1
|
McNeill JN, Roshandelpoor A, Alotaibi M, Choudhary A, Jain M, Cheng S, Zarbafian S, Lau ES, Lewis GD, Ho JE. The association of eicosanoids and eicosanoid-related metabolites with pulmonary hypertension. Eur Respir J 2023; 62:2300561. [PMID: 37857430 PMCID: PMC10586234 DOI: 10.1183/13993003.00561-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Eicosanoids are bioactive lipids that regulate systemic inflammation and exert vasoactive effects. Specific eicosanoid metabolites have previously been associated with pulmonary hypertension (PH), yet their role remains incompletely understood. METHODS We studied 482 participants with chronic dyspnoea who underwent clinically indicated cardiopulmonary exercise testing (CPET) with invasive haemodynamic monitoring. We performed comprehensive profiling of 888 eicosanoids and eicosanoid-related metabolites using directed non-targeted mass spectrometry, and examined associations with PH (mean pulmonary arterial pressure (mPAP) >20 mmHg), PH subtypes and physiological correlates, including transpulmonary metabolite gradients. RESULTS Among 482 participants (mean±sd age 56±16 years, 62% women), 200 had rest PH. We found 48 eicosanoids and eicosanoid-related metabolites that were associated with PH. Specifically, prostaglandin (11β-dhk-PGF2α), linoleic acid (12,13-EpOME) and arachidonic acid derivatives (11,12-DiHETrE) were associated with higher odds of PH (false discovery rate q<0.05 for all). By contrast, epoxide (8(9)-EpETE), α-linolenic acid (13(S)-HOTrE(γ)) and lipokine derivatives (12,13-DiHOME) were associated with lower odds. Among PH-related eicosanoids, 14 showed differential transpulmonary metabolite gradients, with directionality suggesting that metabolites associated with lower odds of PH also displayed pulmonary artery uptake. In individuals with exercise PH, eicosanoid profiles were intermediate between no PH and rest PH, with six metabolites that differed between rest and exercise PH. CONCLUSIONS Our findings highlight the role of specific eicosanoids, including linoleic acid and epoxide derivatives, as potential regulators of inflammation in PH. Of note, physiological correlates, including transpulmonary metabolite gradients, may prioritise future studies focused on eicosanoid-related pathways as important contributors to PH pathogenesis.
Collapse
Affiliation(s)
- Jenna N McNeill
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- These three authors contributed equally to this work
| | - Athar Roshandelpoor
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- These three authors contributed equally to this work
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
- These three authors contributed equally to this work
| | - Arrush Choudhary
- Division of Internal Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mohit Jain
- Department of Medicine and Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shahrooz Zarbafian
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily S Lau
- These three authors contributed equally to this work
| | - Gregory D Lewis
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Shoieb SM, El-Ghiaty MA, El-Kadi AOS. Targeting arachidonic acid-related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. EMERGENT MATERIALS 2020; 4:265-277. [PMID: 33225219 PMCID: PMC7670111 DOI: 10.1007/s42247-020-00136-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 05/02/2023]
Abstract
In March 2020, The World Health Organization (WHO) has declared that the coronavirus disease 2019 (COVID-19) is characterized as a global pandemic. As of September 2020, infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to 213 countries and territories around the world, affected more than 31.5 million people, and caused more than 970,000 deaths worldwide. Although COVID-19 is a respiratory illness that mainly targets the lungs, it is currently well established that it is a multifactorial disease that affects other extra-pulmonary systems and strongly associated with a detrimental inflammatory response. Evidence has shown that SARS-CoV-2 causes perturbation in the arachidonic acid (AA) metabolic pathways; this disruption could lead to an imbalance between the pro-inflammatory metabolites of AA including mid-chain HETEs and terminal HETE (20-HETE) and the anti-inflammatory metabolites such as EETs and subterminal HETEs. Therefore, we propose novel therapeutic strategies to modulate the level of endogenous anti-inflammatory metabolites of AA and induce the patient's endogenous resolution mechanisms that will ameliorate the virus-associated systemic inflammation and enhance the primary outcomes in COVID-19 patients. Also, we propose that using nanoencapsulation of AA and its associated metabolites will contribute to the development of safer and more efficacious treatments for the management of COVID-19.
Collapse
Affiliation(s)
- Sherif M. Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Mahmoud A. El-Ghiaty
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| |
Collapse
|
4
|
Olivares-Rubio HF, Espinosa-Aguirre JJ. Role of epoxyeicosatrienoic acids in the lung. Prostaglandins Other Lipid Mediat 2020; 149:106451. [PMID: 32294527 DOI: 10.1016/j.prostaglandins.2020.106451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are synthetized from arachidonic acid by the action of members of the CYP2C and CYP2J subfamilies of cytochrome P450 (CYPs). The effects of EETs on cardiovascular function, the nervous system, the kidney and metabolic disease have been reviewed. In the lungs, the presence of these CYPs and EETs has been documented. In general, EETs play a beneficial role in this essential tissue. Among the most important effects of EETs in the lungs are the induction of vasorelaxation in the bronchi, the stimulation of Ca2+-activated K+ channels, the induction of vasoconstriction of pulmonary arteries, anti-inflammatory effects induced by asthma, and protection against infection or exposure to chemical substances such as cigarette smoke. EETs also participate in tissue regeneration, but on the downside, they are possibly involved in the progression of lung cancer. More research is necessary to design therapies with EETs for the treatment of lung disease.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| | - J J Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| |
Collapse
|
5
|
Hoxha M, Zappacosta B. CYP-derived eicosanoids: Implications for rheumatoid arthritis. Prostaglandins Other Lipid Mediat 2019; 146:106405. [PMID: 31838196 DOI: 10.1016/j.prostaglandins.2019.106405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Today the role of cytochrome P450 metabolites in inflammatory rheumatic disease, such as rheumatoid arthritis (RA) is still poorly understood. In this review we survey the current knowledge on cytochrome P450 metabolites in rheumatoid arthritis. The balance between CYP epoxygenase- and CYP ω- hydroxylase is correlated to the regulation of NF-κB. In RA patients synovial fluid there are higher levels of IL-6, which suppresses activities of CYP enzymes, such as CYP3A, CYP2C19, CYP2C9, and CYP1A2. EETs have anti-inflammatory effects, probably attributed to the PPARγ activation. EETs inhibit bone resorption and osteoclastogenesis, and can be considered as an innovative therapeutic strategy for rheumatoid arthritis. In reference to the CYP ɷ-hydroxylase pathway, 20-HETE is a pro-inflammatory mediator. While there is scarce information on the role of 20-HETE inhibitors and its antagonists in rheumatoid arthritis, the elevation of EETs levels by sEH inhibitors is a promising therapeutic strategy for rheumatoid arthritis patients. In addition, hybrid compounds, such as sEH inhibitors/FLAP inhibitors, or sEHI combined with NSAIDs/COXIBs are also important therapeutic target. However, studies investigating the effects of inflammation and rheumatic disease on CYP-mediated eicosanoid metabolism are necessary. Obtaining a better understanding of the complex role of CYP-derived eicosanoids in inflammatory rheumatic disease, such as rheumatoid arthritis will provide valuable insight for basic and clinical researchers investigation.
Collapse
Affiliation(s)
- Malvina Hoxha
- Catholic University Our Lady of Good Counsel, Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Rruga Dritan Hoxha, Tirana, Albania.
| | - Bruno Zappacosta
- Catholic University Our Lady of Good Counsel, Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Rruga Dritan Hoxha, Tirana, Albania
| |
Collapse
|
6
|
Rand AA, Rajamani A, Kodani SD, Harris TR, Schlatt L, Barnych B, Passerini AG, Hammock BD. Epoxyeicosatrienoic acid (EET)-stimulated angiogenesis is mediated by epoxy hydroxyeicosatrienoic acids (EHETs) formed from COX-2. J Lipid Res 2019; 60:1996-2005. [PMID: 31641036 DOI: 10.1194/jlr.m094219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are formed from the metabolism of arachidonic acid by cytochrome P450s. EETs promote angiogenesis linked to tumor growth in various cancer models that is attenuated in vivo by cyclooxygenase 2 (COX-2) inhibitors. This study further defines a role for COX-2 in mediating endothelial EET metabolism promoting angiogenesis. Using human aortic endothelial cells (HAECs), we quantified 8,9-EET-induced tube formation and cell migration as indicators of angiogenic potential in the presence and absence of a COX-2 inducer [phorbol 12,13-dibutyrate (PDBu)]. The angiogenic response to 8,9-EET in the presence of PDBu was 3-fold that elicited by 8,9-EET stabilized with a soluble epoxide hydrolase inhibitor (t-TUCB). Contributing to this response was the COX-2 metabolite of 8,9-EET, the 11-hydroxy-8,9-EET (8,9,11-EHET), which exogenously enhanced angiogenic responses in HAECs at levels comparable to those elicited by vascular endothelial growth factor (VEGF). In contrast, the 15-hydroxy-8,9-EET isomer was also formed but inactive. The 8,9,11-EHET also promoted expression of the VEGF family of tyrosine kinase receptors. These results indicate that 8,9-EET-stimulated angiogenesis is enhanced by COX-2 metabolism in the endothelium through the formation of 8,9,11-EHET. This alternative pathway for the metabolism of 8,9-EET may be particularly important in regulating angiogenesis under circumstances in which COX-2 is induced, such as in cancer tumor growth and inflammation.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anita Rajamani
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Sean D Kodani
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Todd R Harris
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Lukas Schlatt
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Bodgan Barnych
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA .,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| |
Collapse
|
7
|
Shoieb SM, El-Kadi AOS. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy. Drug Metab Dispos 2018; 46:1157-1168. [PMID: 29880629 DOI: 10.1124/dmd.118.082073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 02/13/2025] Open
Abstract
We had recently demonstrated that the racemic mixture of 19-hydroxyeicosatetraenoic acid (19-HETE) protects against angiotensin II (Ang II)-induced cardiac hypertrophy. Therefore, the purpose of this study was to investigate whether the R- or S-enantiomer of 19-HETE confers cardioprotection against Ang II-induced cellular hypertrophy in RL-14 and H9c2 cells. Both cell lines were treated with vehicle or 10 μM Ang II in the absence and presence of 20 μM 19(R)-HETE or 19(S)-HETE for 24 hours. Thereafter, the level of midchain HETEs was determined using liquid chromatography-mass spectrometry. Gene- and protein-expression levels were measured using real-time polymerase chain reaction and Western blot analysis, respectively. The results showed that both 19(R)-HETE and 19(S)-HETE significantly decreased the metabolite formation rate of midchain HETEs, namely 8-, 9-, 12-, and 15-HETE, compared with control group, whereas the level of 5-HETE was selectively decreased by S-enantiomer. Moreover, both 19(R)-HETE and 19(S)-HETE significantly inhibited the catalytic activity of CYP1B1 and decreased the protein expression of 5- and 12-lipoxygenase (LOX) as well as cyclo-oxygenase-2 (COX-2). Notably, the decrease in 15-LOX protein expression was only mediated by 19(S)-HETE. Interestingly, both enantiomers protected against Ang II-induced cellular hypertrophy, as evidenced by a significant decrease in mRNA expression of β/α-myosin heavy chain ratio, atrial natriuretic peptide, and interleukins 6 and 8. Our data demonstrated that S-enantiomer of 19-HETE preferentially protected against Ang II-induced cellular hypertrophy by decreasing the level of midchain HETEs, inhibiting catalytic activity of CYP1B1, decreasing protein expression of LOX and COX-2 enzymes, and decreasing mRNA expression of IL-6 and IL-8.
Collapse
Affiliation(s)
- Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 2018; 293:10675-10691. [PMID: 29777058 DOI: 10.1074/jbc.ra117.001297] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 μm, 0.91 ± 0.08 μm, 3.9 ± 0.06 μm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anja Herrnreiter
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sandra L Pfister
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Kathryn M Gauthier
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Benjamin A Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John R Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William B Campbell
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
9
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Mavangira V, Sordillo LM. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res Vet Sci 2017; 116:4-14. [PMID: 28807478 DOI: 10.1016/j.rvsc.2017.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Periparturient dairy cows experience an increased incidence and severity of several inflammatory-based diseases such as mastitis and metritis. Factors associated with the physiological adaptation to the onset of lactation can impact the efficiency of the inflammatory response at a time when it is most needed to eliminate infectious pathogens that cause these economically important diseases. Oxidative stress, for example, occurs when there is an imbalance between the production of oxygen radicals during periods of high metabolic demand and the reduced capabilities of the host's antioxidant defenses. The progressive development of oxidative stress in early lactation cows is thought to be a significant underlying factor leading to dysfunctional inflammatory responses. Reactive oxygen species (ROS) are also produced by leukocytes during inflammation resulting in positive feedback loops that can further escalate oxidative stress during the periparturient period. During oxidative stress, ROS can modify polyunsaturated fatty acids (PUFA) associated with cellular membranes, resulting in the biosynthesis of oxidized products called oxylipids. Depending on the PUFA substrate and oxidation pathway, oxylipids have the capacity of either enhancing or resolving inflammation. In mediating their effects, oxylipids can directly or indirectly target sites of ROS production and thus control the degree of oxidative stress. This review discusses the evidence supporting the roles of oxylipids in the regulation of oxidative stress and the subsequent development of uncontrolled inflammatory responses. Further, the utility of some of the oxylipids as oxidative stress markers that can be exploited in developing and monitoring therapies for inflammatory-based diseases in dairy cattle is discussed. Understanding of the link between some oxylipids and the development or resolution of oxidative stress could provide novel therapeutic targets to limit immunopathology, reduce antibiotic usage, and optimize the resolution of inflammatory-based diseases in periparturient dairy cows.
Collapse
Affiliation(s)
- Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States.
| |
Collapse
|
11
|
Cao J, Singh SP, McClung JA, Joseph G, Vanella L, Barbagallo I, Jiang H, Falck JR, Arad M, Shapiro JI, Abraham NG. EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am J Physiol Heart Circ Physiol 2017; 313:H368-H380. [PMID: 28576832 PMCID: PMC5582926 DOI: 10.1152/ajpheart.00093.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/15/2023]
Abstract
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on vascular function; in addition to its antiapoptotic action, it increases insulin sensitivity and inhibits inflammation. To uncover the signaling mechanisms by which EET reduces cardiomyopathy, we hypothesized that EET infusion might ameliorate obesity-induced cardiomyopathy by improving heme oxygenase (HO)-1, Wnt1, thermogenic gene levels, and mitochondrial integrity in cardiac tissues and improved pericardial fat phenotype. EET reduced levels of fasting blood glucose and proinflammatory adipokines, including nephroblastoma overexpressed (NOV) signaling, while increasing echocardiographic fractional shortening and O2 consumption. Of interest, we also noted a marked improvement in mitochondrial integrity, thermogenic genes, and Wnt 1 and HO-1 signaling mechanisms. Knockout of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in myocardial Wnt1 and HO-1 expression and an increase in NOV. To further elucidate the effects of EET on pericardial adipose tissues, we observed EET treatment increases in adiponectin, PGC-1α, phospho-AMP-activated protein kinase, insulin receptor phosphorylation, and thermogenic genes, resulting in a "browning" pericardial adipose phenotype under high-fat diets. Collectively, these experiments demonstrate that an EET agonist increased Wnt1 and HO-1 signaling while decreasing NOV pathways and the progression of cardiomyopathy. Furthermore, this report presents a portal into potential therapeutic approaches for the treatment of heart failure and metabolic syndrome.NEW & NOTEWORTHY The mechanism by which EET acts on obesity-induced cardiomyopathy is unknown. Here, we describe a previously unrecognized function of EET infusion that inhibits nephroblastoma overexpressed (NOV) levels and activates Wnt1, hence identifying NOV inhibition and enhanced Wnt1 expression as novel pharmacological targets for the prevention and treatment of cardiomyopathy and heart failure.Listen to this article's corresponding podcast at http://ajpheart.physiology.org/content/early/2017/05/31/ajpheart.00093.2017.
Collapse
Affiliation(s)
- Jian Cao
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York.,Chinese PLA General Hospital, Beijing, China
| | - Shailendra P Singh
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - John A McClung
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Gregory Joseph
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Luca Vanella
- Department of Drug Science/Section of Biochemistry, University of Catania, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science/Section of Biochemistry, University of Catania, Catania, Italy
| | - Houli Jiang
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Arad
- Leviev Heart Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; and
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York; .,Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
12
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
13
|
Joshi SR, Lakhkar A, Dhagia V, Zias AL, Soldatos V, Oshima K, Jiang H, Gotlinger K, Capdevila JH, Schwartzman ML, McMurtry IF, Gupte SA. Cyp2c44 gene disruption exacerbated pulmonary hypertension and heart failure in female but not male mice. Pulm Circ 2016; 6:360-8. [PMID: 27683613 DOI: 10.1086/688060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men.
Collapse
Affiliation(s)
- Sachindra Raj Joshi
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Anand Lakhkar
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vidhi Dhagia
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ariadne L Zias
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vasiliki Soldatos
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Kaori Oshima
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Houli Jiang
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Katherine Gotlinger
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michal L Schwartzman
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Sachin A Gupte
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
14
|
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The Human Microcirculation: Regulation of Flow and Beyond. Circ Res 2016; 118:157-72. [PMID: 26837746 DOI: 10.1161/circresaha.115.305364] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microcirculation is responsible for orchestrating adjustments in vascular tone to match local tissue perfusion with oxygen demand. Beyond this metabolic dilation, the microvasculature plays a critical role in modulating vascular tone by endothelial release of an unusually diverse family of compounds including nitric oxide, other reactive oxygen species, and arachidonic acid metabolites. Animal models have provided excellent insight into mechanisms of vasoregulation in health and disease. However, there are unique aspects of the human microcirculation that serve as the focus of this review. The concept is put forth that vasculoparenchymal communication is multimodal, with vascular release of nitric oxide eliciting dilation and preserving normal parenchymal function by inhibiting inflammation and proliferation. Likewise, in disease or stress, endothelial release of reactive oxygen species mediates both dilation and parenchymal inflammation leading to cellular dysfunction, thrombosis, and fibrosis. Some pathways responsible for this stress-induced shift in mediator of vasodilation are proposed. This paradigm may help explain why microvascular dysfunction is such a powerful predictor of cardiovascular events and help identify new approaches to treatment and prevention.
Collapse
Affiliation(s)
- David D Gutterman
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| | - Dawid S Chabowski
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andrew O Kadlec
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
15
|
|
16
|
He X, Bi XY, Lu XZ, Zhao M, Yu XJ, Sun L, Xu M, Wier WG, Zang WJ. Reduction of Mitochondria–Endoplasmic Reticulum Interactions by Acetylcholine Protects Human Umbilical Vein Endothelial Cells From Hypoxia/Reoxygenation Injury. Arterioscler Thromb Vasc Biol 2015; 35:1623-34. [DOI: 10.1161/atvbaha.115.305469] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/28/2015] [Indexed: 12/26/2022]
Abstract
Objective—
We explored the role of endoplasmic reticulum (ER)–mitochondria Ca
2+
cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine.
Approach and Results—
Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca
2+
increases and alleviated ER Ca
2+
depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca
2+
overload and cell death. Inhibition of the partner of the Ca
2+
channeling complex (VDAC1 siRNA) or a reduction in ER–mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca
2+
accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER–mitochondria Ca
2+
cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca
2+
overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R.
Conclusions—
Our data suggest that ER–mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates both intracellular and mitochondrial Ca
2+
overload and protects endothelial cells from H/R injury, presumably by disrupting the ER–mitochondria interaction.
Collapse
Affiliation(s)
- Xi He
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Xue-yuan Bi
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Xing-zhu Lu
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Ming Zhao
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Xiao-jiang Yu
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Lei Sun
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Man Xu
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - W. Gil Wier
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| | - Wei-jin Zang
- From Department of Pharmacology, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.)
| |
Collapse
|
17
|
Yang L, Mäki-Petäjä K, Cheriyan J, McEniery C, Wilkinson IB. The role of epoxyeicosatrienoic acids in the cardiovascular system. Br J Clin Pharmacol 2015; 80:28-44. [PMID: 25655310 PMCID: PMC4500322 DOI: 10.1111/bcp.12603] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/29/2022] Open
Abstract
There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms. These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors, and considers the pharmacological potential of targeting this pathway.
Collapse
Affiliation(s)
- L Yang
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - K Mäki-Petäjä
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - J Cheriyan
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - C McEniery
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - I B Wilkinson
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
18
|
Guan H, Zhao L, Cao H, Chen A, Xiao J. Epoxyeicosanoids suppress osteoclastogenesis and prevent ovariectomy-induced bone loss. FASEB J 2014; 29:1092-101. [PMID: 25466887 DOI: 10.1096/fj.14-262055] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are products of arachidonic acid metabolism catalyzed by cytochrome P450 epoxygenases. These small molecules are autocrine and paracrine lipid mediators with important roles in inflammation, cardiovascular function, and angiogenesis. Recent evidence has highlighted EETs as potent promoters of organ regeneration and malignant metastasis. We speculated that EETs might impact osteoclastogenesis and bone loss. Using both in vitro and in vivo studies, we observed that EETs significantly attenuated bone loss and inhibited osteoclast formation and activity, which were associated with a decreased receptor activator of NF-κB ligand (RANKL):osteoprotegerin ratio and serum levels of TNF-α and IL-1β. At the molecular level, EETs abrogated RANKL-induced activation of NF-κB, activator protein-1 (AP-1), and MAPKs, including ERK and JNK, but not p38, during osteoclast formation. EETs also prevented the production of reactive oxygen species (ROS) following RANKL stimulation. As a result, EETs suppressed osteoclast-specific gene expression, including tartrate resistant acid phosphatase (TRAP), cathepsin K (CK), matrix metalloproteinase (MMP)-9, and receptor activator of NF-κB (RANK). In conclusion, our findings demonstrate that EETs inhibit osteoclastogenesis through modulation of multiple pathways both upstream and downstream of RANKL signaling. The administration or stabilized endogenous levels of EETs could represent a novel therapeutic strategy for osteoclast-related disorders, such as rheumatoid arthritis and postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hanfeng Guan
- *Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and Translational Medicine Research & Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Libo Zhao
- *Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and Translational Medicine Research & Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Huijuan Cao
- *Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and Translational Medicine Research & Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Anmin Chen
- *Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and Translational Medicine Research & Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jun Xiao
- *Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and Translational Medicine Research & Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
20
|
Davis CM, Fairbanks SL, Alkayed NJ. Mechanism of the sex difference in endothelial dysfunction after stroke. Transl Stroke Res 2014; 4:381-9. [PMID: 23853671 DOI: 10.1007/s12975-012-0227-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke, the number four cause of death in the United States, is a greatly debilitating event resulting from insufficient blood supply to the brain (cerebral ischemia). Endothelial dysfunction, primarily characterized by dampened endothelial- dependent vasodilation, is a major contributor to the development and outcome of stroke. This review discusses the role of soluble epoxide hydrolase (sEH), an enzyme responsible for the degradation of vasoprotective eicosatrienoic acids (EETs), in the context of the cerebral vasculature and its contribution to the sexual dimorphic nature of stroke.
Collapse
Affiliation(s)
- Catherine M Davis
- Cerebrovascular Research Division, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
21
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Han Y, Yan G, Wang Q, Ma G, Tang C, Gu Y, Li L, Zhao J. Predominant role of vasoconstrictors over dilatators derived from arachidonic acid in hypoxic pulmonary vasoconstriction. Mol Med Rep 2013; 8:1263-71. [PMID: 23970347 DOI: 10.3892/mmr.2013.1645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 08/08/2013] [Indexed: 11/05/2022] Open
Abstract
Prostanoids derived from arachidonic acid (AA) have been shown to play a permissive role in the regulation of vascular tone and wall tension. Conventionally, epoxyeicosatrienoic acids (EETs) and prostacyclin have been considered as dilatators, whereas thromboxane (TX) and hydroxyeicosatetraenoic acid (HETE) were considered as vasoconstrictors. However, the role of these prostanoids in the mediation of acute hypoxic pulmonary vasoconstriction is not yet clearly understood. In the present study, the role of prostanoids in the acute hypoxic response in rat isolated intrapulmonary arteries (IPAs) was investigated. Exogenous AA directly caused vasoconstriction, but exerted a significant inhibition on hypoxic vasoconstriction. The vasoconstriction by AA was mediated by the endothelium. AA metabolites from lipoxygenase (LOX) had no effect on vascular tone or hypoxic vasoconstriction. Consistent results from the blockage of cytochrome P450 (CYP) or CYP epoxide hydrolase showed that HETE contributed to endothelium‑independent hypoxic vasoconstriction. EET via epoxygenase exerted no effect on 80 mM KPSS‑induced vessel contraction or hypoxic vasoconstriction. In addition, prostacyclin also failed to inhibit hypoxic pulmonary vasoconstriction (HPV). However, blockage of thromboxane A2/prostanoid (TP) receptors almost eliminated hypoxic vasoconstriction, suggesting the primary role of TP receptors in the regulation of the hypoxic response in rat IPAs. In conclusion, the current data indicate the predominant role of vasoconstrictors instead of dilatators in mediating HPV. These data also highlight a pivotal role for voltage‑independent Ca2+ entry in pulmonary hypoxic response and suggest that modulation of these channels by prostanoids underlies their regulatory mechanisms.
Collapse
Affiliation(s)
- Yeshan Han
- Department of Anesthesiology, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
FENG WENJING, XU XIZHEN, ZHAO GANG, LI GENG, LIU TIANTIAN, ZHAO JUNJIE, DONG RUOLAN, WANG DAOWEN, TU LING. EETs and CYP2J2 inhibit TNF-α-induced apoptosis in pulmonary artery endothelial cells and TGF-β1-induced migration in pulmonary artery smooth muscle cells. Int J Mol Med 2013; 32:685-93. [DOI: 10.3892/ijmm.2013.1435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 11/05/2022] Open
|
24
|
Ma J, Zhang L, Zhang J, Liu M, Wei L, Shen T, Ma C, Wang Y, Chen Y, Zhu D. 15-lipoxygenase-1/15-hydroxyeicosatetraenoic acid promotes hepatocellular cancer cells growth through protein kinase B and heat shock protein 90 complex activation. Int J Biochem Cell Biol 2013; 45:1031-41. [PMID: 23474367 DOI: 10.1016/j.biocel.2013.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/05/2013] [Accepted: 02/24/2013] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma is a typical hypervascular tumor resulted from excessive growth of tumor cells. Previous studies have demonstrated that the lipoxygenase is considered as a potential therapeutic target and have important influence on human cancers. However, whether the 15-lipoxygenase-1 (15-LO-1)/15-hydroxyeicosatetraenoic acid (15-HETE) pathway participates in the development and progression of hepatocellular carcinoma has not been reported until now. To test the hypothesis that the 15-LO-1/15-HETE signaling regulates hepatocellular carcinoma cells growth and metastasis via the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/heat shock protein 90 pathway, we performed these studies. Our results showed that hepatocellular carcinoma cell lines (HepG2 and SMMC7721) apoptosis and growth arrest occurred following blockade of the 15-LO pathway with a 15-LO-1 inhibitor or siRNA, and all the effects were reversed by exogenous 15-HETE. Meanwhile, 15-HETE strengthened the expression of phosphor-Akt and heat shock protein 90, and inhibited apoptosis induced by serum deprivation via promoting the interaction of Akt with heat shock protein 90. In addition, the invasion and migration of HepG2 enhanced by 15-HETE were both attenuated by the inhibitor of Akt or heat shock protein 90. These results indicate that the 15-LO-1/15-HETE pathway prevents hepatocellular carcinoma cells from apoptosis and promotes hepatocellular carcinoma progression via a specific intracellular signaling pathway centered by the interaction of Akt with heat shock protein 90, and suggest a new therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 2012; 53:37-58. [PMID: 23020295 DOI: 10.1146/annurev-pharmtox-011112-140244] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of epoxyeicosatrienoic acids (EETs) in tissues and their metabolism by soluble epoxide hydrolase (sEH) to 1,2-diols were first reported 30 years ago. However, appreciation of their importance in cell biology and physiology has greatly accelerated over the past decade with the discovery of metabolically stable inhibitors of sEH, the commercial availability of EETs, and the development of analytical methods for the quantification of EETs and their diols. Numerous roles of EETs in regulatory biology now are clear, and the value of sEH inhibition in various animal models of disease has been demonstrated. Here, we review these results and discuss how the pharmacological stabilization of EETs and other natural epoxy-fatty acids could lead to possible disease therapies.
Collapse
Affiliation(s)
- Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, USA
| | | |
Collapse
|
27
|
Gupta NC, Davis CM, Nelson JW, Young JM, Alkayed NJ. Soluble epoxide hydrolase: sex differences and role in endothelial cell survival. Arterioscler Thromb Vasc Biol 2012; 32:1936-42. [PMID: 22723436 DOI: 10.1161/atvbaha.112.251520] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Sex differences in cerebral ischemic injury are, in part, attributable to the differences in cerebrovascular perfusion. We determined whether the brain microvascular endothelial cells (ECs) isolated from the female brain are more resistant to ischemic injury compared with male ECs, and whether the difference is attributable to lower expression of soluble epoxide hydrolase and higher levels of vasoprotective epoxyeicosatrienoic acids (EETs). We also determined whether protection by EETs is linked to the inhibition of rho-kinase (ROCK). METHODS AND RESULTS EC ischemic damage was measured after oxygen-glucose deprivation (OGD) using propidium iodide (PI) and cleaved caspase-3 labeling. Expression of soluble epoxide hydrolase was determined by quantitative polymerase chain reaction and immunocytochemistry, EETs levels by liquid chromatography-tandem mass spectrometry, and ROCK activity by ELISA. EC damage was higher in males compared with females, which correlated with higher soluble epoxide hydrolase mRNA, stronger immunoreactivity, and lower EETs compared with female ECs. Inhibition of soluble epoxide hydrolase abolished the sex difference in EC damage. ROCK activity was higher in male versus female ECs after OGD, and sex differences in EC damage and ROCK activity were abolished by 14,15-EET and ROCK inhibition. CONCLUSIONS Sex differences in ischemic brain injury are, in part, attributable to differences in EET-mediated inhibition of EC ROCK activation after ischemia.
Collapse
Affiliation(s)
- Nandita C Gupta
- Division of Cardiovascular Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
28
|
Wang HX, Zhang DM, Zeng XJ, Mu J, Yang H, Lu LQ, Zhang LK. Upregulation of cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid inhibits apoptosis in neonatal rat cardiomyocytes by a caspase-dependent pathway. Cytokine 2012; 60:360-8. [PMID: 22717287 DOI: 10.1016/j.cyto.2012.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 02/10/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022]
Abstract
Short, nonlethal ischemic episodes administered to hearts directly after ischemic events (ischemic postconditioning, IPost) have an advantage over ischemic preconditioning (IPC). The endogenous cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid (CYP2J3/11,12-EET) is upregulated by IPost, but not IPC, in the rat heart. The CYP epoxygenase inhibitor N-methylsulphonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduces the cardioprotective effects of IPost, but not IPC. We proposed that upregulation of CYP2J3/11,12-EET during IPost induces cardioprotection by inhibiting cardiomyocyte apoptosis and that multiple apoptotic signals, including changes in mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening, mitochondrial cytochrome c leakage, caspase-3 levels, and levels of protective kinases such as Bcl-2 and Bax, are involved in the process. Neonatal rat cardiomyocytes underwent 3-h hypoxia followed by 2-, 5-, or 6-h reoxygenation (H/R) or three cycles of 5-min reoxygenation followed by 5-min hypoxia before 90-min reoxygenation (HPost); or were transfected with pcDNA3.1-CYP2J3 for 48 h before H/R; or were treated with MS-PPOH for 10 min before HPost. For HPost alone, pcDNA3.1-CYP2J3 transfection attenuated cardiomyocyte apoptosis to 68.4% (p<0.05) of that with H/R. pcDNA3.1-CYP2J3 transfection significantly decreased MMP and inhibited mPTP opening induced by H/R, reduced mitochondrial cytochrome c leakage, cleaved caspase-3 protein expression, and increased the ratio of Bcl-2 to Bax expression. MS-PPOH abolished this effect. Therefore, upregulation of CYP2J3/11,12-EET during HPost is involved in cardioprotection by inhibiting apoptosis via a caspase-dependent pathway, and the apoptosis-suppressive effect may have important clinical implications during HPost.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- Amides/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Caspase 3/metabolism
- Cell Survival/drug effects
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Cytochromes c/metabolism
- Hypoxia/enzymology
- Hypoxia/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxygen/metabolism
- Rats
- Rats, Wistar
- Up-Regulation/drug effects
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts. Cardiovasc Drugs Ther 2012; 25:517-22. [PMID: 21786213 DOI: 10.1007/s10557-011-6321-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recently, a novel observation was made in which nonischemic trauma at a site remote from the heart produced by a transverse abdominal incision resulted in a marked reduction of infarct size (IS) in the mouse heart via activation of sensory nerve fibers in the skin and subsequent activation of bradykinin 2 receptors (BK2R). This phenomenon was termed remote preconditioning of trauma (RPCT). Since RPCT may have potential clinical implications we attempted to confirm these findings in a large animal model, the dog. The epoxyeicosatrienoic acids (EETs) have also recently been shown to be antinociceptive and have been shown to mimic ischemic preconditioning (IPC) and postconditioning (POC) in dogs, therefore, we tested the role of the EETs in RPCT. METHODS Anesthetized adult mongrel dogs of either sex were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 3 h of reperfusion. In all groups except the controls (no slit), a transverse slit (9 cm) was applied to the abdominal wall of the dog being careful to only slit the skin. Subsequently, 15 min after the slit the heart was subjected to the ischemia/reperfusion protocol. RESULTS In the control dogs, the IS as a percent of the area at risk (AAR) was 22.5 ± 2.4%, whereas in the dogs subjected to the slit alone the IS/AAR was reduced to 9.2 ± 1.2% (*P < 0.01). The BR2R blocker, HOE 140 (50 ug/kg, iv) given 10 min prior to the slit, completely abolished the protective effects of RCPT as did pretreatment with 14,15-EEZE, a putative EET receptor blocker or pretreatment with the selective EET synthesis inhibitor, MSPPOH. CONCLUSIONS These results suggest that BK and the EETs share cardioprotective properties in a large animal model of RPCT.
Collapse
|
30
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
31
|
Zhang D, Xie X, Chen Y, Hammock BD, Kong W, Zhu Y. Homocysteine upregulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Circ Res 2012; 110:808-17. [PMID: 22354938 PMCID: PMC3514454 DOI: 10.1161/circresaha.111.259325] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RATIONALE Hyperhomocysteinemia is a risk factor of atherogenesis. Soluble epoxide hydrolase (sEH) is a major enzyme that hydrolyzes epoxyeicosatrienoic acids and attenuates their cardiovascular protective effects. Whether homocysteine (Hcy) regulates sEH and the underlying mechanism remains elusive. OBJECTIVE To elucidate the mechanism by which Hcy regulates sEH expression and endothelial activation in vitro and in vivo. METHODS AND RESULTS Hcy treatment in cultured human endothelial cells dose-dependently and time-dependently upregulated sEH mRNA and protein. Hcy increased the expression of adhesion molecules, which was markedly reversed by inhibiting sEH activity. Hcy-induced sEH upregulation is associated with activation of activating transcription factor-6 (ATF6). Bioinformatics analysis revealed a putative ATF6-binding motif in the promoter region of the sEH gene, which was found at a methylation site. Site-directed mutagenesis and chromatin immunoprecipitation assays demonstrated that Hcy treatment or ATF6 overexpression promoted ATF6 binding to the promoter of sEH and increased its activity. Results of methylation-specific polymerase chain reaction revealed that the ATF6 binding site on the sEH promoter was partially methylated and was demethylated with Hcy. SiRNA knockdown of ATF6α or SP1 blocked and ATF6 overexpression and DNA methyltransferase inhibitor mimicked the effect of homocysteine on sEH upregulation. In vivo, immunofluorescence assay revealed elevated expression of sEH and adhesion molecules in the aortic intima of mice with mild hyperhomocysteinemia, which was attenuated by sEH deletion or inhibition. CONCLUSION ATF6 activation and DNA demethylation may coordinately contribute to Hcy-induced sEH expression and endothelial activation. Inhibition of sEH may be a therapeutic approach for treating Hcy-induced cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors
- 8,11,14-Eicosatrienoic Acid/metabolism
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Aorta/cytology
- Base Sequence
- DNA Methylation/physiology
- Endothelial Cells/cytology
- Endothelial Cells/enzymology
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/genetics
- Epoxide Hydrolases/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Homocysteine/metabolism
- Homocysteine/pharmacology
- Human Umbilical Vein Endothelial Cells
- Humans
- Hyperhomocysteinemia/metabolism
- Hyperhomocysteinemia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Promoter Regions, Genetic/physiology
- Pyrenes/pharmacology
- RNA, Small Interfering/pharmacology
- Solubility
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Donghong Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xina Xie
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yequn Chen
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Bruce D. Hammock
- Department of Entomology and Cancer Center, University of California at Davis, Davis, CA 95616, USA
| | - Wei Kong
- Department of Physiology and Pathophysiology; Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Sciences Center, Beijing, 100191, China
| | - Yi Zhu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Physiology and Pathophysiology; Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Sciences Center, Beijing, 100191, China
- Corresponding author: Yi Zhu, MD, Department of Physiology and Pathophysiology, Peking University Health Sciences Center, 38 Xue Yuan, Road, Hai Dian District, Beijing, 100191, China, Tel.: (8610) 8280-1440, Fax: (8610) 8282-1440,
| |
Collapse
|
32
|
Elmarakby AA. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am J Physiol Regul Integr Comp Physiol 2012; 302:R321-30. [DOI: 10.1152/ajpregu.00606.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, and it is well known that end-stage renal disease (ESRD) is a profound consequence of the progression of CVD. Present treatments only slow CVD progression to ESRD, and it is imperative that new therapeutic strategies are developed to prevent the incidence of ESRD. Because epoxyeicosatrienoic acids (EETs) have been shown to elicit reno-protective effects in hypertensive animal models, the current review will focus on addressing the reno-protective mechanisms of EETs in CVD. The cytochrome P-450 epoxygenase catalyzes the oxidation of arachidonic acid to EETs. EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs) with vasodilatory, anti-inflammatory, antihypertensive, and antiplatelet aggregation properties. EETs also have profound effects on vascular migration and proliferation and promote angiogenesis. The progression of CVD has been linked to decreased EETs levels, leading to the concept that EETs should be therapeutically targeted to prevent end-organ damage associated with CVD. However, EETs are quickly degraded by the enzyme soluble epoxide hydrolase (sEH) to their less active diols, dihydroxyeicosatrienoic acids (DHETs). As such, one way to increase EETs level is to inhibit their degradation to DHETs by using sEH inhibitors. Inhibition of sEH has been shown to effectively reduce blood pressure and organ damage in experimental models of CVD. Another approach to target EETs is to develop EET analogs with improved solubility and resistance to auto-oxidation and metabolism by sEH. For example, stable ether EET analogs dilate afferent arterioles and lower blood pressure in hypertensive rodent animal models. EET agonists also improve insulin signaling and vascular function in animal models of metabolic syndrome.
Collapse
Affiliation(s)
- Ahmed A. Elmarakby
- Department of Oral Biology, Division of Pharmacology, Georgia Health Sciences University, Augusta, Georgia
| |
Collapse
|
33
|
Sarkar P, Narayanan J, Harder DR. Differential effect of amyloid β on the cytochrome P450 epoxygenase activity in rat brain. Neuroscience 2011; 194:241-9. [PMID: 21843605 DOI: 10.1016/j.neuroscience.2011.07.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/19/2011] [Accepted: 07/23/2011] [Indexed: 01/03/2023]
Abstract
One of the prominent features of Alzheimer's disease is the excessive accumulation of the protein amyloid beta (Aβ) in certain areas of the brain leading to neurodegeneration. Aβ is cytotoxic and disrupts several cytoprotective pathways. Recent literature has demonstrated that certain cytochrome P450 (CYP) products are neuroprotective, including epoxide metabolites of arachidonic acid (AA), epoxyeicosatrienoic acids (EETs). The action of Aβ with respect to regionally produced EETs in the brain has yet to be defined. Epoxygenases metabolize AA into four regioisomers of EETs (14,15-, 11,12-, 8,9- and 5,6-EET). EETs are rapidly degraded into dihydroxyeicosatrienoic acids (DiHETEs) by soluble epoxide hydrolase (sEH). To determine the effect of Aβ on the epoxygenase activity in different regions of the brain, microsomes were prepared from the cerebrum and cerebellum of adult Sprague-Dawley rats and incubated with 1 and 10 μM Aβ for 30 min after which epoxygenase activity assay was performed. Mass spectrometry indicated that incubation with Aβ reduced 14,15-EET production by 30% as compared to vehicle in the cerebrum, but not in the cerebellum. When we separated the cerebrum into cortex and hippocampus, significant decrease in the production of total EETs and DiHETEs were seen in presence of Aβ (81% and 74%) in the cortex. Moreover, 11,12-EET production was decreased to ∼70% of vehicle in both cortex and hippocampus. Epoxygenase activity in the cultured astrocytes and neurons also showed reduction in total EET and DiHETE production (to 80% and ∼70% of vehicle respectively) in presence of Aβ. Altogether, our data suggest that Aβ reduces epoxygenase activity differentially in a region-specific and cell-specific manner. The reduction of cytoprotective EETs by Aβ in the cerebrum may make it more prone to degeneration than the cerebellum. Further understanding of these interactions will improve our ability to protect against the pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- P Sarkar
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
34
|
Xu X, Zhang XA, Wang DW. The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Adv Drug Deliv Rev 2011; 63:597-609. [PMID: 21477627 DOI: 10.1016/j.addr.2011.03.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/03/2011] [Accepted: 03/19/2011] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active eicosanoids. The primary epoxidation products are four regioisomers of cis-epoxyeicosatrienoic acid (EET): 5,6-, 8,9-, 11,12-, and 14,15-EET. CYP2J2, CYP2C8, and CYP2C9 are the predominant epoxygenase isoforms involved in EET formation. CYP2J and CYP2C gene families in humans are abundantly expressed in the endothelium, myocardium, and kidney. The cardiovascular effects of CYP epoxygenases and EETs range from vasodilation, anti-hypertension, pro-angiogenesis, anti-atherosclerosis, and anti-inflammation to anti-injury caused by ischemia-reperfusion. Using transgenic animals for in vivo analyses of CYP epoxygenases revealed comprehensive and marked cardiovascular protective effects. In contrast, CYP epoxygenases and their metabolites, EETs, are upregulated in human tumors and promote tumor progression and metastasis. These biological effects result from the anti-apoptosis, pro-mitogenesis, and anti-migration roles of CYP epoxygenases and EETs at the cellular level. Importantly, soluble epoxide hydrolase (sEH) inhibitors are anti-hypertensive and anti-inflammatory and, therefore, protect the heart from damage, whereas the terfenadine-related, specific inhibitors of CYP2J2 exhibit strong anti-tumor activity in vitro and in vivo. Thus, CYP2J2 and arachidonic acid-derived metabolites likely play important roles in regulating cardiovascular functions and malignancy under physiological and/or pathological conditions. Moreover, although challenges remain to improving the drug-like properties of sEH inhibitors and identifying efficient ways to deliver sEH inhibitors, sEH will likely become an important therapeutic target for cardiovascular diseases. In addition, CYP2J2 may be a therapeutic target for treating human cancers and leukemia.
Collapse
|
35
|
Liu JY, Qiu H, Morisseau C, Hwang SH, Tsai HJ, Ulu A, Chiamvimonvat N, Hammock BD. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model. Toxicol Appl Pharmacol 2011; 255:200-6. [PMID: 21741984 DOI: 10.1016/j.taap.2011.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 01/18/2023]
Abstract
The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim DH, Vanella L, Inoue K, Burgess A, Gotlinger K, Manthati VL, Koduru SR, Zeldin DC, Falck JR, Schwartzman ML, Abraham NG. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ. Stem Cells Dev 2010; 19:1863-73. [PMID: 20412023 DOI: 10.1089/scd.2010.0098] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma J, Zhang L, Li S, Liu S, Ma C, Li W, Falck JR, Manthati VL, Reddy DS, Medhora M, Jacobs ER, Zhu D. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway. Exp Cell Res 2010; 316:2340-53. [PMID: 20493836 DOI: 10.1016/j.yexcr.2010.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/30/2010] [Accepted: 05/13/2010] [Indexed: 01/22/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nithipatikom K, Gross GJ. Review article: epoxyeicosatrienoic acids: novel mediators of cardioprotection. J Cardiovasc Pharmacol Ther 2010; 15:112-9. [PMID: 20200327 DOI: 10.1177/1074248409358408] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent evidence from a number of in vitro and in vivo studies in isolated cells and animal models has suggested that the cytochrome P450 (CYP450) pathway of arachidonic acid (AA) metabolism produces potent cardioprotective metabolites that markedly reduce reversible (myocardial stunning) and irreversible (infarct size [IS]) injury in the ischemic/reperfused heart. The major players in this protective response appear to be the AA metabolites including the regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs). The present review article will discuss the beneficial effects of the EETs on myocardial stunning and IS reduction and consider some of the signaling pathways and cellular mechanisms by which the EETs produce their beneficial effects and the possible therapeutic benefits that may result from activation of this pathway. The results discussed in this review are taken from experiments obtained from 3 diverse species in different laboratories: the mouse, rat, and dog, in which the results were nearly identical qualitatively and quantitatively, suggesting that these findings are likely to be extrapolated to man as well.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
39
|
Deng Y, Theken KN, Lee CR. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol 2009; 48:331-41. [PMID: 19891972 DOI: 10.1016/j.yjmcc.2009.10.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/30/2023]
Abstract
The cytochrome P450 (CYP) epoxygenase enzymes CYP2J and CYP2C catalyze the epoxidation of arachidonic acid to epoxyeicosatrienoic acids (EETs), which are rapidly hydrolyzed to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). It is well-established that CYP epoxygenase-derived EETs possess potent vasodilatory effects; however, the cellular effects of EETs and their regulation of various inflammatory processes have become increasingly appreciated in recent years, suggesting that the role of this pathway in the cardiovascular system extends beyond the maintenance of vascular tone. In particular, CYP epoxygenase-derived EETs inhibit endothelial activation and leukocyte adhesion via attenuation of nuclear factor-kappaB activation, inhibit hemostasis, protect against myocardial ischemia-reperfusion injury, and promote endothelial cell survival via modulation of multiple cell signaling pathways. Thus, the CYP epoxygenase pathway is an emerging target for pharmacological manipulation to enhance the cardiovascular protective effects of EETs. This review will focus on the role of the CYP epoxygenase pathway in the regulation of cardiovascular inflammation and (1) describe the functional impact of CYP epoxygenase-derived EET biosynthesis and sEH-mediated EET hydrolysis on key inflammatory process in the cardiovascular system, (2) discuss the potential relevance of this pathway to pathogenesis and treatment of cardiovascular disease, and (3) identify areas for future research.
Collapse
Affiliation(s)
- Yangmei Deng
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
40
|
Bodiga S, Zhang R, Jacobs DE, Larsen BT, Tampo A, Manthati VL, Kwok WM, Zeldin DC, Falck JR, Gutterman DD, Jacobs ER, Medhora MM. Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels. J Mol Cell Cardiol 2009; 46:978-88. [PMID: 19336274 DOI: 10.1016/j.yjmcc.2009.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/30/2008] [Accepted: 01/15/2009] [Indexed: 01/25/2023]
Abstract
Epoxyeicosatrienoic acid(s) (EETs) have been shown to protect cardiovascular tissue against apoptosis dependent on activation of targets such as ATP-sensitive K+ (KATP) channels (sarcolemmal and mitochondrial), calcium-activated K+ channels, extracellular signal-regulated kinase or phosphoinositide 3-kinase (PI3K). We tested if EETs protect human atrial tissue ex vivo from hypoxia/reoxygenation (H/R) injury, and compared our results with myocardium from two rodent species, rats and mice. EETs reduced myocardial caspase 3 activity in all three species and protected against loss of mitochondrial membrane potential in primary cultures of neonatal rat ventricular myocytes submitted to H/R. In addition, EETs protected mouse pulmonary arteries ex vivo exposed to H/R. Myocardium and pulmonary arteries from genetically engineered mice having elevated plasma levels of EETs (Ephx2-/-) exhibited protection from H/R-induced injury over that of wild type controls, suggesting that endogenously produced EETs may have pro-survival effects. Electrophysiological studies in myocytes demonstrated that EETs can stimulate KATP currents even when PI3K is inhibited. Similarly, activation of PI3K/Akt occurred in the presence of the KATP channel blocker glibenclamide. Based upon loss of protection with EETs in the presence of either wortmannin (a PI3K inhibitor) or glibenclamide, simultaneous activation of at least 2 pathways, PI3K and KATP channels respectively, appears to be required for protection. In conclusion, we demonstrate that exogenous and endogenous EETs have powerful pro-survival effects in cardiovascular tissues including diseased human myocardium, mediated by activation of not only one but at least two pathways, PI3K and KATP channels.
Collapse
Affiliation(s)
- Sreedhar Bodiga
- Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2086-95. [PMID: 19435785 DOI: 10.2353/ajpath.2009.080544] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of soluble epoxide hydrolase (SEH), the enzyme responsible for degradation of vasoactive epoxides, protects against cerebral ischemia in rats. However, the molecular and biological mechanisms that confer protection in normotension and hypertension remain unclear. Here we show that 6 weeks of SEH inhibition via 2 mg/day of 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) in spontaneously hypertensive stroke-prone (SHRSP) rats protects against cerebral ischemia induced by middle cerebral artery occlusion, reducing percent hemispheric infarct and neurodeficit score without decreasing blood pressure. This level of cerebral protection was similar to that of the angiotensin-converting enzyme inhibitor, enalapril, which significantly lowered blood pressure. SEH inhibition is also protective in normotensive Wistar-Kyoto (WKY) rats, reducing both hemispheric infarct and neurodeficit score. In SHRSP rats, SEH inhibition reduced wall-to-lumen ratio and collagen deposition and increased cerebral microvessel density, although AUDA did not alter middle cerebral artery structure or microvessel density in WKY rats. An apoptosis mRNA expression microarray of brain tissues from AUDA-treated rats revealed that AUDA modulates gene expression of mediators involved in the regulation of apoptosis in neural tissues of both WKY and SHRSP rats. Hence, we conclude that chronic SEH inhibition protects against cerebral ischemia via vascular protection in SHRSP rats and neural protection in both the SHRSP and WKY rats, indicating that SEH inhibition has broad pharmacological potential for treating ischemic stroke.
Collapse
Affiliation(s)
- Alexis N Simpkins
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. J Hypertens 2009; 27:322-31. [PMID: 19226702 DOI: 10.1097/hjh.0b013e32831aedfa] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to their less active dihydroxy derivatives. Because EETs have antiinflammatory properties, we determined whether or not inhibition of sEH attenuates disease development in the monocrotaline model of pulmonary hypertension in rats. METHODS sEH inhibition was achieved using 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (25 mg/l) and cis- 4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (5 mg/l) administered via drinking water starting 3 days prior to monocrotaline injection (60 mg/kg). RESULTS Monocrotaline induced the development of progressive pulmonary hypertension. sEH inhibition increased the plasma ratio of EETs to DHETs and attenuated the monocrotaline-induced increase in pulmonary artery medial wall thickness as well as the degree of vascular muscularization. Moreover, right ventricular pressure was significantly lower in the group treated with sEH inhibitors. Pulmonary sEH protein expression and sEH activity, as well as pulmonary cytochrome P450 epoxygenase activity were all impaired in monocrotaline-treated rats as compared with control animals. sEH inhibitors, however, increased the plasma ratio of EETs to dihydroxy epoxyeicosatrienoic acids. Monocrotaline induced the proliferation of pulmonary endothelial and vascular smooth muscle cells in vivo as determined by 5-Bromo-2'-deoxy-Uridine incorporation, and this effect was significantly blunted in animals treated with sEH inhibitors. Proliferation of cultured pulmonary smooth muscle cell, however, was not affected by EETs or sEH inhibitors suggesting that the in-vivo effects are a consequence of a direct EET-mediated protection against the inflammation induced by monocrotaline. CONCLUSION sEH inhibition reduces pulmonary vascular remodeling and the development of pulmonary hypertension in the monocrotaline model of primary pulmonary hypertension in rats.
Collapse
|
43
|
Iliff JJ, Alkayed NJ. Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent. FUTURE NEUROLOGY 2009; 4:179-199. [PMID: 19779591 DOI: 10.2217/14796708.4.2.179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids (EETs). Genetic variations in the sEH gene, designated EPHX2, are associated with ischemic stroke risk. In experimental studies, sEH inhibition and gene deletion reduce infarct size after focal cerebral ischemia in mice. Although the precise mechanism of protection afforded by sEH inhibition remains under investigation, EETs exhibit a wide array of potentially beneficial actions in stroke, including vasodilation, neuroprotection, promotion of angiogenesis and suppression of platelet aggregation, oxidative stress and post-ischemic inflammation. Herein we argue that by capitalizing on this broad protective profile, sEH inhibition represents a prototype "combination therapy" targeting multiple mechanisms of stroke injury with a single agent.
Collapse
Affiliation(s)
- Jeffrey J Iliff
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland OR 97239
| | | |
Collapse
|
44
|
Dhanasekaran A, Bodiga S, Gruenloh S, Gao Y, Dunn L, Falck JR, Buonaccorsi JN, Medhora M, Jacobs ER. 20-HETE increases survival and decreases apoptosis in pulmonary arteries and pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 2009; 296:H777-86. [PMID: 19136601 DOI: 10.1152/ajpheart.01087.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is an endogenous cytochrome P-450 product present in vascular smooth muscle and uniquely located in the vascular endothelium of pulmonary arteries (PAs). 20-HETE enhances reactive oxygen species (ROS) production of bovine PA endothelial cells (BPAECs) in an NADPH oxidase-dependent manner and is postulated to promote angiogenesis via activation of this pathway in systemic vascular beds. We tested the capacity of 20-HETE or a stable analog of this compound, 20-hydroxy-eicosa-5(Z),14(Z)-dienoic acid, to enhance survival and protect against apoptosis in BPAECs stressed with serum starvation. 20-HETE produced a concentration-dependent increase in numbers of starved BPAECs and increased 5-bromo-2'-deoxyuridine incorporation. Caspase-3 activity, nuclear fragmentation studies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays supported protection from apoptosis and enhanced survival of starved BPAECs treated with a single application of 20-HETE. Protection from apoptosis depended on intact NADPH oxidase, phosphatidylinositol 3 (PI3)-kinase, and ROS production. 20-HETE-stimulated ROS generation by BPAECs was blocked by inhibition of PI3-kinase or Akt activity. These data suggest 20-HETE-associated protection from apoptosis in BPAECs required activation of PI3-kinase and Akt and generation of ROS. 20-HETE also protected against apoptosis in BPAECs stressed by lipopolysaccharide, and in mouse PAs exposed to hypoxia reoxygenation ex vivo. In summary, 20-HETE may afford a survival advantage to BPAECs through activation of prosurvival PI3-kinase and Akt pathways, NADPH oxidase activation, and NADPH oxidase-derived superoxide.
Collapse
Affiliation(s)
- Anuradha Dhanasekaran
- Dept. of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Medhora M, Chen Y, Gruenloh S, Harland D, Bodiga S, Zielonka J, Gebremedhin D, Gao Y, Falck JR, Anjaiah S, Jacobs ER. 20-HETE increases superoxide production and activates NAPDH oxidase in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L902-11. [PMID: 18296498 PMCID: PMC2586843 DOI: 10.1152/ajplung.00278.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.
Collapse
Affiliation(s)
- Meetha Medhora
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yuenmu Chen
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Stephanie Gruenloh
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Daniel Harland
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Sreedhar Bodiga
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Debebe Gebremedhin
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Ying Gao
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Siddam Anjaiah
- Department of Biochemistry, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Elizabeth R. Jacobs
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
46
|
Gross GJ, Gauthier KM, Moore J, Falck JR, Hammock BD, Campbell WB, Nithipatikom K. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol 2008; 294:H2838-44. [PMID: 18441205 DOI: 10.1152/ajpheart.00186.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously, we demonstrated (17) that 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) produce marked reductions in myocardial infarct size. Although it is assumed that this cardioprotective effect of the EETs is due to a specific interaction with a membrane-bound receptor, no evidence has indicated that novel EET antagonists selectively block the EET actions in dogs. Our goals were to investigate the effects of 11,12- and 14,15-EET, the soluble epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), and the putative selective EET antagonist, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), on infarct size of barbital anesthetized dogs subjected to 60 min of coronary artery occlusion and 3 h of reperfusion. Furthermore, the effect of 14,15-EEZE on the cardioprotective actions of the selective mitochondrial ATP-sensitive potassium channel opener diazoxide was investigated. Both 11,12- and 14,15-EET markedly reduced infarct size [expressed as a percentage of the area at risk (IS/AAR)] from 21.8 +/- 1.6% (vehicle) to 8.7 +/- 2.2 and 9.4 +/- 1.3%, respectively. Similarly, AUDA significantly reduced IS/AAR from 21.8 +/- 1.6 to 14.4 +/- 1.2% (low dose) and 9.4 +/- 1.8% (high dose), respectively. Interestingly, the combination of the low dose of AUDA with 14,15-EET reduced IS/AAR to 5.8 +/- 1.6% (P < 0.05), further than either drug alone. Diazoxide also reduced IS/AAR significantly (10.2 +/- 1.9%). In contrast, 14,15-EEZE had no effect on IS/AAR by itself (21.0 +/- 3.6%), but completely abolished the effect of 11,12-EET (17.8 +/- 1.4%) and 14,15-EET (19.2 +/- 2.4%) and AUDA (19.3 +/- 1.6%), but not that of diazoxide (10.4 +/- 1.4%). These results suggest that activation of the EET pathway, acting on a putative receptor, by exogenous EETs or indirectly by blocking EET metabolism, produced marked cardioprotection, and the combination of these two approaches resulted in a synergistic effect. These data also suggest that 14,15-EEZE is not blocking the mitochondrial ATP-sensitive potassium channel as a mechanism for antagonizing the cardioprotective effects of the EETs.
Collapse
Affiliation(s)
- Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood 2008; 111:5581-91. [PMID: 18408167 DOI: 10.1182/blood-2007-11-126680] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To understand the molecular mechanisms underlying 14,15-epoxyeicosatrienoic acid (14,15-EET)-induced angiogenesis, here we have studied the role of signal transducer and activator of transcription-3 (STAT-3). 14,15-EET stimulated the tyrosine phosphorylation of STAT-3 and its translocation from the cytoplasm to the nucleus in human dermal microvascular endothelial cells (HDMVECs). Adenovirus-mediated delivery of dominant negative STAT-3 substantially inhibited 14,15-EET-induced HDMVEC migration, and tube formation and Matrigel plug angiogenesis. 14,15-EET activated Src, as measured by its tyrosine phosphorylation and blockade of its activation by adenovirus-mediated expression of its dominant negative mutant, significantly attenuated 14,15-EET-induced STAT-3 phosphorylation in HDMVECs and the migration and tube formation of these cells and Matrigel plug angiogenesis. 14,15-EET induced the expression of vascular endothelial cell growth factor (VEGF) in a time- and Src-STAT-3-dependent manner in HDMVECs. Transfac analysis of VEGF promoter revealed the presence of STAT-binding elements and 14,15-EET induced STAT-3 binding to this promoter in vivo, and this interaction was inhibited by suppression of Src-STAT-3 signaling. Neutralizing anti-VEGF antibodies completely blocked 14,15-EET-induced HDMVEC migration and tube formation and Matrigel plug angiogenesis. These results reveal that Src-dependent STAT-3-mediated VEGF expression is a major mechanism of 14,15-EET-induced angiogenesis.
Collapse
|
48
|
Wang Z, Tang X, Li Y, Leu C, Guo L, Zheng X, Zhu D. 20-Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells. Eur J Pharmacol 2008; 588:9-17. [PMID: 18455723 DOI: 10.1016/j.ejphar.2008.03.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 03/09/2008] [Accepted: 03/19/2008] [Indexed: 12/19/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), a omega-hydroxylation product of arachidonic acid catalyzed by cytochrome P450 4A (CYP4A), plays a role in vascular smooth muscle remodeling. Although its effects on angiogenic responses are known, it remains unclear whether 20-HETE acts on apoptosis of pulmonary arterial smooth muscle cells (PASMC), an important step in PASMC remodeling, and what pathways are involved in the process. Here we show evidence for the missing information. The effect of 20-HETE on PASMC apoptosis and the apoptosis-associated signaling pathways were determined with cell viability assay, Annexin V and propidium idodide binding, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), mitochondrial potentials assay, caspase activity assay and Western blots. We found that exogenous 20-HETE suppressed the serum deprivation-induced loss of bovine PASMCs and prevented Annexin V binding, DNA nick end labeling and chromatin condensation. The effect was worsened by 17-octadecynoic acid (17-ODYA), which inhibited the production of endogenous 20-HETE. Furthermore, 20-HETE induced the expression of bcl-2, maintained the stability of mitochondria membrane, and relieved the activation of caspase-9 and caspase-3. Such effects were reversed in the presence of 17-ODYA. Thus, these findings indicate that 20-HETE protects PASMCs against apoptosis by acting on, at least in part, the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Roles of epoxyeicosatrienoic acids in vascular regulation and cardiac preconditioning. J Cardiovasc Pharmacol 2008; 50:601-8. [PMID: 18091575 DOI: 10.1097/fjc.0b013e318159cbe3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Continuing investigations of the roles of cytochrome P450 (CYP) arachidonic acid epoxygenase metabolites in the regulation of cardiovascular physiology and pathophysiology have revealed their complex and diverse biological effects. Often these metabolites demonstrate protective properties that are revealed during cardiovascular disease. In this regard, the epoxyeicosatrienoic acids (EETs) are an emerging target for pharmacological manipulation aimed at enhancing their cardiac and vascular protective mechanisms. This review will focus on the role of EETs in the regulation of vascular tone, with emphasis on the coronary circulation, their role in limiting platelet aggregation, vascular inflammation and EET contribution to preconditioning of the ischemic myocardium. Production and metabolism of EETs as well as their specific cellular signaling mechanisms are discussed.
Collapse
|
50
|
Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 2007; 294:H724-35. [PMID: 18055514 DOI: 10.1152/ajpheart.00979.2007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) reduce infarction of the myocardium after ischemia-reperfusion injury to rodent and dog hearts mainly by opening sarcolemmal and mitochondrial potassium channels. Other mediators for the action of EET have been proposed, although no definitive pathway or mechanism has yet been reported. Using cultured cells from two rodent species, immortalized myocytes from a mouse atrial lineage (HL-1) and primary myocytes derived from neonatal rat hearts, we observed that pretreatment with EETs (1 microM of 14,15-, 11,12-, or 8,9-EET) attenuated apoptosis after exposure to hypoxia and reoxygenation (H/R). EETs also preserved the functional beating of neonatal myocytes in culture after exposure to H/R. We demonstrated that EETs increased the activity of the prosurvival enzyme phosphatidylinositol 3-kinase (PI3K). In fact, cardiomyocytes pretreated with EET and exposed to H/R exhibited antiapoptotic changes in at least five downstream effectors of PI3K, protein kinase B (Akt), Bcl-x(L)/Bcl-2-associated death promoter, caspases-9 and -3 activities, and the expression of the X-linked inhibitor of apoptosis, compared with vehicle-treated controls. The PI3K/Akt pathway is one of the strongest intracellular prosurvival signaling systems. Our studies show that EETs regulate multiple molecular effectors of this pathway. Understanding the targets of action of EET-mediated protection will promote the development of these fatty acids as therapeutic agents against cardiac ischemia-reperfusion.
Collapse
Affiliation(s)
- Anuradha Dhanasekaran
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|