1
|
Zuchowski Y, Carty JS, Trapani JB, Watts JA, Bock F, Zhang M, Terker AS, Zent R, Delpire E, Harris RC, Arroyo JP. Kidney collecting duct-derived vasopressin is not essential for appropriate concentration or dilution of urine. Am J Physiol Renal Physiol 2024; 326:F1091-F1100. [PMID: 38695074 PMCID: PMC11381022 DOI: 10.1152/ajprenal.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.
Collapse
Grants
- R38 HL167237 NHLBI NIH HHS
- NIEHS ES103361-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- RO1DK093501 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- DK7569 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- VA Merit Award 00507969 U.S. Department of Veterans Affairs (VA)
- ASN-Kidney Cure career development award ASN Foundation for Kidney Research (ASN Foundation)
- DK62794 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- K08 DK135931-01 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- Ben J. Lipps fellowship ASN Foundation for Kidney Research (ASN Foundation)
- I01-BX002196 U.S. Department of Veterans Affairs (VA)
- K08DK134879 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- DP5OD033412 HHS | NIH | OSC | Common Fund (NIH Common Fund)
- 5R38HL167237 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK127589 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- DK51265 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK069921 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- P30DK114809 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK95785 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- Harold Amos Medical Facutly Develoopment Program Robert Wood Johnson Foundation (RWJF)
- HHS | National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Yvonne Zuchowski
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Joshua S Carty
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jonathan B Trapani
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Mingzhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Szczepanska-Sadowska E. Interplay of Angiotensin Peptides, Vasopressin, and Insulin in the Heart: Experimental and Clinical Evidence of Altered Interactions in Obesity and Diabetes Mellitus. Int J Mol Sci 2024; 25:1310. [PMID: 38279313 PMCID: PMC10816525 DOI: 10.3390/ijms25021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Arroyo JP, Terker AS, Zuchowski Y, Watts JA, Bock F, Meyer C, Luo W, Kapp ME, Gould ER, Miranda AX, Carty J, Jiang M, Vanacore RM, Hammock E, Wilson MH, Zent R, Zhang M, Bhave G, Harris RC. Kidney collecting duct cells make vasopressin in response to NaCl-induced hypertonicity. JCI Insight 2022; 7:e161765. [PMID: 36326835 PMCID: PMC9869977 DOI: 10.1172/jci.insight.161765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vasopressin has traditionally been thought to be produced by the neurohypophyseal system and then released into the circulation where it regulates water homeostasis. The questions of whether vasopressin could be produced outside of the brain and if the kidney could be a source of vasopressin are raised by the syndrome of inappropriate antidiuretic hormone secretion (vasopressin). We found that mouse and human kidneys expressed vasopressin mRNA. Using an antibody that detects preprovasopressin, we found that immunoreactive preprovasopressin protein was found in mouse and human kidneys. Moreover, we found that murine collecting duct cells made biologically active vasopressin, which increased in response to NaCl-mediated hypertonicity, and that water restriction increased the abundance of kidney-derived vasopressin mRNA and protein expression in mouse kidneys. Thus, we provide evidence of biologically active production of kidney-derived vasopressin in kidney tubular epithelial cells.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yvonne Zuchowski
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Jason A. Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cameron Meyer
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Wentian Luo
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Meghan E. Kapp
- Division of Renal Pathology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Case Western Reserve University, University Hospitals, Cleveland, Ohio, USA
| | - Edward R. Gould
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Adam X. Miranda
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joshua Carty
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Ming Jiang
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Roberto M. Vanacore
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth Hammock
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Matthew H. Wilson
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Mingzhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
4
|
The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms232214414. [PMID: 36430892 PMCID: PMC9699305 DOI: 10.3390/ijms232214414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The automatism of cardiac pacemaker cells, which is tuned, is regulated by the autonomic nervous system (ANS) and multiple endocrine and paracrine factors, including cardiovascular peptides. The cardiovascular peptides (CPs) form a group of essential paracrine factors affecting the function of the heart and vessels. They may also be produced in other organs and penetrate to the heart via systemic circulation. The present review draws attention to the role of vasopressin (AVP) and some other cardiovascular peptides (angiotensins, oxytocin, cytokines) in the regulation of the cardiovascular system in health and cardiovascular diseases, especially in post-infarct heart failure, hypertension and cerebrovascular strokes. Vasopressin is synthesized mostly by the neuroendocrine cells of the hypothalamus. There is also evidence that it may be produced in the heart and lungs. The secretion of AVP and other CPs is markedly influenced by changes in blood volume and pressure, as well as by other disturbances, frequently occurring in cardiovascular diseases (hypoxia, pain, stress, inflammation). Myocardial infarction, hypertension and cardiovascular shock are associated with an increased secretion of AVP and altered responsiveness of the cardiovascular system to its action. The majority of experimental studies show that the administration of vasopressin during ventricular fibrillation and cardiac arrest improves resuscitation, however, the clinical studies do not present consisting results. Vasopressin cooperates with the autonomic nervous system (ANS), angiotensins, oxytocin and cytokines in the regulation of the cardiovascular system and its interaction with these regulators is altered during heart failure and hypertension. It is likely that the differences in interactions of AVP with ANS and other CPs have a significant impact on the responsiveness of the cardiovascular system to vasopressin in specific cardiovascular disorders.
Collapse
|
5
|
Szczepańska-Sadowska E, Żera T. Vasopressin: a possible link between hypoxia and hypertension. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular and respiratory diseases are frequently associated with transient and prolonged hypoxia, whereas hypoxia exerts pro-hypertensive effects, through stimulation of the sympathetic system and release of pressor endocrine factors. This review is focused on the role of arginine vasopressin (AVP) in dysregulation of the cardiovascular system during hypoxia associated with cardiovascular disorders. AVP is synthesized mainly in the neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), which send axons to the posterior pituitary and various regions of the central nervous system (CNS). Vasopressinergic neurons are innervated by multiple neuronal projections releasing several neurotransmitters and other regulatory molecules. AVP interacts with V1a, V1b and V2 receptors that are present in the brain and peripheral organs, including the heart, vessels, lungs, and kidneys. Release of vasopressin is intensified during hypernatremia, hypovolemia, inflammation, stress, pain, and hypoxia which frequently occur in cardiovascular patients, and blood AVP concentration is markedly elevated in cardiovascular diseases associated with hypoxemia. There is evidence that hypoxia stimulates AVP release through stimulation of chemoreceptors. It is suggested that acting in the carotid bodies, AVP may fine-tune respiratory and hemodynamic responses to hypoxia and that this effect is intensified in hypertension. There is also evidence that during hypoxia, augmentation of pro-hypertensive effects of vasopressin may result from inappropriate interaction of this hormone with other compounds regulating the cardiovascular system (catecholamines, angiotensins, natriuretic peptides, steroids, nitric oxide). In conclusion, current literature indicates that abnormal mutual interactions between hypoxia and vasopressin may significantly contribute to pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
7
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
8
|
Huang JH, Chen YC, Lu YY, Lin YK, Chen SA, Chen YJ. Arginine vasopressin modulates electrical activity and calcium homeostasis in pulmonary vein cardiomyocytes. J Biomed Sci 2019; 26:71. [PMID: 31530276 PMCID: PMC6747756 DOI: 10.1186/s12929-019-0564-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Atrial fibrillation (AF) frequently coexists with congestive heart failure (HF) and arginine vasopressin (AVP) V1 receptor antagonists are used to treat hyponatremia in HF. However, the role of AVP in HF-induced AF still remains unclear. Pulmonary veins (PVs) are central in the genesis of AF. The purpose of this study was to determine if AVP is directly involved in the regulation of PV electrophysiological properties and calcium (Ca2+) homeostasis as well as the identification of the underlying mechanisms. Methods Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, Ca2+ homeostasis, and Ca2+ regulatory proteins in isolated rabbit single PV cardiomyocytes incubated with and without AVP (1 μM), OPC 21268 (0.1 μM, AVP V1 antagonist), or OPC 41061 (10 nM, AVP V2 antagonist) for 4–6 h. Results AVP (0.1 and 1 μM)-treated PV cardiomyocytes had a faster beating rate (108 to 152%) than the control cells. AVP (1 μM) treated PV cardiomyocytes had higher late sodium (Na+) and Na+/Ca2+ exchanger (NCX) currents than control PV cardiomyocytes. AVP (1 μM) treated PV cardiomyocytes had smaller Ca2+i transients, and sarcoplasmic reticulum (SR) Ca2+ content as well as higher Ca2+ leak. However, combined AVP (1 μM) and OPC 21268 (0.1 μM) treated PV cardiomyocytes had a slower PV beating rate, larger Ca2+i transients and SR Ca2+ content, smaller late Na+ and NCX currents than AVP (1 μM)-treated PV cardiomyocytes. Western blot experiments showed that AVP (1 μM) treated PV cardiomyocytes had higher expression of NCX and p-CaMKII, and a higher ratio of p-CaMKII/CaMKII. Conclusions AVP increases PV arrhythmogenesis with dysregulated Ca2+ homeostasis through vasopressin V1 signaling.
Collapse
Affiliation(s)
- Jen-Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei, 116, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei, 116, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Khegay II. Noncanonical effects of vasopressin in angiogenesis. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
The molecular action of vasopressin depends on the localization of hormonal receptors. The basic physiological effects of vasopressin are manifested in the blood vasculature, renal inner medulla and brain. To date, new information concerning the tissue-specific spreading of vasopressin receptors has been accumulated, and it needs to be summarized. Platelets and endotheliocytes expressing V1a and V2 receptor types, respectively, are related to less investigated targets of the hormone. Vasopressin induces the initial reversible stage of platelet activation, required for interaction with intercellular matrix proteins. Platelet adhesion on endothelium activates cellular secretion of growth factors and enzymes for intercellular matrix glucosamine metabolism. Platelet hyaluronidase HYAL2 hydrolyses high-molecular hyaluronic acid to shorter fragments. Unlike intact hyaluronic acid with a molecular weight of several megadaltons, generally showing distinctive antiangiogenic properties, intermediate fractions of hyaluronan hydrolysis in a range from 2.5 to 200 kilodaltons have a stimulating effect on angiogenesis. Intercellular contacts between platelets and endotheliocytes are stabilized due to adhesive transmembrane glycoprotein PECAM-1 interaction. Resulting PECAM-1 heterodimers acquire conformation with high affinity to integrins αvβ3. Integrin activation forms contact links between endothelium and fibrillar proteins. Activated endotheliocytes secrete von Willebrand factor and P-selectin. These proteins are accumulated in Weibel–Palade bodies. Vasopressin stimulates cAMP-dependent ACAP-regulated exocytosis of Weibel–Palade bodies. von Willebrand factor possesses adhesive properties and additionally accelerates interaction of cells with the intercellular matrix. Adhesion on fibrillar collagen and membrane glycoproteins in cooperation with effects of PECAM-1–αvβ3 integrin complexes fixes cell aggregates in the surrounding interstitium and promotes proliferating endotheliocyte migration in according to the direction of local growth factor gradients during angiogenesis. Neurohormonal regulation of platelet and endotheliocyte secretory activity functionally link proliferation and migration of endotheliocytes during angiogenesis and integrate it according to the adaptive capacity of the entire organism.
Collapse
|
10
|
Dissociation of natriuresis and diuresis by oxytocin molecular forms in rats. PLoS One 2019; 14:e0219205. [PMID: 31269062 PMCID: PMC6608960 DOI: 10.1371/journal.pone.0219205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
In the rat, oxytocin (OT) produces dose-dependent diuretic and natriuretic responses. Post-translational enzymatic conversion of the OT biosynthetic precursor forms both mature and C-terminally extended peptides. The plasma concentrations of these C-terminally extended peptides (OT-G; OT-GK and OT-GKR) are elevated in newborns and pregnant rats. Intravenous injection of OT-GKR to rats inhibits diuresis, whereas injection of amidated OT stimulates diuresis. Since OT and OT-GKR show different effects on the urine flow, we investigated whether OT-GKR modulates renal action by inhibition of the arginine-vasopressin (AVP) receptor V2 (V2R), the receptor involved in renal water reabsorption. Experiments were carried out in the 8-week-old Wistar rats receiving intravenous (iv) injections of vehicle, OT, OT-GKR or OT+OT-GKR combination. OT (10 μmol/kg) increased urine outflow by 40% (P<0.01) and sodium excretion by 47% (P<0.01). Treatment with OT-GKR (10 μmol/kg) decreased diuresis by 50% (P<0.001), decreased sodium excretion by 50% (P<0.05) and lowered potassium by 42% (P<0.05). OT antagonist (OTA) reduced diuresis and natriuresis exerted by OT, whereas the anti-diuretic effect of OT-GKR was unaffected by OTA. The treatment with V2R antagonist (V2A) in the presence and absence of OT induced diuresis, sodium and potassium outflow. V2A in the presence of OT-GKR only partially increased diuresis and natriuresis. Autoradiography and molecular docking analysis showed potent binding of OT-GKR to V2R. Finally, the release of cAMP from CHO cells overexpressing V2 receptor was induced by low concentration of AVP (EC50:4.2e-011), at higher concentrations of OT (EC50:3.2e-010) and by the highest concentrations of OT-GKR (EC50:1.1e-006). OT-GKR potentiated cAMP release when combined with AVP, but blocked cAMP release when combined with OT. These results suggest that OT-GKR by competing for the OT renal receptor (OTR) and binding to V2R in the kidney, induces anti-diuretic, anti-natriuretic, and anti-kaliuretic effects.
Collapse
|
11
|
Zhang L, Joseph L, Joseph J. In Vivo and In Vitro Effects of Vasopressin V2 Receptor Antagonism on Myocardial Fibrosis in Rats. Am J Med Sci 2019; 357:151-159. [PMID: 30665496 DOI: 10.1016/j.amjms.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial fibrosis is a major pathophysiologic substrate of heart failure with preserved ejection fraction. Vasopressin is an important therapeutic target in heart failure with preserved ejection fraction since it can modulate fluid balance, and based on a few studies, myocardial matrix deposition. Hence we examined the role of vasopressin antagonism in modulating myocardial matrix metabolism in vivo and in vitro. MATERIALS AND METHODS In vivo studies utilized an established model of hyperhomocysteinemia-induced myocardial fibrosis in Sprague-Dawley rats combined with high salt diet; in vivo studies also utilized the same profibrotic stimuli of homocysteine and NaCl in cultured rat cardiac fibroblasts. RESULTS Hyperhomocysteinemia combined with high-salt diet promoted myocardial fibrosis, profibrotic and matrix gene expression and tolvaptan attenuated all these in vivo effects. In cultured cardiac fibroblasts, combined treatment with homocysteine and NaCl increased profibrotic and matrix gene expression and activation of PI3/Akt pathway; all these effects were attenuated by tolvaptan Vasopressin levels, gene expression and V2 receptor expression were increased in vivo and in vitro on exposure to profibrotic stimuli, and tolvaptan attenuated these in vivo and in vitro effects. CONCLUSIONS Antagonism of vasopressin V2 receptor, via direct actions on cardiac fibroblast, attenuates myocardial matrix deposition.
Collapse
Affiliation(s)
- LiangLiang Zhang
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lija Joseph
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts; Department of Pathology, Lowell General Hospital, Lowell, Massachusetts
| | - Jacob Joseph
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts.
| |
Collapse
|
12
|
Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018; 20:19. [PMID: 29556787 PMCID: PMC5859051 DOI: 10.1007/s11906-018-0823-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In many instances, the renin-angiotensin system (RAS) and the vasopressinergic system (VPS) are jointly activated by the same stimuli and engaged in the regulation of the same processes. Recent Findings Angiotensin II (Ang II) and arginine vasopressin (AVP), which are the main active compounds of the RAS and the VPS, interact at several levels. Firstly, Ang II, acting on AT1 receptors (AT1R), plays a significant role in the release of AVP from vasopressinergic neurons and AVP, stimulating V1a receptors (V1aR), regulates the release of renin in the kidney. Secondly, Ang II and AVP, acting on AT1R and V1aR, respectively, exert vasoconstriction, increase cardiac contractility, stimulate the sympathoadrenal system, and elevate blood pressure. At the same time, they act antagonistically in the regulation of blood pressure by baroreflex. Thirdly, the cooperative action of Ang II acting on AT1R and AVP stimulating both V1aR and V2 receptors in the kidney is necessary for the appropriate regulation of renal blood flow and the efficient resorption of sodium and water. Furthermore, both peptides enhance the release of aldosterone and potentiate its action in the renal tubules. Summary In this review, we (1) point attention to the role of the cooperative action of Ang II and AVP for the regulation of blood pressure and the water-electrolyte balance under physiological conditions, (2) present the subcellular mechanisms underlying interactions of these two peptides, and (3) provide evidence that dysregulation of the cooperative action of Ang II and AVP significantly contributes to the development of disturbances in the regulation of blood pressure and the water-electrolyte balance in cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
13
|
Wasilewski MA, Myers VD, Recchia FA, Feldman AM, Tilley DG. Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cell Signal 2015; 28:224-233. [PMID: 26232615 DOI: 10.1016/j.cellsig.2015.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Melissa A Wasilewski
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Valerie D Myers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fabio A Recchia
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Chen X, Lu G, Tang K, Li Q, Gao X. The secretion patterns and roles of cardiac and circulating arginine vasopressin during the development of heart failure. Neuropeptides 2015; 51:63-73. [PMID: 25823554 DOI: 10.1016/j.npep.2015.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 03/06/2015] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this study is to investigate local cardiac and circulating AVP secretion during heart failure and to determine whether AVP mediates ventricular remodeling. METHODS We assessed cardiac function and AVP levels of post-myocardial infarction (MI) heart-failure rats 3 weeks (n = 10), 4 weeks (n = 10), 6 weeks (n = 10), 9 weeks (n = 15) after the proximal left anterior descending coronary artery (LAD) ligation. Ten sham-operated rats were used as the control group. In vitro, cardiac microvascular endothelial cells (CMECs) were initiated from isolated Wistar rat hearts and subjected to Ang II to induce AVP expression and secretion. Besides, the effects of AVP stimulation on CMECs and cardiac fibroblasts (CFs) were studied using methylthiazol tetrazolium assay, Western blotting and real-time PCR. RESULTS With cardiac dysfunction, plasma and local cardiac AVP, aldosterone levels increased over time, peaking at 9 weeks post-MI. AVP levels were negatively correlated with serum Na(+) and LVEF but positively correlated with LVEDD and myocardial hydroxyproline. In CMECs treated with Ang II, AVP mRNA and protein expression increased. In addition, AVP promoted CFs proliferation and up-regulated the expression of endothelin-1 and connective tissue growth factor. CONCLUSION CMECs are the cellular sources of elevated local heart AVP stimulated with Ang II/AT1. An intrinsic cardiac AVP system exists. Local cardiac and circulating AVP secretion were enhanced by deteriorating cardiac function. AVP may promote ventricular remodeling. Thus, AVP could be an important mediator of myocardial fibrosis in late-stage heart failure.
Collapse
Affiliation(s)
- Xuanlan Chen
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guihua Lu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Kaiyu Tang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qinglang Li
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
15
|
Tran TDN, Yao S, Hsu WH, Gimble JM, Bunnell BA, Cheng H. Arginine vasopressin inhibits adipogenesis in human adipose-derived stem cells. Mol Cell Endocrinol 2015; 406:1-9. [PMID: 25697345 PMCID: PMC4752440 DOI: 10.1016/j.mce.2015.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
Intracellular Ca(2+) signaling is important for stem cell differentiation and there is evidence it may coordinate the process. Arginine vasopressin (AVP) is a neuropeptide hormone secreted mostly from the posterior pituitary gland and increases Ca(2+) signals mainly via V1 receptors. However, the role of AVP in adipogenesis of human adipose-derived stem cells (hASCs) is unknown. In this study, we identified the V1a receptor gene in hASCs and demonstrated that AVP stimulation increased intracellular Ca(2+) concentration during adipogenesis. This effect was mediated via V1a receptors, Gq-proteins and the PLC-IP3 pathway. These Ca(2+) signals were due to endoplasmic reticulum release and influx from the extracellular space. Furthermore, AVP supplementation to the adipogenic medium decreased the number of adipocytes and adipocyte marker genes during differentiation. The effect of AVP on adipocyte formation was reversed by the V1a receptor blocker V2255. These findings suggested that AVP may function to inhibit adipocyte differentiation.
Collapse
Affiliation(s)
- Tran D N Tran
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Walter H Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Bruce A Bunnell
- Department of Pharmacology, Tulane Center for Stem Cell Research and Regenerative Medicine and Division of Regenerative Medicine of Tulane National Primate Research Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
16
|
Costa A, Rossi E, Scicchitano BM, Coletti D, Moresi V, Adamo S. Neurohypophyseal Hormones: Novel Actors of Striated Muscle Development and Homeostasis. Eur J Transl Myol 2014; 24:3790. [PMID: 26913138 PMCID: PMC4756744 DOI: 10.4081/ejtm.2014.3790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the 1980’s, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.
Collapse
Affiliation(s)
- Alessandra Costa
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Eleonora Rossi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Bianca Maria Scicchitano
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology; (3) Institute of Histology and Embryology, Catholic University School of Medicine, Rome, Italy
| | - Dario Coletti
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Viviana Moresi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Sergio Adamo
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| |
Collapse
|
17
|
|
18
|
Danalache BA, Yu C, Gutkowska J, Jankowski M. Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells. J Endocrinol 2014; 220:277-89. [PMID: 24403294 DOI: 10.1530/joe-13-0305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The functional oxytocin (OT) system is expressed in the human and rodent hearts. OT stimulates differentiation of cardiac stem cells into contracting cardiomyocytes (CM). In this study, we investigated OT receptors (OTR) expressed in the cells of cardiac side population (SP) and the abilities of these cells to differentiate into CM in response to the treatment with OT-Gly-Lys-Arg (OT-GKR), a dominant and biologically active form of OT, in the fetal rodent heart. Immunocytochemistry of whole rat embryo at mid gestation (E11) revealed parallel staining in the heart of OTR and the ATP-binding cassette sub-family G member 2 (brcp1) antigen the marker of the SP phenotype. Using flow cytometry, the SP cells were selected from the newborn CM stained with Höechst 33342: 5.32%±0.06% of SP and 15.2%±1.10 of main population expressed OTR on the cell surface. The OTR was detected in CD29 (6.6%) and then in CD31 (4.7%) but less frequently in CD45 (0.7%) positive SP cell subpopulations. Specifically, the phenotype of SP CD31- cell, but not SP CD31+ cells, proliferates in the presence of OT-GKR and develops large cell aggregates. Then, OT-GKR treatment induced the apparition of beating cell colonies after 11 days (10±2.78%), which increased until day 16 (52±1.21%). The cells in contractile colonies expressed the markers of a CM phenotype, such as troponin, cardiac myosin light chain-2, and actinin. Finally, SP cells stimulated by OT-GKR induced endothelial phenotype. These results suggest that the C-terminally extended OT molecule stimulates cardiac differentiation of SP CD31- cells and is involved in heart growth.
Collapse
Affiliation(s)
- Bogdan A Danalache
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Abstract
Traditionally associated with female reproduction, oxytocin (OT) was revisited recently and was revealed to have several new roles in the cardiovascular system. Functional OT receptors have been discovered in the rat and human heart, as well as in vascular beds. The cardiovascular activities of OT include: (i) lowering blood pressure; (ii) negative cardiac inotropy and chronotropy; (iii) parasympathetic neuromodulation; (iv) vasodilatation; (v) anti-inflammatory; (vi) antioxidative; and (vii) metabolic effects. These outcomes are mediated, at least in part, by stimulating cardioprotective mediators, such as nitric oxide and atrial natriuretic peptide. OT and its extended form OT-Gly-Lys-Arg have been shown to be abundant in the foetal mouse heart. OT has the capacity to generate cardiomyocytes from various types of stem cells, including the cardiac side population. Mesenchymal cells transfected with OT-Gly-Lys-Arg, or preconditioned with OT, are resistant to apoptosis and express endothelial cell markers. OT increases glucose uptake in cultured cardiomyocytes from newborn and adult rats, in normal, hypoxic and even insulin resistance conditions. In rats with experimentally-induced myocardial infarction, continuous in vivo OT delivery improves the cardiac healing process, as well as cardiac work, reduces inflammation and stimulates angiogenesis. Therefore, in pathological conditions, OT exerts anti-inflammatory and cardioprotective properties, and improves vascular and metabolic functions. Thus, OT has potential for therapeutic use.
Collapse
Affiliation(s)
- J Gutkowska
- Laboratory of Cardiovascular Biochemistry, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Hôtel-Dieu and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
20
|
Transcriptome transfer provides a model for understanding the phenotype of cardiomyocytes. Proc Natl Acad Sci U S A 2011; 108:11918-23. [PMID: 21730152 DOI: 10.1073/pnas.1101223108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We show that the transfer of the adult ventricular myocyte (AVM) transcriptome into either a fibroblast or an astrocyte converts the host cell into a cardiomyocyte. Transcriptome-effected cardiomyocytes (tCardiomyocytes) display morphologies, immunocytochemical properties, and expression profiles of postnatal cardiomyocytes. Cell morphology analysis shows that tCardiomyoctes are elongated and have a similar length-to-width ratio as AVMs. These global phenotypic changes occur in a time-dependent manner and confer electroexcitability to the tCardiomyocytes. tCardiomyocyte generation does not require continuous overexpression of specific transcription factors; for example, the expression level of transcription factor Mef2c is higher in tCardiomyocytes than in fibroblasts, but similar in tCardiomyocytes and AVMs. These data highlight the dominant role of the gene expression profile in developing and maintaining cellular phenotype. The transcriptome-induced phenotype remodeling-generated tCardiomyocyte has significant implications for understanding and modulating cardiac disease development.
Collapse
|
21
|
Morishima M, Tahara S, Wang Y, Kaku T, Ono K. Nonapeptide Hormones Oxytocin and Vasopressin Distinctly Regulate Cav1.2 L-type Calcium Channel Expression in Cardiomyocytes. J Arrhythm 2010. [DOI: 10.1016/s1880-4276(10)80015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Oxytocin: Old Hormone, New Drug. Pharmaceuticals (Basel) 2009; 2:168-183. [DOI: 10.3390/ph203168] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 01/16/2023] Open
|
23
|
Konno N, Hyodo S, Yamaguchi Y, Kaiya H, Miyazato M, Matsuda K, Uchiyama M. African lungfish, Protopterus annectens, possess an arginine vasotocin receptor homologous to the tetrapod V2-type receptor. ACTA ACUST UNITED AC 2009; 212:2183-93. [PMID: 19561208 DOI: 10.1242/jeb.029322] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In tetrapods, arginine vasopressin and its counterpart, arginine vasotocin (AVT), are involved in renal water conservation through vascular V1a-type and tubular V2-type receptors, and only the former has thus far been cloned in fish. We successfully cloned the V1a-type and V2-type AVT receptor from the kidney of the African lungfish, Protopterus annectens, and the deduced amino acid sequences exhibited high homology with amphibian V1a- and V2-type receptors, respectively. Functional analysis showed that AVT addition to CHO cells transfected with lungfish V1a-type receptor increased [Ca2+]i in a concentration-dependent manner, whereas CHO cells transfected with lungfish V2-type receptor responded with cAMP accumulation after AVT stimulation. Lungfish V2-type receptor mRNA was strongly expressed in the heart and kidney, while V1a-type receptor mRNA was ubiquitously expressed in all the tissues examined. In the kidney, immunohistochemistry using a specific antibody to lungfish V2-type receptor showed localization in the basolateral area of the cells in the late part of the distal tubules. Artificial estivation (EST) for 90 days significantly increased plasma osmolality and sodium and urea concentrations. There was no significant difference in the V2-type receptor mRNA and protein expression levels in the kidney between the freshwater and EST lungfish, while the AVT precursor mRNA level in the hypothalamus was remarkably higher in the EST lungfish. Our results indicate that African lungfish possess a functional V2-type receptor similar to that in tetrapods, suggesting that elevated plasma AVT during estivation exerts a renal tubular antidiuretic effect through the V2-type receptor expressed in the distal segments of lungfish kidney.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|