1
|
Curry-Koski T, Gusek B, Potter RM, Jones TB, Dickman R, Johnson N, Stallone JN, Rahimian R, Vallejo-Elias J, Esfandiarei M. Genetic Manipulation of Caveolin-1 in a Transgenic Mouse Model of Aortic Root Aneurysm: Sex-Dependent Effects on Endothelial and Smooth Muscle Function. Int J Mol Sci 2024; 25:12702. [PMID: 39684412 DOI: 10.3390/ijms252312702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology. Caveolin-1 (Cav1), a structural protein of plasma membrane caveolae, is known to inhibit eNOS activity, suggesting its involvement in MFS aneurysm progression by modulating NO levels. In this study, we examined the role of Cav1 in aortic smooth muscle and endothelial function, aortic wall elasticity, and wall strength in male and female MFS mice (FBN1+/Cys1041Gly) by generating developing Cav1-deficient MFS mice (MFS/Cav1KO). Our findings reveal that Cav1 ablation leads to a pronounced reduction in aortic smooth muscle contraction in response to phenylephrine, attributable to an increase in NO production in the aortic wall. Furthermore, we observed enhanced aortic relaxation responses to acetylcholine in MFS/Cav1KO mice, further underscoring Cav1's inhibitory impact on NO synthesis within the aorta. Notably, van Gieson staining and chamber myography analyses showed improved elastin fiber structure and wall strength in male MFS/Cav1KO mice, whereas these effects were absent in female counterparts. Cav1's regulatory influence on aortic root aneurysm development in MFS through NO-mediated modulation of smooth muscle and endothelial function, with notable sex-dependent variations.
Collapse
Affiliation(s)
- Tala Curry-Koski
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Brikena Gusek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Ross M Potter
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - T Bucky Jones
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Raechel Dickman
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Nathan Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - John N Stallone
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Johana Vallejo-Elias
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|
2
|
Wang XM, Li XX, Jiang B, Wang TQ, Guo Z. Morphine timing-dependent modulation of TRPV1 phosphorylation correlates with differential morphine effects on myocardial ischemia/reperfusion injury. Eur J Pharmacol 2024; 975:176648. [PMID: 38759706 DOI: 10.1016/j.ejphar.2024.176648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Opioids are used for pain relief in patients suffering from acute myocardial ischemia or infarction. Clinical and laboratory studies demonstrate that morphine treated patients or the experimental animal model suffering acute myocardial ischemia and reperfusion, may worsen myocardial viability. As transient receptor potential vanilloid 1 (TRPV1) plays important roles in pain sensation and cardio-protection, we query whether opioids may exacerbate myocardial viability via interaction with TRPV1 activity in the pain relief. We found the co-expressions of TRPV1 and opioid μ, δ and κ receptors in adult rat cardiomyocytes. Intravenous injection of morphine (0.3 mg/kg) at 20 min after induction of myocardial ischemia, in the rat model of acute myocardial ischemia and reperfusion, induced significant reduction of phosphorylated TRPV1 (p-TRPV1) in the ventricular myocardium and increase in serum cardiac troponin I (cTnI), compared with the ischemia/reperfusion controls (all P < 0.05). The effects of morphine were completely reversed by selective opioid μ, δ and κ receptor antagonists. While significant upregulation of p-TRPV1 (P < 0.05) and improvement of ±dP/dt max (all P < 0.05) were detected in the animals giving the same dose of morphine before induction of myocardial ischemia. The changes in p-TRPV1 correlate with the alterations of cTnI (r = -0.5840, P = 0.0283) and ±dP/dt max (r = 0.8084, P = 0.0005 and r = -0.8133, P = 0.0004, respectively). The findings of this study may indicate that potentiation and attenuation of TRPV1 sensitivity correlate with the improvement of the cardiac performance and the aggravation of myocardial viability, respectively, by giving morphine before and during myocardial ischemia and reperfusion.
Collapse
Affiliation(s)
- Xin-Meng Wang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Xiao-Xi Li
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Bo Jiang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Tian-Qi Wang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Zheng Guo
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), National Education Commission, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Yi S, Cao H, Zheng W, Wang Y, Li P, Wang S, Zhou Z. Targeting the opioid remifentanil: Protective effects and molecular mechanisms against organ ischemia-reperfusion injury. Biomed Pharmacother 2023; 167:115472. [PMID: 37716122 DOI: 10.1016/j.biopha.2023.115472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.
Collapse
Affiliation(s)
- Shuyuan Yi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China; School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Hong Cao
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Weilei Zheng
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Shoushi Wang
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China.
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Zhao X, Yang X, An Z, Liu L, Yong J, Xing H, Huang R, Tian J, Song X. Pathophysiology and molecular mechanism of caveolin involved in myocardial protection strategies in ischemic conditioning. Biomed Pharmacother 2022; 153:113282. [PMID: 35750009 DOI: 10.1016/j.biopha.2022.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Multiple pathophysiological pathways are activated during the process of myocardial injury. Various cardioprotective strategies protect the myocardium from ischemia, infarction, and ischemia/reperfusion (I/R) injury through different targets, yet the clinical translation remains limited. Caveolae and its structure protein, caveolins, have been suggested as a bridge to transmit damage-preventing signals and mediate the protection of ultrastructure in cardiomyocytes under pathological conditions. In this review, we first briefly introduce caveolae and caveolins. Then we review the cardioprotective strategies mediated by caveolins through various pathophysiological pathways. Finally, some possible research directions are proposed to provide future experiments and clinical translation perspectives targeting caveolin based on the investigative evidence.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Jingwen Yong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Haoran Xing
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| |
Collapse
|
5
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
6
|
Degrandmaison J, Grisé O, Parent JL, Gendron L. Differential barcoding of opioid receptors trafficking. J Neurosci Res 2021; 100:99-128. [PMID: 34559903 DOI: 10.1002/jnr.24949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Network of Junior Pain Investigators, QC, Canada
| | - Olivier Grisé
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, QC, Canada
| |
Collapse
|
7
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Arroyo-Campuzano M, Zazueta C. [Significance of exosomes in cardiology: heralds of cardioprotection]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2021; 91:105-113. [PMID: 33661872 PMCID: PMC8258920 DOI: 10.24875/acm.20000335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Los exosomas tienen un papel clave en la comunicación intercelular. Debido a sus múltiples interacciones, estas estructuras cumplen con el papel de «mensajeros» de forma dinámica, transportando su contenido a células blanco específicas y generando nuevas señales celulares. En este artículo se describen algunas de las proteínas, lípidos y ácidos nucleicos que son transportados por estas vesículas y que se han relacionado con cardioprotección, con la finalidad de proporcionar información y generar interés sobre la relevancia de los exosomas como posibles blancos diagnósticos y terapéuticos.
Collapse
Affiliation(s)
- Miguel Arroyo-Campuzano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
9
|
Wu Y, Chen AW, Goodnough CL, Lu Y, Zhang Y, Gross ER. IcyHot analgesic topical cream limits cardiac injury in rodents. Transl Res 2021; 227:42-52. [PMID: 32629175 PMCID: PMC7719099 DOI: 10.1016/j.trsl.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Little is known whether topical analgesic creams, whose natural products enter the blood stream after application, affect myocardial infarct size. Here we tested whether topical analgesic creams can trigger remote cardioprotection and the mechanism involved. Male Sprague Dawley rats were used for an in vivo rodent model consisting of 30 minutes left anterior descending coronary artery ischemia and 2 hours of reperfusion followed by infarct size assessment. The topical analgesic IcyHot, applied to the abdomen prior to ischemia, reduced myocardial infarct size versus control (41 ± 3* vs 62 ± 1, n= 6/group, *P < 0.001). In contrast, the topical analgesic creams Preparation H, Aspercreme Heat, or Tiger Balm did not alter infarct size. IcyHot, unlike Preparation H, increased circulating methyl salicylate levels during reperfusion (3.0 ± 0.6 vs 0.4 ± 0.2 mg/dL, n = 6, *P < 0.001, measured at the internal jugular vein). Methyl salicylate (10 μM) applied to isolated adult cardiac myocytes during reoxygenation reduced cell death when compared to vehicle (21% ± 2%* vs 30% ± 2% of trypan blue positive cells, n = 9/group, *P < 0.01). Further, treatment with the TRP ankyrin 1 (TRPA1) inhibitors TCS-5861528 (1 μM) or AP-18 (1 μM) blocked the methyl salicylate-induced protective effect in isolated adult cardiomyocytes. In intact rodents, either of the TRPA1 inhibitors (1 mg/kg, intravenous) given prior to IcyHot topical application blocked IcyHot-induced infarct size reduction. IcyHot also reduced infarct size when applied 24 hours prior to myocardial ischemia or during myocardial ischemia versus control. Together, these findings support IcyHot analgesic cream can trigger remote cardioprotection through releasing methyl salicylate into the bloodstream with cardioprotection occurring by a TRPA1-dependent mechanism.
Collapse
Affiliation(s)
- Yun Wu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| | - Annabel W Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| | - Candida L Goodnough
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Lu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California.
| |
Collapse
|
10
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
11
|
Wang JW, Xue ZY, Wu AS. Mechanistic insights into δ-opioid-induced cardioprotection: Involvement of caveolin translocation to the mitochondria. Life Sci 2020; 247:116942. [DOI: 10.1016/j.lfs.2019.116942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 11/25/2022]
|
12
|
Tian J, Popal MS, Huang R, Zhang M, Zhao X, Zhang M, Song X. Caveolin as a Novel Potential Therapeutic Target in Cardiac and Vascular Diseases: A Mini Review. Aging Dis 2020; 11:378-389. [PMID: 32257548 PMCID: PMC7069461 DOI: 10.14336/ad.2019.09603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Caveolin, a structural protein of caveolae, play roles in the regulation of endothelial function, cellular lipid homeostasis, and cardiac function by affecting the activity and biogenesis of nitric oxide, and by modulating signal transduction pathways that mediate inflammatory responses and oxidative stress. In this review, we present the role of caveolin in cardiac and vascular diseases and the relevant signaling pathways involved. Furthermore, we discuss a novel therapeutic perspective comprising crosstalk between caveolin and autophagy.
Collapse
Affiliation(s)
- Jinfan Tian
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mohammad Sharif Popal
- 2 Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - RongChong Huang
- 3 Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100010, China
| | - Min Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xin Zhao
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingduo Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiantao Song
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
13
|
Satomi S, Morio A, Miyoshi H, Nakamura R, Tsutsumi R, Sakaue H, Yasuda T, Saeki N, Tsutsumi YM. Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury. Life Sci 2020; 245:117368. [DOI: 10.1016/j.lfs.2020.117368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
|
14
|
Schilling JM, Head BP, Patel HH. Caveolins as Regulators of Stress Adaptation. Mol Pharmacol 2018; 93:277-285. [PMID: 29358220 DOI: 10.1124/mol.117.111237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Caveolins have been recognized over the past few decades as key regulators of cell physiology. They are ubiquitously expressed and regulate a number of processes that ultimately impact efficiency of cellular processes. Though not critical to life, they are central to stress adaptation in a number of organs. The following review will focus specifically on the role of caveolin in stress adaptation in the heart, brain, and eye, three organs that are susceptible to acute and chronic stress and that show as well declining function with age. In addition, we consider some novel molecular mechanisms that may account for this stress adaptation and also offer potential to drive the future of caveolin research.
Collapse
Affiliation(s)
- Jan M Schilling
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Brian P Head
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Hemal H Patel
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| |
Collapse
|
15
|
Abstract
The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation.
Collapse
Affiliation(s)
- Louise See Hoe
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
16
|
Propofol Provides Cardiac Protection by Suppressing the Proteasome Degradation of Caveolin-3 in Ischemic/Reperfused Rat Hearts. J Cardiovasc Pharmacol 2017; 69:170-177. [PMID: 28009721 DOI: 10.1097/fjc.0000000000000454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying propofol's cardioprotective role remain elusive. Caveolin-3 (Cav-3) has been shown to mediate both opioids- and volatile anesthetics-induced cardioprotection against ischemia/reperfusion (I/R) injury. We hypothesize that the cardioprotective role of propofol is mediated through Cav-3 and its regulation of PI3K/Akt/GSK3β signal pathway. Rats or H9c2 cardiomyocytes were exposed to propofol before I/R or simulated ischemia/reperfusion (SI/R). Propofol pretreatment significantly decreased left ventricle infarct size in vivo (P < 0.05) and terminal deoxynucleotidyl transferase nick-end labeling-positive cells both in vivo and in vitro (P < 0.05), along with an increased Cav-3 protein expression and binding of Cav-3 to p85-subunit of PI3K. No significant change in Cav-3 mRNA expression in left ventricle tissues was found in either I/R or propofol-treated groups. Methyl-β-cyclodextrin or Cav-3 siRNA was used to knockdown Cav-3 expression in vitro, which virtually abolished propofol-induced cardiac protection and PI3K/Akt/GSK3β pathway activation. In contrast, MG132, a proteasome inhibitor, could significantly restore SI/R-induced Cav-3 decrease. It is concluded that Cav-3 mediates propofol-induced cardioprotection against I/R injury and the relevant PI3K/Akt/GSK3β activation. The downregulation of Cav-3 under SI/R may be caused by proteasome degradation, and this process can be prevented by propofol.
Collapse
|
17
|
Ding YP, Zhang JY, Feng DX, Kong Y, Xu Z, Chen G. Advances in molecular mechanism of cardioprotection induced by helium. Med Gas Res 2017; 7:124-132. [PMID: 28744366 PMCID: PMC5510294 DOI: 10.4103/2045-9912.208519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helium has been classified as a kind of inert gas that is not effortless to spark chemical reactions with other substances in the past decades. Nevertheless, the cognition of scientists has gradually changed accompanied with a variety of studies revealing the potential molecular mechanism underlying organ-protection induced by helium. Especially, as a non-anesthetic gas which is deficient of relevant cardiopulmonary side effects, helium conditioning is recognized as an emerging and promising approach to exert favorable effects by mimicking the cardioprotection of anesthetic gases or xenon. In this review we will summarize advances in the underlying biological mechanisms and clinical applicability with regards to the cardioprotective effects of helium.
Collapse
Affiliation(s)
- Yi-Ping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott &White Clinic-Temple, Temple, TX, USA
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
18
|
Transient Receptor Potential Ankyrin 1 Activation within the Cardiac Myocyte Limits Ischemia-reperfusion Injury in Rodents. Anesthesiology 2017; 125:1171-1180. [PMID: 27748654 DOI: 10.1097/aln.0000000000001377] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent evidence suggests that cross talk exists between cellular pathways important for pain signaling and ischemia-reperfusion injury. Here, the authors address whether the transient receptor potential ankyrin 1 (TRPA1) channel, important in pain signaling, is present in cardiac myocytes and regulates cardiac ischemia-reperfusion injury. METHODS For biochemical analysis of TRPA1, techniques including quantitative polymerase chain reaction, Western blot, and immunofluorescence were used. To determine how TRPA1 mediates cellular injury, the authors used an in vivo model of rat cardiac ischemia-reperfusion injury and adult rat-isolated cardiac myocytes subjected to hypoxia-reoxygenation. RESULTS The authors' biochemical analysis indicates that TRPA1 is within the cardiac myocytes. Further, using a rat in vivo model of cardiac injury, the TRPA1 activators ASP 7663 and optovin reduce myocardial injury (45 ± 5%* and 44 ± 8%,* respectively, vs. control, 66 ± 6% infarct size/area at risk; n = 6 per group; mean ± SD; *P < 0.001). TRPA1 inhibition also blocked the infarct size-sparing effects of morphine. In isolated cardiac myocytes, the TRPA1 activators ASP 7663 and optovin reduce cardiac myocyte cell death when given during reoxygenation (20 ± 3%* and 22 ± 4%* vs. 36 ± 3%; percentage of dead cells per field, n = 6 per group; mean ± SD; *P < 0.05). For a rat in vivo model of cardiac injury, the infarct size-sparing effect of TRPA1 activators also occurs during reperfusion. CONCLUSIONS The authors' data suggest that TRPA1 is present within the cardiac myocytes and is important in regulating myocardial reperfusion injury. The presence of TRPA1 within the cardiac myocytes may potentially explain why certain pain relievers that can block TRPA1 activation, such as cyclooxygenase-2 inhibitors or some nonsteroidal antiinflammatory drugs, could be associated with cardiovascular risk.
Collapse
|
19
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
20
|
Flick M, Albrecht M, Oei GTML, Steenstra R, Kerindongo RP, Zuurbier CJ, Patel HH, Hollmann MW, Preckel B, Weber NC. Helium postconditioning regulates expression of caveolin-1 and -3 and induces RISK pathway activation after ischaemia/reperfusion in cardiac tissue of rats. Eur J Pharmacol 2016; 791:718-725. [PMID: 27742593 DOI: 10.1016/j.ejphar.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Caveolae, lipid enriched invaginations of the plasma membrane, are epicentres of cellular signal transduction. The structural proteins of caveolae, caveolins, regulate effector pathways in anaesthetic-induced cardioprotection, including the RISK pathway. Helium (He) postconditioning (HePoc) is known to mimic anaesthetic conditioning and to prevent damage from myocardial infarction. We hypothesize that HePoc regulates caveolin-1 and caveolin-3 (Cav-1 and Cav-3) expression in the rat heart and activates the RISK pathway. Male Wistar rats (n=8, each group) were subjected to 25min of cardiac ischaemia followed by reperfusion (I/R) for 5, 15 or 30min (I/R 5/15/30). The HePoc groups underwent I/R with 70% helium ventilation during reperfusion (IR+He 5/15/30min). Sham animals received surgical treatment without I/R. After each protocol blood and hearts were retrieved. Tissue was obtained from the area-at-risk (AAR) and non-area-at-risk (NAAR) and processed for western blot analyses and reverse-transcription-real-time-polymerase-chain-reaction (RT-qPCR). Protein analyses revealed increased amounts of Cav-1 and Cav-3 in the membrane of I/R+He15 (AAR: Cav-1, P<0.05; Cav-3, P<0.05; both vs. I/R15). In serum, Cav-3 was found to be elevated in I/R+He15 (P<0.05 vs. I/R15). RT-qPCR showed increased expression of Cav-1 in IR+He15 in AAR tissue (P<0.05 vs. I/R15). Phosphorylation of RISK pathway proteins pERK1/2 (AAR: P<0.05 vs. I/R15) and pAKT (AAR: P<0.05; NAAR P<0.05; both vs. I/R15) was elevated in the cytosolic fraction of I/R+He15. These results suggest that 15min of HePoc regulates Cav-1 and Cav-3 and activates RISK pathway kinases ERK1/2 and AKT. These processes might be crucially involved in HePoc mediated cardioprotection.
Collapse
Affiliation(s)
- Moritz Flick
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Gezina T M L Oei
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Renske Steenstra
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Raphaela P Kerindongo
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System and Department of Anaesthesiology, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, California, USA
| | - Markus W Hollmann
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Kassan A, Pham U, Nguyen Q, Reichelt ME, Cho E, Patel PM, Roth DM, Head BP, Patel HH. Caveolin-3 plays a critical role in autophagy after ischemia-reperfusion. Am J Physiol Cell Physiol 2016; 311:C854-C865. [PMID: 27707689 PMCID: PMC5206298 DOI: 10.1152/ajpcell.00147.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
Autophagy is a dynamic recycling process responsible for the breakdown of misfolded proteins and damaged organelles, providing nutrients and energy for cellular renovation and homeostasis. Loss of autophagy is associated with cardiovascular diseases. Caveolin-3 (Cav-3), a muscle-specific isoform, is a structural protein within caveolae and is critical to stress adaptation in the heart. Whether Cav-3 plays a role in regulating autophagy to modulate cardiac stress responses remains unknown. In the present study, we used HL-1 cells, a cardiac muscle cell line, with stable Cav-3 knockdown (Cav-3 KD) and Cav-3 overexpression (Cav-3 OE) to study the impact of Cav-3 in regulation of autophagy. We show that traditional stimulators of autophagy (i.e., rapamycin and starvation) result in upregulation of the process in Cav-3 OE cells while Cav-3 KD cells have a blunted response. Cav-3 coimmunoprecipitated with beclin-1 and Atg12, showing an interaction of caveolin with autophagy-related proteins. In the heart, autophagy may be a major regulator of protection from ischemic stress. We found that Cav-3 KD cells have a decreased expression of autophagy markers [beclin-1, light chain (LC3-II)] after simulated ischemia and ischemia-reperfusion (I/R) compared with WT, whereas OE cells showed increased expression. Moreover, Cav-3 KD cells showed increased cell death and higher level of apoptotic proteins (cleaved caspase-3 and cytochrome c) with suppressed mitochondrial function in response to simulated ischemia and I/R, whereas Cav-3 OE cells were protected and had preserved mitochondrial function. Taken together, these results indicate that autophagy regulates adaptation to cardiac stress in a Cav-3-dependent manner.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Sam and Rose Stein Institute for Research on Aging, Department of Psychiatry, School of Medicine, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Uyen Pham
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Quynhmy Nguyen
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Eunbyul Cho
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Piyush M Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - David M Roth
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Brian P Head
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California; .,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
22
|
Hurt CM, Lu Y, Stary CM, Piplani H, Small BA, Urban TJ, Qvit N, Gross GJ, Mochly-Rosen D, Gross ER. Transient Receptor Potential Vanilloid 1 Regulates Mitochondrial Membrane Potential and Myocardial Reperfusion Injury. J Am Heart Assoc 2016; 5:JAHA.116.003774. [PMID: 27671317 PMCID: PMC5079036 DOI: 10.1161/jaha.116.003774] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The transient receptor potential vanilloid 1 (TRPV1) mediates cellular responses to pain, heat, or noxious stimuli by calcium influx; however, the cellular localization and function of TRPV1 in the cardiomyocyte is largely unknown. We studied whether myocardial injury is regulated by TRPV1 and whether we could mitigate reperfusion injury by limiting the calcineurin interaction with TRPV1. Methods and Results In primary cardiomyocytes, confocal and electron microscopy demonstrates that TRPV1 is localized to the mitochondria. Capsaicin, the specific TRPV1 agonist, dose‐dependently reduced mitochondrial membrane potential and was blocked by the TRPV1 antagonist capsazepine or the calcineurin inhibitor cyclosporine. Using in silico analysis, we discovered an interaction site for TRPV1 with calcineurin. We synthesized a peptide, V1‐cal, to inhibit the interaction between TRPV1 and calcineurin. In an in vivo rat myocardial infarction model, V1‐cal given just prior to reperfusion substantially mitigated myocardial infarct size compared with vehicle, capsaicin, or cyclosporine (24±3% versus 61±2%, 45±1%, and 49±2%, respectively; n=6 per group; P<0.01 versus all groups). Infarct size reduction by V1‐cal was also not seen in TRPV1 knockout rats. Conclusions TRPV1 is localized at the mitochondria in cardiomyocytes and regulates mitochondrial membrane potential through an interaction with calcineurin. We developed a novel therapeutic, V1‐cal, that substantially reduces reperfusion injury by inhibiting the interaction of calcineurin with TRPV1. These data suggest that TRPV1 is an end‐effector of cardioprotection and that modulating the TRPV1 protein interaction with calcineurin limits reperfusion injury.
Collapse
Affiliation(s)
- Carl M Hurt
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Yao Lu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Honit Piplani
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Bryce A Small
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Travis J Urban
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA
| | - Nir Qvit
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA
| | - Garrett J Gross
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
23
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
24
|
Haque MZ, McIntosh VJ, Abou Samra AB, Mohammad RM, Lasley RD. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility. PLoS One 2016; 11:e0154151. [PMID: 27441649 PMCID: PMC4956108 DOI: 10.1371/journal.pone.0154151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/09/2016] [Indexed: 01/14/2023] Open
Abstract
Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility.
Collapse
Affiliation(s)
- Mohammed Z. Haque
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, United States of America
- * E-mail:
| | - Victoria J. McIntosh
- Department of Physiology, Wayne State University School of Medicine, 1104 Elliman Bldg., 421 East Canfield, Detroit, MI 48201, United States of America
| | - Abdul B. Abou Samra
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Robert D. Lasley
- Department of Physiology, Wayne State University School of Medicine, 1104 Elliman Bldg., 421 East Canfield, Detroit, MI 48201, United States of America
| |
Collapse
|
25
|
Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 2016; 111:45. [PMID: 27282376 DOI: 10.1007/s00395-016-0561-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality worldwide. Caveolae, caveolin-1 (Cav-1), and caveolin-3 (Cav-3) are essential for the protective effects of conditioning against myocardial I/R injury. Caveolins are membrane-bound scaffolding proteins that compartmentalize and modulate signal transduction. In this review, we introduce caveolae and caveolins and briefly describe the interactions of caveolins in the cardiovascular diseases. We also review the roles of Cav-1/-3 in protection against myocardial ischemia and I/R injury, and in conditioning. Finally, we suggest several potential research avenues that may be of interest to clinicians and basic scientists. The information included, herein, is potentially useful for the design of future studies and should advance the investigation of caveolins as therapeutic targets.
Collapse
|
26
|
Maselli A, Pierdominici M, Vitale C, Ortona E. Membrane lipid rafts and estrogenic signalling: a functional role in the modulation of cell homeostasis. Apoptosis 2015; 20:671-8. [PMID: 25637184 DOI: 10.1007/s10495-015-1093-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has become widely accepted that along with their ability to directly regulate gene expression, estrogens also influence cell signalling and cell function via rapid membrane-initiated events. Many of these signalling processes are dependent on estrogen receptors (ER) localized to the plasma membrane. However, the mechanisms by which ER are able to trigger cell signalling when targeted to the membrane surface have to be determined yet. Lipid rafts seem to be essential for the plasma membrane localization of ER and play a critical role in their membrane-initiated effects. In this review, we briefly recapitulate the localization and function of ER in different cell types and mostly discuss the possible role of lipid rafts in this context. Further studies in this field may disclose new promising therapeutic avenues by the disruption of lipid rafts in those diseases in which membrane ER activation has been demonstrated to play a pathogenetic role.
Collapse
Affiliation(s)
- Angela Maselli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | |
Collapse
|
27
|
Headrick JP, See Hoe LE, Du Toit EF, Peart JN. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart. Br J Pharmacol 2015; 172:2026-50. [PMID: 25521834 PMCID: PMC4386979 DOI: 10.1111/bph.13042] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Louise E See Hoe
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| |
Collapse
|
28
|
Sanon VP, Sawaki D, Mjaatvedt CH, Jourdan‐Le Saux C. Myocardial Tissue Caveolae. Compr Physiol 2015; 5:871-86. [DOI: 10.1002/cphy.c140050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Xu L, Guo R, Xie Y, Ma M, Ye R, Liu X. Caveolae: molecular insights and therapeutic targets for stroke. Expert Opin Ther Targets 2015; 19:633-50. [PMID: 25639269 DOI: 10.1517/14728222.2015.1009446] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Caveolae are specialized plasma membrane micro-invaginations of most mammalian cell types. The organization and function of caveolae are carried out by their coat proteins, caveolins and adaptor proteins, cavins. Caveolae/caveolins physically interact with membrane-associated signaling molecules and function in cholesterol incorporation, signaling transduction and macromolecular transport/permeability. AREAS COVERED Recent investigations have implicated a check-and-balance role of caveolae in the pathophysiology of cerebral ischemia. Caveolin knockout mice displayed exacerbated ischemic injury, whereas caveolin peptide exerted remarkable protection against ischemia/reperfusion injury. This review attempts to provide a comprehensive synopsis of how caveolae/caveolins modulate blood-brain barrier permeability, pro-survival signaling, angiogenesis and neuroinflammation, and how this may contribute to a better understanding of the participation of caveolae in ischemic cascade. The role of caveolin in the preconditioning-induced tolerance against ischemia is also discussed. EXPERT OPINION Caveolae represent a novel target for cerebral ischemia. It remains open how to manipulate caveolin expression in a practical way to recapitulate the beneficial therapeutic outcomes. Caveolin peptides and associated antagomirs may be efficacious and deserve further investigations for their potential benefits for stroke.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University , Nanjing 210002 , China
| | | | | | | | | | | |
Collapse
|
30
|
Schilling JM, Roth DM, Patel HH. Caveolins in cardioprotection - translatability and mechanisms. Br J Pharmacol 2015; 172:2114-25. [PMID: 25377989 DOI: 10.1111/bph.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Translation of preclinical treatments for ischaemia-reperfusion injury into clinical therapies has been limited by a number of factors. This review will focus on a single mode of cardiac protection related to a membrane scaffolding protein, caveolin, which regulates protective signalling as well as myocyte ultrastructure in the setting of ischaemic stress. Factors that have limited the clinical translation of protection will be considered specifically in terms of signalling and structural defects. The potential of caveolin to overcome barriers to protection with the ultimate hope of clinical translation will be discussed.
Collapse
Affiliation(s)
- Jan M Schilling
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
31
|
Zheng X, Zu L, Becker L, Cai ZP. Ischemic preconditioning inhibits mitochondrial permeability transition pore opening through the PTEN/PDE4 signaling pathway. Cardiology 2014; 129:163-73. [PMID: 25301476 DOI: 10.1159/000363646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 05/14/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Ischemic preconditioning (IPC) induces cardioprotection against ischemia-reperfusion (IR) injury by inhibiting the mitochondrial permeability transition pore (mPTP). Here, we tested the hypothesis that IPC-induced cardioprotection is mediated by the phosphatase PTEN and PDE4 (phosphodiesterase 4). METHODS Isolated hearts from wild-type mice (WT, n = 110) and myocyte-specific PTEN-knockout mice (PKO, n = 94) were exposed to IPC or control conditions followed by IR. Subcellular fractionation was performed by sucrose gradient ultracentrifugation. RESULTS IPC limited myocardial infarct size (IS) in WT mice. The PDE4 inhibitor rolipram abolished the protective effect of IPC. However, small IS was found in PKO hearts after IR, and IPC did not decrease IS but enlarged it in PKO hearts. IPC promoted PDE4D localization to caveolin-3-enriched fractions in WT mice by increasing Akt levels at the caveolae. In PKO hearts, basal PDE4D levels were elevated at the caveolae, and IPC decreased PDE4D levels. Consistent with the subcellular PDE4D protein levels and its activity, elevation in intracellular Ca(2+) levels in the ischemic heart and opening of mPTP after IR were inhibited by IPC in WT mice, but not by IPC in PKO mice. CONCLUSIONS IPC inhibits mPTP opening by regulating the PTEN/PDE4 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | | | | | | |
Collapse
|
32
|
See Hoe LE, Schilling JM, Tarbit E, Kiessling CJ, Busija AR, Niesman IR, Du Toit E, Ashton KJ, Roth DM, Headrick JP, Patel HH, Peart JN. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. Am J Physiol Heart Circ Physiol 2014; 307:H895-903. [PMID: 25063791 DOI: 10.1152/ajpheart.00081.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02-1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10-30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression.
Collapse
Affiliation(s)
- Louise E See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Emiri Tarbit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Can J Kiessling
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia; and
| | - Anna R Busija
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Ingrid R Niesman
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Eugene Du Toit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia; and
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, California
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, California
| | - Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia;
| |
Collapse
|
33
|
Zinchuk V, Grossenbacher-Zinchuk O. Quantitative colocalization analysis of fluorescence microscopy images. CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 62:4.19.1-4.19.14. [PMID: 24610126 DOI: 10.1002/0471143030.cb0419s62] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Colocalization is an important finding in many cell biological studies. This unit describes a protocol for quantitative evaluation of fluorescence microscopy images with colocalization based on calculation of a number of specialized coefficients. Images of double-stained sections are first subjected to background correction, and then various coefficients are calculated. Meanings of the coefficients and a guide to interpretation of the results of calculations based on the use of linguistic variables are given. Success in colocalization studies depends on the quality of images analyzed, proper preparation of the images for coefficients calculations, and correct interpretation of results obtained. This protocol helps ensure reliability of colocalization coefficient calculations.
Collapse
Affiliation(s)
- Vadim Zinchuk
- Department of Neurobiology and Anatomy, Kochi University, Faculty of Medicine, Japan
| | | |
Collapse
|
34
|
Dragasis S, Bassiakou E, Iacovidou N, Papadimitriou L, Andreas Steen P, Gulati A, Xanthos T. The role of opioid receptor agonists in ischemic preconditioning. Eur J Pharmacol 2013; 720:401-8. [DOI: 10.1016/j.ejphar.2013.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/20/2013] [Accepted: 10/01/2013] [Indexed: 12/24/2022]
|
35
|
Liaw NY, Hoe LS, Sheeran FL, Peart JN, Headrick JP, Cheung MMH, Pepe S. Postnatal shifts in ischemic tolerance and cell survival signaling in murine myocardium. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1171-81. [PMID: 24068046 DOI: 10.1152/ajpregu.00198.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immature heart is known to be resistant to ischemia-reperfusion (I/R) injury; however, key proteins engaged in phospho-dependent signaling pathways crucial to cell survival are not yet defined. Our goal was to determine the postnatal changes in myocardial tolerance to I/R, including baseline expression of key proteins governing I/R tolerance and their phosphorylation during I/R. Hearts from male C57Bl/6 mice (neonates, 2, 4, 8, and 12 wk of age, n = 6/group) were assayed for survival signaling/effectors [Akt, p38MAPK, glycogen synthase kinase-3β (GSK-3β), heat shock protein 27 (HSP27), connexin-43, hypoxia-inducible factor-1α (HIF-1α), and caveolin-3] and regulators of apoptosis (Bax and Bcl-2) and autophagy (LC3B, Parkin, and Beclin1). The effect of I/R on ventricular function was measured in isolated perfused hearts from immature (4 wk) and adult (12 wk) mice. The neonatal myocardium exhibits a large pool of inactive Akt; high phospho-activation of p38MAPK, HSP27 and connexin-43; phospho-inhibition of GSK-3β; and high expression of caveolin-3, HIF-1α, LC3B, Beclin1, Bax, and Bcl-2. Immature hearts sustained less dysfunction and infarction following I/R than adults. Emergence of I/R intolerance in adult vs. immature hearts was associated with complex proteomic changes: decreased expression of Akt, Bax, and Bcl-2; increased GSK-3β, connexin-43, HIF-1α, LC3B, and Bax:Bcl-2; enhanced postischemic HIF-1α, caveolin-3, Bax, and Bcl-2; and greater postischemic GSK-3β and HSP27 phosphorylation. Neonatal myocardial stress resistance reflects high expression of prosurvival and autophagy proteins and apoptotic regulators. Notably, there is high phosphorylation of GSK-3β, p38MAPK, and HSP27 and low phosphorylation of Akt (high Akt "reserve"). Subsequent maturation-related reductions in I/R tolerance are associated with reductions in Akt, Bcl-2, LC3B, and Beclin1, despite increased expression and reduced phospho-inhibition of GSK-3β.
Collapse
Affiliation(s)
- Norman Y Liaw
- Heart Research, Murdoch Childrens Research Institute; Department of Cardiology, The Royal Children's Hospital; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; and
| | | | | | | | | | | | | |
Collapse
|
36
|
Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013; 228:1-18. [PMID: 23649885 PMCID: PMC3679311 DOI: 10.1007/s00213-013-3129-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR-selective drugs are in clinical trials, but no DOR-selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid-based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. OBJECTIVE This review will discuss the existing literature focusing on four aspects: (1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands. (2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. (3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. (4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. CONCLUSION The reviewed features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands.
Collapse
|
37
|
Wu Q, Wang HY, Li J, Zhou P, Wang QL, Zhao L, Fan R, Wang YM, Xu XZ, Yi DH, Yu SQ, Pei JM. Κ-opioid receptor stimulation improves endothelial function in hypoxic pulmonary hypertension. PLoS One 2013; 8:e60850. [PMID: 23667430 PMCID: PMC3646880 DOI: 10.1371/journal.pone.0060850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/03/2013] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to investigate the effect of κ-opioid receptor stimulation with U50,488H on endothelial function and underlying mechanism in rats with hypoxic pulmonary hypertension (HPH). Chronic hypoxia-induced HPH was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, mean pulmonary arterial pressure (mPAP), right ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI) were measured. Relaxation of pulmonary artery in response to acetylcholine (ACh) was determined. Expression and activity of endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) with NO production, total antioxidant capacity (T-AOC), gp91(phox) expression and nitrotyrosine content were measured. The effect of U50,488H administration during chronic hypoxia was investigated. Administration of U50,488H significantly decreased mPAP and right ventricular hypertrophy as evidenced by reduction in RVP and RVHI. These effects were mediated by κ-opioid receptor. In the meantime, treatment with U50,488H significantly improved endothelial function as evidenced by enhanced relaxation in response to ACh. Moreover, U50,488H resulted in a significant increase in eNOS phosphorylation, NO content in serum, and T-AOC in pulmonary artery of HPH rats. In addition, the activity of eNOS was enhanced, but the activity of iNOS was attenuated in the pulmonary artery of chronic hypoxic rats treated with U50,488H. On the other hand, U50,488H markedly blunted HPH-induced elevation of gp91(phox) expression and nitrotyrosine content in pulmonary artery, and these effects were blocked by nor-BNI, a selective κ-opioid receptor antagonist. These data suggest that κ-opioid receptor stimulation with U50,488H improves endothelial function in rats with HPH. The mechanism of action might be attributed to the preservation of eNOS activity, enhancement of eNOS phosphorylation, downregulation of iNOS activity and its antioxidative/nitrative effect.
Collapse
Affiliation(s)
- Qi Wu
- Department of Cardiology, Chengdu Medical College, Chengdu, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fridolfsson HN, Patel HH. Caveolin and caveolae in age associated cardiovascular disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:66-74. [PMID: 23610576 PMCID: PMC3627709 DOI: 10.3969/j.issn.1671-5411.2013.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
It is estimated that the elderly (> 65 years of age) will increase from 13%−14% to 25% by 2035. If this trend continues, > 50% of the United States population and more than two billion people worldwide will be “aged” in the next 50 years. Aged individuals face formidable challenges to their health, as aging is associated with a myriad of diseases. Cardiovascular disease is the leading cause of morbidity and mortality in the United States with > 50% of mortality attributed to coronary artery disease and > 80% of these deaths occurring in those age 65 and older. Therefore, age is an important predictor of cardiovascular disease. The efficiency of youth is built upon cellular signaling scaffolds that provide tight and coordinated signaling. Lipid rafts are one such scaffold of which caveolae are a subset. In this review, we consider the importance of caveolae in common cardiovascular diseases of the aged and as potential therapeutic targets. We specifically address the role of caveolin in heart failure, myocardial ischemia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
He X, Yang Y, Zhi F, Moore ML, Kang X, Chao D, Wang R, Balboni G, Salvadori S, Kim DH, Xia Y. δ-Opioid receptor activation modified microRNA expression in the rat kidney under prolonged hypoxia. PLoS One 2013; 8:e61080. [PMID: 23596515 PMCID: PMC3626642 DOI: 10.1371/journal.pone.0061080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/05/2013] [Indexed: 12/25/2022] Open
Abstract
Hypoxic/ischemic injury to kidney is a frequently encountered clinical problem with limited therapeutic options. Since microRNAs are differentially involved in hypoxic/ischemic events and δ-opioid receptor (DOR) activation is known to protect against hypoxic/ischemic injury, we speculated on the involvement of DOR activation in altering the microRNA (miRNA) expression in kidney under hypoxic condition. We selected 31 miRNAs based on microarray data for quantitative PCR analysis. Among them, 14 miRNAs were significantly altered after prolonged hypoxia, DOR activation or a combination of both. We found that 1) DOR activation alters miRNA expression profiles in normoxic conditions; 2) hypoxia differentially alters miRNA expression depending on the duration of hypoxia; and 3) DOR activation can modify hypoxia-induced changes in miRNA expression. For example, 10-day hypoxia reduced the level of miR-212 by over 70%, while DOR activation could mimic such reduction even in normoxic kidney. In contrast, the same stress increased miR-29a by >100%, which was reversed following DOR activation. These first data suggest that hypoxia comprehensively modifies the miRNA profile within the kidney, which can be mimicked or modified by DOR activation. Ascertaining the targeted pathways that regulate the diverse cellular and molecular functions of miRNA may provide new insights into potential therapies for hypoxic/ischemic injury of the kidney.
Collapse
Affiliation(s)
- Xiaozhou He
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Yilin Yang
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Feng Zhi
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Meredith L. Moore
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Xuezhi Kang
- Laboratory of Molecular Neurology, Shanghai Research Center for Acupuncture and Meridians, Shanghai, People’s Republic of China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rong Wang
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Dong H. Kim
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proc Natl Acad Sci U S A 2013; 110:E387-96. [PMID: 23319652 DOI: 10.1073/pnas.1221670110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.
Collapse
|
41
|
Belliard A, Sottejeau Y, Duan Q, Karabin JL, Pierre SV. Modulation of cardiac Na+,K+-ATPase cell surface abundance by simulated ischemia-reperfusion and ouabain preconditioning. Am J Physiol Heart Circ Physiol 2012; 304:H94-103. [PMID: 23086991 DOI: 10.1152/ajpheart.00374.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+),K(+)-ATPase and cell survival were investigated in a cellular model of ischemia-reperfusion (I/R)-induced injury and protection by ouabain-induced preconditioning (OPC). Rat neonatal cardiac myocytes were subjected to 30 min of substrate and coverslip-induced ischemia followed by 30 min of simulated reperfusion. This significantly compromised cell viability as documented by lactate dehydrogenase release and Annexin V/propidium iodide staining. Total Na(+),K(+)-ATPase α(1)- and α(3)-polypeptide expression remained unchanged, but cell surface biotinylation and immunostaining studies revealed that α(1)-cell surface abundance was significantly decreased. Na(+),K(+)-ATPase-activity in crude homogenates and (86)Rb(+) transport in live cells were both significantly decreased by about 30% after I/R. OPC, induced by a 4-min exposure to 10 μM ouabain that ended 8 min before the beginning of ischemia, increased cell viability in a PKCε-dependent manner. This was comparable with the protective effect of OPC previously reported in intact heart preparations. OPC prevented I/R-induced decrease of Na(+),K(+)-ATPase activity and surface expression. This model also revealed that Na(+),K(+)-ATPase-mediated (86)Rb(+) uptake was not restored to control levels in the OPC group, suggesting that the increased viability was not conferred by an increased Na(+),K(+)-ATPase-mediated ion transport capacity at the cell membrane. Consistent with this observation, transient expression of an internalization-resistant mutant form of Na(+),K(+)-ATPase α(1) known to have increased surface abundance without increased ion transport activity successfully reduced I/R-induced cell death. These results suggest that maintenance of Na(+),K(+)-ATPase cell surface abundance is critical to myocyte survival after an ischemic attack and plays a role in OPC-induced protection. They further suggest that the protection conferred by increased surface expression of Na(+),K(+)-ATPase may be independent of ion transport.
Collapse
Affiliation(s)
- Aude Belliard
- Department of Biochemistry, College of Medicine, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
42
|
Lal H, Verma SK, Feng H, Golden HB, Gerilechaogetu F, Nizamutdinov D, Foster DM, Glaser SS, Dostal DE. Caveolin and β1-integrin coordinate angiotensinogen expression in cardiac myocytes. Int J Cardiol 2012; 168:436-45. [PMID: 23058350 DOI: 10.1016/j.ijcard.2012.09.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 06/23/2012] [Accepted: 09/22/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy and remodeling, although the biochemical mechanisms responsible for regulating the local RAS are poorly understood. Caveolin-1 (Cav-1)/Cav-3 double-knockout mice display cardiac hypertrophy, and in vitro disruption of lipid rafts/caveolae using methyl-β-cyclodextrin (MβCD) abolishes cardiac protection. METHODS In this study, neonatal rat ventricular myocytes (NRVM) were used to determine whether lipid rafts/caveolae may be involved in the regulation of angiotensinogen (Ao) gene expression, a substrate of the RAS system. RESULTS Treatment with MβCD caused a time-dependent upregulation of Ao gene expression, which was associated with differential regulation of mitogen-activated protein (MAP) kinases ERK1/2, p38 and JNK phosphorylation. JNK was highly phosphorylated shortly after MβCD treatment (2-30 min), whereas marked activation of ERK1/2 and p38 occurred much later (2-4h). β1D-Integrin was required for MβCD-induced activation of the MAP kinases. Pharmacologic inhibition of ERK1/2 and JNK enhanced MβCD-induced Ao gene expression, whereas p38 blockade inhibited this response. Adenovirus-mediated expression of wild-type p38α enhanced MβCD-induced Ao gene expression; conversely expression of dominant negative p38α blocked the stimulatory effects of MβCD. Expression of Cav-3 siRNA stimulated Ao gene expression, whereas overexpression of Cav-3 was inhibitory. Cav-1 and Cav-3 expression levels were found to be positively regulated by p38, but unaffected by ERK1/2 and JNK. CONCLUSION Collectively, these studies indicate that lipid rafts/caveolae couple to Ao gene expression through a mechanism that involves β1-integrin and the differential actions of MAP kinase family members.
Collapse
Affiliation(s)
- Hind Lal
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stary CM, Tsutsumi YM, Patel PM, Head BP, Patel HH, Roth DM. Caveolins: targeting pro-survival signaling in the heart and brain. Front Physiol 2012; 3:393. [PMID: 23060817 PMCID: PMC3464704 DOI: 10.3389/fphys.2012.00393] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022] Open
Abstract
The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Fridolfsson HN, Kawaraguchi Y, Ali SS, Panneerselvam M, Niesman IR, Finley JC, Kellerhals SE, Migita MY, Okada H, Moreno AL, Jennings M, Kidd MW, Bonds JA, Balijepalli RC, Ross RS, Patel PM, Miyanohara A, Chen Q, Lesnefsky EJ, Head BP, Roth DM, Insel PA, Patel HH. Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB J 2012; 26:4637-49. [PMID: 22859372 DOI: 10.1096/fj.12-215798] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Department of Anesthesiology, University of California-San Diego, La Jolla, California 92161, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun J, Kohr MJ, Nguyen T, Aponte AM, Connelly PS, Esfahani SG, Gucek M, Daniels MP, Steenbergen C, Murphy E. Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal 2012; 16:45-56. [PMID: 21834687 PMCID: PMC3218381 DOI: 10.1089/ars.2010.3844] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS Nitric oxide (NO) and protein S-nitrosylation (SNO) play important roles in ischemic preconditioning (IPC)-induced cardioprotection. Mitochondria are key regulators of preconditioning, and most proteins showing an increase in SNO with IPC are mitochondrial. The aim of this study was to address how IPC transduces NO/SNO signaling to mitochondria in the heart. RESULTS In this study using Langendorff perfused mouse hearts, we found that IPC-induced cardioprotection was blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor), ascorbic acid (a reducing agent to decompose SNO), or methyl-?-cyclodextrin (M?CD, a cholesterol sequestering agent to disrupt caveolae). IPC not only activated AKT/eNOS signaling but also led to translocation of eNOS to mitochondria. M?CD treatment disrupted caveolar structure, leading to dissociation of eNOS from caveolin-3 and blockade of IPC-induced activation of the AKT/eNOS signaling pathway. A significant increase in mitochondrial SNO was found in IPC hearts compared to perfusion control, and the disruption of caveolae by M?CD treatment not only abolished IPC-induced cardioprotection, but also blocked the IPC-induced increase in SNO. INNOVATION These results provide mechanistic insight into how caveolae/eNOS/NO/SNO signaling mediates cardioprotection induced by IPC. CONCLUSION Altogether these results suggest that caveolae transduce eNOS/NO/SNO cardioprotective signaling in the heart.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Caveolins serve as a platform in plasma membrane associated caveolae to orchestrate various signaling molecules to effectively communicate extracellular signals into the interior of cell. All three types of caveolin, Cav-1, Cav-2 and Cav-3 are expressed throughout the cardiovascular system especially by the major cell types involved including endothelial cells, cardiac myocytes, smooth muscle cells and fibroblasts. The functional significance of caveolins in the cardiovascular system is evidenced by the fact that caveolin loss leads to the development of severe cardiac pathology. Caveolin gene mutations are associated with altered expression of caveolin protein and inherited arrhythmias. Altered levels of caveolins and related downstream signaling molecules in cardiomyopathies validate the integral participation of caveolin in normal cardiac physiology. This chapter will provide an overview of the role caveolins play in cardiovascular disease. Furthering our understanding of the role for caveolins in cardiovascular pathophysiology has the potential to lead to the manipulation of caveolins as novel therapeutic targets.
Collapse
|
47
|
Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via caveolins. Anesthesiology 2011; 115:499-508. [PMID: 21862885 DOI: 10.1097/aln.0b013e3182276d42] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Volatile anesthetics have a dual effect on cell survival dependent on caveolin expression. The effect of volatile anesthetics on cancer cell survival and death after anesthetic exposure has not been well investigated. The authors examined the effects of isoflurane exposure on apoptosis and its regulation by caveolin-1 (Cav-1). METHODS The authors exposed human colon cancer cell lines to isoflurane and proapoptotic stimuli and assessed what role Cav-1 plays in cell protection. They evaluated apoptosis using assays for nucleosomal fragmentation, cleaved caspase 3 expression, and caspase activity assays. To test the mechanism, they used pharmacologic inhibitors (i.e., pertussis toxin) and assessed changes in glycolysis. RESULTS Apoptosis as measured by nucleosomal fragmentation was enhanced by isoflurane (1.2% in air) in HT29 (by 64% relative to control, P < 0.001) and decreased in HCT116 (by 23% relative to control, P < 0.001) cells. Knockdown of Cav-1 in HCT116 cells increased the sensitivity to apoptotic stimuli but not with scrambled small interfering RNA (siRNA) treatment (19.7 ± 0.4 vs. 20.0 ± 0.6, P = 0.7786 and 19.7 ± 0.5 vs. 16.3 ± 0.4, P = 0.0012, isoflurane vs. control in Cav-1 small interfering RNA vs. scrambled small interfering RNA treated cells, respectively). The protective effect of isoflurane with various exposure times on apoptosis was enhanced in HT29 cells overexpressing Cav-1 (P < 0.001 by two-way ANOVA). Pertussis toxin effectively blocked the antiapoptotic effect of isoflurane exhibited by Cav-1 in all cell lines. Cav-1 cells had increased glycolysis with isoflurane exposure; however, in the presence of tumor necrosis factor-related apoptosis-inducing ligand, this increase in glycolysis was maintained in HT29-Cav-1 but not control cells. CONCLUSION Brief isoflurane exposure leads to resistance against apoptosis via a Cav-1-dependent mechanism.
Collapse
|
48
|
Zinchuk V, Grossenbacher‐Zinchuk O. Quantitative Colocalization Analysis of Confocal Fluorescence Microscopy Images. ACTA ACUST UNITED AC 2011; Chapter 4:Unit4.19. [DOI: 10.1002/0471143030.cb0419s52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vadim Zinchuk
- Department of Anatomy and Cell Biology, Kochi University Faculty of Medicine Japan
| | | |
Collapse
|
49
|
Horikawa YT, Panneerselvam M, Kawaraguchi Y, Tsutsumi YM, Ali SS, Balijepalli RC, Murray F, Head BP, Niesman IR, Rieg T, Vallon V, Insel PA, Patel HH, Roth DM. Cardiac-specific overexpression of caveolin-3 attenuates cardiac hypertrophy and increases natriuretic peptide expression and signaling. J Am Coll Cardiol 2011; 57:2273-83. [PMID: 21616289 DOI: 10.1016/j.jacc.2010.12.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVES We hypothesized that cardiac myocyte-specific overexpression of caveolin-3 (Cav-3), a muscle-specific caveolin, would alter natriuretic peptide signaling and attenuate cardiac hypertrophy. BACKGROUND Natriuretic peptides modulate cardiac hypertrophy and are potential therapeutic options for patients with heart failure. Caveolae, microdomains in the plasma membrane that contain caveolin proteins and natriuretic peptide receptors, have been implicated in cardiac hypertrophy and natriuretic peptide localization. METHODS We generated transgenic mice with cardiac myocyte-specific overexpression of caveolin-3 (Cav-3 OE) and also used an adenoviral construct to increase Cav-3 in cardiac myocytes. RESULTS The Cav-3 OE mice subjected to transverse aortic constriction had increased survival, reduced cardiac hypertrophy, and maintenance of cardiac function compared with control mice. In left ventricle at baseline, messenger ribonucleic acid for atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were increased 7- and 3-fold, respectively, in Cav-3 OE mice compared with control subjects and were accompanied by increased protein expression for ANP and BNP. In addition, ventricles from Cav-3 OE mice had greater cyclic guanosine monophosphate levels, less nuclear factor of activated T-cell nuclear translocation, and more nuclear Akt phosphorylation than ventricles from control subjects. Cardiac myocytes incubated with Cav-3 adenovirus showed increased expression of Cav-3, ANP, and Akt phosphorylation. Incubation with methyl-β-cyclodextrin, which disrupts caveolae, or with wortmannin, a PI3K inhibitor, blocked the increase in ANP expression. CONCLUSIONS These results imply that cardiac myocyte-specific Cav-3 OE is a novel strategy to enhance natriuretic peptide expression, attenuate hypertrophy, and possibly exploit the therapeutic benefits of natriuretic peptides in cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yousuke T Horikawa
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mousa SA, Shaqura M, Schäper J, Treskatsch S, Habazettl H, Schäfer M, Abdul-Khaliq H. Developmental expression of δ-opioid receptors during maturation of the parasympathetic, sympathetic, and sensory innervations of the neonatal heart: early targets for opioid regulation of autonomic control. J Comp Neurol 2011; 519:957-71. [PMID: 21280046 DOI: 10.1002/cne.22560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evidence is accumulating regarding the local opioid regulation of heart function. However, the exact anatomical location of δ-opioid receptors (DORs) and expression during maturation of the autonomic and sensory innervations of the neonatal heart is unknown. Therefore, we aimed to characterize target sites for opioids in neonatal rat heart intracardiac ganglia at postnatal day (P)1, P7 and adulthood (P56-P84). Rat heart atria were subjected to reverse-transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis of DORs with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated DOR mRNA, protein, and binding sites that gradually increased from P1 toward adulthood. Immunofluorescence confocal microscopy showed DOR co-localized with VAChT in large-diameter principal neurons, TH-immunoreactive (IR) small intensely fluorescent (SIF) catecholaminergic cells, and CGRP- or SP-IR afferent nerve terminals arborizing within intracardiac ganglia and atrial myocardium. Co-expression of DOR with VAChT-IR neurons was observed from the first day of birth (P1). In contrast, DORs on TH-IR SIF cells or CGRP-IR fibers were not observed in intracardiac ganglia of P1, but rather in P7 rats. The density of nerve fibers in atrial myocardium co-expressing DORs with different neuronal markers increased from neonatal age toward adulthood. In summary, the enhanced DOR expression parallel to the maturation of cardiac parasympathetic, sympathetic, and sensory innervation of the heart suggests that the cardiac opioid system is an important regulator of neonatal and adult heart function through the autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|