1
|
Han YS, Delmotte P, Sieck GC. Effects of TNFα on Dynamic Cytosolic Ca 2 + and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle. Front Physiol 2021; 12:730333. [PMID: 34393833 PMCID: PMC8363307 DOI: 10.3389/fphys.2021.730333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that in airway smooth muscle (ASM), the cytosolic Ca2+ ([Ca2+]cyt) and force response induced by acetyl choline (ACh) are increased by exposure to the pro-inflammatory cytokine tumor necrosis factor α (TNFα). The increase in ASM force induced by TNFα was not associated with an increase in regulatory myosin light chain (rMLC20) phosphorylation but was associated with an increase in contractile protein (actin and myosin) concentration and an enhancement of Ca2+ dependent actin polymerization. The sensitivity of ASM force generation to elevated [Ca2+]cyt (Ca2+ sensitivity) is dynamic involving both the shorter-term canonical calmodulin-myosin light chain kinase (MLCK) signaling cascade that regulates rMLC20 phosphorylation and cross-bridge recruitment as well as the longer-term regulation of actin polymerization that regulates contractile unit recruitment and actin tethering to the cortical cytoskeleton. In this study, we simultaneously measured [Ca2+]cyt and force responses to ACh and explored the impact of 24-h TNFα on the dynamic relationship between [Ca2+]cyt and force responses. The temporal delay between the onset of [Ca2+]cyt and force responses was not affected by TNFα. Similarly, the rates of rise of [Ca2+]cyt and force responses were not affected by TNFα. The absence of an impact of TNFα on the short delay relationships between [Ca2+]cyt and force was consistent with the absence of an effect of [Ca2+]cyt and force on rMLC20 phosphorylation. However, the integral of the phase-loop plot of [Ca2+]cyt and force increased with TNFα, consistent with an impact on actin polymerization and, contractile unit recruitment and actin tethering to the cortical cytoskeleton.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Han YS, Delmotte PF, Arteaga GM, Sieck GC. Dynamic cytosolic Ca 2+ and force responses to muscarinic stimulation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 321:L91-L101. [PMID: 33908264 DOI: 10.1152/ajplung.00596.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During agonist stimulation of airway smooth muscle (ASM), agonists such as ACh induce a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt), which leads to a contractile response [excitation-contraction (E-C) coupling]. Previously, the sensitivity of the contractile response of ASM to elevated [Ca2+]cyt (Ca2+ sensitivity) was assessed as the ratio of maximum force to maximum [Ca2+]cyt. However, this static assessment of Ca2+ sensitivity overlooks the dynamic nature of E-C coupling in ASM. In this study, we simultaneously measured [Ca2+]cyt and isometric force responses to three concentrations of ACh (1, 2.6, and 10 μM). Both maximum [Ca2+]cyt and maximum force responses were ACh concentration dependent, but force increased disproportionately, thereby increasing static Ca2+ sensitivity. The dynamic properties of E-C coupling were assessed in several ways. The temporal delay between the onset of ACh-induced [Ca2+]cyt and onset force responses was not affected by ACh concentration. The rates of rise of the ACh-induced [Ca2+]cyt and force responses increased with increasing ACh concentration. The integral of the phase-loop plot of [Ca2+]cyt and force from onset to steady state also increased with increasing ACh concentration, whereas the rate of relaxation remained unchanged. Although these results suggest an ACh concentration-dependent increase in the rate of cross-bridge recruitment and in the rate of rise of [Ca2+]cyt, the extent of regulatory myosin light-chain (rMLC20) phosphorylation was not dependent on ACh concentration. We conclude that the dynamic properties of [Ca2+]cyt and force responses in ASM are dependent on ACh concentration but reflect more than changes in the extent of rMLC20 phosphorylation.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe F Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Grace M Arteaga
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Evans AM. On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web. Molecules 2020; 25:E4768. [PMID: 33081414 PMCID: PMC7587525 DOI: 10.3390/molecules25204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
A plethora of cellular functions are controlled by calcium signals, that are greatly coordinated by calcium release from intracellular stores, the principal component of which is the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various G protein-coupled receptors facilitated inositol-1,4,5-trisphosphate (IP3) production, activation of IP3 receptors and thus calcium release from S/ER. Adding to this, it was evident that S/ER resident ryanodine receptors (RyRs) could support two opposing cellular functions by delivering either highly localised calcium signals, such as calcium sparks, or by carrying propagating, global calcium waves. Coincidentally, it was reported that RyRs in mammalian cardiac myocytes might be regulated by a novel calcium mobilising messenger, cyclic adenosine diphosphate-ribose (cADPR), that had recently been discovered by HC Lee in sea urchin eggs. A reputedly selective and competitive cADPR antagonist, 8-bromo-cADPR, had been developed and was made available to us. We used 8-bromo-cADPR to further explore our observation that S/ER calcium release via RyRs could mediate two opposing functions, namely pulmonary artery dilation and constriction, in a manner seemingly independent of IP3Rs or calcium influx pathways. Importantly, the work of others had shown that, unlike skeletal and cardiac muscles, smooth muscles might express all three RyR subtypes. If this were the case in our experimental system and cADPR played a role, then 8-bromo-cADPR would surely block one of the opposing RyR-dependent functions identified, or the other, but certainly not both. The latter seemingly implausible scenario was confirmed. How could this be, do cells hold multiple, segregated SR stores that incorporate different RyR subtypes in receipt of spatially segregated signals carried by cADPR? The pharmacological profile of 8-bromo-cADPR action supported not only this, but also indicated that intracellular calcium signals were delivered across intracellular junctions formed by the S/ER. Not just one, at least two. This article retraces the steps along this journey, from the curious pharmacological profile of 8-bromo-cADPR to the discovery of the cell-wide web, a diverse network of cytoplasmic nanocourses demarcated by S/ER nanojunctions, which direct site-specific calcium flux and may thus coordinate the full panoply of cellular processes.
Collapse
Grants
- 01/A/S/07453 Biotechnology and Biological Sciences Research Council
- WT046374 , WT056423, WT070772, WT074434, WT081195AIA, WT212923, WT093147 Wellcome Trust
- PG/10/95/28657 British Heart Foundation
- FS/03/033/15432, FS/05/050, PG/05/128/19884, RG/12/14/29885, PG/10/95/28657 British Heart Foundation
- RG/12/14/29885 British Heart Foundation
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
4
|
Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 2014; 93:97-110. [PMID: 25506723 DOI: 10.1139/cjpp-2014-0361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 4-184 West Joseph SMH, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Sathish V, Thompson MA, Sinha S, Sieck GC, Prakash YS, Pabelick CM. Inflammation, caveolae and CD38-mediated calcium regulation in human airway smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:346-51. [PMID: 24275509 DOI: 10.1016/j.bbamcr.2013.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) increases expression of CD38 (a membrane-associated bifunctional enzyme regulating cyclic ADP ribose), and enhances agonist-induced intracellular Ca(2+) ([Ca(2+)]i) responses in human airway smooth muscle (ASM). We previously demonstrated that caveolae and their constituent protein caveolin-1 are important for ASM [Ca(2+)]i regulation, which is further enhanced by TNFα. Whether caveolae and CD38 are functionally linked in mediating TNFα effects is unknown. In this regard, whether the related cavin proteins (cavin-1 and -3) that maintain structure and function of caveolae play a role is also not known. In the present study, we hypothesized that TNFα effects on CD38 expression and function in human ASM involve caveolae. Caveolar fractions from isolated human ASM cells expressed CD38 and its expression was upregulated by exposure to 20ng/ml TNFα (48h). ASM cells expressed cavin-1 and cavin-3, which were also upregulated by TNFα. Knockdown of caveolin-1, cavin-1 or cavin-3 (using siRNA) all significantly reduced CD38 expression and ADP-ribosyl cyclase activity in the presence or absence of TNFα. Furthermore, caveolin-1, cavin-1 and cavin-3 siRNAs reduced [Ca(2+)]i responses to histamine under control conditions, and blunted the enhanced [Ca(2+)]i responses in TNFα-exposed cells. These data demonstrate that CD38 is expressed within caveolae and its function is linked to the caveolar regulatory proteins caveolin-1, cavin-1 and -3. The link between caveolae and CD38 is further enhanced during airway inflammation demonstrating the important role of caveolae in regulation of [Ca(2+)]i and contractility in the airway.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sutapa Sinha
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Y S Prakash
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina M Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
6
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
7
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
8
|
Sieck GC, White TA, Thompson MA, Pabelick CM, Wylam ME, Prakash YS. Regulation of store-operated Ca2+ entry by CD38 in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2008; 294:L378-85. [PMID: 18178673 DOI: 10.1152/ajplung.00394.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ectoenzyme CD38 catalyzes synthesis and degradation of cyclic ADP ribose in airway smooth muscle (ASM). The proinflammatory cytokine TNFalpha, which enhances agonist-induced intracellular Ca(2+) ([Ca(2+)](i)) responses, has been previously shown to increases CD38 expression. In the present study, we tested the hypothesis that the effects of TNFalpha on CD38 expression vs. changes in [Ca(2+)](i) regulation in ASM cells are linked. Using isolated human ASM cells, CD38 expression was either increased (transfection) or knocked down [small interfering RNA (siRNA)], and [Ca(2+)](i) responses to sarcoplasmic reticulum depletion [i.e., store-operated Ca(2+) entry (SOCE)] were evaluated in the presence vs. absence of TNFalpha. Results confirmed that TNFalpha significantly increased CD38 expression and ADP-ribosyl cyclase activity, an effect inhibited by CD38 siRNA, but unaltered by CD38 overexpression. CD38 suppression blunted, whereas overexpression enhanced, ACh-induced [Ca(2+)](i) responses. TNFalpha-induced enhancement of [Ca(2+)](i) response to agonist was blunted by CD38 suppression, but enhanced by CD38 overexpression. Finally, TNFalpha-induced increase in SOCE was blunted by CD38 siRNA and potentiated by CD38 overexpression. Overall, these results indicate a critical role for CD38 in TNFalpha-induced enhancement of [Ca(2+)](i) in human ASM cells, and potentially to TNFalpha augmentation of airway responsiveness.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cyclic ADP-ribose (cADPR) is a novel Ca(2+) mobilizing second messenger, which is capable of inducing Ca(2+) release from the sarcoplasmic reticulum (SR) via activation of ryanodine receptors (RyR) in vascular cells. This signaling nucleotide has also been reported to participate in generation or modulation of intracellular Ca(2+) sparks, Ca(2+) waves or oscillations, Ca(2+)- induced Ca(2+) release (CICR) and spontaneous transient outward currents (STOCs) in vascular smooth muscle cells (VSMCs). With respect to the role of cADPR-mediated signaling in mediation of vascular responses to different stimuli, there is accumulating evidence showing that cADPR is importantly involved in the Ca(2+) response of vascular endothelial cells (ECs) and VSMCs to various chemical factors such as vasoactive agonists acetylcholine, oxotremorine, endothelin, and physical stimuli such as stretch, electrical depolarization and sheer stress. This cADPR-RyR-mediated Ca(2+) signaling is now recognized as a fundamental mechanism regulating vascular function. Here we reviewed the literature regarding this cADPR signaling pathway in vascular cells with a major focus on the production of cADPR and its physiological roles in the control of vascular tone and vasomotor response. We also summarized some publish results that unveil the underlying mechanisms mediating the actions of cADPR in vascular cells. Given the importance of Ca(2+) in the regulation of vascular function, the results summarized in this brief review will provide new insights into vascular physiology and circulatory regulation.
Collapse
Affiliation(s)
- Andrew Y Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityVA, USA
| | - Pin - Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityVA, USA
- * Correspondence to: Pin-Lan LI, M.D, Ph.D. Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, 410 N 12th, Richmond, VA 23298, USA. Tel.: (804) 828-4793; Fax: (804) 828-2117 E-mail:
| |
Collapse
|
10
|
Guedes AGP, Paulin J, Rivero-Nava L, Kita H, Lund FE, Kannan MS. CD38-deficient mice have reduced airway hyperresponsiveness following IL-13 challenge. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1286-93. [PMID: 16891391 DOI: 10.1152/ajplung.00187.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transmembrane glycoprotein CD38 in airway smooth muscle is the source of cyclic-ADP ribose, an intracellular calcium-releasing molecule, and is subject to regulatory effects of cytokines such as interleukin (IL)-13, a cytokine implicated in asthma. We investigated the role of CD38 in airway hyperresponsiveness using a mouse model of IL-13-induced airway disease. Wild-type (WT) and CD38-deficient (CD38KO) mice were intranasally challenged with 5 microg of IL-13 three times on alternate days under isoflurane anesthesia. Lung resistance (R(L)) in response to inhaled methacholine was measured 24 h after the last challenge in pentobarbital-anesthetized, tracheostomized, and mechanically ventilated mice. Bronchoalveolar cytokines, bronchoalveolar and parenchymal inflammation, and smooth muscle contractility and relaxation using tracheal segments were also evaluated. Changes in methacholine-induced R(L) were significantly greater in the WT than in the CD38KO mice following intranasal IL-13 challenges. Airway reactivity after IL-13 exposure, as measured by the slope of the methacholine dose-response curve, was significantly higher in the WT than in the CD38KO mice. The rate of isometric force generation in tracheal segments (e.g., smooth muscle reactivity) was greater in the WT than in the CD38KO mice following incubation with IL-13. IL-13 treatment reduced isoproterenol-induced relaxations to similar magnitudes in tracheal segments obtained from WT and CD38KO mice. Both WT and CD38KO mice developed significant bronchoalveolar and parenchymal inflammation after IL-13 challenges compared with naïve controls. The results indicate that CD38 contributes to airway hyperresponsiveness in lungs exposed to IL-13 at least partly by increasing airway smooth muscle reactivity to contractile agonists.
Collapse
Affiliation(s)
- Alonso G P Guedes
- Department of Veterinary Clinicial Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kip SN, Smelter M, Iyanoye A, Chini EN, Prakash YS, Pabelick CM, Sieck GC. Agonist-induced cyclic ADP ribose production in airway smooth muscle. Arch Biochem Biophys 2006; 452:102-7. [PMID: 16846589 DOI: 10.1016/j.abb.2006.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/08/2006] [Accepted: 06/10/2006] [Indexed: 11/22/2022]
Abstract
Cyclic ADP-ribose (cADPR) triggers sarcoplasmic reticulum (SR) Ca(2+) release in airway smooth muscle (ASM). SR Ca(2+) release is an important component of the intracellular Ca(2+) ([Ca(2+)](i)) response of ASM to agonists. Whether cADPR is endogenously produced in ASM during agonist stimulation has not been established. In this study, cADPR production was examined in acutely dissociated porcine ASM cells. ACh stimulation (> or = 1 microM) significantly increased cADPR levels, peaking between 30s and 1 min. This effect was inhibited by M(2) and M(3) muscarinic receptor antagonists. Histamine ((> or = 5 microM) increased cADPR levels to a greater extent than ACh, while diphenhydramine blocked histamine-induced cADPR elevation. Both bradykinin (100 nM) and endothelin-1 (100 nM) also increased cADPR levels to a greater extent than ACh or histamine. These results indicate that in porcine ASM, certain agonists acting via receptors increase cADPR levels. Furthermore, the extent of cADPR responses to agonist varies, possibly reflecting differences in G-protein coupling.
Collapse
Affiliation(s)
- Sertac N Kip
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ay B, Iyanoye A, Sieck GC, Prakash YS, Pabelick CM. Cyclic nucleotide regulation of store-operated Ca2+ influx in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2005; 290:L278-83. [PMID: 16155088 DOI: 10.1152/ajplung.00188.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).
Collapse
Affiliation(s)
- Binnaz Ay
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
13
|
Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2005; 288:L773-88. [PMID: 15821018 DOI: 10.1152/ajplung.00217.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contractility of airway smooth muscle cells is dependent on dynamic changes in the concentration of intracellular calcium. Signaling molecules such as inositol 1,4,5-trisphosphate and cyclic ADP-ribose play pivotal roles in the control of intracellular calcium concentration. Alterations in the processes involved in the regulation of intracellular calcium concentration contribute to the pathogenesis of airway diseases such as asthma. Recent studies have identified cyclic ADP-ribose as a calcium-mobilizing second messenger in airway smooth muscle cells, and modulation of the pathway involved in its metabolism results in altered calcium homeostasis and may contribute to airway hyperresponsiveness. In this review, we describe the basic mechanisms underlying the dynamics of calcium regulation and the role of CD38/cADPR, a novel pathway, in the context of airway smooth muscle function and its contribution to airway diseases such as asthma.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Dept. of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
14
|
Fellner SK, Parker L. Endothelin-1, superoxide and adeninediphosphate ribose cyclase in shark vascular smooth muscle. J Exp Biol 2005; 208:1045-52. [PMID: 15767306 DOI: 10.1242/jeb.01506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SUMMARY
In vascular smooth muscle (VSM) of Squalus acanthias, endothelin-1(ET-1) signals via the ETB receptor. In both shark and mammalian VSM, ET-1 induces a rise in cytosolic Ca2+ concentration([Ca2+]i) via activation of the inositol trisphosphate (IP3) receptor (IP3R) and subsequent release of Ca2+ from the sarcoplasmic reticulum (SR). IP3R-mediated release of SR Ca2+ causes calcium-induced calcium release (CICR) via the ryanodine receptor (RyR), which can be sensitized by cyclic adeninediphosphate ribose (cADPR). cADPR is synthesized from NAD+ by a membrane-bound bifunctional enzyme, ADPR cyclase. We have previously shown that the antagonists of the RyR, Ruthenium Red, high concentrations of ryanodine and 8-Br cADPR, diminish the[Ca2+]i response to ET-1 in shark VSM. To investigate how ET-1 might influence the activity of the ADPR cyclase, we employed inhibitors of the cyclase. To explore the possibility that ET-1-induced production of superoxide (O2.-) might activate the cyclase, we used an inhibitor of NAD(P)H oxidase (NOX), DPI and a scavenger of O2.-, TEMPOL. Anterior mesenteric artery VSM was loaded with fura-2AM to measure [Ca2+]i. In Ca2+-free shark Ringers, ET-1 increased[Ca2+]i by 104±8 nmol l-1. The VSM ADPR cyclase inhibitors, nicotinamide and Zn2+, diminished the response by 62% and 72%, respectively. Both DPI and TEMPOL reduced the response by 63%. The combination of the IP3R antagonists, 2-APB or TMB-8, with DPI or TEMPOL further reduced the response by 83%. We show for the first time that in shark VSM, inhibition of the ADPR cyclase reduces the[Ca2+]i response to ET-1 and that superoxide may be involved in the activation of the cyclase.
Collapse
Affiliation(s)
- Susan K Fellner
- Mount Desert Island Biological Laboratory, Salisbury, Maine 04672, USA.
| | | |
Collapse
|
15
|
Fellner SK, Arendshorst WJ. Angiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways. Am J Physiol Renal Physiol 2004; 288:F785-91. [PMID: 15598842 DOI: 10.1152/ajprenal.00372.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II induces a rise in cytosolic Ca(2+) ([Ca(2+)](i)) in vascular smooth muscle (VSM) cells via inositol trisphosphate receptor (IP(3)R) activation and release of Ca(2+) from the sarcoplasmic reticulum (SR). The Ca(2+) signal is augmented by calcium-induced calcium release (CICR) and by cyclic adeninediphosphate ribose (cADPR), which sensitizes the ryanodine-sensitive receptor (RyR) to Ca(2+) to further amplify CICR. cADPR is synthesized from beta-nicotinamide adenine dinucleotide (NAD(+)) by a membrane-bound bifunctional enzyme, ADPR cyclase. To investigate the possibility that ANG II activates the ADPR cyclase of afferent arterioles, we used inhibitors of the IP(3)R, RyR, and ADPR cyclase. Afferent arterioles were isolated from rat kidney with the magnetized microsphere and sieving technique and loaded with fura-2 to measure [Ca(2+)](i). In Ca(2+)-containing buffer, ANG II increased [Ca(2+)](i) by 125 +/- 10 nM. In the presence of the IP(3)R antagonists TMB-8 and 2-APB, the peak responses to ANG II were reduced by 74 and 81%, respectively. The specific antagonist of cADPR 8-Br ADPR and a high concentration of ryanodine (100 microM) inhibited the ANG II-induced increases in [Ca(2+)](i) by 75 and 69%, respectively. Nicotinamide and Zn(2+) are known inhibitors of the VSM ADPR cyclase. Nicotinamide diminished the [Ca(2+)](i) response to ANG II by 66%. In calcium-free buffer, Zn(2+) reduced the ANG II response by 68%. Simultaneous blockade of the IP(3) and cADPR pathways diminished the [Ca(2+)](i) response to ANG II by 83%. We conclude that ANG II initiates Ca(2+) mobilization from the SR in afferent arterioles via the classic IP(3)R pathway and that ANG II may lead to activation of the ADPR cyclase to form cADPR, which, via its action on the RyR, substantially augments the Ca(2+) response.
Collapse
Affiliation(s)
- Susan K Fellner
- Dept. of Cell and Molecular Physiology, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
16
|
Thompson M, Barata da Silva H, Zielinska W, White TA, Bailey JP, Lund FE, Sieck GC, Chini EN. Role of CD38 in myometrial Ca2+ transients: modulation by progesterone. Am J Physiol Endocrinol Metab 2004; 287:E1142-8. [PMID: 15339743 DOI: 10.1152/ajpendo.00122.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin-induced Ca(2+) transients play an important role in myometrial contractions. Here, using a knockout model, we found that the enzyme CD38, responsible for the synthesis of the second messenger cyclic ADP-ribose (cADPR), plays an important role in the oxytocin-induced Ca(2+) transients and contraction. We also observed that CD38 is necessary for TNF-alpha-increased agonist-stimulated Ca(2+) transients in human myometrial cells. We provide experimental evidence that the TNF-alpha effect is mediated by increased expression of the enzyme CD38. First, we observed that TNF-alpha increased oxytocin-induced Ca(2+) transients and CD38 expression in human myometrial cells. Moreover, using small interference RNA technology, we observed that TNF-alpha stimulation of agonist-induced Ca(2+) transients was abolished by blocking the expression of CD38. In control experiments, we observed that activation of the component of the TNF-alpha signaling pathway, NF-kappaB, was not affected by the treatments. Finally, we observed that the effects of TNF-alpha on CD38 cyclase and oxytocin-induced Ca(2+) transients are abolished by progesterone. In conclusion, we provide the first experimental evidence that CD38 is important for myometrial Ca(2+) transients and contraction. Moreover, CD38 is necessary for the TNF-alpha-mediated augmentation of agonist-induced Ca(2+) transients in myometrial cells. We propose that the balance between cytokines and placental steroids regulates the expression of CD38 in vivo and cell responsiveness to oxytocin.
Collapse
Affiliation(s)
- Michael Thompson
- Dept. of Anesthesiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Deshpande DA, White TA, Guedes AGP, Milla C, Walseth TF, Lund FE, Kannan MS. Altered airway responsiveness in CD38-deficient mice. Am J Respir Cell Mol Biol 2004; 32:149-56. [PMID: 15557017 DOI: 10.1165/rcmb.2004-0243oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) mobilizes calcium from intracellular stores and contributes to agonist-induced intracellular calcium elevation in airway smooth muscle (ASM). In this study we determined the functional role of CD38/cADPR signaling in the regulation of airway tone using CD38 deficient (cd38(-/-)) mice. The responsiveness to different doses of methacholine, as determined by changes in lung resistance and dynamic compliance, was significantly (P < or = 0.05) lower in cd38(-/-) mice compared with wild-type controls. To determine the mechanism responsible for the reduced responsiveness, we measured the intracellular calcium responses to contractile agonists in ASM cells. In ASM cells isolated from cd38(-/-) mice, the intracellular calcium responses to acetylcholine and endothelin-1 were significantly lower than in controls. Pretreatment of ASM cells with a cADPR antagonist resulted in attenuated intracellular calcium responses to endothelin-1 in cells isolated from wild-type mice, but not in those isolated from the cd38(-/-) mice. Very low cADPR levels and no detectable ADP-ribosyl cyclase activity were observed in lung tissue from cd38(-/-) mice, suggesting that CD38 is a critical source for cADPR synthesis. The results of the present study demonstrate that CD38/cADPR contributes to airway smooth muscle tone and responsiveness through its effects on agonist-induced elevation of intracellular calcium in ASM cells.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Deshpande DA, Dogan S, Walseth TF, Miller SM, Amrani Y, Panettieri RA, Kannan MS. Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway. Am J Respir Cell Mol Biol 2004; 31:36-42. [PMID: 14764428 DOI: 10.1165/rcmb.2003-0313oc] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD38/cyclic adenosine diphosphate ribose (cADPR) signaling plays an important role in the regulation of intracellular calcium responses to agonists in a variety of cells, including airway smooth muscle (ASM) cells. The present study was aimed at determining the effect of interleukin (IL)-13, a cytokine implicated in the pathogenesis of asthma, on CD38/cADPR signaling and to ascertain the contribution of CD38/cADPR signaling to IL-13-induced airway hyperresponsiveness. Human ASM cells maintained in culture were exposed to 50 ng/ml IL-13 for 22 h and levels of CD38 expression and intracellular calcium responses to agonists were measured. Treatment of human ASM cells with IL-13 resulted in increased CD38 expression as determined by real-time polymerase chain reaction, Western blot analysis, and indirect immunofluorescence. Increased CD38 expression was reflected as increased ADP-ribosyl cyclase activity in the ASM cell membranes. The net intracellular calcium responses to bradykinin, thrombin, and histamine were significantly (P < or = 0.05) higher in cells treated with IL-13 compared with controls. Furthermore, 8-bromo-cADPR, a cADPR antagonist, attenuated IL-13-induced augmented intracellular calcium responses to agonists in human ASM cells. These findings indicate that the CD38/cADPR-dependent pathway has a major role in IL-13-induced modulation of calcium signaling in human ASM.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, MN, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yi FX, Zhang AY, Campbell WB, Zou AP, Van Breemen C, Li PL. Simultaneous in situ monitoring of intracellular Ca2+ and NO in endothelium of coronary arteries. Am J Physiol Heart Circ Physiol 2002; 283:H2725-32. [PMID: 12388315 DOI: 10.1152/ajpheart.00428.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We developed an in situ assay system to simultaneously monitor intracellular Ca(2+) concentration ([Ca(2+)](i), fura 2 as indicator) and nitric oxide (NO) levels [4,5-diaminofluorescein as probe] in the intact endothelium of small bovine coronary arteries by using a fluorescent microscopic imaging technique with high-speed wavelength switching. Bradykinin (BK; 1 microM) stimulated a rapid increase in [Ca(2+)](i) followed by an increase in NO production in the endothelial cells. The protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO; 10 microM) induced a gradual, small increase in [Ca(2+)](i) and a slow increase in intracellular NO levels. Removal of extracellular Ca(2+) and depletion of Ca(2+) stores completely blocked BK-induced increase in NO production but had no effect on PAO-induced NO production. However, a further reduction of [Ca(2+)](i) by application of BAPTA-AM or EGTA with ionomycin abolished the PAO-induced NO increase. These results indicate that a simultaneous monitoring of [Ca(2+)](i) and intracellular NO production in the intact endothelium is a powerful tool to study Ca(2+)-dependent regulation of endothelial nitric oxide synthase, which provides the first direct evidence for a permissive role of Ca(2+) in tyrosine phosphorylation-induced NO production.
Collapse
Affiliation(s)
- Fu-Xian Yi
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | |
Collapse
|
20
|
White TA, Walseth TF, Kannan MS. Nitric oxide inhibits ADP-ribosyl cyclase through a cGMP-independent pathway in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1065-71. [PMID: 12376359 DOI: 10.1152/ajplung.00064.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence for a role of cyclic ADP-ribose (cADPR) in intracellular Ca2+ regulation in smooth muscle. cADPR is synthesized and degraded by ADP-ribosyl cyclase and cADPR hydrolase, respectively, by a bifunctional protein, CD38. Nitric oxide (NO) inhibits intracellular Ca2+ mobilization in airway smooth muscle. The present study was designed to determine whether this inhibition is due to regulation of ADP-ribosyl cyclase and/or cADPR hydrolase activity. Sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine, NO donors, produced a concentration-dependent decrease in ADP-ribosyl cyclase, but not cADPR hydrolase, activity. The NO scavenger carboxy-PTIO prevented and reversed, and reduced glutathione prevented, the inhibition of ADP-ribosyl cyclase by SNP, suggesting S-nitrosylation by NO as a mechanism. N-ethylmaleimide, which covalently modifies protein sulfhydryl groups, making them incapable of nitrosylation, produced a marked inhibition of ADP-ribosyl cyclase, but not cADPR hydrolase, activity. SNP and N-ethylmaleimide significantly inhibited the ADP-ribosyl cyclase activity in recombinant human CD38 without affecting the cADPR hydrolase activity. These results provide a novel mechanism for differential regulation of CD38 by NO through a cGMP-independent pathway involving S-nitrosylation of thiols.
Collapse
Affiliation(s)
- Thomas A White
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
21
|
Mohanty MJ, Li X. Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel. Am J Physiol Cell Physiol 2002; 283:C456-62. [PMID: 12107055 DOI: 10.1152/ajpcell.00057.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various mechanical stimuli increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). A part of the increase in [Ca(2+)](i) is due to the release of Ca(2+) from intracellular stores. We have investigated the effect of mechanical stimulation produced by cyclical stretch on the release of Ca(2+) from the intracellular stores. Permeabilized VSMC loaded with (45)Ca(2+) were subjected to 7.5% average (15% maximal) cyclical stretch. This resulted in an increase in (45)Ca(2+) rate constant by 0.126 +/- 0.0035. Inhibition of inositol 1,4,5-trisphosphate (IP(3)), ryanodine, and nicotinic acid adenine dinucleotide phosphate channels (NAADP) with 50 microg/ml heparin, 50 microM ruthenium red, and 25 microM thio-NADP, respectively, did not block the increase in (45)Ca(2+) efflux in response to cyclical stretch. However, 10 microM lanthanum, 10 microM gadolinium, and 10 microM cytochalasin D but not 10 microM nocodazole inhibited the increase in (45)Ca(2+) efflux. This supports the existence of a novel stretch-sensitive intracellular Ca(2+) store in VSMC that is distinct from the IP(3)-, ryanodine-, and NAADP-sensitive stores.
Collapse
Affiliation(s)
- Madhumita Jena Mohanty
- Department of Medicine, Wayne State University School of Medicine and John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
22
|
Stout MA, Raeymaekers L, De Smedt H, Casteels R. Characterization of Ca2+ release from heterogeneous Ca2+ stores in sarcoplasmic reticulum isolated from arterial and gastric smooth muscle. Can J Physiol Pharmacol 2002; 80:588-603. [PMID: 12117308 DOI: 10.1139/y02-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ transport was investigated in vesicles of sarcoplasmic reticulum subfractionated from bovine main pulmonary artery and porcine gastric antrum using digitonin binding and zonal density gradient centrifugation. Gradient fractions recovered at 15-33% sucrose were studied as the sarcoplasmic reticulum component using Fluo-3 fluorescence or 45Ca2+ Millipore filtration. Thapsigargin blocked active Ca2+ uptake and induced a slow Ca2+ release from actively loaded vesicles. Unidirectional 45Ca2+ efflux from passively loaded vesicles showed multicompartmental kinetics. The time course of an initial fast component could not be quantitatively measured with the sampling method. The slow release had a half-time of several minutes. Both components were inhibited by 20 microM ruthenium red and 10 mM Mg2+. Caffeine, inositol 1,4,5-trisphosphate, ATP, and diltiazem accelerated the slow component. A Ca2+ release component activated by ryanodine or cyclic adenosine diphosphate ribose was resolved with Fluo-3. Comparison of tissue responses showed that the fast Ca2+ release was significantly smaller and more sensitive to inhibition by Mg2+ and ruthenium red in arterial vesicles. They released more Ca2+ in response to inositol 1,4,5-trisphosphate and were more sensitive to activation by cyclic adenosine diphosphate ribose. Ryanodine and caffeine, in contrast, were more effective in gastric antrum. In each tissue, the fraction of the Ca2+ store released by sequential application of caffeine and inositol 1,4,5-trisphosphate depended on the order applied and was additive. The results indicate that sarcoplasmic reticulum purified from arterial and gastric smooth muscle represents vesicle subpopulations that retain functional Ca2+ channels that reflect tissue-specific pharmacological modulation. The relationship of these differences to physiological responses has not been determined.
Collapse
|
23
|
Tang WX, Chen YF, Zou AP, Campbell WB, Li PL. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Heart Circ Physiol 2002; 282:H1304-10. [PMID: 11893565 DOI: 10.1152/ajpheart.00843.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cADP ribose (cADPR) serves as second messenger to activate the ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) and mobilize intracellular Ca(2+) in vascular smooth muscle cells. However, the mechanisms mediating the effect of cADPR remain unknown. The present study was designed to determine whether FK-506 binding protein 12.6 (FKBP12.6), an accessory protein of the RyRs, plays a role in cADPR-induced activation of the RyRs. A 12.6-kDa protein was detected in bovine coronary arterial smooth muscle (BCASM) and cultured CASM cells by being immunoblotted with an antibody against FKBP12, which also reacted with FKBP12.6. With the use of planar lipid bilayer clamping techniques, FK-506 (0.01-10 microM) significantly increased the open probability (NP(O)) of reconstituted RyR/Ca(2+) release channels from the SR of CASM. This FK-506-induced activation of RyR/Ca(2+) release channels was abolished by pretreatment with anti-FKBP12 antibody. The RyRs activator cADPR (0.1-10 microM) markedly increased the activity of RyR/Ca(2+) release channels. In the presence of FK-506, cADPR did not further increase the NP(O) of RyR/Ca(2+) release channels. Addition of anti-FKBP12 antibody also completely blocked cADPR-induced activation of these channels, and removal of FKBP12.6 by preincubation with FK-506 and subsequent gradient centrifugation abolished cADPR-induced increase in the NP(O) of RyR/Ca(2+) release channels. We conclude that FKBP12.6 plays a critical role in mediating cADPR-induced activation of RyR/Ca(2+) release channels from the SR of BCASM.
Collapse
Affiliation(s)
- Wang-Xian Tang
- Research Institute of Liver Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
24
|
Dogan S, White TA, Deshpande DA, Murtaugh MP, Walseth TF, Kannan MS. Estrogen increases CD38 gene expression and leads to differential regulation of adenosine diphosphate (ADP)-ribosyl cyclase and cyclic ADP-ribose hydrolase activities in rat myometrium. Biol Reprod 2002; 66:596-602. [PMID: 11870063 DOI: 10.1095/biolreprod66.3.596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hormones influence uterine contractility through their effects on intracellular calcium. The regulation of intracellular calcium in uterine smooth muscle is achieved by several mechanisms and includes mobilization from intracellular stores by inositol 1,4,5-trisphosphate and ryanodine-sensitive channels. Cyclic ADP-ribose (cADPR), a metabolite of NAD(+), is known to mediate calcium release through ryanodine receptor channels. A cell surface glycoprotein, CD38, catalyzes the synthesis and breakdown of cADPR and thus possesses bifunctional enzymatic activity. The regulation of cADPR synthesis by ADP-ribosyl cyclase (cyclase) or degradation by cADP-ribose hydrolase (hydrolase) by hormones in the myometrium is poorly understood. We investigated the effects of estradiol-17 beta on CD38 expression and the synthesis and degradation of cADPR in myometrial smooth muscle obtained from ovariectomized rats. CD38 expression was studied by reverse transcription polymerase chain reaction and Western blot analyses. In uterine microsomal fractions, cyclase and hydrolase activities were measured using nicotinamide guanine dinucleotide and [(32)P]cADPR as substrates, respectively. Microsomal proteins subfractionated by SDS-PAGE and gel filtration were used to determine the fractions containing cyclase and hydrolase activities. The results demonstrate that cyclase and hydrolase activities are associated with a single protein fraction, similar to CD38 in uteri from both ovariectomized and estradiol-treated rats, and estradiol-17 beta causes 1) increased CD38 mRNA and protein expression and 2) significantly enhanced cyclase but not hydrolase activity. The differential regulation of CD38 by estradiol-17 beta, resulting in increased cADPR synthesis, would have profound effects on calcium regulation and myometrial contractility.
Collapse
Affiliation(s)
- Soner Dogan
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mohanty MJ, Ye M, Li X, Rossi NF. Hypotonic swelling-induced Ca(2+) release by an IP(3)-insensitive Ca(2+) store. Am J Physiol Cell Physiol 2001; 281:C555-62. [PMID: 11443054 DOI: 10.1152/ajpcell.2001.281.2.c555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotonic swelling increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). The source of this Ca(2+) is not clear. To study the source of increase in [Ca(2+)](i) in response to hypotonic swelling, we measured [Ca(2+)](i) in fura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a 40.7-nM increase in [Ca(2+)](i) that was not inhibited by EGTA but was inhibited by 1 microM thapsigargin. Prior depletion of inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores with vasopressin did not inhibit the increase in [Ca(2+)](i) in response to hypotonic swelling. Exposure of (45)Ca(2+)-loaded intracellular stores to hypotonic swelling in permeabilized VSMC produced an increase in (45)Ca(2+) efflux, which was inhibited by 1 microM thapsigargin but not by 50 microg/ml heparin, 50 microM ruthenium red, or 25 microM thio-NADP. Thus hypotonic swelling of VSMC causes a release of Ca(2+) from the intracellular stores from a novel site distinct from the IP(3)-, ryanodine-, and nicotinic acid adenine dinucleotide phosphate-sensitive stores.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cell Line
- Enzyme Inhibitors/pharmacology
- Hypotonic Solutions/pharmacology
- Inositol 1,4,5-Trisphosphate/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate/pharmacology
- Intracellular Membranes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NADP/analogs & derivatives
- NADP/pharmacology
- Osmolar Concentration
- Ryanodine/pharmacology
- Thapsigargin/pharmacology
Collapse
Affiliation(s)
- M J Mohanty
- Department of Medicine, Wayne State University School of Medicine and John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
26
|
Pabelick CM, Sieck GC, Prakash YS. Invited review: significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol (1985) 2001; 91:488-96. [PMID: 11408467 DOI: 10.1152/jappl.2001.91.1.488] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.
Collapse
Affiliation(s)
- C M Pabelick
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
27
|
Li PL, Tang WX, Valdivia HH, Zou AP, Campbell WB. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol 2001; 280:H208-15. [PMID: 11123235 DOI: 10.1152/ajpheart.2001.280.1.h208] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to test the hypothesis that cADP-ribose (cADPR) increases Ca(2+) release through activation of ryanodine receptors (RYR) on the sarcoplasmic reticulum (SR) in coronary arterial smooth muscle cells (CASMCs). We reconstituted RYR from the SR of CASMCs into planar lipid bilayers and examined the effect of cADPR on the activity of these Ca(2+) release channels. In a symmetrical cesium methanesulfonate configuration, a 245 pS Cs(+) current was recorded. This current was characterized by the formation of a subconductance and increase in the open probability (NP(o)) of the channels in the presence of ryanodine (0.01-1 microM) and imperatoxin A (100 nM). A high concentration of ryanodine (50 microM) and ruthenium red (40-80 microM) substantially inhibited the activity of RYR/Ca(2+) release channels. Caffeine (0.5-5 mM) markedly increased the NP(o) of these Ca(2+) release channels of the SR, but D-myo-inositol 1,4,5-trisphospate and heparin were without effect. Cyclic ADPR significantly increased the NP(o) of these Ca(2+) release channels of SR in a concentration-dependent manner. Addition of cADPR (0.01 microM) into the cis bath solution produced a 2.9-fold increase in the NP(o) of these RYR/Ca(2+) release channels. An eightfold increase in the NP(o) of the RYR/Ca(2+) release channels (0.0056 +/- 0.001 vs. 0.048 +/- 0.017) was observed at a concentration of cADPR of 1 microM. The effect of cADPR was completely abolished by ryanodine (50 microM). In the presence of cADPR, Ca(2+)-induced activation of these channels was markedly enhanced. These results provide evidence that cADPR activates RYR/Ca(2+) release channels on the SR of CASMCs. It is concluded that cADPR stimulates Ca(2+) release through the activation of RYRs on the SR of these smooth mucle cells.
Collapse
Affiliation(s)
- P L Li
- Departments of Pharmacology and Toxicology and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
28
|
Prakash YS, Kannan MS, Walseth TF, Sieck GC. cADP ribose and [Ca(2+)](i) regulation in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2000; 279:H1482-9. [PMID: 11009432 DOI: 10.1152/ajpheart.2000.279.4.h1482] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cADP ribose (cADPR)-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) responses were assessed in acutely dissociated adult rat ventricular myocytes using real-time confocal microscopy. In quiescent single myocytes, injection of cADPR (0.1-10 microM) induced sustained, concentration-dependent [Ca(2+)](i) responses ranging from 50 to 500 nM, which were completely inhibited by 20 microM 8-amino-cADPR, a specific blocker of the cADPR receptor. In myocytes displaying spontaneous [Ca(2+)](i) waves, increasing concentrations of cADPR increased wave frequency up to approximately 250% of control. In electrically paced myocytes (0.5 Hz, 5-ms duration), cADPR increased the amplitude of [Ca(2+)](i) transients in a concentration-dependent fashion, up to 150% of control. Administration of 8-amino-cADPR inhibited both spontaneous waves as well as [Ca(2+)](i) responses to electrical stimulation, even in the absence of exogenous cADPR. However, subsequent [Ca(2+)](i) responses to 5 mM caffeine were only partially inhibited by 8-amino-cADPR. In contrast, even under conditions where ryanodine receptor (RyR) channels were blocked with ryanodine, high cADPR concentrations still induced an [Ca(2+)](i) response. These results indicate that in cardiac myocytes, cADPR induces Ca(2+) release from the sarcoplasmic reticulum through both RyR channels and via mechanisms independent of RyR channels.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Foundation, Rochester 55905, USA.
| | | | | | | |
Collapse
|
29
|
Yu JZ, Zhang DX, Zou AP, Campbell WB, Li PL. Nitric oxide inhibits Ca(2+) mobilization through cADP-ribose signaling in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 2000; 279:H873-81. [PMID: 10993745 DOI: 10.1152/ajpheart.2000.279.3.h873] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha-toxin-permeabilized primary cultures of CASMCs, cADP-ribose (5 microM) produced a rapid Ca(2+) release, which was completely blocked by pretreatment of cells with the cADP-ribose antagonist 8-bromo-cADP-ribose (8-Br-cADPR). In intact fura 2-loaded CASMCs, 80 mM KCl was added to depolarize the cells and increase intracellular Ca(2+) concentration ([Ca(2+)](i)). Sodium nitroprusside (SNP), an NO donor, produced a concentration-dependent inhibition of the KCl-induced increase in [Ca(2+)](i), but it had no effect on the U-46619-induced increase in [Ca(2+)](i). In the presence of 8-Br-cADPR (100 microM) and ryanodine (10 microM), the inhibitory effect of SNP was markedly attenuated. HPLC analyses showed that CASMCs expressed the ADP-ribosyl cyclase activity, and SNP (1-100 microM) significantly reduced the ADP-ribosyl cyclase activity in a concentration-dependent manner. The effect of SNP was completely blocked by addition of 10 microM oxygenated hemoglobin. We conclude that ADP-ribosyl cyclase is present in CASMCs, and NO may decrease [Ca(2+)](i) by inhibition of cADP-ribose-induced Ca(2+) mobilization.
Collapse
MESH Headings
- ADP-ribosyl Cyclase
- ADP-ribosyl Cyclase 1
- Adenosine Diphosphate Ribose/analogs & derivatives
- Adenosine Diphosphate Ribose/antagonists & inhibitors
- Adenosine Diphosphate Ribose/metabolism
- Adenosine Diphosphate Ribose/pharmacology
- Animals
- Antigens, CD
- Antigens, Differentiation/drug effects
- Antigens, Differentiation/metabolism
- Calcium/metabolism
- Cattle
- Cell Membrane Permeability/drug effects
- Cells, Cultured
- Coronary Vessels/cytology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Cyclic ADP-Ribose
- Guanylate Cyclase/antagonists & inhibitors
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NAD+ Nucleosidase/drug effects
- NAD+ Nucleosidase/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide/pharmacology
- Nucleotides, Cyclic/metabolism
- Nucleotides, Cyclic/pharmacology
- Potassium Chloride/pharmacology
- Sarcoplasmic Reticulum/metabolism
- Signal Transduction/drug effects
- Type C Phospholipases/pharmacology
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- J Z Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
30
|
Chini EN, de Toledo FG, Thompson MA, Dousa TP. Effect of estrogen upon cyclic ADP ribose metabolism: beta-estradiol stimulates ADP ribosyl cyclase in rat uterus. Proc Natl Acad Sci U S A 1997; 94:5872-6. [PMID: 9159167 PMCID: PMC20873 DOI: 10.1073/pnas.94.11.5872] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cyclic ADP ribose (cADPR) has been shown to trigger Ca2+ release from intracellular stores through ryanodine receptor/channel. In our previous study we observed that all-trans-retinoic acid stimulates cADPR synthesis by ADP ribose cyclase (ADPR cyclase) in cultured epithelial cells. We have now investigated whether cADPR may play a signaling role in action of beta-estradiol (E2), an archetypal steroid superfamily hormone, upon its major target organ, uterus, in vivo. Administration of E2 to gonadectomized rats (0.2 mg/kg per day for 7 days) resulted in an approximately Delta + 300% increase of ADPR cyclase activity in extracts from uterus, but in liver, brain, or skeletal muscle ADPR cyclase was unchanged. Most of the E2-stimulated uterine ADPR cyclase was associated with membranes. The higher ADPR cyclase activity in response to E2 was due to the increase of VMAX without change in Km. Simultaneous administration of estrogen antagonist tamoxifen (8 mg/kg per day) with E2 (0.2 mg/kg per day) prevented an increase in ADPR cyclase. In uterine extracts from E2-treated rats, the rate of cADPR inactivation by cADPR hydrolase and the activity of NADase was increased, but to a much lesser degree than activity of ADPR cyclase. Our results indicate that E2, via action to its nuclear receptors in vivo, increases ADPR cyclase activity in uterus. We propose that some of the estrogen effects, and by extension the effects of other steroid superfamily hormones, upon specialized cellular functions and upon hormone-induced gene expression in target cells, are mediated by cADPR-Ca2+ release pathway.
Collapse
Affiliation(s)
- E N Chini
- Renal Pathophysiology Laboratory, Department of Physiology and Biophysics, Mayo Clinic and Mayo Medical School, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|