1
|
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. JOURNAL OF VASCULAR DISEASES 2024; 3:174-200. [PMID: 39464800 PMCID: PMC11507615 DOI: 10.3390/jvd3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
Collapse
Affiliation(s)
- Amanda K. Garcia
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Mărunţelu I, Constantinescu AE, Covache-Busuioc RA, Constantinescu I. The Golgi Apparatus: A Key Player in Innate Immunity. Int J Mol Sci 2024; 25:4120. [PMID: 38612929 PMCID: PMC11012725 DOI: 10.3390/ijms25074120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The Golgi apparatus, long recognized for its roles in protein processing and vesicular trafficking, has recently been identified as a crucial contributor to innate immune signaling pathways. This review discusses our expanding understanding of the Golgi apparatus's involvement in initiating and activating these pathways. It highlights the significance of membrane connections between the Golgi and other organelles, such as the endoplasmic reticulum, mitochondria, endosomes, and autophagosomes. These connections are vital for the efficient transmission of innate immune signals and the activation of effector responses. Furthermore, the article delves into the Golgi apparatus's roles in key immune pathways, including the inflammasome-mediated activation of caspase-1, the cGAS-STING pathway, and TLR/RLR signaling. Overall, this review aims to provide insights into the multifunctional nature of the Golgi apparatus and its impact on innate immunity.
Collapse
Affiliation(s)
- Ion Mărunţelu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Alexandra-Elena Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-E.C.); (R.-A.C.-B.)
- “Emil Palade” Center of Excellence for Young Researchers (EP-CEYR), Romanian Academy of Scientists (AOSR), 050094 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-E.C.); (R.-A.C.-B.)
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- “Emil Palade” Center of Excellence for Young Researchers (EP-CEYR), Romanian Academy of Scientists (AOSR), 050094 Bucharest, Romania
- Romanian Academy of Scientists (AOSR), 050094 Bucharest, Romania
| |
Collapse
|
3
|
Mitxelena-Iribarren O, Bujanda X, Zabalza L, Alkorta J, Lopez-Elorza A, Gracia R, Dupin D, Arana S, Ruiz-Cabello J, Mujika M. Design and fabrication of a microfluidic system with embedded circular channels for rotary cell culture. Biotechnol J 2023:e2300004. [PMID: 37100765 DOI: 10.1002/biot.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
The development of functional blood vessels is today a fundamental pillar in the evaluation of new therapies and diagnostic agents. This article describes the manufacture and subsequent functionalization, by means of cell culture, of a microfluidic device with a circular section. Its purpose is to simulate a blood vessel in order to test new treatments for pulmonary arterial hypertension. The manufacture was carried out using a process in which a wire with a circular section determines the dimensions of the channel. To fabricate the blood vessel, cells were seeded under rotary cell culture to obtain a homogeneous cell seeding in the inner wall of the devices. This is a simple and reproducible method that allows the generation of blood vessel models in vitro.
Collapse
Affiliation(s)
- Oihane Mitxelena-Iribarren
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Xabier Bujanda
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Laura Zabalza
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Janire Alkorta
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Aitziber Lopez-Elorza
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Sergio Arana
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE-Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Maite Mujika
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
6
|
Kumar A, Mahajan A, Salazar EA, Pruitt K, Guzman CA, Clauss MA, Almodovar S, Dhillon NK. Impact of human immunodeficiency virus on pulmonary vascular disease. Glob Cardiol Sci Pract 2021; 2021:e202112. [PMID: 34285903 PMCID: PMC8272407 DOI: 10.21542/gcsp.2021.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
With the advent of anti-retroviral therapy, non-AIDS-related comorbidities have increased in people living with HIV. Among these comorbidities, pulmonary hypertension (PH) is one of the most common causes of morbidity and mortality. Although chronic HIV-1 infection is independently associated with the development of pulmonary arterial hypertension, PH in people living with HIV may also be the outcome of various co-morbidities commonly observed in these individuals including chronic obstructive pulmonary disease, left heart disease and co-infections. In addition, the association of these co-morbidities and other risk factors, such as illicit drug use, can exacerbate the development of pulmonary vascular disease. This review will focus on these complex interactions contributing to PH development and exacerbation in HIV patients. We also examine the interactions of HIV proteins, including Nef, Tat, and gp120 in the pulmonary vasculature and how these proteins alter the endothelial and smooth muscle function by transforming them into susceptible PH phenotype. The review also discusses the available infectious and non-infectious animal models to study HIV-associated PAH, highlighting the advantages and disadvantages of each model, along with their ability to mimic the clinical manifestations of HIV-PAH.
Collapse
Affiliation(s)
- Ashok Kumar
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aatish Mahajan
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ethan A Salazar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Christian Arce Guzman
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthias A Clauss
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Navneet K Dhillon
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Almodovar S, Wade BE, Porter KM, Smith JM, Lopez-Astacio RA, Bijli K, Kang BY, Cribbs SK, Guidot DM, Molehin D, McNair BK, Pumarejo-Gomez L, Perez Hernandez J, Salazar EA, Martinez EG, Huang L, Kessing CF, Suarez-Martinez EB, Pruitt K, Hsue PY, Tyor WR, Flores SC, Sutliff RL. HIV X4 Variants Increase Arachidonate 5-Lipoxygenase in the Pulmonary Microenvironment and are associated with Pulmonary Arterial Hypertension. Sci Rep 2020; 10:11696. [PMID: 32678115 PMCID: PMC7366722 DOI: 10.1038/s41598-020-68060-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/18/2020] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brandy E Wade
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristi M Porter
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Justin M Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Lopez-Astacio
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biology, University of Puerto Rico in Ponce, Ponce, PR, USA
| | - Kaiser Bijli
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Bum-Yong Kang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Sushma K Cribbs
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - David M Guidot
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryan K McNair
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Pumarejo-Gomez
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaritza Perez Hernandez
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan A Salazar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cari F Kessing
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - William R Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonia C Flores
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
8
|
Jani MS, Zou J, Veetil AT, Krishnan Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol 2020; 16:660-666. [PMID: 32152543 DOI: 10.1038/s41589-020-0491-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Nitric oxide synthase 3 (NOS3) produces the gasotransmitter nitric oxide (NO), which drives critical cellular signaling pathways by S-nitrosylating target proteins. Endogenous NOS3 resides at two distinct subcellular locations: the plasma membrane and the trans-Golgi network (TGN). However, NO generation arising from the activities of both these pools of NOS3 and its relative contribution to physiology or disease is not yet resolvable. We describe a fluorescent DNA-based probe technology, NOckout, that can be targeted either to the plasma membrane or the TGN, where it can quantitatively map the activities of endogenous NOS3 at these locations in live cells. We found that, although NOS3 at the Golgi is tenfold less active than at the plasma membrane, its activity is essential for the structural integrity of the Golgi. The newfound ability to spatially map NOS3 activity provides a platform to discover selective regulators of the distinct pools of NOS3.
Collapse
Affiliation(s)
- Maulik S Jani
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Human Antiviral Protein MxA Forms Novel Metastable Membraneless Cytoplasmic Condensates Exhibiting Rapid Reversible Tonicity-Driven Phase Transitions. J Virol 2019; 93:JVI.01014-19. [PMID: 31484749 DOI: 10.1128/jvi.01014-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Phase-separated biomolecular condensates of proteins and nucleic acids form functional membrane-less organelles (e.g., stress granules and P-bodies) in the mammalian cell cytoplasm and nucleus. In contrast to the long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA) associated with the endoplasmic reticulum (ER) and Golgi apparatus, we report that MxA formed membraneless metastable (shape-changing) condensates in the cytoplasm. In our studies, we used the same cell lines and methods as those used by previous investigators but concluded that wild-type MxA formed variably sized spherical or irregular bodies, filaments, and even a reticulum distinct from that of ER/Golgi membranes. Moreover, in Huh7 cells, MxA structures associated with a novel cytoplasmic reticular meshwork of intermediate filaments. In live-cell assays, 1,6-hexanediol treatment led to rapid disassembly of green fluorescent protein (GFP)-MxA structures; FRAP revealed a relative stiffness with a mobile fraction of 0.24 ± 0.02 within condensates, consistent with a higher-order MxA network structure. Remarkably, in intact cells, GFP-MxA condensates reversibly disassembled/reassembled within minutes of sequential decrease/increase, respectively, in tonicity of extracellular medium, even in low-salt buffers adjusted only with sucrose. Condensates formed from IFN-α-induced endogenous MxA also displayed tonicity-driven disassembly/reassembly. In vesicular stomatitis virus (VSV)-infected Huh7 cells, the nucleocapsid (N) protein, which participates in forming phase-separated viral structures, associated with spherical GFP-MxA condensates in cells showing an antiviral effect. These observations prompt comparisons with the extensive literature on interactions between viruses and stress granules/P-bodies. Overall, the new data correct a long-standing misinterpretation in the MxA literature and provide evidence for membraneless MxA biomolecular condensates in the uninfected cell cytoplasm.IMPORTANCE There is a long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA), which displays antiviral activity against several RNA and DNA viruses, associates with the endoplasmic reticulum (ER) and Golgi apparatus. We provide data to correct this misinterpretation and further report that MxA forms membraneless metastable (shape-changing) condensates in the cytoplasm consisting of variably sized spherical or irregular bodies, filaments, and even a reticulum. Remarkably, MxA condensates showed the unique property of rapid (within 1 to 3 min) reversible disassembly and reassembly in intact cells exposed sequentially to hypotonic and isotonic conditions. Moreover, GFP-MxA condensates included the VSV nucleocapsid (N) protein, a protein previously shown to form liquid-like condensates. Since intracellular edema and ionic changes are hallmarks of cytopathic effects of a viral infection, the tonicity-driven regulation of MxA condensates may reflect a mechanism for modulation of MxA function during viral infection.
Collapse
|
10
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
12
|
Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases. Nitric Oxide 2018; 77:88-95. [PMID: 29738821 DOI: 10.1016/j.niox.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The NO/sGC/cGMP signaling cascade plays a pivotal role in regulation of cardiovascular, cardiopulmonary and cardiorenal diseases and impairment of this cascade results in severe pathologies. Therefore, pharmacological interventions, targeting this pathway are promising strategies for treating a variety of diseases. Nitrates, supplementing NO and, PDE5 inhibitors preventing cGMP degradation, are used for angina pectoris treatment and the treatment of pulmonary arterial hypertension (PAH), respectively. More recently, a new class of drugs which directly stimulate the sGC enzyme and trigger NO-independent cGMP production was introduced and termed sGC stimulators. In 2013, the first sGC stimulator, riociguat, was approved for the treatment of PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Since cGMP targets multiple intracellular downstream targets, sGC stimulators have shown - beyond the well characterized vasodilatation - anti-fibrotic, anti-inflammatory and anti-proliferative effects. These additional modes of action might extend the therapeutic potential of this drug class substantially. This review summarizes the NO/sGC/cGMP signaling cascades, the discovery and the mode of action of sGC stimulators. Furthermore, the preclinical evidence and development of riociguat for the treatment of PAH and CTEPH is reviewed. Finally, a summary of the antifibrotic effects of sGC stimulators, especially the most recent finding for skin fibrosis are included which may indicate efficacy in fibrotic diseases like Systemic Sclerosis (SSc).
Collapse
|
13
|
Almodovar S, Swanson J, Giavedoni LD, Kanthaswamy S, Long CS, Voelkel NF, Edwards MG, Folkvord JM, Connick E, Westmoreland SV, Luciw PA, Flores SC. Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 2017; 31:206-222. [PMID: 29256819 DOI: 10.1089/vim.2017.0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,2 Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Jessica Swanson
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Luis D Giavedoni
- 3 Department of Virology and Immunology, and Southwest National Primate Research Center, Texas Biomedical Research Institute , San Antonio, Texas
| | - Sreetharan Kanthaswamy
- 4 School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University , Arizona
| | - Carlin S Long
- 5 Department of Medicine, University of California , San Francisco, San Francisco, California
| | - Norbert F Voelkel
- 6 Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University , Richmond, Virginia
| | - Michael G Edwards
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Joy M Folkvord
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Elizabeth Connick
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Susan V Westmoreland
- 8 New England Primate Research Center , Division of Comparative Pathology, Southborough, Massachusetts
| | - Paul A Luciw
- 9 Center for Comparative Medicine, University of California , Davis, Davis, California
| | - Sonia C Flores
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
14
|
Changes in gene expression profiles in patients with pulmonary arterial hypertension associated with scleroderma treated with tadalafil. Semin Arthritis Rheum 2017; 46:465-472. [DOI: 10.1016/j.semarthrit.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/21/2022]
|
15
|
Yuan H, Sehgal PB. MxA Is a Novel Regulator of Endosome-Associated Transcriptional Signaling by Bone Morphogenetic Proteins 4 and 9 (BMP4 and BMP9). PLoS One 2016; 11:e0166382. [PMID: 27875556 PMCID: PMC5119740 DOI: 10.1371/journal.pone.0166382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/27/2016] [Indexed: 01/02/2023] Open
Abstract
There is confusion about the role that IFN-α plays in the pathogenesis of pulmonary arterial hypertension (PAH) with different investigators reporting a causative or a protective role. There is now clear evidence in PAH pathogenesis for the involvement of BMP4 and BMP9 signaling, and its disruption by mutations in BMPR2. In the present study, we investigated MxA, an IFN-α-inducible cytoplasmic dynamin-family GTPase for effects on BMP4/9 signaling, including in the presence of PAH-disease-associated mutants of BMPR2. In human pulmonary arterial endothelial cells (HPAECs), IFN-α-induced endogenous as well as exogenously expressed MxA was associated with endosomes that aligned alongside microtubules and tubules of the endoplasmic reticulum (ER). Moreover, IFN-α and MxA stimulated basal and BMP4/9 signaling to a Smad1/5/8-responsive pBRE-Luc reporter. In HEK293T cells, immunoelectron microscopy confirmed the association of MxA with endosomes, and immunofluorescence methods showed these to be positive for early endosome markers (early endosomal antigen 1, clathrin light chain and Rab5) and RSmad1/5/8. Functionally, using different genetic and inhibitor approaches, we observed that clathrin-mediated endocytosis enhanced and caveolin-mediated endocytosis inhibited the transcriptional response to BMP4 and BMP9. MxA produced a further 3-4-fold enhancement of the BMP-induced response in a clathrin-endocytosis dependent manner. The microtubule inhibitor nocodazole and stabilizer paclitaxel respectively attenuated and enhanced the effect of MxA, implicating microtubule integrity in this process. MxA enhanced BMP-induced signaling in the presence of wild-type BMPR2, and partially rescued signaling from some PAH-disease-associated BMPR2 mutants. Taken together, the data identify MxA as a novel stimulator of BMP4 and BMP9 transcriptional signaling, and suggest it to be a candidate IFN-α-inducible mechanism that might have a protective role against development of PAH and other vascular diseases.
Collapse
Affiliation(s)
- Huijuan Yuan
- Department of. Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Pravin B. Sehgal
- Department of. Cell Biology & Anatomy, and Department of Medicine, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Jung EM, Ka M, Kim WY. Loss of GSK-3 Causes Abnormal Astrogenesis and Behavior in Mice. Mol Neurobiol 2015; 53:3954-3966. [PMID: 26179612 DOI: 10.1007/s12035-015-9326-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Altered activity of glycogen synthase kinase-3 (GSK-3) is associated with psychiatric diseases and neurodegenerative diseases. GSK-3 is a key regulator in multiple aspects of neuronal differentiation in the brain. However, little is known about the role of GSK-3 in astrocyte development. To examine the role of GSK-3 in astrocytes, we generated a conditional knockout mouse using a glial fibrillary acidic protein (GFAP)-cre driver, in which the GSK-3 alpha and beta genes are deleted in astrocytes. We found that GFAP-cre-mediated GSK-3 deletion led to a larger brain. The number and size of astrocytes were increased in GSK-3 mutant brains. The levels of GFAP and phospho-STAT3, indicators of astrogenesis, were elevated in GSK-3 mutants. Furthermore, we found upregulation of astrocyte regulatory molecules such as phospho-AKT, phospho-S6, and cyclin D in GSK-3 mutant brains. Finally, GSK-3 mutant mice exhibited aberrant anxiety and social behavior. Our results suggest that GSK-3 plays a significant role in astrocyte development and behavioral control in mice.
Collapse
Affiliation(s)
- Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the chlamydial protease CPAF. PLoS One 2014; 9:e103220. [PMID: 25068694 PMCID: PMC4113379 DOI: 10.1371/journal.pone.0103220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Chlamydia grows inside a cytosolic vacuole (the inclusion) that is supplied with nutrients by the host through vesicular and non-vesicular transport. It is unclear in many respects how Chlamydia organizes this transport. One model posits that the Chlamydia-induced fragmentation of the Golgi-apparatus is required for normal transport processes to the inclusion and for chlamydial development, and the chlamydial protease CPAF has been controversially implicated in Golgi-fragmentation. We here use a model of penicillin-induced persistence of infection with Chlamydia trachomatis to test this link. Under penicillin-treatment the inclusion grew in size for the first 24 h but after that growth was severely reduced. Penicillin did not reduce the number of infected cells with fragmented Golgi-apparatus, and normal Golgi-fragmentation was found in a CPAF-deficient mutant. Surprisingly, sphingomyelin transport into the inclusion and into the bacteria, as measured by fluorescence accumulation upon addition of labelled ceramide, was not reduced during penicillin-treatment. Thus, both Golgi-fragmentation and transport of sphingomyelin to C. trachomatis still occurred in this model of persistence. The portion of cells in which CPAF was detected in the cytosol, either by immunofluorescence or by immune-electron microscopy, was drastically reduced in cells cultured in the presence of penicillin. These data argue against an essential role of cytosolic CPAF for Golgi-fragmentation or for sphingomyelin transport in chlamydial infection.
Collapse
|
18
|
Yang YM, Lane KB, Sehgal PB. Subcellular mechanisms in pulmonary arterial hypertension: combinatorial modalities that inhibit anterograde trafficking and cause bone morphogenetic protein receptor type 2 mislocalization. Pulm Circ 2013; 3:533-50. [PMID: 24618539 DOI: 10.1086/674336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract The natural history of familial pulmonary arterial hypertension (PAH) typically involves mutations in and/or haploinsuffciency of BMPR2 (gene for bone morphogenetic protein receptor type 2) but with low penetrance (10%-15%), delayed onset (in the third or fourth decade), and a gender bias (two- to fourfold more prevalent in postpubertal women). Thus, investigators have sought an understanding of "second-hit" modalities that might affect BMPR2 anterograde trafficking and/or function. Indeed, vascular lung lesions in PAH have been reported to contain enlarged "vacuolated" endothelial and smooth muscle cells with dilated endoplasmic reticulum (ER) cisternae, increased ER structural protein reticulon 4 (also called Nogo-B), and enlarged and fragmented Golgi apparatus. We recently replicated this cellular phenotype in primary human pulmonary arterial endothelial cells and human pulmonary arterial smooth muscle cells in culture by acute knockdown of the estradiol 17β (E2)-responsive proteins signal transducer and activator of transcription 5a (STAT5a) and STAT5b using small interfering RNAs (siRNAs). We have now investigated whether functional haploinsufficiences of these molecules, alone or in combination with other modalities, might interfere with anterograde membrane trafficking using (a) the quantitative tsO45VSV-G-GFP trafficking assay and (b) assays for cell-surface localization of Flag-tagged BMPR2 molecules. The G glycoprotein of the vesicular stomatitis virus (VSV-G) trafficking assay was validated in EA.hy926 endothelial cells by showing that cells exposed to monocrotaline pyrrole displayed reduced anterograde trafficking. Thereafter, the combinatorial knockdowns of STAT5a, STAT5b, BMPR2, and/or endothelial nitric oxide synthase as well as exposure to E2 or 2-methoxyestradiol were observed to significantly inhibit VSV-G trafficking. These combinations also led to intracellular trapping of wild-type Flag-tagged BMPR2. Overexpression of the PAH disease-derived F14 and KDF mutants of BMPR2, which were trapped in the ER/Golgi, also inhibited VSV-G trafficking in trans. Moreover, probenecid, a chemical chaperone in clinical use today, partially restored cell-surface localization of the KDF but not the F14 mutant. These data identify several combinatorial modalities that inhibit VSV-G anterograde trafficking and cause mislocalization of BMPR2. These modalities merit consideration in defining aspects of the late-developing and gender-biased natural history of human PAH.
Collapse
Affiliation(s)
- Yang-Ming Yang
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | | | | |
Collapse
|
19
|
Kato S, Zhang R, Roberts JD. Proprotein convertases play an important role in regulating PKGI endoproteolytic cleavage and nuclear transport. Am J Physiol Lung Cell Mol Physiol 2013; 305:L130-40. [PMID: 23686857 PMCID: PMC3726948 DOI: 10.1152/ajplung.00391.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/15/2013] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide and cGMP modulate vascular smooth muscle cell (SMC) phenotype by regulating cell differentiation and proliferation. Recent studies suggest that cGMP-dependent protein kinase I (PKGI) cleavage and the nuclear translocation of a constitutively active kinase fragment, PKGIγ, are required for nuclear cGMP signaling in SMC. However, the mechanisms that control PKGI proteolysis are unknown. Inspection of the amino acid sequence of a PKGI cleavage site that yields PKGIγ and a protease database revealed a putative minimum consensus sequence for proprotein convertases (PCs). Therefore we investigated the role of PCs in regulating PKGI proteolysis. We observed that overexpression of PCs, furin and PC5, but not PC7, which are all expressed in SMC, increase PKGI cleavage in a dose-dependent manner in human embryonic kidney (HEK) 293 cells. Moreover, furin-induced proteolysis of mutant PKGI, in which alanines were substituted into the putative PC consensus sequence, was decreased in these cells. In addition, overexpression of furin increased PKGI proteolysis in LoVo cells, which is an adenocarcinoma cell line expressing defective furin without PC activity. Also, expression of α1-PDX, an engineered serpin-like PC inhibitor, reduced PC activity and decreased PKGI proteolysis in HEK293 cells. Last, treatment of low-passage rat aortic SMC with membrane-permeable PC inhibitor peptides decreased cGMP-stimulated nuclear PKGIγ translocation. These data indicate for the first time that PCs have a role in regulating PKGI proteolysis and the nuclear localization of its active cleavage product, which are important for cGMP-mediated SMC phenotype.
Collapse
Affiliation(s)
- Shin Kato
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
20
|
Lee JE, Yuan H, Liang FX, Sehgal PB. Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cells. Nitric Oxide 2013; 33:64-73. [PMID: 23770576 DOI: 10.1016/j.niox.2013.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023]
Abstract
The dependence of the structure and function of cytoplasmic organelles in endothelial cells on constitutively produced intracellular nitric oxide (NO) remains largely unexplored. We previously reported fragmentation of the Golgi apparatus in cells exposed to NO scavengers or after siRNA-mediated knockdown of eNOS. Others have reported increased mitochondrial fission in response to an NO donor. Functionally, we previously reported that bovine pulmonary arterial endothelial cells (PAECs) exposed to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) developed a prosecretory phenotype characterized by prolonged secretion of soluble proteins. In the present study, we investigated whether NO scavenging led to remodeling of the endoplasmic reticulum (ER). Live-cell DAF-2DA imaging confirmed the presence of intracellular NO in association with the BODIPY C5-ceramide-labeled Golgi apparatus. Untreated human PAECs displayed a pattern of peripheral tubulo-reticular ER with a juxtanuclear accumulation of ER sheets. Cells exposed to c-PTIO showed a dramatic increase in ER sheets as assayed using immunofluorescence for the ER structural protein reticulon-4b/Nogo-B and the ER-resident GTPase atlastin-3, live-cell fluorescence assays using RTN4-GFP and KDEL-mCherry, and electron microscopy methods. These ER changes were inhibited by the NO donor diethylamine NONOate, and also produced by L-NAME, but not D-NAME or 8-br-cGMP. This ER remodeling was accompanied by Golgi fragmentation and increased fibrillarity and function of mitochondria (uptake of tetramethyl-rhodamine, TMRE). Despite Golgi fragmentation the functional ER/Golgi trafficking unit was preserved as seen by the accumulation of Sec31A ER exit sites adjacent to the dispersed Golgi elements and a 1.8-fold increase in secretion of soluble cargo. Western blotting and immunopanning data showed that RTN4b was increasingly ubiquitinated following c-PTIO exposure, especially in the presence of the proteasomal inhibitor MG132. The present data complete the remarkable insight that the structural integrity of three closely juxtaposed cytoplasmic organelles - Golgi apparatus, endoplasmic reticulum and mitochondria - is dependent on nitric oxide.
Collapse
Affiliation(s)
- Jason E Lee
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
21
|
Sehgal PB. Non-genomic STAT5-dependent effects at the endoplasmic reticulum and Golgi apparatus and STAT6-GFP in mitochondria. JAKSTAT 2013; 2:e24860. [PMID: 24470974 PMCID: PMC3894245 DOI: 10.4161/jkst.24860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
STAT protein species are well-known as transcription factors that regulate nuclear gene expression. Recent novel lines of research suggest new non-genomic functions of STAT5A/B and STAT6. It was discovered in human pulmonary arterial endothelial cells that STAT5A, including STAT5A-GFP, constitutively associated with the Golgi apparatus, and both STAT5A and B with the endoplasmic reticulum. Acute siRNA-mediated knockdown of STAT5A/B led to the rapid development of a dramatic cystic change in the endoplasmic reticulum (ER) characterized by deposition of the ER structural protein reticulon-4 (RTN4; also called Nogo-B) and the ER-resident GTPase atlastin-3 (ATL3) along cyst membranes and cyst-zone boundaries, accompanied by Golgi fragmentation. Functional consequences included reduced anterograde trafficking, an ER stress response (increased GRP78/BiP) and eventual mitochondrial fragmentation. This phenotype was "non-genomic" in that it was elicited in enucleated cytoplasts. In cross-immunopanning assays STAT5A and B species associated with ATL3, and the ER-lumen spacer CLIMP63 (also called cytoskeleton-associated protein 4, CKAP4) but not RTN4. From a disease significance perspective we posit that STAT5, which is known to be affected by estradiol-17β and prolactin, represents the gender-sensitive determinant in the pathogenesis of idiopathic pulmonary hypertension (IPAH), a disease which includes ER/Golgi dysfunctions but with a 2- to 4-fold higher prevalence in postpubertal women. A separate line of recent research produced evidence for the association of STAT6-GFP, but not STAT3-GFP, STAT3-DsRed, or STAT3-Flag, with mitochondria in live-cell, immunofluorescence, and immunoelectron microscopy. An N-terminal truncation of STAT6-GFP (1-459), which lacked the SH2 domain and Tyr-phosphorylation site, constitutively associated with mitochondria. Thus, the emergent new of biology STAT proteins includes non-genomic roles-structurally and functionally-in the three closely related membrane organelles consisting of the endoplasmic reticulum, Golgi apparatus, and mitochondria.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy, and Medicine; New York Medical College; Valhalla, NY USA
| |
Collapse
|
22
|
Erdogdu O, Eriksson L, Xu H, Sjöholm A, Zhang Q, Nyström T. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol 2013; 50:229-41. [PMID: 23343509 DOI: 10.1530/jme-12-0166] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7-36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7-36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.
Collapse
Affiliation(s)
- Ozlem Erdogdu
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Lee JE, Yang YM, Yuan H, Sehgal PB. Definitive evidence using enucleated cytoplasts for a nongenomic basis for the cystic change in endoplasmic reticulum structure caused by STAT5a/b siRNAs. Am J Physiol Cell Physiol 2013; 304:C312-23. [PMID: 23151802 PMCID: PMC3566531 DOI: 10.1152/ajpcell.00311.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/08/2012] [Indexed: 11/22/2022]
Abstract
STAT5a/b species are well known as transcription factors that regulate nuclear gene expression. In a novel line of research in human pulmonary arterial endothelial cells (HPAECs), we previously observed that STAT5a associated with the Golgi apparatus and that siRNA-mediated knockdown of STAT5a/b led to the rapid development of a dramatic cystic change in the endoplasmic reticulum (ER) characterized by deposition along cyst membranes and tubule-to-cyst boundaries of the proteins reticulon-4 (RTN4; also called Nogo-B) and the ER-resident GTPase atlastin-3 (ATL3) and Golgi fragmentation. We now report that STAT5a can be observed in ER sheets in digitonin-permeabilized HPAECs and that anti-STAT5a cross- immunopanned ATL3 but not RTN4. Moreover, there was marked accumulation of the 63-kDa cytoskeleton-linking membrane protein and ER-spacer CLIMP63 (also called cytoskeleton-associated protein 4, CKAP4) and KDEL-mCherry within the cysts. That the STAT5a/b-siRNA-induced cystic ER phenotype developed in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) had suggested that the mechanism was independent of the transcription factor functions of STAT5a/b, i.e., was "nongenomic." We have now definitively tested the requirement for the nucleus in eliciting the STAT5a/b-siRNA-induced cystic ER phenotype. Enucleated HPAEC cytoplasts were prepared using adherent 35-mm cultures using the cytochalasin B-centrifugation method (typically yielding 65-75% enucleation). STAT5a/b siRNAs readily elicited the cystic ER phenotype including the marked luminal accumulation of CLIMP63 and Golgi fragmentation in the recovered HPAEC cytoplasts demonstrably lacking a nucleus. These studies provide unequivocal evidence using enucleated cytoplasts for a nongenomic mechanism(s) underlying the cystic change in ER structure elicited by STAT5a/b knockdown.
Collapse
Affiliation(s)
- Jason E Lee
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
24
|
Blouquit-Laye S, Dannhoffer L, Braun C, Dinh-Xuan AT, Sage E, Chinet T. Effect of nitric oxide on epithelial ion transports in noncystic fibrosis and cystic fibrosis human proximal and distal airways. Am J Physiol Lung Cell Mol Physiol 2012; 303:L617-25. [DOI: 10.1152/ajplung.00368.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The airways of patients with cystic fibrosis (CF) exhibit decreased nitric oxide (NO) concentrations, which might affect airway function. The aim of this study was to determine the effects of NO on ion transport in human airway epithelia. Primary cultures of non-CF and CF bronchial and bronchiolar epithelial cells were exposed to the NO donor sodium nitroprusside (SNP), and bioelectric variables were measured in Ussing chambers. Amiloride was added to inhibit the Na+channel ENaC, and forskolin and ATP were added successively to stimulate cAMP- and Ca2+-dependent Cl−secretions, respectively. The involvement of cGMP was assessed by measuring the intracellular cGMP concentration in bronchial cells exposed to SNP and the ion transports in cultures exposed to 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (ODQ), or to 8Z, a cocktail of 8-bromo-cGMP and zaprinast (phosphodiesterase 5 inhibitor). SNP decreased the baseline short-circuit current ( Isc) and the changes in Iscinduced by amiloride, forskolin, and ATP in non-CF bronchial and bronchiolar cultures. The mechanism of this inhibition was studied in bronchial cells. SNP increased the intracellular cGMP concentration ([cGMP]i). The inhibitory effect of SNP was abolished by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO scavenger (PTIO) and ODQ and was partly mimicked by increasing [cGMP]i. In CF cultures, SNP did not significantly modify ion transport; in CF bronchial cells, 8Z had no effect; however, SNP increased the [cGMP]i. In conclusion, exogenous NO may reduce transepithelial Na+absorption and Cl−secretion in human non-CF airway epithelia through a cGMP-dependent pathway. In CF airways, the NO/cGMP pathway appears to exert no effect on transepithelial ion transport.
Collapse
Affiliation(s)
- Sabine Blouquit-Laye
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| | - Luc Dannhoffer
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| | - Camille Braun
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| | - Anh-Tuan Dinh-Xuan
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Paris, France; and
| | - Edouard Sage
- Service de chirurgie thoracique, Hôpital Foch, Suresnes, France
| | - Thierry Chinet
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| |
Collapse
|
25
|
Upreti C, Otero R, Partida C, Skinner F, Thakker R, Pacheco LF, Zhou ZY, Maglakelidze G, Velíšková J, Velíšek L, Romanovicz D, Jones T, Stanton PK, Garrido-Sanabria ER. Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; 135:869-85. [PMID: 22344585 DOI: 10.1093/brain/awr341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee JE, Yang YM, Liang FX, Gough DJ, Levy DE, Sehgal PB. Nongenomic STAT5-dependent effects on Golgi apparatus and endoplasmic reticulum structure and function. Am J Physiol Cell Physiol 2011; 302:C804-20. [PMID: 22159083 DOI: 10.1152/ajpcell.00379.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report unexpected nongenomic functions of signal transducer and activator of transcription (STAT) 5 species in the cytoplasm aimed at preserving the structure and function of the Golgi apparatus and rough endoplasmic reticulum (ER) in vascular cells. Immunoimaging and green fluorescent protein-tagged-STAT5a protein localization studies showed the constitutive association of nonphosphorylated STAT5a, and to a lesser extent STAT5b, with the Golgi apparatus and of STAT5a with centrosomes in human pulmonary arterial endothelial and smooth muscle cells. Acute knockdown of STAT5a/b species using small interfering RNAs (siRNAs), including in the presence of an mRNA synthesis inhibitor (5,6-dichloro-1-β-d-ribofuranosylbenzimidazole), produced a dramatic phenotype within 1 day, consisting of dilatation and fragmentation of Golgi cisternae, a marked tubule-to-cyst change in the ER, increased accumulation of reticulon-4 (RTN4)/Nogo-B and atlastin-3 (ATL3) at cyst-zone boundaries, cystic separation of the outer and inner nuclear membranes, accompanied by scalloped/lunate distortion of the nucleus, with accumulation of RTN4 on convex sides of distorted nuclei. These cells showed inhibition of vesicular stomatitis virus G protein glycoprotein trafficking, mitochondrial fragmentation, and reduced mitochondrial function. STAT5a/b(-/-) mouse embryo fibroblasts also showed altered ER/Golgi dynamics. RTN4 knockdown using siRNA did not affect development of the cystic phenotype; ATL3 siRNA led to effacement of cyst-zone boundaries. In magnetic-bead cross-immunopanning assays, ATL3 bound both STAT5a and STAT5b. Remarkably, this novel cystic ER/lunate nucleus phenotype was characteristic of vascular cells in arterial lesions of idiopathic pulmonary hypertension, an unrelentingly fatal human disease. These data provide evidence of a STAT-family protein regulating the structure of a cytoplasmic organelle and implicate this mechanism in the pathogenesis of a human disease.
Collapse
Affiliation(s)
- Jason E Lee
- Dept. of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Earlier electron microscopic data had shown that a hallmark of the vascular remodeling in pulmonary arterial hypertension (PAH) in man and experimental models includes enlarged vacuolated endothelial and smooth muscle cells with increased endoplasmic reticulum and Golgi stacks in pulmonary arterial lesions. In cell culture and in vivo experiments in the monocrotaline model, we observed disruption of Golgi function and intracellular trafficking with trapping of diverse vesicle tethers, SNAREs and SNAPs in the Golgi membranes of enlarged pulmonary arterial endothelial cells (PAECs) and pulmonary arterial smooth muscle cells (PASMCs). Consequences included the loss of cell surface caveolin-1, hyperactivation of STAT3, mislocalization of eNOS with reduced cell surface/caveolar NO and hypo-S-nitrosylation of trafficking-relevant proteins. Similar Golgi tether, SNARE and SNAP dysfunctions were also observed in hypoxic PAECs in culture and in PAECs subjected to NO scavenging. Strikingly, a hypo-NO state promoted PAEC mitosis and cell proliferation. Golgi dysfunction was also observed in pulmonary vascular cells in idiopathic PAH (IPAH) in terms of a marked cytoplasmic dispersal and increased cellular content of the Golgi tethers, giantin and p115, in cells in the proliferative, obliterative and plexiform lesions in IPAH. The question of whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH was approached by genetic means using HIV-nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the non-chimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and increase in giantin and p115. Specifically, it was the HIV-nef–positive cells that showed increased giantin. Elucidating how each of these changes fits into the multifactorial context of hypoxia, reduced NO bioavailability, mutations in BMPR II, modulation of disease penetrance and gender effects in disease occurrence in the pathogenesis of PAH is part of the road ahead.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- Johannes-Peter Stasch
- Institute of Pharmacy, Martin Luther University, Halle, and the Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany.
| | | | | |
Collapse
|