1
|
Bryson TD, Bhat SY, Moore C, Taube D, Xu J, Peterson E, Harding P. Targeted Gene Deletion or Antagonism of the Prostaglandin E2 EP3 Receptor Protects Against Cardiac Injury Postmyocardial Infarction. Circ Heart Fail 2024; 17:e011089. [PMID: 38525608 PMCID: PMC11008451 DOI: 10.1161/circheartfailure.123.011089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/06/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Prostaglandin E2 acts through 4 G-protein-coupled receptors (EP1-EP4). We previously reported that activation of the EP3 receptor reduces cardiac contractility, and its expression increases after a myocardial infarction (MI), mediating the reduction in cardiac function. In contrast, cardiac overexpression of the EP4 receptor in MI substantially improves cardiac function. Moreover, we recently reported that mice overexpressing EP3 have heart failure under basal conditions and worsened cardiac function after MI. Thus, the deleterious effects of the prostaglandin E2 EP receptors in the heart are mediated via its EP3 receptor. We, therefore, hypothesized that cardiomyocyte-specific knockout (CM-EP3 KO) or antagonism of the EP3 receptor protects the heart after MI. METHODS To test our hypothesis, we made the novel CM-EP3 KO mouse and subjected CM-EP3 KO or controls to sham or MI surgery for 2 weeks. In separate experiments, C57BL/6 mice were subjected to 2 weeks of MI and treated with either the EP3 antagonist L798 106 or vehicle starting 3 days post-MI. RESULTS CM-EP3 KO significantly prevented a decline in cardiac function after MI compared with WT animals and prevented an increase in hypertrophy and fibrosis. Excitingly, mice treated with L798 106 3 days after MI had significantly better cardiac function compared with vehicle-treated mice. CONCLUSIONS Altogether, these data suggest that EP3 may play a direct role in regulating cardiac function, and pharmaceutical targeting of the EP3 receptor may be a therapeutic option in the treatment of heart failure.
Collapse
MESH Headings
- Mice
- Animals
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Gene Deletion
- Heart Failure/drug therapy
- Heart Failure/genetics
- Heart Failure/prevention & control
- Mice, Inbred C57BL
- Myocardial Infarction
- Myocytes, Cardiac/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- Timothy D. Bryson
- Hypertension & Vascular Research Division, Department of Internal Medicine (T.D.B., S.B., C.M., D.T., J.X., P.H.), Henry Ford Health, Detroit, MI
| | - Shaheen Y. Bhat
- Hypertension & Vascular Research Division, Department of Internal Medicine (T.D.B., S.B., C.M., D.T., J.X., P.H.), Henry Ford Health, Detroit, MI
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI (S.B., P.H.)
| | - Carlin Moore
- Hypertension & Vascular Research Division, Department of Internal Medicine (T.D.B., S.B., C.M., D.T., J.X., P.H.), Henry Ford Health, Detroit, MI
| | - David Taube
- Hypertension & Vascular Research Division, Department of Internal Medicine (T.D.B., S.B., C.M., D.T., J.X., P.H.), Henry Ford Health, Detroit, MI
| | - Jiang Xu
- Hypertension & Vascular Research Division, Department of Internal Medicine (T.D.B., S.B., C.M., D.T., J.X., P.H.), Henry Ford Health, Detroit, MI
- Department of Cardiovascular Research (J.X.), Henry Ford Health, Detroit, MI
| | - Edward Peterson
- Department of Public Health Sciences (E.P.), Henry Ford Health, Detroit, MI
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine (T.D.B., S.B., C.M., D.T., J.X., P.H.), Henry Ford Health, Detroit, MI
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI (S.B., P.H.)
| |
Collapse
|
2
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
3
|
Ballesteros-Martinez C, Rodrigues-Diez R, Beltrán LM, Moreno-Carriles R, Martínez-Martínez E, González-Amor M, Martínez-González J, Rodríguez C, Cachofeiro V, Salaices M, Briones AM. Microsomal Prostaglandin E Synthase-1 (mPGES-1) is involved in the metabolic and cardiovascular alterations associated with obesity. Br J Pharmacol 2021; 179:2733-2753. [PMID: 34877656 DOI: 10.1111/bph.15776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in obesity development and in the metabolic and cardiovascular alterations associated. EXPERIMENTAL APPROACH mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was studied by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were evaluated by myography. Histological studies, q-RT-PCR and Western Blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients and its correlation with vascular damage was determined. KEY RESULTS Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared to mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodeling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodeling, vessel stiffness and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. CONCLUSIONS AND IMPLICATIONS mPGES-1 inhibition might be a novel therapeutic approach for the management of obesity and the associated cardiovascular and metabolic alterations.
Collapse
Affiliation(s)
- Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Luis M Beltrán
- Servicio de Medicina Interna. Hospital Universitario La Paz, IdiPaz, Madrid, Spain.,Servicio de Medicina Interna. Hospital Virgen del Rocío - IBiS, Sevilla. Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rosa Moreno-Carriles
- Servicio de Angiología y Cirugía vascular. Hospital Universitario La Princesa, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica (IIB) Sant Pau, Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| |
Collapse
|
4
|
Bryson TD, Harding P. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochem Pharmacol 2021; 195:114858. [PMID: 34822808 DOI: 10.1016/j.bcp.2021.114858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
This review article provides an update for the role of prostaglandin E2 receptors (EP1, EP2, EP3 and EP4) in cardiovascular disease. Where possible we have reported citations from the last decade although this was not possible for all of the topics covered due to the paucity of publications. The authors have attempted to cover the subjects of ischemia-reperfusion injury, arrhythmias, hypertension, novel protein binding partners of the EP receptors and their pathophysiological significance, and cardiac regeneration. These latter two topics bring studies of the EP receptors into new and exciting areas of research that are just beginning to be explored. Where there is peer-reviewed literature, the authors have placed particular emphasis on clinical studies although these are limited in number.
Collapse
Affiliation(s)
- Timothy D Bryson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
5
|
Ji S, Guo R, Wang J, Qian L, Liu M, Xu H, Zhang J, Guan Y, Yang G, Chen L. Microsomal Prostaglandin E 2 Synthase-1 Deletion Attenuates Isoproterenol-Induced Myocardial Fibrosis in Mice. J Pharmacol Exp Ther 2020; 375:40-48. [PMID: 32759273 DOI: 10.1124/jpet.120.000023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Deletion of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibits inflammation and protects against atherosclerotic vascular diseases but displayed variable influence on pathologic cardiac remodeling. Overactivation of β-adrenergic receptors (β-ARs) causes heart dysfunction and cardiac remodeling, whereas the role of mPGES-1 in β-AR-induced cardiac remodeling is unknown. Here we addressed this question using mPGES-1 knockout mice, subjecting them to isoproterenol, a synthetic nonselective agonist for β-ARs, at 5 or 15 mg/kg per day to induce different degrees of cardiac remodeling in vivo. Cardiac structure and function were assessed by echocardiography 24 hours after the last of seven consecutive daily injections of isoproterenol, and cardiac fibrosis was examined by Masson trichrome stain in morphology and by real-time polymerase chain reaction for the expression of fibrosis-related genes. The results showed that deletion of mPGES-1 had no significant effect on isoproterenol-induced cardiac dysfunction or hypertrophy. However, the cardiac fibrosis was dramatically attenuated in the mPGES-1 knockout mice after either low-dose or high-dose isoproterenol exposure. Furthermore, in vitro study revealed that overexpression of mPGES-1 in cultured cardiac fibroblasts increased isoproterenol-induced fibrosis, whereas knocking down mPGES-1 in cardiac myocytes decreased the fibrogenesis of fibroblasts. In conclusion, mPGES-1 deletion protects against isoproterenol-induced cardiac fibrosis in mice, and targeting mPGES-1 may represent a novel strategy to attenuate pathologic cardiac fibrosis, induced by β-AR agonists. SIGNIFICANCE STATEMENT: Inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) are being developed as alternative analgesics that are less likely to elicit cardiovascular hazards than cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs. We have demonstrated that deletion of mPGES-1 protects inflammatory vascular diseases and promotes post-myocardial infarction survival. The role of mPGES-1 in β-adrenergic receptor-induced cardiomyopathy is unknown. Here we illustrated that deletion of mPGES-1 alleviated isoproterenol-induced cardiac fibrosis without deteriorating cardiac dysfunction. These results illustrated that targeting mPGES-1 may represent an efficacious approach to the treatment of inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Rui Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Jing Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Guangrui Yang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| |
Collapse
|
6
|
Bryson TD, Pandrangi TS, Khan SZ, Xu J, Pavlov TS, Ortiz PA, Peterson E, Harding P. The deleterious role of the prostaglandin E 2 EP 3 receptor in angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H867-H882. [PMID: 32142358 DOI: 10.1152/ajpheart.00538.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin II (ANG II) plays a key role in regulating blood pressure and inflammation. Prostaglandin E2 (PGE2) signals through four different G protein-coupled receptors, eliciting a variety of effects. We reported that activation of the EP3 receptor reduces cardiac contractility. More recently, we have shown that overexpression of the EP4 receptor is protective in a mouse myocardial infarction model. We hypothesize in this study that the relative abundance of EP3 and EP4 receptors is a major determinant of end-organ damage in the diseased heart. Thus EP3 is detrimental to cardiac function and promotes inflammation, whereas antagonism of the EP3 receptor is protective in an ANG II hypertension (HTN) model. To test our hypothesis, male 10- to 12-wk-old C57BL/6 mice were anesthetized with isoflurane and osmotic minipumps containing ANG II were implanted subcutaneously for 2 wk. We found that antagonism of the EP3 receptor using L798,106 significantly attenuated the increase in blood pressure with ANG II infusion. Moreover, antagonism of the EP3 receptor prevented a decline in cardiac function after ANG II treatment. We also found that 10- to 12-wk-old EP3-transgenic mice, which overexpress EP3 in the cardiomyocytes, have worsened cardiac function. In conclusion, activation or overexpression of EP3 exacerbates end-organ damage in ANG II HTN. In contrast, antagonism of the EP3 receptor is beneficial and reduces cardiac dysfunction, inflammation, and HTN.NEW & NOTEWORTHY This study is the first to show that systemic treatment with an EP3 receptor antagonist (L798,106) attenuates the angiotensin II-induced increase in blood pressure in mice. The results from this project could complement existing hypertension therapies by combining blockade of the EP3 receptor with antihypertensive drugs.
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Teja S Pandrangi
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Safa Z Khan
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Tengis S Pavlov
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
7
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
8
|
Tóth AD, Schell R, Lévay M, Vettel C, Theis P, Haslinger C, Alban F, Werhahn S, Frischbier L, Krebs-Haupenthal J, Thomas D, Gröne HJ, Avkiran M, Katus HA, Wieland T, Backs J. Inflammation leads through PGE/EP 3 signaling to HDAC5/MEF2-dependent transcription in cardiac myocytes. EMBO Mol Med 2019; 10:emmm.201708536. [PMID: 29907596 PMCID: PMC6034133 DOI: 10.15252/emmm.201708536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The myocyte enhancer factor 2 (MEF2) regulates transcription in cardiac myocytes and adverse remodeling of adult hearts. Activators of G protein-coupled receptors (GPCRs) have been reported to activate MEF2, but a comprehensive analysis of GPCR activators that regulate MEF2 has to our knowledge not been performed. Here, we tested several GPCR agonists regarding their ability to activate a MEF2 reporter in neonatal rat ventricular myocytes. The inflammatory mediator prostaglandin E2 (PGE2) strongly activated MEF2. Using pharmacological and protein-based inhibitors, we demonstrated that PGE2 regulates MEF2 via the EP3 receptor, the βγ subunit of Gi/o protein and two concomitantly activated downstream pathways. The first consists of Tiam1, Rac1, and its effector p21-activated kinase 2, the second of protein kinase D. Both pathways converge on and inactivate histone deacetylase 5 (HDAC5) and thereby de-repress MEF2. In vivo, endotoxemia in MEF2-reporter mice induced upregulation of PGE2 and MEF2 activation. Our findings provide an unexpected new link between inflammation and cardiac remodeling by de-repression of MEF2 through HDAC5 inactivation, which has potential implications for new strategies to treat inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- András D Tóth
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Richard Schell
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Magdolna Lévay
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Theis
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Clemens Haslinger
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Felix Alban
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Stefanie Werhahn
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Lina Frischbier
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Jutta Krebs-Haupenthal
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Metin Avkiran
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Hugo A Katus
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Wieland
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| |
Collapse
|
9
|
Chen L, Yang G, Jiang T, Tang SY, Wang T, Wan Q, Wang M, FitzGerald GA. Myeloid Cell mPges-1 Deletion Attenuates Mortality Without Affecting Remodeling After Acute Myocardial Infarction in Mice. J Pharmacol Exp Ther 2019; 370:18-24. [PMID: 30992314 DOI: 10.1124/jpet.118.256057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/10/2019] [Indexed: 01/25/2023] Open
Abstract
Selective deletion of microsomal prostaglandin E2 synthase-1 (mPges-1) in myeloid cells retards atherogenesis and suppresses the vascular proliferative response to injury, while it does not predispose to thrombogenesis or hypertension. However, studies using bone marrow transplants from irradiated mice suggest that myeloid cell mPGES-1 facilitates cardiac remodeling and prolongs survival after experimental myocardial infarction (MI). Here, we addressed this question using mice lacking mPges-1 in myeloid cells, particularly macrophages [Mac-mPges-1-knockout (KO)], generated by crossing mPges-1 floxed mice with LysMCre mice and subjecting them to coronary artery ligation. Cardiac structure and function were assessed by morphometric analysis, echocardiography, and invasive hemodynamics 3, 7, and 28 days after MI. Despite a similar infarct size, in contrast to the prior report, the post-MI survival rate was markedly improved in the Mac-mPges-1-KO mice compared with wild-type controls. Left ventricular systolic (reflected by ejection fraction, fractional shortness end systolic volume, and +dP/dt) and diastolic function (reflected by end diastolic volume, -dP/dt, and Tau), cardiac hypertrophy (reflected by left ventricular dimensions), and staining for fibrosis did not differ between the groups. In conclusion, we found that Cre-loxP-mediated deletion of mPges-1 in myeloid cells has favorable effects on post-MI survival, with no detectable adverse influence on post-MI remodeling. These results add to evidence that targeting macrophage mPGES-1 may represent a safe and efficacious approach to the treatment and prevention of cardiovascular inflammatory disease.
Collapse
Affiliation(s)
- Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Guangrui Yang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Soon Yew Tang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Tao Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Qing Wan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Miao Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| | - Garret A FitzGerald
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China (L.C., T.J.); School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China (G.Y.); Institute for Translational Medicine and Therapeutics (L.C., G.Y., S.Y.T., G.A.F.) and Cardiovascular Institute (T.W., G.A.F.), University of Pennsylvania, Philadelphia, Pennsylvania; and State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.W., M.W.)
| |
Collapse
|
10
|
Avendaño MS, García-Redondo AB, Zalba G, González-Amor M, Aguado A, Martínez-Revelles S, Beltrán LM, Camacho M, Cachofeiro V, Alonso MJ, Salaices M, Briones AM. mPGES-1 (Microsomal Prostaglandin E Synthase-1) Mediates Vascular Dysfunction in Hypertension Through Oxidative Stress. Hypertension 2018; 72:492-502. [PMID: 29891646 DOI: 10.1161/hypertensionaha.118.10833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/28/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
Abstract
mPGES-1 (microsomal prostaglandin E synthase-1), the downstream enzyme responsible for PGE2 (prostaglandin E2) synthesis in inflammatory conditions and oxidative stress are increased in vessels from hypertensive animals. We evaluated the role of mPGES-1-derived PGE2 in the vascular dysfunction and remodeling in hypertension and the possible contribution of oxidative stress. We used human peripheral blood mononuclear cells from asymptomatic patients, arteries from untreated and Ang II (angiotensin II)-infused mPGES-1-/- and mPGES-1+/+ mice, and vascular smooth muscle cells exposed to PGE2 In human cells, we found a positive correlation between mPGES-1 mRNA and carotid intima-media thickness (r=0.637; P<0.001) and with NADPH oxidase-dependent superoxide production (r=0.417; P<0.001). In Ang II-infused mice, mPGES-1 deletion prevented all of the following: (1) the augmented wall:lumen ratio, vascular stiffness, and altered elastin structure; (2) the increased gene expression of profibrotic and proinflammatory markers; (3) the increased vasoconstrictor responses and endothelial dysfunction; (4) the increased NADPH oxidase activity and the diminished mitochondrial membrane potential; and (5) the increased reactive oxygen species generation and reduced NO bioavailability. In vascular smooth muscle cells or aortic segments, PGE2 increased NADPH oxidase expression and activity and reduced mitochondrial membrane potential, effects that were abolished by antagonists of the PGE2 receptors (EP), EP1 and EP3, and by JNK (c-Jun N-terminal kinase) and ERK1/2 (extracellular-signal-regulated kinases 1/2) inhibition. Deletion of mPGES-1 augmented vascular production of PGI2 suggesting rediversion of the accumulated PGH2 substrate. In conclusion, mPGES-1-derived PGE2 is involved in vascular remodeling, stiffness, and endothelial dysfunction in hypertension likely through an increase of oxidative stress produced by NADPH oxidase and mitochondria.
Collapse
Affiliation(s)
- María S Avendaño
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.)
| | - Ana B García-Redondo
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.).,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.)
| | - Guillermo Zalba
- Departamento de Bioquímica y Genética, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain (G.Z.)
| | - María González-Amor
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.)
| | - Andrea Aguado
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.)
| | - Sonia Martínez-Revelles
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.).,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.)
| | - Luis M Beltrán
- Unidad Clínico-Experimental de Riesgo Vascular-Medicina Interna, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Spain (L.M.B.)
| | - Mercedes Camacho
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.).,Laboratorio de Angiología, Biología Vascular e Inflamación, Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (M.C.)
| | - Victoria Cachofeiro
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.).,Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Gregorio Marañón, Universidad Complutense de Madrid, Spain (V.C.)
| | - María J Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.).,Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain (M.J.A.)
| | - Mercedes Salaices
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.).,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.)
| | - Ana M Briones
- From the Departmento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Spain (M.S.A., A.B.G.-R., M.G.-A., A.A., S.M.-R., M.S., A.M.B.) .,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain (A.B.G.-R., S.M.-R., M.C., V.C., M.J.A., M.S., A.M.B.)
| |
Collapse
|
11
|
Abstract
BACKGROUND Prostaglandin E2 (PGE2) signals through 4 separate G-protein coupled receptor sub-types to elicit a variety of physiologic and pathophysiological effects. We recently reported that PGE2 via its EP3 receptor could reduce cardiac contractility of isolated myocytes and the working heart preparation. We thus hypothesized that there is an imbalance in the EP3/EP4 ratio towards EP3 in the failing heart and that overexpression of EP4 in a mouse model of heart failure would improve cardiac function. METHODS AND RESULTS Our hypothesis was tested in a mouse model of myocardial infarction (MI) with the use of AAV9-EP4 driven by the myosin heavy chain promoter to overexpress EP4 in the cardiac myocytes. Echocardiography was performed to assess cardiac function. We found that overexpression of EP4 improved shortening fraction (p = 0.0025), ejection fraction (p = 0.0003), and reduced left ventricular dimension at systole (p = 0.0013). Overexpression of EP4 also significantly reduced indices of cardiac hypertrophy and interstitial collagen fraction. Animals treated with AAV9-EP4 also had a significant decrease in TNFα mRNA expression and in the number of macrophages and T cells migrated post MI coupled with a reduction in the expression of iNOS. CONCLUSION Overexpression of EP4 improves cardiac function post MI. This may be mediated through reductions in adverse cardiac remodeling or via inhibition of cytokine/chemokine production.
Collapse
|
12
|
Physiological and pathophysiological implications of PGE2 and the PGE2 synthases in the kidney. Prostaglandins Other Lipid Mediat 2018; 134:1-6. [DOI: 10.1016/j.prostaglandins.2017.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
|
13
|
An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5249086. [PMID: 27594972 PMCID: PMC4993943 DOI: 10.1155/2016/5249086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options.
Collapse
|
14
|
Liu S, Ji Y, Yao J, Zhao X, Xu H, Guan Y, Breyer RM, Sheng H, Zhu J. Knockout of the Prostaglandin E2 Receptor Subtype 3 Promotes Eccentric Cardiac Hypertrophy and Fibrosis in Mice. J Cardiovasc Pharmacol Ther 2016; 22:71-82. [PMID: 27093953 DOI: 10.1177/1074248416642520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Prostaglandin E2 receptor subtype 3 (EP3), a Gi protein-coupled receptor activated by prostaglandin E2, plays a particular role in cardioprotection. This study aimed to investigate the impact of EP3 deletion on cardiac remodeling and further elucidate the related involvement of possible signaling pathways. Methods and Results: The animals used were EP3 receptor knockout (EP3KO) mice and wild-type (WT) litter mate controls at 16-18 weeks old. The high-resolution echocardiography and weight index indicated that eccentric cardiac hypertrophy might occur in EP3KO mice, which were having worse cardiac function than WT litter mates. Isolated adult myocytes from EP3KO hearts showed spontaneous lengthening. Cardiac fibrosis was observed in EP3KO mice through Masson trichrome staining. The elevated messenger RNA (mRNA) level in matrix genes and the reduced mRNA, protein, and activity levels of matrix metalloproteinase 2 (MMP-2) indicated an increased synthesis and suppressed degradation of matrix collagen in EP3KO mice. The phosphorylation level of extracellular signal-regulated kinase (ERK) 1/2 protein was reduced in the cardiac tissue of EP3KO mice, accompanied by no significant change in the protein level of total ERK1/2, total p38, phospho-p38, glycogen synthase kinase-3β (GSK3β), phospho-GSK3β, and calcineurin (CaN) as well as CaN activity. Conclusion: EP3 knockout in cardiac tissues could induce eccentric cardiac hypertrophy and cardiac fibrosis at 16-18 weeks old. These effects of EP3 knockout might be regulated through inactivating MAPK/ERK pathway and affecting the MMP-2 expression. Overall, PGE2-EP3 is necessary to maintain the normal growth and development of the heart.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yawei Ji
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Yao
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Xiaodan Zhao
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hu Xu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Richard M. Breyer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianhua Zhu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Deshpande M, Mali VR, Pan G, Xu J, Yang XP, Thandavarayan RA, Palaniyandi SS. Increased 4-hydroxy-2-nonenal-induced proteasome dysfunction is correlated with cardiac damage in streptozotocin-injected rats with isoproterenol infusion. Cell Biochem Funct 2016; 34:334-42. [PMID: 27273517 DOI: 10.1002/cbf.3195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
Increase in 4-hydroxy-2-nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)-infused type 1 diabetes mellitus (DM) rats. Eight-week-old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg(-1) ). The rats were infused with ISO (5 mg kg(-1) ) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin-like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm(2) ), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE-induced decrease in proteasome activity may be involved in the cardiac pathology in STZ-injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Jiang Xu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Xiao-Ping Yang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
16
|
Bagchi RA, Roche P, Aroutiounova N, Espira L, Abrenica B, Schweitzer R, Czubryt MP. The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype. BMC Biol 2016; 14:21. [PMID: 26988708 PMCID: PMC4794909 DOI: 10.1186/s12915-016-0243-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
Background Resident fibroblasts synthesize the cardiac extracellular matrix, and can undergo phenotype conversion to myofibroblasts to augment matrix production, impairing function and contributing to organ failure. A significant gap in our understanding of the transcriptional regulation of these processes exists. Given the key role of this phenotype conversion in fibrotic disease, the identification of such novel transcriptional regulators may yield new targets for therapies for fibrosis. Results Using explanted primary cardiac fibroblasts in gain- and loss-of-function studies, we found that scleraxis critically controls cardiac fibroblast/myofibroblast phenotype by direct transcriptional regulation of myriad genes that effectively define these cells, including extracellular matrix components and α-smooth muscle actin. Scleraxis furthermore potentiated the TGFβ/Smad3 signaling pathway, a key regulator of myofibroblast conversion, by facilitating transcription complex formation. While scleraxis promoted fibroblast to myofibroblast conversion, loss of scleraxis attenuated myofibroblast function and gene expression. These results were confirmed in scleraxis knockout mice, which were cardiac matrix-deficient and lost ~50 % of their complement of cardiac fibroblasts, with evidence of impaired epithelial-to-mesenchymal transition (EMT). Scleraxis directly transactivated several EMT marker genes, and was sufficient to induce mesenchymal/fibroblast phenotype conversion of A549 epithelial cells. Conversely, loss of scleraxis attenuated TGFβ-induced EMT marker expression. Conclusions Our results demonstrate that scleraxis is a novel and potent regulator of cellular progression along the continuum culminating in the cardiac myofibroblast phenotype. Scleraxis was both sufficient to drive conversion, and required for full conversion to occur. Scleraxis fulfills this role by direct transcriptional regulation of key target genes, and by facilitating TGFβ/Smad signaling. Given the key role of fibroblast to myofibroblast conversion in fibrotic diseases in the heart and other tissue types, scleraxis may be an important target for therapeutic development. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0243-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Patricia Roche
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Nina Aroutiounova
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Leon Espira
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Bernard Abrenica
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ronen Schweitzer
- Shriners Hospital for Children, Research Division and Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
17
|
Gu X, Xu J, Yang XP, Peterson E, Harding P. Fractalkine neutralization improves cardiac function after myocardial infarction. Exp Physiol 2015; 100:805-17. [PMID: 25943588 DOI: 10.1113/ep085104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/30/2015] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the cardioprotective role of fractalkine neutralization in heart failure and what are the mechanisms responsible? What is the main finding and its importance? The concentration of fractalkine is increased in the left ventricle of mice with myocardial infarction, similar to the increases in plasma from heart failure patients. The present study shows a clear beneficial effect of neutralizing fractalkine in a model of myocardial infarction, which results in increased survival. Such an approach may be worthwhile in human patients. Concentrations of the chemokine fractalkine (FKN) are increased in patients with chronic heart failure, and our previous studies show that aged mice lacking the prostaglandin E2 EP4 receptor subtype (EP4-KO) have increased cardiac FKN, with a phenotype of dilated cardiomyopathy. However, how FKN participates in the pathogenesis of heart failure has rarely been studied. We hypothesized that FKN contributes to the pathogenesis of heart failure and that anti-FKN treatment prevents heart failure induced by myocardial infarction (MI) more effectively in EP4-KO mice. Male EP4-KO mice and wild-type littermates underwent sham or MI surgery and were treated with an anti-FKN antibody or control IgG. At 2 weeks post-MI, echocardiography was performed and hearts were excised for determination of infarct size, immunohistochemistry and Western blot of signalling molecules. Given that FKN protein levels in the left ventricle were increased to a similar extent in both strains after MI and that anti-FKN treatment improved survival and cardiac function in both strains, we subsequently used only wild-type mice to examine the mechanisms whereby anti-FKN is cardioprotective. Myocyte cross-sectional area and interstitial collagen fraction were reduced after anti-FKN treatment, as were macrophage migration and gelatinase activity. Activation of ERK1/2 and p38 MAPK were reduced after neutralization of FKN. In vitro, FKN increased fibroblast proliferation. In conclusion, increased FKN contributes to heart failure after MI. This effect is not exacerbated in EP4-KO mice, suggesting that there is no link between FKN and lack of EP4. Overall, inhibition of FKN may be important to preserve cardiac function post-MI.
Collapse
Affiliation(s)
- Xiaosong Gu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA.,Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA
| |
Collapse
|
18
|
van Bilsen M, Planavila A. Fatty acids and cardiac disease: fuel carrying a message. Acta Physiol (Oxf) 2014; 211:476-90. [PMID: 24773697 DOI: 10.1111/apha.12308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/02/2014] [Accepted: 04/25/2014] [Indexed: 12/20/2022]
Abstract
From the viewpoint of the prevention of cardiovascular disease (CVD) burden, there has been a continuous interest in the detrimental effects of the Western-type high-fat diet for more than half a century. More recently, this general view has been subject to change as epidemiological studies showed that replacing fat by carbohydrate may even be worse and that various polyunsaturated fatty acids (FA) have beneficial rather than detrimental effects on CVD outcome. At the same time, advances in lipid biology have provided insight into the mechanisms by which the different lipid components of the Western diet affect the cardiovascular system. In fact, this still is a rapidly growing field of research and in recent years novel FA derivatives and FA receptors have been discovered. This includes fish-oil derived FA-derivatives with anti-inflammatory properties, the so-called resolvins, and various G-protein-coupled receptors that recognize FA as ligands. In the present review, we will extensively discuss the role of FA and their metabolites on cardiac disease, with special emphasis on the role of the different saturated and polyunsaturated FA and their respective metabolites in cellular signal transduction and the possible implications for the development of cardiac hypertrophy and cardiac failure.
Collapse
Affiliation(s)
- M. van Bilsen
- Department of Physiology; Cardiovascular Research Institute Maastricht; Maastricht University; Maastricht the Netherlands
| | - A. Planavila
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Barcelona Spain
| |
Collapse
|
19
|
Salazar F, Vazquez ML, Masferrer JL, Mbalaviele G, Llinas MT, Saez F, Arhancet G, Salazar FJ. Renal effects induced by prolonged mPGES1 inhibition. Am J Physiol Renal Physiol 2014; 306:F68-74. [DOI: 10.1152/ajprenal.00492.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The importance of membrane-bound PGE synthase 1 (mPGES1) in the regulation of renal function has been examined in mPGES1-deficient mice or by evaluating changes in its expression. However, it is unknown whether prolonged mPGES1 inhibition induces significant changes of renal function when Na+ intake is normal or low. This study examined the renal effects elicited by a selective mPGES1 inhibitor (PF-458) during 7 days in conscious chronically instrumented dogs with normal Na+ intake (NSI) or low Na+ intake (LSI). Results obtained in both in vitro and in vivo studies have strongly suggested that PF-458 is a selective mPGES1 inhibitor. The administration of 2.4 mg·kg−1·day−1 PF-458 to dogs with LSI did not induce significant changes in renal blood flow (RBF) and glomerular filtration rate (GFR). A larger dose of PF-458 (9.6 mg·kg−1·day−1) reduced RBF ( P < 0.05) but not GFR in dogs with LSI and did not induce changes of renal hemodynamic in dogs with NSI. Both doses of PF-458 elicited a decrease ( P < 0.05) in PGE2 and an increase ( P < 0.05) in 6-keto-PGF1α. The administration of PF-458 did not induce significant changes in renal excretory function, plasma renin activity, and plasma aldosterone and thromboxane B2 concentrations in dogs with LSI or NSI. The results obtained suggest that mPGES1 is involved in the regulation of RBF when Na+ intake is low and that the renal effects elicited by mPGES1 inhibition are modulated by a compensatory increment in PGI2. These results may have some therapeutical implications since it has been shown that prolonged mPGES1 inhibition has lower renal effects than those elicited by nonsteroidal anti-inflammatory drugs or selective cyclooxygenase-2 inhibitors.
Collapse
Affiliation(s)
- Francisco Salazar
- Department of Physiology, School of Medicine, Campus Mare Nostrum of Excellence, University of Murcia, Murcia, Spain; and
| | | | | | | | - Maria T. Llinas
- Department of Physiology, School of Medicine, Campus Mare Nostrum of Excellence, University of Murcia, Murcia, Spain; and
| | - Fara Saez
- Department of Physiology, School of Medicine, Campus Mare Nostrum of Excellence, University of Murcia, Murcia, Spain; and
| | | | - F. Javier Salazar
- Department of Physiology, School of Medicine, Campus Mare Nostrum of Excellence, University of Murcia, Murcia, Spain; and
| |
Collapse
|
20
|
Pushpakumar SB, Kundu S, Metreveli N, Sen U. Folic acid mitigates angiotensin-II-induced blood pressure and renal remodeling. PLoS One 2013; 8:e83813. [PMID: 24386282 PMCID: PMC3873386 DOI: 10.1371/journal.pone.0083813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022] Open
Abstract
Clinical data suggests an association between systolic hypertension, renal function and hyperhomocysteinemia (HHcy). HHcy is a state of elevated plasma homocysteine (Hcy) levels and is known to cause vascular complications. In this study, we tested the hypothesis whether Ang II-induced hypertension increases plasma Hcy levels and contributes to renovascular remodeling. We also tested whether folic acid (FA) treatment reduces plasma Hcy levels by enhancing Hcy remethylation and thus mitigating renal remodeling. Hypertension was induced in WT mice by infusing Ang II using Alzet mini osmotic pumps. Blood pressure, Hcy level, renal vascular density, oxidative stress, inflammation and fibrosis markers, and angiogenic- and anti-angiogenic factors were measured. Ang II hypertension increased plasma Hcy levels and reduced renal cortical blood flow and microvascular density. Elevated Hcy in Ang II hypertension was associated with decreased 4, 5-Diaminofluorescein (DAF-2DA) staining suggesting impaired endothelial function. Increased expression of Nox-2, -4 and dihydroethidium stain revealed oxidative stress. Excess collagen IV deposition in the peri-glomerular area and increased MMP-2, and -9 expression and activity indicated renal remodeling. The mRNA and protein expression of asymmetric dimethylarginine (ADMA) was increased and eNOS protein was decreased suggesting the involvement of this pathway in Hcy mediated hypertension. Decreased expressions of VEGF and increased anti-angiogenic factors, angiostatin and endostatin indicated impaired vasculogenesis. FA treatment partially reduced hypertension by mitigating HHcy in Ang II-treated animals and alleviated pro-inflammatory, pro-fibrotic and anti-angiogenic factors. These results suggest that renovascular remodeling in Ang II-induced hypertension is, in part, due to HHcy.
Collapse
Affiliation(s)
- Sathnur B. Pushpakumar
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Naira Metreveli
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
21
|
Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, Omori Y, Ikeya Y, Saito Y, Ishii R, Higashimori M, Kaneko M, Miwa T, Yamamoto K, Komuro I. A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol 2013; 305:H1658-67. [DOI: 10.1152/ajpheart.00349.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the mouse heart failure (HF) model of hypertensive heart disease (HHD) is useful to investigate the pathophysiology and new therapeutic targets for HHD, the model using simple experimental procedures and stable phenotypes has not been established. This study aimed to develop a novel mouse HF model of HHD by combining salt loading and uninephrectomy with ANG II infusion. Eight-week-old C57BL/6 male mice were treated with ANG II infusion (AT), ANG II infusion and uninephrectomy (AN), ANG II infusion and salt loading (AS), or ANG II infusion, uninephrectomy, and salt loading (ANS). Systolic blood pressure was significantly elevated and left ventricular (LV) hypertrophy was found in AT, AN, AS, and ANS mice, and there were no significant differences in those parameters between the four groups. At 6 wk after the procedures, only ANS mice showed significant decreases in LV fractional shortening and increases in lung weight with a high incidence. This phenotype was reproducible, and there were few perioperative or early deaths in the experimental procedures. Severe LV fibrosis was found in ANS mice. Oxidative stress was enhanced and small GTPase Rac1 activity was upregulated in the hearts of ANS mice. After the addition of salt loading and uninephrectomy to the ANG II infusion mouse model, cardiac function was significantly impaired, and mice developed HF. This might be a novel and useful mouse HF model to study the transition from compensated LV hypertrophy to HF in HHD.
Collapse
Affiliation(s)
- Yasumasa Tsukamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Genome Information Research Center, Osaka University, Suita, Japan
| | - Toshiaki Mano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Genome Information Research Center, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuharu Takeda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunsuke Tamaki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Genome Information Research Center, Osaka University, Suita, Japan
| | - Yosuke Omori
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Genome Information Research Center, Osaka University, Suita, Japan
| | - Yukitoshi Ikeya
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Division of Cardiology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuki Saito
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Division of Cardiology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ryohei Ishii
- Department of Mechanical Engineering, Osaka University, Suita, Japan; and
| | | | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, Suita, Japan; and
| | - Takeshi Miwa
- Genome Information Research Center, Osaka University, Suita, Japan
| | - Kazuhiro Yamamoto
- Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
22
|
Taube D, Xu J, Yang XP, Undrovinas A, Peterson E, Harding P. Fractalkine depresses cardiomyocyte contractility. PLoS One 2013; 8:e69832. [PMID: 23936109 PMCID: PMC3728327 DOI: 10.1371/journal.pone.0069832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 12/02/2022] Open
Abstract
Background Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Methods Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. Results LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Conclusions Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.
Collapse
Affiliation(s)
- David Taube
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Jiang Xu
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Albertas Undrovinas
- Cardiovascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Edward Peterson
- Department of Internal Medicine and Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Pamela Harding
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice. PLoS One 2013; 8:e60493. [PMID: 23544146 PMCID: PMC3609829 DOI: 10.1371/journal.pone.0060493] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/27/2013] [Indexed: 12/04/2022] Open
Abstract
Vaccines have been recently developed to treat various diseases such as cancer, rheumatoid arthritis and Alzheimer’s disease in addition to infectious diseases. However, before use in the clinical setting, vaccines targeting self-antigens must be demonstrated to be effective and safe, evoking an adequate humoral immune response from B cells while avoiding T cell activation in response to self. Although the vaccine targeting angiotensin II (Ang II) is efficient in rodents and humans, little is known regarding the immunological activation and safety of the vaccine. In this study, we evaluated the efficiency and safety of an Ang II peptide vaccine in mice. Immunization with Ang II conjugated to keyhole limpet hemocyanin (KLH) successfully induced the production of anti-Ang II antibody, which blocked Ang II signaling in human aortic smooth muscle cells. However, Ang II itself did not activate T cells, as assessed by the proliferation and lymphokine production of T cells in immunized mice, whereas KLH activated T cells. In an Ang II-infused model, the non-immunized mice showed high blood pressure (BP), whereas the immunized mice (Ang II-KLH) showed a significant decrease in systolic BP, accompanied by significant reductions in cardiac hypertrophy and fibrosis. Importantly, anti-Ang II antibody titer was not elevated even after the administration of large amounts of Ang II, indicating that Ang II itself boosted antibody production, most likely due to less activation of T cells. In addition, no accumulation of inflammatory cells was observed in immunized mice, because endogenous Ang II would not activate T cells after immunization with Ang II-KLH. Taken together, these data indicate that vaccines targeting Ang II might be effective to decrease high BP and prevent cardiovascular complications without severe side effects.
Collapse
|
24
|
Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation. Am J Hypertens 2012; 25:1042-9. [PMID: 22695507 DOI: 10.1038/ajh.2012.67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is a major prostanoid with a wide variety of biological activities. PGE(2) can influence blood pressure (BP) both positively and negatively. In particular, centrally administered PGE(2) induces hypertension whereas systemic administration of PGE(2) produces a hypotensive effect. These physiologically opposing effects are generated by the existence of multiple EP receptors, namely EP(1-4), which are G protein-coupled receptors with distinct signaling properties. This review highlights the distinct roles of PGE(2) in BP regulation and the involvement of specific EP receptor subtypes.
Collapse
|
25
|
Degousee N, Simpson J, Fazel S, Scholich K, Angoulvant D, Angioni C, Schmidt H, Korotkova M, Stefanski E, Wang XH, Lindsay TF, Ofek E, Pierre S, Butany J, Jakobsson PJ, Keating A, Li RK, Nahrendorf M, Geisslinger G, Backx PH, Rubin BB. Lack of Microsomal Prostaglandin E
2
Synthase-1 in Bone Marrow–Derived Myeloid Cells Impairs Left Ventricular Function and Increases Mortality After Acute Myocardial Infarction. Circulation 2012; 125:2904-13. [DOI: 10.1161/circulationaha.112.099754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background—
Microsomal prostaglandin E
2
synthase-1 (mPGES-1), encoded by the
Ptges
gene, catalyzes prostaglandin E
2
biosynthesis and is expressed by leukocytes, cardiac myocytes, and cardiac fibroblasts.
Ptges
−/−
mice develop more left ventricle (LV) dilation, worse LV contractile function, and higher LV end-diastolic pressure than
Ptges
+/+
mice after myocardial infarction. In this study, we define the role of mPGES-1 in bone marrow–derived leukocytes in the recovery of LV function after coronary ligation.
Methods and Results—
Cardiac structure and function in
Ptges
+/+
mice with
Ptges
+/+
bone marrow (
BM
+/+
) and
Ptges
+/+
mice with
Ptges
−/−
BM (
BM
−/−
) were assessed by morphometric analysis, echocardiography, and invasive hemodynamics before and 7 and 28 days after myocardial infarction. Prostaglandin levels and prostaglandin biosynthetic enzyme gene expression were measured by liquid chromatography–tandem mass spectrometry and real-time polymerase chain reaction, immunoblotting, immunohistochemistry, and immunofluorescence microscopy, respectively. After myocardial infarction,
BM
−/−
mice had more LV dilation, worse LV systolic and diastolic function, higher LV end-diastolic pressure, more cardiomyocyte hypertrophy, and higher mortality but similar infarct size and pulmonary edema compared with
BM
+/+
mice.
BM
−/−
mice also had higher levels of COX-1 protein and more leukocytes in the infarct, but not the viable LV, than
BM
+/+
mice. Levels of prostaglandin E
2
were higher in the infarct and viable myocardium of
BM
−/−
mice than in
BM
+/+
mice.
Conclusions—
Lack of mPGES-1 in bone marrow–derived leukocytes negatively regulates COX-1 expression, prostaglandin E
2
biosynthesis, and inflammation in the infarct and leads to impaired LV function, adverse LV remodeling, and decreased survival after acute myocardial infarction.
Collapse
Affiliation(s)
- Norbert Degousee
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Jeremy Simpson
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Shafie Fazel
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Klaus Scholich
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Denis Angoulvant
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Carlo Angioni
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Helmut Schmidt
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Marina Korotkova
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Eva Stefanski
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Xing-Hua Wang
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Thomas F. Lindsay
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Efrat Ofek
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Sandra Pierre
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Jagdish Butany
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Per-Johan Jakobsson
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Armand Keating
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Ren-Ke Li
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Matthias Nahrendorf
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Gerd Geisslinger
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Peter H. Backx
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| | - Barry B. Rubin
- From the Divisions of Vascular Surgery (N.D., E.S., T.F.L., B.B.R.), Cardiac Surgery (S.F., R.-K.L.), Cardiology (P.H.B.), and Pathology (E.O., J.B.), Peter Munk Cardiac Centre, and the Department of Medical Oncology & Hematology (X.-H.W., A.K.), Toronto General Hospital, University Health Network, Toronto, Canada; Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada (J.S., P.H.B.); Institut für Klinische Pharmakologie, Frankfurt am Main, Germany (K.S., C.A., H
| |
Collapse
|
26
|
Wang M, FitzGerald GA. Cardiovascular biology of microsomal prostaglandin E synthase-1. Trends Cardiovasc Med 2012; 20:189-95. [PMID: 22137640 DOI: 10.1016/j.tcm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/13/2011] [Indexed: 10/14/2022]
Abstract
Both traditional and purpose-designed nonsteroidal anti-inflammatory drugs, selective for inhibition of cyclooxygenase (COX)-2, alleviate pain and inflammation but confer a cardiovascular hazard attributable to inhibition of COX-2-derived prostacyclin (PGI(2)). Deletion of microsomal PGE synthase-1 (mPGES-1), the dominant enzyme that converts the COX-derived intermediate product PGH(2) to PGE(2), modulates inflammatory pain in rodents. In contrast with COX-2 deletion or inhibition, PGI(2) formation is augmented in mPGES-1(-/-) mice-an effect that may confer cardiovascular benefit but may undermine the analgesic potential of inhibitors of this enzyme. This review considers the cardiovascular biology of mPGES1 and the complex challenge of developing inhibitors of this enzyme.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | | |
Collapse
|
27
|
McCollum LT, Gallagher PE, Tallant EA. Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts. Peptides 2012; 34:380-8. [PMID: 22326709 PMCID: PMC3326596 DOI: 10.1016/j.peptides.2012.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/16/2022]
Abstract
Previous studies showed that angiotensin-(1-7) [Ang-(1-7)] attenuates cardiac remodeling by reducing both interstitial and perivascular fibrosis. Although a high affinity binding site for Ang-(1-7) was identified on cardiac fibroblasts, the molecular mechanisms activated by the heptapeptide hormone were not identified. We isolated cardiac fibroblasts from neonatal rat hearts to investigate signaling pathways activated by Ang-(1-7) that participate in fibroblast proliferation. Ang-(1-7) reduced (3)H-thymidine, -leucine and -proline incorporation into cardiac fibroblasts stimulated with serum or the mitogen endothelin-1 (ET-1), demonstrating that the heptapeptide hormone decreases DNA, protein and collagen synthesis. The reduction in DNA synthesis by Ang-(1-7) was blocked by the AT((1-7)) receptor antagonist [d-Ala(7)]-Ang-(1-7), showing specificity of the response. Treatment of cardiac fibroblasts with Ang-(1-7) reduced the Ang II- or ET-1-stimulated increase in phospho-ERK1 and -ERK2. In contrast, Ang-(1-7) increased dual-specificity phosphatase DUSP1 immunoreactivity and mRNA, suggesting that the heptapeptide hormone increases DUSP1 to reduce MAP kinase phosphorylation and activity. Incubation of cardiac fibroblasts with ET-1 increased cyclooxygenase 2 (COX-2) and prostaglandin synthase (PGES) mRNAs, while Ang-(1-7) blocked the increase in both enzymes, suggesting that the heptapeptide hormone alters the concentration and the balance between the proliferative and anti-proliferative prostaglandins. Collectively, these results indicate that Ang-(1-7) participates in maintaining cardiac homeostasis by reducing proliferation and collagen production by cardiac fibroblasts in association with up-regulation of DUSP1 to reduce MAP kinase activities and attenuation of the synthesis of mitogenic prostaglandins. Increased Ang-(1-7) or agents that enhance production of the heptapeptide hormone may prevent abnormal fibrosis that occurs during cardiac pathologies.
Collapse
Affiliation(s)
- LaTronya T McCollum
- The Hypertension and Vascular Research Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA
| | | | | |
Collapse
|
28
|
Harding P, Murray DB. The contribution of prostaglandins versus prostacyclin in ventricular remodeling during heart failure. Life Sci 2011; 89:671-6. [PMID: 21855554 DOI: 10.1016/j.lfs.2011.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 12/20/2022]
Abstract
Although the role of Cox-2 in the heart's response to physiologic stress remains controversial (i.e. expression in myocytes versus other resident myocardial cells) the ever expanding role of prostanoids in multiple models of heart failure cannot be denied. Due to the fact that prostanoids are metabolized rather quickly (half life of seconds to minutes) it is believed these signaling mediators act in a paracrine fashion at the site of production. Evidence to date is quite convincing that these bioactive lipid derivatives are involved in physiologic homeostatic regulation as well as beneficial and maladaptive ventricular remodeling in heart failure. Thus, this review will assess the direct contribution of each PG on remodeling in the left ventricle (e.g. hypertrophy, functional effects, and fibrosis).
Collapse
Affiliation(s)
- Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
29
|
Peng H, Yang XP, Carretero OA, Nakagawa P, D'Ambrosio M, Leung P, Xu J, Peterson EL, González GE, Harding P, Rhaleb NE. Angiotensin II-induced dilated cardiomyopathy in Balb/c but not C57BL/6J mice. Exp Physiol 2011; 96:756-64. [PMID: 21602297 PMCID: PMC3256574 DOI: 10.1113/expphysiol.2011.057612] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Balb/c mice, which are T-helper lymphocyte 2 (Th2) responders, are highly susceptible to infectious and non-infectious heart diseases, whereas C57BL/6 mice (Th1 responders) are not. Angiotensin II (Ang II) is not only a vasopressor but also a pro-inflammatory factor that leads to cardiac hypertrophy, fibrosis and dysfunction. We hypothesized that Ang II exacerbates cardiac damage in Balb/c but not in C57BL/6 mice even though both strains have a similar level of hypertension. Twelve-week-old male C57BL/6J and Balb/c mice received either vehicle or Ang II (1.4 mg kg(-1) day(-1), s.c. via osmotic minipump) for 8 weeks. At baseline, Balb/c mice exhibited the following: (1) a lower heart rate; (2) an enlarged left ventricular chamber; (3) a lower ejection fraction and shortening fraction; and (4) twice the left ventricular collagen deposition of age-matched C57BL/6J mice. Angiotensin II raised systolic blood pressure (to ∼150 mmHg) and induced cardiomyocyte hypertrophy in a similar manner in both strains. While C57BL/6J mice developed compensatory concentric hypertrophy and fibrosis in response to Ang II, Balb/c mice demonstrated severe left ventricular chamber dilatation, wall thinning and fibrosis, leading to congestive heart failure as evidenced by dramatically decreased ejection fraction and lung congestion (significant increase in lung weight), which are both characteristic of dilated cardiomyopathy. Our study suggests that the Th phenotype plays an active role in cardiac remodelling and function both in basal conditions and in hypertension. Angiotensin II-induced dilated cardiomyopathy in Balb/c mice is an ideal animal model for studying the impact of the adaptive immune system on cardiac remodelling and function and for testing strategies to prevent or treat hypertension-associated heart failure.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|