1
|
Kim ID, Ju H, Minkler J, Madkoor A, Park KW, Cho S. Obesity-induced Ly6C High and Ly6C Low monocyte subset changes abolish post-ischemic limb conditioning benefits in stroke recovery. J Cereb Blood Flow Metab 2024; 44:689-701. [PMID: 37974299 PMCID: PMC11197146 DOI: 10.1177/0271678x231215101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Remote limb conditioning (RLC), performed by intermittent interruption of blood flow to a limb, triggers endogenous tolerance mechanisms and improves stroke outcomes. The underlying mechanism for the protective effect involves a shift of circulating monocytes to a Ly6CHigh proinflammatory subset in normal metabolic conditions. The current study investigates the effect of RLC on stroke outcomes in subjects with obesity, a vascular comorbidity. Compared to lean mice, obese stroke mice displayed significantly higher circulating monocytes (monocytosis), increased CD45High monocytes/macrophages infiltration to the injured brain, worse acute outcomes, and delayed recovery. Unlike lean mice, obese mice with RLC at 2 hours post-stroke failed to shift circulating monocytes to pro-inflammatory status and nullified RLC-induced functional benefit. The absence of the monocyte shift was also observed in splenocytes incubated with RLC serum from obese mice, while the shift was observed in the cultures with RLC serum from lean mice. These results showed that the alteration of monocytosis and subsets underlies negating RLC benefits in obese mice and suggest careful considerations of comorbidities at the time of RLC application for stroke therapy.
Collapse
Affiliation(s)
- Il-doo Kim
- Burke Neurological Institute, White Plains, NY, USA
| | - Hyunwoo Ju
- Burke Neurological Institute, White Plains, NY, USA
| | | | | | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Kotorová K, Končeková J, Gottlieb M, Bona M, Bonová P. Obesity as a Limiting Factor for Remote Ischemic Postconditioning-Mediated Neuroprotection after Stroke. J Obes Metab Syndr 2024; 33:76-87. [PMID: 38049179 PMCID: PMC11000512 DOI: 10.7570/jomes23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 12/06/2023] Open
Abstract
Background Remote ischemic postconditioning (RIPostC) may protect the brain from ischemia/reperfusion (I/R) injury. The association between RIPostC and obesity has not yet been extensively studied. Methods Twelve-week-old male Zucker diabetic fatty (ZDF; n=68) and Zucker diabetic lean (ZDL; n=51) rats were subjected to focal cerebral ischemia for 90 minutes, followed by 24 hours of reperfusion. RIPostC was performed with 5-minute I/R cycles using a tourniquet on the right hind limb. Results The results showed a negative association between obesity and neurological impairment in ischemic animals. We observed a 70% greater infarct size in ZDF rats compared with their lean counterparts, as evaluated by 2,3,5-triphenyltetrazolium chloride staining. To measure the total fragmented DNA in peripheral lymphocytes, comet assay was performed. Obese rats exhibited higher levels of DNA damage (by approximately 135%) in peripheral blood lymphocytes even before the induction of stroke. RIPostC did not attenuate oxidative stress in the blood in obese rats subjected to ischemia. Focal cerebral ischemia increased core and penumbra tissue glutamate release in the brain and decreased it in the blood of ischemic ZDL rats, and these changes improved following RIPostC treatment. However, changes in blood and tissue glutamate content were not detected in ischemic ZDF rats or after RIPostC intervention. Conclusion Our findings suggest that obese animals respond more severely to ischemia-reperfusion brain injury. However, obese animals did not achieve neuroprotective benefits of RIPostC treatment.
Collapse
Affiliation(s)
- Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Kosice, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| |
Collapse
|
4
|
Kim ID, Cave JW, Cho S. Aflibercept, a VEGF (Vascular Endothelial Growth Factor)-Trap, Reduces Vascular Permeability and Stroke-Induced Brain Swelling in Obese Mice. Stroke 2021; 52:2637-2648. [PMID: 34192895 PMCID: PMC8312568 DOI: 10.1161/strokeaha.121.034362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Background and Purpose Brain edema is an important underlying pathology in acute stroke, especially when comorbidities are present. VEGF (Vascular endothelial growth factor) signaling is implicated in edema. This study investigated whether obesity impacts VEGF signaling and brain edema, as well as whether VEGF inhibition alters stroke outcome in obese subjects. Methods High-fat diet-induced obese mice were subjected to a transient middle cerebral artery occlusion. VEGF-A and VEGFR2 (receptor) expression, infarct volume, and swelling were measured 3 days post-middle cerebral artery occlusion. To validate the effect of an anti-VEGF strategy, we used aflibercept, a fusion protein that has a VEGF-binding domain and acts as a decoy receptor, in human umbilical vein endothelial cells stimulated with rVEGF (recombinant VEGF; 50 ng/mL) for permeability and tube formation. In vivo, aflibercept (10 mg/kg) or IgG control was administered in obese mice 3 hours after transient 30 minutes middle cerebral artery occlusion. Blood-brain barrier integrity was assessed by IgG staining and dextran extravasation in the postischemic brain. A separate cohort of nonobese (lean) mice was subjected to 40 minutes middle cerebral artery occlusion to test the effect of aflibercept on malignant infarction. Results Compared with lean mice, obese mice had increased mortality, infarct volume, swelling, and blood-brain barrier disruption. These outcomes were also associated with increased VEGF-A and VEGFR2 expression. Aflibercept reduced VEGF-A-stimulated permeability and tube formation in human umbilical vein endothelial cells. Compared with the IgG-treated controls, mice treated with aflibercept had reduced mortality rates (40% versus 17%), hemorrhagic transformation (43% versus 27%), and brain swelling (28% versus 18%), although the infarct size was similar. In nonobese mice with large stroke, aflibercept neither improved nor exacerbated stroke outcomes. Conclusions The study demonstrates that aflibercept selectively attenuates stroke-induced brain edema and vascular permeability in obese mice. These findings suggest the repurposing of aflibercept to reduce obesity-enhanced brain edema in acute stroke.
Collapse
Affiliation(s)
- Il-doo Kim
- Burke Neurological Institute, White Plains, NY (I.-d.K., S.C.)
| | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY (I.-d.K., S.C.)
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY (S.C.)
| |
Collapse
|
5
|
Zimmerman B, Kundu P, Rooney WD, Raber J. The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules 2021; 26:3406. [PMID: 34199898 PMCID: PMC8200075 DOI: 10.3390/molecules26113406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
| | - William D. Rooney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Gomez-Pinilla F, Cipolat RP, Royes LFF. Dietary fructose as a model to explore the influence of peripheral metabolism on brain function and plasticity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166036. [PMID: 33508421 DOI: 10.1016/j.bbadis.2020.166036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver metabolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the pathophysiological consequences of neurological disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Neurosurgery, UCLA Brain Injury Research Center, University of California Los Angeles, USA; Department of Integrative Biology and Physiology, UCLA Brain Injury Research Center, University of California Los Angeles, USA.
| | - Rafael Parcianello Cipolat
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
7
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders. Front Pharmacol 2019; 10:33. [PMID: 30778297 PMCID: PMC6369171 DOI: 10.3389/fphar.2019.00033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of an array of enzymes with important detoxifying and antioxidant functions. Current findings support the role of high levels of oxidative stress in the pathogenesis of neurological disorders. Given the central role played by Nrf2 in counteracting oxidative damage, a number of studies have targeted the modulation of this transcription factor in order to confer neuroprotection. Nrf2 activity is tightly regulated by oxidative stress and energy-based stimuli. Thus, many dietary interventions based on energy intake regulation, such as dietary energy restriction (DER) or high-fat diet (HFD), modulate Nrf2 with consequences for a variety of cellular processes that affect brain health. DER, by either restricting calorie intake or meal frequency, activates Nrf2 thereby triggering its protective effects, whilst HFD inhibit this pathway, thereby exacerbating oxidative stress. Consequently, DER protocols can be valuable strategies in the management of central nervous system (CNS) disorders. Herein, we review current knowledge of the role of Nrf2 signaling in neurological diseases, namely Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and cerebral ischemia, as well as the potential of energy intake regulation in the management of Nrf2 signaling.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
McPherson KC, Shields CA, Poudel B, Fizer B, Pennington A, Szabo-Johnson A, Thompson WL, Cornelius DC, Williams JM. Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. Am J Physiol Renal Physiol 2018; 316:F316-F327. [PMID: 30539649 DOI: 10.1152/ajprenal.00162.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes and hypertension are the major causes of chronic kidney disease (CKD). Epidemiological studies within the last few decades have revealed that obesity-associated renal disease is an emerging epidemic and that the increasing prevalence of obesity parallels the increased rate of CKD. This has led to the inclusion of obesity as an independent risk factor for CKD. A major complication when studying the relationship between obesity and renal injury is that cardiovascular and metabolic disorders that may result from obesity including hyperglycemia, hypertension, and dyslipidemia, or the cluster of these disorders [defined as the metabolic syndrome, (MetS)] also contribute to the development and progression of renal disease. The associations between hyperglycemia and hypertension with renal disease have been reported extensively in patients suffering from obesity. Currently, there are several obese rodent models (high-fat diet-induced obesity and leptin signaling dysfunction) that exhibit characteristics of MetS. However, the available obese rodent models currently have not been used to investigate the impact of obesity alone on the development of renal injury before hypertension and/or hyperglycemia. Therefore, the aim of this review is to describe the incidence and severity of renal disease in these rodent models of obesity and determine which models are suitable to study the independent effects obesity on the development and progression of renal disease.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brianca Fizer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Pennington
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley Szabo-Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Willie L Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Monu SR, Maheshwari M, Peterson EL, Carretero OA. Role of connecting tubule glomerular feedback in obesity related renal damage. Am J Physiol Renal Physiol 2018; 315:F1708-F1713. [PMID: 30303713 DOI: 10.1152/ajprenal.00227.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Zucker obese rats (ZOR) have higher glomerular capillary pressure (PGC) that can cause renal damage. PGC is controlled by afferent (Af-Art) and efferent arteriole (Ef-Art) resistance. Af-Art resistance is regulated by factors that regulate other arterioles, such as myogenic response. In addition, it is also regulated by 2 intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to increased NaCl in the macula densa and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation in response to an increase in NaCl transport in the connecting tubule via the epithelial sodium channel. Since CTGF is an Af-Art dilatory mechanism, we hypothesized that increased CTGF contributes to TGF attenuation, which in turn increases PGC in ZOR. We performed a renal micropuncture experiment and measured stop-flow pressure (PSF), which is an indirect measurement of PGC in ZOR. Maximal TGF response at 40 nl/min was attenuated in ZOR (4.47 ± 0.60 mmHg) in comparison to the Zucker lean rats (ZLR; 8.54 ± 0.73 mmHg, P < 0.05), and CTGF was elevated in ZOR (5.34 ± 0.87 mmHg) compared with ZLR (1.12 ± 1.28 mmHg, P < 0.05). CTGF inhibition with epithelial sodium channel blocker normalized the maximum PSF change in ZOR indicating that CTGF plays a significant role in TGF attenuation (ZOR, 10.67 ± 1.07 mmHg vs. ZLR, 9.5 ± 1.53 mmHg). We conclude that enhanced CTGF contributes to TGF attenuation in ZOR and potentially contribute to progressive renal damage.
Collapse
Affiliation(s)
- Sumit R Monu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Mani Maheshwari
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
11
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Uldall M, Bhatt DK, Kruuse C, Juhler M, Jansen-Olesen I, Jensen RH. Choroid plexus aquaporin 1 and intracranial pressure are increased in obese rats: towards an idiopathic intracranial hypertension model? Int J Obes (Lond) 2017; 41:1141-1147. [PMID: 28344346 DOI: 10.1038/ijo.2017.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND/OBJECTIVES Idiopathic intracranial hypertension (IIH) is a condition of increased intracranial pressure (ICP) without identifiable cause. The majority of IIH patients are obese, which suggests a connection between ICP and obesity. The aim of the study was to compare ICP in lean and obese rats. We also aimed to clarify if any ICP difference could be attributed to changes in some well-known ICP modulators; retinol and arterial partial pressure of CO2 (pCO2). Another potential explanation could be differences in water transport across the choroid plexus (CP) epithelia, and thus we furthermore investigated expression profiles of aquaporin 1 (AQP1) and Na/K ATPase. METHODS ICP was measured in obese and lean Zucker rats over a period of 28 days. Arterial pCO2 and serum retinol were measured in serum samples. The CPs were isolated, and target messenger RNA (mRNA) and protein were analyzed by quantitative PCR and western blot, respectively. RESULTS Obese rats had elevated ICP compared to lean controls on all recording days except day 0 (P<0.001). Serum retinol (P=0.35) and arterial pCO2 (P=0.16) did not differ between the two groups. Both AQP1 mRNA and protein levels were increased in the CP of the obese rats compared to lean rats (P=0.0422 and P=0.0281). There was no difference in Na/K ATPase mRNA or protein levels (P=0.2688 and P=0.1304). CONCLUSION Obese Zucker rats display intracranial hypertension and increased AQP1 expression in CP compared to lean controls. The mechanisms behind these changes are still unknown, but appear to be unrelated to altered pCO2 levels or retinol metabolism. This indicates that the increase in ICP might be related to increased AQP1 levels in CP. Although further studies are warranted, obese Zucker rats could potentially model some aspects of the IIH pathophysiology.
Collapse
Affiliation(s)
- M Uldall
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.,Glostrup Research Institute, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - D K Bhatt
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.,Glostrup Research Institute, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - C Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - M Juhler
- Department of Neurosurgery, Rigshospitalet Blegdamsvej, University of Copenhagen, Copenhagen, Denmark
| | - I Jansen-Olesen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.,Glostrup Research Institute, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - R H Jensen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
14
|
Haley MJ, Lawrence CB. Obesity and stroke: Can we translate from rodents to patients? J Cereb Blood Flow Metab 2016; 36:2007-2021. [PMID: 27655337 PMCID: PMC5134197 DOI: 10.1177/0271678x16670411] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for stroke and is consequently one of the most common co-morbidities found in patients. There is therefore an identified need to model co-morbidities preclinically to allow better translation from bench to bedside. In preclinical studies, both diet-induced and genetically obese rodents have worse stroke outcome, characterised by increased ischaemic damage and an altered inflammatory response. However, clinical studies have reported an 'obesity paradox' in stroke, characterised by reduced mortality and morbidity in obese patients. We discuss the potential reasons why the preclinical and clinical studies may not agree, and review the mechanisms identified in preclinical studies through which obesity may affects stroke outcome. We suggest inflammation plays a central role in this relationship, as obesity features increases in inflammatory mediators such as C-reactive protein and interleukin-6, and chronic inflammation has been linked to worse stroke risk and outcome.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
McPherson KC, Taylor L, Johnson AC, Didion SP, Geurts AM, Garrett MR, Williams JM. Early development of podocyte injury independently of hyperglycemia and elevations in arterial pressure in nondiabetic obese Dahl SS leptin receptor mutant rats. Am J Physiol Renal Physiol 2016; 311:F793-F804. [PMID: 27465994 DOI: 10.1152/ajprenal.00590.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/25/2016] [Indexed: 01/05/2023] Open
Abstract
The current study examined the effect of obesity on the development of renal injury within the genetic background of the Dahl salt-sensitive rat with a dysfunctional leptin receptor derived from zinc-finger nucleases (SSLepRmutant strain). At 6 wk of age, body weight was 35% higher in the SSLepRmutant strain compared with SSWT rats and remained elevated throughout the entire study. The SSLepRmutant strain exhibited impaired glucose tolerance and increased plasma insulin levels at 6 wk of age, suggesting insulin resistance while SSWT rats did not. However, blood glucose levels were normal throughout the course of the study. Systolic arterial pressure (SAP) was similar between the two strains from 6 to 10 wk of age. However, by 18 wk of age, the development of hypertension was more severe in the SSLepRmutant strain compared with SSWT rats (201 ± 10 vs. 155 ± 3 mmHg, respectively). Interestingly, proteinuria was substantially higher at 6 wk of age in the SSLepRmutant strain vs. SSWT rats (241 ± 27 vs. 24 ± 2 mg/day, respectively) and remained elevated until the end of the study. The kidneys from the SSLepRmutant strain displayed significant glomerular injury, including podocyte foot process effacement and lipid droplets compared with SSWT rats as early as 6 wk of age. By 18 wk of age, plasma creatinine levels were twofold higher in the SSLepRmutant strain vs. SSWT rats, suggesting the presence of chronic kidney disease (CKD). Overall, these results indicate that the SSLepRmutant strain develops podocyte injury and proteinuria independently of hyperglycemia and elevated arterial pressure that later progresses to CKD.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Lateia Taylor
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Sean P Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Aron M Geurts
- Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
16
|
Ergul A, Hafez S, Fouda A, Fagan SC. Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes. Transl Stroke Res 2016; 7:248-60. [PMID: 27026092 DOI: 10.1007/s12975-016-0464-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Human ischemic stroke is very complex, and no single preclinical model can comprise all the variables known to contribute to stroke injury and recovery. Hypertension, diabetes, and hyperlipidemia are leading comorbidities in stroke patients. The use of predominantly young adult and healthy animals in experimental stroke research has created a barrier for translation of findings to patients. As such, more and more disease models are being incorporated into the research design. This review highlights the major strengths and weaknesses of the most commonly used animal models of these conditions in preclinical stroke research. The goal is to provide guidance in choosing, reporting, and executing appropriate disease models that will be subjected to different models of stroke injury.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA. .,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA. .,Department of Physiology, Augusta University, CA2094, Augusta, GA, 30912, USA.
| | - Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Physiology, Augusta University, CA2094, Augusta, GA, 30912, USA
| | - Abdelrahman Fouda
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Neurology, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Brooks SD, DeVallance E, d'Audiffret AC, Frisbee SJ, Tabone LE, Shrader CD, Frisbee JC, Chantler PD. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 2015; 309:H1846-59. [PMID: 26475592 DOI: 10.1152/ajpheart.00691.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022]
Abstract
The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Evan DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Alexandre C d'Audiffret
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Stephanie J Frisbee
- Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Lawrence E Tabone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Carl D Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
18
|
Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemèle EJ. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation 2015; 132:2134-45. [PMID: 26362633 DOI: 10.1161/circulationaha.115.018226] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. METHODS AND RESULTS Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. CONCLUSIONS Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart.
Collapse
Affiliation(s)
- Anne-Cécile Huby
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Galina Antonova
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jake Groenendyk
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Celso E Gomez-Sanchez
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Wendy B Bollag
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jessica A Filosa
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Eric J Belin de Chantemèle
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.).
| |
Collapse
|
19
|
Chantler PD, Shrader CD, Tabone LE, d’Audiffret AC, Huseynova K, Brooks SD, Branyan KW, Grogg KA, Frisbee JC. Cerebral Cortical Microvascular Rarefaction in Metabolic Syndrome is Dependent on Insulin Resistance and Loss of Nitric Oxide Bioavailability. Microcirculation 2015; 22:435-45. [PMID: 26014499 PMCID: PMC4551443 DOI: 10.1111/micc.12209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chronic presentation of the MS is associated with an increased likelihood for stroke and poor stroke outcomes following occlusive cerebrovascular events. However, the physiological mechanisms contributing to compromised outcomes remain unclear, and the degree of cerebral cortical MVD may represent a central determinant of stroke outcomes. METHODS This study used the OZR model of MS and clinically relevant, chronic interventions to determine the impact on cerebral cortical microvascular rarefaction via immunohistochemistry with a parallel determination of cerebrovascular function to identify putative mechanistic contributors. RESULTS OZR exhibited a progressive rarefaction (to ~80% control MVD) of the cortical microvascular networks vs. lean Zucker rats. Chronic treatment with antihypertensive agents (captopril/hydralazine) had limited effectiveness in blunting rarefaction, although treatments improving glycemic control (metformin/rosiglitazone) were superior, maintaining ~94% control MVD. Chronic treatment with the antioxidant TEMPOL severely blunted rarefaction in OZR, although this ameliorative effect was prevented by concurrent NOS inhibition. CONCLUSIONS Further analyses revealed that the maintenance of glycemic control and vascular NO bioavailability were stronger predictors of cerebral cortical MVD in OZR than was prevention of hypertension, and this may have implications for chronic treatment of CVD risk under stroke-prone conditions.
Collapse
Affiliation(s)
- Paul D. Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Carl D. Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Lawrence E. Tabone
- Division of Bariatric Surgery, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Alexandre C. d’Audiffret
- Division of Vascular Surgery, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Khumara Huseynova
- Division of Vascular Surgery, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Steven D. Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Kayla W. Branyan
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Kristin A. Grogg
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Jefferson C. Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| |
Collapse
|
20
|
Moon SM, Choi GM, Yoo DY, Jung HY, Yim HS, Kim DW, Hwang IK, Cho BM, Chang IB, Cho SM, Won MH. Differential Effects of Pioglitazone in the Hippocampal CA1 Region Following Transient Forebrain Ischemia in Low- and High-Fat Diet-Fed Gerbils. Neurochem Res 2015; 40:1063-73. [PMID: 25894680 DOI: 10.1007/s11064-015-1568-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
In the present study, we investigated the effects of pioglitazone (PGZ) in the hippocampal CA1 region of low- or high-fat diet (LFD or HFD) fed gerbils after transient forebrain ischemia. After 8 weeks of LFD or HFD feeding, PGZ (30 mg/kg) was intraperitoneally administered to the gerbils, following which ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. Administration of PGZ significantly reduced the ischemia-induced hyperactivity 1 day after ischemia/reperfusion in both LFD- and HFD-fed gerbils. At 4 days after ischemia/reperfusion, the neurons were significantly reduced and microglial activation was observed in the hippocampal CA1 region in LFD- and HFD-fed gerbils. The microglial activation was more prominent in the HFD-fed gerbils compared to the LFD-fed gerbils. Administration of PGZ ameliorated ischemia-induced neuronal death and microglial activation in the hippocampal CA1 region 4 days after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-gerbils. At 6 h after ischemia/reperfusion, tumor necrosis factor-α (TNF-α) and interlukin-1β (IL-1β) levels were significantly increased in the hippocampal homogenates of LFD-fed group compared to control group, and HFD feeding further increased TNF-α and IL-1β levels. PGZ treatment significantly ameliorated the increase of TNF-α and IL-1β levels in LFD-fed gerbils, not in the HFD-fed gerbils. At 12 h after ischemia/reperfusion, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in hippocampal homogenates were significantly increased in the LFD-fed group compared to the control group, and HFD feeding significantly showed relatively reduction in SOD activity and increase in MDA level. PGZ administration significantly reduced the increase in MDA levels 12 h after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-fed gerbils. These results suggest that PGZ ameliorates the neuronal damage induced by ischemia by maintaining the TNF-α, IL-1β, SOD and MDA levels in LFD-fed gerbils. In addition, HFD feeding affects the modulation of these parameters in the hippocampus after transient forebrain ischemia.
Collapse
Affiliation(s)
- Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 445-907, South Korea,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dorrance AM, Matin N, Pires PW. The effects of obesity on the cerebral vasculature. Curr Vasc Pharmacol 2015; 12:462-72. [PMID: 24846235 DOI: 10.2174/1570161112666140423222411] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 12/18/2022]
Abstract
The incidence of obesity in the population is increasing at an alarming rate, with this comes an increased risk of insulin resistance (IR). Obesity and IR increase an individual's risk of having a stroke and they have been linked to several forms of dementia. Stroke and dementia are associated with, or exacerbated by, reduced cerebral blood flow, which has recently been described in obese patients. In this review we will discuss the effects of obesity on cerebral artery function and structure. Regarding their function, we will focus on the endothelium and nitric oxide (NO) dependent dilation. NO dependent dilation is impaired in cerebral arteries from obese rats, and the majority of evidence suggests this is a result of increased oxidative stress. We will also describe the limited studies showing that inward cerebral artery remodeling occurs in models of obesity, and that the remodeling is associated with an increase in the damage caused by cerebral ischemia. We will also discuss some of the more paradoxical findings associated with stroke and obesity, including the evidence that obesity is a positive factor for stroke survival. Finally we will discuss the evidence that links these changes in vascular structure and function to cognitive decline and dementia.
Collapse
Affiliation(s)
| | | | - Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Prevention of hyperglycemic signal pathways in metabolic syndrome carotid artery of rats. Transl Stroke Res 2013; 3:466-72. [PMID: 24323833 DOI: 10.1007/s12975-012-0205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/10/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Obesity is the major risk factor for metabolic syndrome and atherosclerotic cardiocerebrovascular diseases and induces insulin resistance characterized by a dysfunction of insulin to activate insulin receptor /insulin receptor substrate 1(IRS-1)/phosphoinositide 3-kinase (PI3K)/Akt pathway. Zucker fatty rats (8 weeks) were treated with vehicle (0.5 % methyl cellulose in physiological saline, p.o.), amlodipine (3 mg/kg/day, p.o.), atorvastatin (10 mg/kg/day, p.o.), or the combination of amlodipine plus atorvastatin (3 + 10 mg/kg/day, p.o.) for 28 days, and anti-insulin-like growth factor 1 (IGF-1)/IRS-1/PI3K/Akt pathways were evaluated. Our present immunohistochemical study first demonstrated that a combination of amlodipine plus atorvastatin treatment prevented an arteriosclerotic process compared to the single treatment with amlodipine or atorvastatin with strong recoveries of pTyr IRS-1, pPI3K, and pAkt expressions and with remarkable restraints of IGF-1 and pSer IRS-1. As a result, combination therapy with amlodipine plus atorvastatin showed a strong synergistic effect to prevent atherosclerotic processes. The present study newly suggests a synergistic benefit of combination therapy with amlodipine plus atorvastatin for strong prevention of atherosclerotic processes, which could reduce the clinical risk of cerebrovascular events for obesity patients.
Collapse
|
23
|
Stepp DW, Osakwe CC, Belin de Chantemele EJ, Mintz JD. Vascular effects of deletion of melanocortin-4 receptors in rats. Physiol Rep 2013; 1:e00146. [PMID: 24400148 PMCID: PMC3871461 DOI: 10.1002/phy2.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/11/2022] Open
Abstract
Obesity is a major cause of hypertension, but links between the obese and hypertensive states remain incompletely understood. A major component of cardiovascular function in obese individuals is a state of sympathoactivation. A postulated mechanism of this sympathoactivation is the activation of specific classes of neurons commonly associated with metabolic control, which also affect sympathetic outflow to cardiovascular targets. One class of neurons is characterized by expression of melanocortin-4 receptors (MC4R) which are activated by metabolic signals such as leptin and insulin. In this study, we examined the effects of deletion of MC4R in a novel rat model. MC4R knockout (KO) rats are obese and profoundly insulin resistant without frank diabetes. Despite these conditions, MC4R KO rats are normotensive. Moderate bradycardia and significant increases in peripheral resistance were evident in MC4R KO rats. To determine if the dissociation between hypertension and obesity was associated with changes in vascular function, in vitro reactivity to vasoactive agents and in vivo reactivity to sympathetic blockade were examined. Vasodilator function was not affected by obesity in MC4R KO rats. Reactivity to phenylephrine was reduced, suggesting desensitization of adrenergic signaling. In response to ganglionic blockade with mecamylamine, blood pressure and hindlimb resistance fell more in MC4R KO rats, suggesting that sympathoactivation of the vascular was still evident, despite the absence of hypertension. These findings suggest that obesity causes sympathoactivation of the vasculature despite the absence of MC4R. Dissociation of obesity from hypertension in this model may reflect more renal mechanisms of blood pressure control.
Collapse
Affiliation(s)
- David W Stepp
- Vascular Biology Center, Georgia Regents University Augusta, Georgia ; Department of Physiology, Georgia Regents University Augusta, Georgia
| | | | | | - James D Mintz
- Vascular Biology Center, Georgia Regents University Augusta, Georgia
| |
Collapse
|
24
|
Li W, Prakash R, Chawla D, Du W, Didion SP, Filosa JA, Zhang Q, Brann DW, Lima VV, Tostes RC, Ergul A. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1001-8. [PMID: 23576615 DOI: 10.1152/ajpregu.00523.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals.
Collapse
Affiliation(s)
- Weiguo Li
- Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
26
|
Turner RC, Lucke-Wold B, Lucke-Wold N, Elliott AS, Logsdon AF, Rosen CL, Huber JD. Neuroprotection for ischemic stroke: moving past shortcomings and identifying promising directions. Int J Mol Sci 2013; 14:1890-917. [PMID: 23344061 PMCID: PMC3565354 DOI: 10.3390/ijms14011890] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 02/05/2023] Open
Abstract
The translation of neuroprotective agents for ischemic stroke from bench-to-bedside has largely failed to produce improved treatments since the development of tissue plasminogen activator (tPA). One possible reason for lack of translation is the failure to acknowledge the greatest risk factor for stroke, age, and other common comorbidities such as hypertension, obesity, and diabetes that are associated with stroke. In this review, we highlight both mechanisms of studying these factors and results of those that have been addressed. We also discuss the potential role of other lifestyle factors associated with an increased stroke risk such as sleep fragmentation and/or deprivation. Furthermore, many proposed therapeutic agents have targeted molecular mechanisms occurring soon after the onset of ischemia despite data indicating delayed patient presentation following ischemic stroke. Modulating inflammation has been identified as a promising therapeutic avenue consistent with preliminary success of ongoing clinical trials for anti-inflammatory compounds such as minocycline. We review the role of inflammation in stroke and in particular, the role of inflammatory cell recruitment and macrophage phenotype in the inflammatory process. Emerging evidence indicates an increasing role of neuro-immune crosstalk, which has led to increased interest in identification of peripheral biomarkers indicative of neural injury. It is our hope that identification and investigation of factors influencing stroke pathophysiology may lead to improved therapeutics.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
| | - Noelle Lucke-Wold
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Department of Health Restoration, West Virginia University School of Nursing, Morgantown, WV 26506, USA
| | - Alisa S. Elliott
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| | - Charles L. Rosen
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-304-293-5041; Fax: +1-304-293-4819
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| |
Collapse
|
27
|
Komers R, Rogers S, Oyama TT, Xu B, Yang CL, McCormick J, Ellison DH. Enhanced phosphorylation of Na(+)-Cl- co-transporter in experimental metabolic syndrome: role of insulin. Clin Sci (Lond) 2012; 123:635-47. [PMID: 22651238 PMCID: PMC3943429 DOI: 10.1042/cs20120003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, we investigated the activity of the thiazide-sensitive NCC (Na(+)-Cl(-) co-transporter) in experimental metabolic syndrome and the role of insulin in NCC activation. Renal responses to the NCC inhibitor HCTZ (hydrochlorothiazide), as a measure of NCC activity in vivo, were studied in 12-week-old ZO (Zucker obese) rats, a model of the metabolic syndrome, and in ZL (Zucker lean) control animals, together with renal NCC expression and molecular markers of NCC activity, such as localization and phosphorylation. Effects of insulin were studied further in mammalian cell lines with inducible and endogenous expression of this molecule. ZO rats displayed marked hyperinsulinaemia, but no differences in plasma aldosterone, compared with ZL rats. In ZO rats, natriuretic and diuretic responses to NCC inhibition with HCTZ were enhanced compared with ZL rats, and were associated with a decrease in BP (blood pressure). ZO rats displayed enhanced Thr(53) NCC phosphorylation and predominant membrane localization of both total and phosphorylated NCC, together with a different profile in expression of SPAK (Ste20-related proline/alanine-rich kinase) isoforms, and lower expression of WNK4. In vitro, insulin induced NCC phosphorylation, which was blocked by a PI3K (phosphoinositide 3-kinase) inhibitor. Insulin-induced reduction in WNK4 expression was also observed, but delayed compared with the time course of NCC phosphorylation. In summary, we report increased NCC activity in hyperinsulinaemic rodents in conjunction with the SPAK expression profile consistent with NCC activation and reduced WNK4, as well as an ability of insulin to induce NCC stimulatory phosphorylation in vitro. Together, these findings indicate that hyperinsulinaemia is an important driving force of NCC activity in the metabolic syndrome with possible consequences for BP regulation.
Collapse
Affiliation(s)
- Radko Komers
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fellmann L, Nascimento AR, Tibiriça E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 2012. [PMID: 23178510 DOI: 10.1016/j.pharmthera.2012.11.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome has been described as the association of insulin resistance, hypertension, hyperlipidemia and obesity. Its prevalence increased dramatically, mainly in developed countries. Animal models are essential to understand the pathophysiology of this syndrome. This review presents the murine models of metabolic syndrome the most often used in pharmacological studies. The most common metabolic syndrome models exhibit a non-functional leptin pathway, or metabolic disorders induced by high fat diets. In a first part, and after a short introduction on leptin, its receptor and mechanism of action, we provide a detailed description of each model: SHROB, SHHF, JCR:LA-cp, Zucker, ZDF, Wistar Ottawa Karlsburg W, and Otsuka Long-Evans Tokushima Fatty rats, ob/ob, db/db, agouti yellow and Mc4R KO mice. The second part of this review is dedicated to metabolic syndrome models obtained by high fat feeding.
Collapse
Affiliation(s)
- Lyne Fellmann
- Laboratory of Neurobiology and Cardiovascular Pharmacology, EA4438, Faculty of Medicine, University of Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Belin de Chantemèle EJ, Ali MI, Mintz JD, Rainey WE, Tremblay ML, Fulton DJ, Stepp DW. Increasing peripheral insulin sensitivity by protein tyrosine phosphatase 1B deletion improves control of blood pressure in obesity. Hypertension 2012; 60:1273-9. [PMID: 23045458 DOI: 10.1161/hypertensionaha.112.196295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is a major risk factor for hypertension. The copresentation of hypertension and insulin resistance (IR) suggests a role for IR in blood pressure (BP) dysregulation. To test this hypothesis, peripheral IR has been genetically subtracted in a model of obesity by crossing leptin receptor mutant mice (K(db)H(PTP)) with mice lacking protein tyrosine phosphatase 1B (insulin desensitizer, H(db)K(PTP)) to generate obese insulin-sensitive mice (K(db)K(PTP)). BP was recorded in lean (H(db)H(PTP), H(db)K(PTP)) and obese (K(db)H(PTP), K(db)K(PTP)) mice via telemetry, and a frequency analysis of the recording was performed to determine BP variability. Correction of IR in obese mice normalized BP values to baseline levels (H(db)H(PTP): 116 ± 2 mm Hg; K(db)H(PTP): 129 ± 4 mm Hg; K(db)K(PTP): 114 ± 5 mm Hg) and restored BP variability by decreasing its standard deviation and the frequency of BP values over the upper autoregulatory limit of the kidneys. However, although IR-induced increases in proteinuria (versus 53 ± 13 μg/d, H(db)H(PTP)) were corrected in K(db)K(PTP) (112 ± 39 versus 422 ± 159 μg/d, K(db)H(PTP)), glomerular hypertrophy was not. IR reduced plasma aldosterone levels ruling out a role for mineralocorticoids in the development of hypertension. Taken together, these data indicate that correction of IR prevents hypertension, BP variability, and microalbuminuria in obese mice. Although the mechanism remains to be fully determined, increases in aldosterone or sympathoactivation of the cardiovascular system seem to be less likely contributors.
Collapse
|
30
|
Northcott CA, Fink GD, Garver H, Haywood JR, Laimon-Thomson EL, McClain JL, Pires PW, Rainey WE, Rigsby CS, Dorrance AM. The development of hypertension and hyperaldosteronism in a rodent model of life-long obesity. Endocrinology 2012; 153:1764-73. [PMID: 22355066 PMCID: PMC3320259 DOI: 10.1210/en.2011-1176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aldosterone has been linked to the deleterious cardiovascular effects of obesity in humans. The association of aldosterone with obesity in rodents is less well defined, particularly in models of diet-induced obesity. We hypothesized that adrenal aldosterone production and aldosterone synthase expression would be increased in rats with obesity-induced hypertension. Male Sprague Dawley rats were fed a high-fat (HF: 36% fat) or control diet from 3 wk of age, and mean arterial pressure (MAP) was measured by telemetry. MAP was increased after 4 wk of HF diet; this was 6 wk before changes in body weight. Mineralocorticoid receptor antagonism did not prevent the HF-induced increase in MAP. After 17 wk on the diets, HF rats had increased body and fat weights (abdominal and epididymal) and were insulin resistant (Homeostasis Model Assessment index: 3.53 ± 0.43 vs. 8.52 ± 1.77; control vs. HF, P < 0.05). Plasma aldosterone levels were increased in the HF rats (64.14 ± 14.96 vs. 206.25 ± 47.55 pg/ml; control vs. HF, P < 0.05). This occurred independently of plasma renin activity (4.8 ± 0.92 vs. 4.73 ± 0.66 ng/ml/h, control vs. HF). The increase in aldosterone was accompanied by a 2-fold increase in adrenal aldosterone synthase mRNA expression and zona glomerulosa hypertrophy. Rats were also studied after 8 wk of HF diet, a time when MAP, but not body weight, was increased. At this time plasma aldosterone was unchanged but plasma renin activity was increased (4.4 ± 0.5 vs. 8.1 ± 1.3 ng/ml/h; control vs. HF, P < 0.05). These studies suggest that rats fed a HF diet from weaning may be a useful model for studying obesity-associated hyperaldosteronism.
Collapse
Affiliation(s)
- Carrie A Northcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Several advances have been made to manipulate the rat genome in the last 2 years. This review aims to describe these advances in rat genetic manipulations, with an emphasis on their current status and their prospects and applications in the postgenomic era. RECENT FINDINGS Authentic rat embryonic stem cells were derived in 2008 using the 2i/3i culture system. This led to the generation of the first gene knockout rats via embryonic stem cell-based gene targeting. The development of zinc-finger nucleases (ZFNs) provided an alternative approach that avoids the necessity of germline competent embryonic stem cells. Meanwhile, improvements have been made to the well established random mutagenesis mediated by transposons or N-ethyl-N-nitrosourea (ENU). The in-vitro rat spermatogonial stem cell (SSC) system has greatly optimized these phenotype-driven approaches for future applications. SUMMARY The rat has long been a prime model organism in physiological, pharmacological and neurobehavioral studies. The recent advances of rat reverse genetic approaches, together with the classical ENU and transposon mutagenesis system, will contribute tremendously to the deciphering of gene functions and the creation of rat disease models.
Collapse
|