 DOI: 10.1089/152308603768295186] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monocyte chemoattractant protein 1 (MCP-1) and the receptor for MCP-1, CCR2, play a pivotal role in the recruitment of monocytes to the subendothelium, which is the initial event in atherosclerosis. Heme oxygenase (HO) is a microsomal enzyme that catalyzes the degradation of heme into biliverdin, which is subsequently reduced to bilirubin, free iron, and carbon monoxide, and induction of HO-1 is potentially associated with cellular protection, especially against oxidative insults. The present study was designed to examine the role of HO-1 in monocytes in angiotensin II (Ang II)-induced chemotactic response. Ang II significantly stimulated superoxide formation in monocytes, as measured by nitro blue tetrazolium reduction assay, as well as the chemotactic response to MCP-1 with the increased expression of CCR2 determined by RT-PCR and western blotting analysis. Hemin-treated monocytes displayed an enhanced HO activity with the increased accumulation of bilirubin determined by immunostaining, when compared with control monocytes. The induction of HO-1 in monocytes suppresses not only Ang II-stimulated superoxide formation, but also Ang II-enhanced chemotactic activity. Exogenously applied bilirubin and carbon monoxide mimicked the inhibitory effect of HO-1 on the chemotactic response. These findings suggest that monocytic HO-1 might be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Toshisuke Morita
- Department of Laboratory Medicine, Toho University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Kashiwagi S, Kajimura M, Yoshimura Y, Suematsu M. Nonendothelial source of nitric oxide in arterioles but not in venules: alternative source revealed in vivo by diaminofluorescein microfluorography. Circ Res 2002; 91:e55-64. [PMID: 12480826 DOI: 10.1161/01.res.0000047529.26278.4d] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to examine topographic distribution of microvascular NO generation in vivo. To this end, nitrosonium ion (NO+)-sensitive diaminofluorescein diacetate was superfused continuously on the rat mesentery and the fluorescence was visualized in the microvessels through laser confocal microfluorography. Two major sites exhibited a time-dependent elevation of the fluorescence: microvascular endothelia and mast cells. As judged by the fluorescence sensitivity to local application of different inhibitors of NO synthase (NOS), NO availability in arteriolar endothelium and mast cells appeared to be maintained mainly by NOS1, whereas that in venular endothelium greatly depends on NOS3. In venules, the magnitude of inhibitory responses elicited by the inhibitors was positively correlated with the density of leukocyte adhesion. NOS inhibitors significantly reduced, but did not eliminate, the NO+-associated fluorescence in arterioles, capillaries, and venules, suggesting alternative sources of NO in circulation for these microvessels. Immunohistochemistry for NOS isozymes revealed that NOS1 occurred not only in nerve fibers innervated to arterioles but also abundantly in mast cells. Laser flow cytometry of peritoneal cells in vitro revealed abundant expression of NOS1 in mast cells. Interestingly, NOS3 occurred in endothelia of capillaries and venules but not in those of distal arterioles with comparable diameters. These results suggest that the arterioles receive NO from nonendothelial origins involving NOS1 present in nerve terminals and mast cells, whereas venules depend on the endothelial NOS as a major source. Furthermore, nonenzymatic sources of NO from circulating reservoirs constitute a notable fraction throughout different classes of microvessels. The full text of this article is available at http://www.circresaha.org.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|