1
|
Schettler F, Gattor AO, Koch P, Keller M. Characterization of [ 3H]Propionylated Human Peptide YY-A New Probe for Neuropeptide Y Y 2 Receptor Binding Studies. ACS Pharmacol Transl Sci 2025; 8:785-799. [PMID: 40109743 PMCID: PMC11915035 DOI: 10.1021/acsptsci.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
The neuropeptide Y (NPY) Y2 receptor (Y2R) is a G-protein-coupled receptor that is involved in the regulation of various physiological processes such as neurotransmitter release, bone metabolism, and memory. Consequently, the Y2R represents a potential drug target, e.g., for the treatment of epilepsy and mood disorders. Until now, the determination of the Y2R binding affinities of Y2R ligands has primarily been performed using 125I-labeled derivatives of the endogenous Y2R agonists NPY and peptide YY (PYY). A tritium-labeled NPY derivative has also been used; however, its suitability for binding assays in sodium-containing buffer is doubtful. We synthesized a tritium-labeled PYY derivative by [3H]propionylation at Lys4 ([3H]2). The radioligand was characterized by saturation binding, association, and dissociation kinetics and was applied in competition binding assays. Specific binding of [3H]2 at intact Chinese hamster ovary cells expressing the hY2R was saturable in both sodium-free buffer (apparent K d = 0.016-0.067 nM) and sodium-containing buffer (175 mM Na+, apparent K d = 0.16-0.18 nM). Competition binding experiments with Y2R reference ligands yielded K i values, which are in good agreement with the reported Y2R binding affinities, showing that [3H]2 represents a useful tritiated tool compound for the determination of Y2R binding affinities also in buffers containing sodium at physiological concentrations.
Collapse
Affiliation(s)
- Franziska Schettler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| |
Collapse
|
2
|
Kocamaz D, Franzke C, Gröger N, Braun K, Bock J. Early Life Stress-Induced Epigenetic Programming of Hippocampal NPY-Y2 Receptor Gene Expression Changes in Response to Adult Stress. Front Cell Neurosci 2022; 16:936979. [PMID: 35846564 PMCID: PMC9283903 DOI: 10.3389/fncel.2022.936979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a “buffering” programming effect against elevations of Y2R expression induced by AS.
Collapse
Affiliation(s)
- Derya Kocamaz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Caroline Franzke
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jörg Bock
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- PG “Epigenetics and Structural Plasticity,” Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Jörg Bock,
| |
Collapse
|
3
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
4
|
Nahvi RJ, Sabban EL. Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules 2020; 10:biom10091248. [PMID: 32867327 PMCID: PMC7564266 DOI: 10.3390/biom10091248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide Y (NPY) system is emerging as a promising therapeutic target for neuropsychiatric disorders by intranasal delivery to the brain. However, the vast majority of underlying research has been performed with males despite females being twice as susceptible to many stress-triggered disorders such as posttraumatic stress disorder, depression, anorexia nervosa, and anxiety disorders. Here, we review sex differences in the NPY system in basal and stressed conditions and how it relates to varied susceptibility to stress-related disorders. The majority of studies demonstrate that NPY expression in many brain areas under basal, unstressed conditions is lower in females than in males. This could put them at a disadvantage in dealing with stress. Knock out animals and Flinders genetic models show that NPY is important for attenuating depression in both sexes, while its effects on anxiety appear more pronounced in males. In females, NPY expression after exposure to stress may depend on age, timing, and nature and duration of the stressors and may be especially pronounced in the catecholaminergic systems. Furthermore, alterations in NPY receptor expression and affinity may contribute to the sex differences in the NPY system. Overall, the review highlights the important role of NPY and sex differences in manifestation of neuropsychiatric disorders.
Collapse
|
5
|
Menezes L, de Moraes DA, Ribeiro-Silva N, Silva SMA, Suchecki D, Luz J. Chronic REM sleep restriction in young rats increases energy expenditure with no change in food intake. Exp Physiol 2020; 105:1339-1348. [PMID: 32589295 DOI: 10.1113/ep088474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of different periods of REM sleep restriction (7, 14 and 21 days) on metabolic parameters in young rats? What is the main finding and its importance? Animals submitted to each period of REM sleep deprivation showed a negative energy balance, with reduced body weight gain, body energy gain and gross food efficiency, less body fat content, and increased energy expenditure. There was no increase in food intake after any of the REM sleep restriction periods. In young rats, negative energy balance is not compensated by increased dietary intake as observed in adult rats. ABSTRACT Reduced sleep is associated with metabolic alterations, not only in adults, but also in children and adolescents. Several studies have shown that sleep restricted (SR) adult rats exhibit metabolic changes, followed by increased food intake, but few have evaluated these functions in young animals. The aim of the present study was to establish the metabolic parameters of young rats subjected to different periods of REM sleep restriction and to propose a correction factor for the correct measurement of food intake. Young male Wistar rats were distributed in control and SR groups for 7, 14 or 21 days. Sleep restriction was performed by the single platform method for 18 h. Regardless of the length of sleep restriction, all SR rats had a negative energy balance, evidenced by reduction in body weight gain, body energy gain and gross food efficiency, accompanied by increased energy expenditure. In addition, sleep restriction reduced body fat content throughout the entire period. Discounting food spillage, there was no increase in food intake by SR rats. In conclusion, the present study revealed metabolic changes in SR young rats after different lengths of REM sleep restriction and that weight loss and increased energy expenditure were not compensated by increased dietary intake as occurs in adult rats, indicating that young rats use other mechanisms to cope with the negative energy balance caused by sleep restriction. In addition, we propose a correction factor for food intake, to prevent overestimation of this parameter, due to food spillage in the water containers.
Collapse
Affiliation(s)
- Letícia Menezes
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Neila Ribeiro-Silva
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacqueline Luz
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Ahi EP, Duenser A, Singh P, Gessl W, Sturmbauer C. Appetite regulating genes may contribute to herbivory versus carnivory trophic divergence in haplochromine cichlids. PeerJ 2020; 8:e8375. [PMID: 31998557 PMCID: PMC6977467 DOI: 10.7717/peerj.8375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Feeding is a complex behaviour comprised of satiety control, foraging, ingestion and subsequent digestion. Cichlids from the East African Great Lakes are renowned for their diverse trophic specializations, largely predicated on highly variable jaw morphologies. Thus, most research has focused on dissecting the genetic, morphological and regulatory basis of jaw and teeth development in these species. Here for the first time we explore another aspect of feeding, the regulation of appetite related genes that are expressed in the brain and control satiety in cichlid fishes. Using qPCR analysis, we first validate stably expressed reference genes in the brain of six haplochromine cichlid species at the end of larval development prior to foraging. We next evaluate the expression of 16 appetite related genes in herbivorous and carnivorous species from the parallel radiations of Lake Tanganyika, Malawi and Victoria. Interestingly, we find increased expression of two appetite-regulating genes (anorexigenic genes), cart and npy2r, in the brain of carnivorous species in all the three lakes. This supports the notion that appetite gene regulation might play a part in determining trophic niche specialization in divergent cichlid species, already prior to exposure to different diets. Our study contributes to the limited body of knowledge on the neurological circuitry that controls feeding transitions and adaptations in cichlids and other teleosts.
Collapse
Affiliation(s)
- Ehsan P. Ahi
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Institute of Biology, University of Graz, Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Graz, Austria
| | - Pooja Singh
- Institute of Biology, University of Graz, Graz, Austria
- Institute of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
7
|
Domin H, Piergies N, Pięta E, Wyska E, Pochwat B, Wlaź P, Śmiałowska M, Paluszkiewicz C, Szewczyk B. Characterization of the Brain Penetrant Neuropeptide Y Y2 Receptor Antagonist SF-11. ACS Chem Neurosci 2019; 10:3454-3463. [PMID: 31267743 DOI: 10.1021/acschemneuro.9b00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This paper discusses the biological and three-dimensional molecular structure of the novel, nonpeptide Y2R antagonist, SF-11 [N-(4-ethoxyphenyl)-4-(hydroxydiphenylmethyl)-1-piperidinecarbothioamide]. Pharmacokinetic studies in a rat model indicated that, following intraperitoneal dosing, SF-11 crossed the blood-brain barrier and was able to penetrate the brain, making it a suitable tool for behavioral studies. We showed for the first time that SF-11 decreased the immobility time in the forced swim test (FST) after acute peripheral administration (10 and 20 mg/kg), indicating that it has antidepressant potential. Inhibitors of the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways blocked the anti-immobility effect of SF-11, suggesting that these pathways are involved in the antidepressant-like activity of SF-11 in the FST. The results of locomotor activity of rats indicate that the effects observed in the FST are specific and due to the antidepressant-like activity of SF-11. These findings provide further evidence for the antidepressant potential of Y2R antagonists. Also, the application of Fourier transform infrared absorption (FT-IR) and Raman spectroscopy (RS) methods combined with theoretical density functional theory (DFT) calculations allowed us to present the optimized spatial orientation of the investigated drug. Structural characterization of SF-11 based on vibrational spectroscopic data is of great importance and will aid in understanding its biological activity and pave the way for its development as a new antidepressant agent.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL-20-033 Lublin, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | | | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| |
Collapse
|
8
|
NPY 2 Receptors Reduce Tonic Action Potential-Independent GABA B Currents in the Basolateral Amygdala. J Neurosci 2019; 39:4909-4930. [PMID: 30971438 DOI: 10.1523/jneurosci.2226-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
Although NPY has potent anxiolytic actions within the BLA, selective activation of BLA NPY Y2 receptors (Y2Rs) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated mIPSCs in BLA principal neurons (PNs). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with TTX. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in approximately half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-mRNA cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on somatostatin interneurons mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate the following: (1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs; and (2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENT Within the BLA, NPY is potently anxiolytic. However, selective activation of NPY2 receptors (Y2Rs) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons, probably from Y2R-expressing somatostatin interneurons, some of which coexpress NPY. This increases principal neuron excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly rectifying K+ currents. Tonic, Y2R-sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.
Collapse
|
9
|
Yao A, Wilson JA, Ball SL. Autonomic nervous system dysfunction and sinonasal symptoms. ALLERGY & RHINOLOGY 2018; 9:2152656718764233. [PMID: 29977656 PMCID: PMC6028164 DOI: 10.1177/2152656718764233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The autonomic nervous system (ANS) richly innervates the nose and paranasal sinuses, and has a significant role in lower airway diseases, e.g., asthma. Nonetheless, its contribution to sinonasal symptoms is poorly understood. This review aimed to explore the complex relationship between the ANS and sinonasal symptoms, with reference to systemic diseases and triggers of ANS dysfunction. Methods A review of articles published in English was conducted by searching medical literature databases with the key words “autonomic nervous system” and (“sinusitis” or “nose” or “otolaryngology”). All identified abstracts were reviewed, and, from these, relevant published whole articles were selected. Results The ANS has a significant role in the pathophysiologic mechanisms that produce sinonasal symptoms. There was limited evidence that describes the relationship of the ANS in sinonasal disease with systemic conditions, e.g. hypertension. There was some evidence to support mechanisms related to physical and psychological stressors in this relationship. Conclusion The role of ANS dysfunction in sinonasal disease is highly complex. The ANS sits within a web of multiple factors, including personality and psychological distress, that contribute to sinonasal symptoms. Further research will help to clarify the etiology of ANS dysfunction and its contribution to common systemic conditions.
Collapse
Affiliation(s)
- Alexander Yao
- ENT Department, Stepping Hill National Health Service (NHS) Foundation Trust, Stockport, United Kingdom
| | - Janet A Wilson
- ENT Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Stephen L Ball
- Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, United Kingdom No external funding sources reported
| |
Collapse
|
10
|
Seldeen KL, Halley PG, Volmar CH, Rodríguez MA, Hernandez M, Pang M, Carlsson SK, Suva LJ, Wahlestedt C, Troen BR, Brothers SP. Neuropeptide Y Y2 antagonist treated ovariectomized mice exhibit greater bone mineral density. Neuropeptides 2018; 67:45-55. [PMID: 29129406 PMCID: PMC5805636 DOI: 10.1016/j.npep.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Abstract
Osteoporosis, a disease characterized by progressive bone loss and increased risk of fracture, often results from menopausal loss of estrogen in women. Neuropeptide Y has been shown to negatively regulate bone formation, with amygdala specific deletion of the Y2 receptor resulting in increased bone mass in mice. In this study, ovariectomized (OVX) mice were injected once daily with JNJ-31020028, a brain penetrant Y2 receptor small molecule antagonist to determine the effects on bone formation. Antagonist treated mice had reduced weight and showed increased whole-body bone mineral density compared to vehicle-injected mice. Micro computerized tomography (micro-CT) demonstrated increased vertebral trabecular bone volume, connectivity density and trabecular thickness. Femoral micro-CT analysis revealed increased bone volume within trabecular regions and greater trabecular number, without significant difference in other parameters or within cortical regions. A decrease was seen in serum P1NP, a measure used to confirm positive treatment outcomes in bisphosphonate treated patients. C-terminal telopeptide 1 (CTX-1), a blood biomarker of bone resorption, was decreased in treated animals. The higher bone mineral density observed following Y2 antagonist treatment, as determined by whole-body DEXA scanning, is indicative of either enhanced mineralization or reduced bone loss. Additionally, our findings that ex vivo treatment of bone marrow cells with the Y2 antagonist did not affect osteoblast and osteoclast formation suggests the inhibitor is not affecting these cells directly, and suggests a central role for compound action in this system. Our results support the involvement of Y2R signalling in bone metabolism and give credence to the hypothesis that selective pharmacological manipulation of Y2R may provide anabolic benefits for treating osteoporosis.
Collapse
Affiliation(s)
- K L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - P G Halley
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C H Volmar
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Rodríguez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Hernandez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S K Carlsson
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - L J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, University of Arkansas Medical School, Little Rock, AR, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S P Brothers
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Domin H, Szewczyk B, Pochwat B, Woźniak M, Śmiałowska M. Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: behavioral, molecular, and immunohistochemical evidence. Psychopharmacology (Berl) 2017; 234:631-645. [PMID: 27975125 PMCID: PMC5263200 DOI: 10.1007/s00213-016-4495-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE It has recently been found that chronic treatment with the highly selective, brain-penetrating Y5 receptor antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro [1] benzothiepino[5,4-d] thiazol-2-yl) amino] cyclohexyl]methyl]-methanesulfonamide], produces antidepressant-like effects in the rat chronic mild stress model. OBJECTIVE In the present study, we investigated the possible antidepressant-like activity of Lu AA33810 in rats subjected to glial ablation in the prefrontal cortex (PFC) by the gliotoxin L-AAA, which is an astroglial degeneration model of depression. RESULTS We observed that Lu AA33810 administered intraperitoneally at a single dose of 10 mg/kg both reversed depressive-like behavioral changes in the forced swim test (FST) and prevented degeneration of astrocytes in the mPFC. The mechanism of antidepressant and glioprotective effects of Lu AA33810 has not been studied, so far. We demonstrated the contribution of the noradrenergic rather than the serotonergic pathway to the antidepressant-like action of Lu AA33810 in the FST. Moreover, we found that antidepressant-like effect of Lu AA33810 was connected with the influence on brain-derived neurotrophic factor (BDNF) protein expression. We also demonstrated the antidepressant-like effect of Lu AA33810 in the FST in rats which did not receive the gliotoxin. We found that intracerebroventricular injection of the selective MAPK/ERK inhibitor U0126 (5 μg/2 μl) and the selective PI3K inhibitor LY294002 (10 nmol/2 μl) significantly inhibited the anti-immobility effect of Lu AA33810 in the FST in rats, suggesting that MAPK/ERK and PI3K signaling pathways could be involved in the antidepressant-like effect of Lu AA33810. CONCLUSION Our results indicate that Lu AA33810 exerts an antidepressant-like effect and suggest the Y5 receptors as a promising target for antidepressant therapy.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bartłomiej Pochwat
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland.
| |
Collapse
|
13
|
Alves CJ, Alencastre IS, Neto E, Ribas J, Ferreira S, Vasconcelos DM, Sousa DM, Summavielle T, Lamghari M. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways. PLoS One 2016; 11:e0165465. [PMID: 27802308 PMCID: PMC5089690 DOI: 10.1371/journal.pone.0165465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY) neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG) and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair.
Collapse
Affiliation(s)
- Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Inês S. Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal
| | - João Ribas
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Sofia Ferreira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniel M. Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
14
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
15
|
Kallupi M, Vendruscolo LF, Carmichael CY, George O, Koob GF, Gilpin NW. Neuropeptide YY(2)R blockade in the central amygdala reduces anxiety-like behavior but not alcohol drinking in alcohol-dependent rats. Addict Biol 2014; 19:755-7. [PMID: 23639035 DOI: 10.1111/adb.12059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrophysiological data suggest a dual role of Y2 receptors (Y2 Rs) as autoreceptors regulating neuropeptide Y release and heteroceptors regulating gamma-aminobutyric acid release in the central amygdala (CeA). Here, we report that neither systemic (JNJ-31020028) nor intra-CeA (BIIE0246) Y2 R antagonism altered operant alcohol responding by alcohol-dependent or non-dependent rats. Conversely, BIIE0246 in the CeA reduced anxiety-like behavior in alcohol-dependent and alcohol-naïve rats. The finding that Y2 R antagonism reduces anxiety-like behavior but not alcohol drinking suggests that these two effects may occur via different functions of the Y2 R (e.g. autoreceptor versus heteroceptor function).
Collapse
Affiliation(s)
- Marsida Kallupi
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Leandro F. Vendruscolo
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | | | - Olivier George
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Nicholas W. Gilpin
- Department of Physiology; Louisiana State University Health Sciences Center; New Orleans LA USA
- Neuroscience Center of Excellence; Louisiana State University Health Sciences Center; New Orleans LA USA
| |
Collapse
|
16
|
Ligands of the neuropeptide Y Y2 receptor. Bioorg Med Chem Lett 2013; 24:430-41. [PMID: 24365162 DOI: 10.1016/j.bmcl.2013.11.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 01/30/2023]
Abstract
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This Letter reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure-activity relationships.
Collapse
|
17
|
Gilpin NW. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides 2012; 46:253-9. [PMID: 22938859 PMCID: PMC3508396 DOI: 10.1016/j.npep.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 08/03/2012] [Indexed: 11/26/2022]
Abstract
Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| |
Collapse
|
18
|
Roberto M, Gilpin NW, Siggins GR. The central amygdala and alcohol: role of γ-aminobutyric acid, glutamate, and neuropeptides. Cold Spring Harb Perspect Med 2012; 2:a012195. [PMID: 23085848 PMCID: PMC3543070 DOI: 10.1101/cshperspect.a012195] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug seeking and drug taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptative mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid-ergic (GABAergic) transmission in CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and AMPA receptors in CeA, whereas chronic alcohol up-regulates N-methyl-d-aspartate receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and anti-stress (e.g., NPY, nociceptin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Collapse
Affiliation(s)
- Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
19
|
Gilpin NW. Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): effects on inhibitory transmission in central amygdala, and anxiety- & alcohol-related behaviors. Alcohol 2012; 46:329-37. [PMID: 22560367 PMCID: PMC3613993 DOI: 10.1016/j.alcohol.2011.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/09/2011] [Accepted: 11/28/2011] [Indexed: 12/25/2022]
Abstract
The central amygdala (CeA) is uniquely situated to function as an interface between stress- and addiction-related processes. This brain region has long been attributed an important role in aversive (e.g., fear) conditioning, as well as the negative emotional states that define alcohol dependence and withdrawal. The CeA is the major output region of the amygdala and receives complex inputs from other amygdaloid nuclei as well as regions that integrate sensory information from the external environment (e.g., thalamus, cortex). The CeA is functionally and anatomically divided into lateral and medial subdivisions that themselves are interconnected and populated by inhibitory interneurons and projections neurons. Neuropeptides are highly expressed in the CeA, particularly in the lateral subdivision, and the role of many of these peptides in regulating anxiety- and alcohol-related behaviors has been localized to the CeA. This review focuses on two of these peptides, corticotropin-releasing factor (CRF) and neuropeptide Y (NPY), that exhibit a high degree of neuroanatomical overlap (e.g., in CeA) and largely opposite behavioral profiles (e.g., in regulating anxiety- and alcohol-related behavior). CRF and NPY systems in the CeA appear to be recruited and/or up-regulated during the transition to alcohol dependence. These and other neuropeptides may converge on GABA synapses in CeA to control projection neurons and downstream effector regions, thereby translating negative affective states into anxiety-like behavior and excessive alcohol consumption.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
20
|
Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, Rinker JA, Jijon AM, Peňa J, Navarro M, Kash TL, Thiele TE. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 2012; 37:1409-21. [PMID: 22218088 PMCID: PMC3327846 DOI: 10.1038/npp.2011.327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
Collapse
Affiliation(s)
- Angela M Sparrow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Chia Li
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin R Cox
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Ana M Jijon
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - José Peňa
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology, University of North Carolina Davie Hall, CB #3270 Chapel Hill, NC 27599-3270, USA, Tel: +1 919 966 1519, Fax: +1 919-962-2537, E-mail:
| |
Collapse
|
21
|
Hayes DM, Fee JR, McCown TJ, Knapp DJ, Breese GR, Cubero I, Carvajal F, Lerma-Cabrera JM, Navarro M, Thiele TE. Neuropeptide Y signaling modulates the expression of ethanol-induced behavioral sensitization in mice. Addict Biol 2012; 17:338-50. [PMID: 21762289 DOI: 10.1111/j.1369-1600.2011.00336.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) and protein kinase A (PKA) have been implicated in neurobiological responses to ethanol. We have previously reported that mutant mice lacking normal production of the RIIβ subunit of PKA (RIIβ-/- mice) show enhanced sensitivity to the locomotor stimulant effects of ethanol and increased behavioral sensitization relative to littermate wild-type RIIβ+/+ mice. We now report that RIIβ-/- mice also show increased NPY immunoreactivity in the nucleus accumbens (NAc) core and the ventral striatum relative to RIIβ+/+ mice. These observations suggest that elevated NPY signaling in the NAc and/or striatum may contribute to the increased sensitivity to ethanol-induced behavioral sensitization that is a characteristic of RIIβ-/- mice. Consistently, NPY-/- mice failed to display ethanol-induced behavioral sensitization that was evident in littermate NPY+/+ mice. To examine more directly the role of NPY in the locomotor stimulant effects of ethanol, we infused a recombinant adeno-associated virus (rAAV) into the region of the NAc core of DBA/2J mice. The rAAV-fibronectin (FIB)-NPY(13-36) vector expresses and constitutively secretes the NPY fragment NPY(13-36) (a selective Y(2) receptor agonist) from infected cells in vivo. Mice treated with the rAAV-FIB-NPY(13-36) vector exhibited reduced expression of ethanol-induced behavioral sensitization compared with mice treated with a control vector. Taken together, the current data provide the first evidence that NPY signaling in the NAc core and the Y(2) receptor modulate ethanol-induced behavioral sensitization.
Collapse
Affiliation(s)
- Dayna M Hayes
- Department of Psychology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gilpin NW, Roberto M. Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neurosci Biobehav Rev 2012; 36:873-88. [PMID: 22101113 PMCID: PMC3325612 DOI: 10.1016/j.neubiorev.2011.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 01/08/2023]
Abstract
Alcohol use disorders are characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and withdrawal syndrome in the absence of drug. The central amygdala (CeA) and neighboring regions (extended amygdala) mediate alcohol-related behaviors and chronic alcohol-induced plasticity. Acute alcohol suppresses excitatory (glutamatergic) transmission whereas chronic alcohol enhances glutamatergic transmission in CeA. Acute alcohol facilitates inhibitory (GABAergic) transmission in CeA, and chronic alcohol increases GABAergic transmission. Electrophysiology techniques are used to explore the effects of neuropeptides/neuromodulators (CRF, NPY, nociceptin, dynorphin, endocannabinoids, galanin) on inhibitory transmission in CeA. In general, pro-anxiety peptides increase, and anti-anxiety peptides decrease CeA GABAergic transmission. These neuropeptides facilitate or block the action of acute alcohol in CeA, and chronic alcohol produces plasticity in neuropeptide systems, possibly reflecting recruitment of negative reinforcement mechanisms during the transition to alcohol dependence. A disinhibition model of CeA output is discussed in the context of alcohol dependence- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
23
|
Macarthur H, Wilken GH, Westfall TC, Kolo LL. Neuronal and non-neuronal modulation of sympathetic neurovascular transmission. Acta Physiol (Oxf) 2011; 203:37-45. [PMID: 21362154 PMCID: PMC3139802 DOI: 10.1111/j.1748-1716.2010.02242.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Noradrenaline, neuropeptide Y and adenosine triphosphate are co-stored in, and co-released from, sympathetic nerves. Each transmitter modulates its own release as well as the release of one another; thus, anything affecting the release of one of these transmitters has consequences for all. Neurotransmission at the sympathetic neurovascular junction is also modulated by non-sympathetic mediators such as angiotensin II, serotonin, histamine, endothelin and prostaglandins through the activation of specific pre-junctional receptors. In addition, nitric oxide (NO) has been identified as a modulator of sympathetic neuronal activity, both as a physiological antagonist against the vasoconstrictor actions of the sympathetic neurotransmitters, and also by directly affecting transmitter release. Here, we review the modulation of sympathetic neurovascular transmission by neuronal and non-neuronal mediators with an emphasis on the actions of NO. The consequences for co-transmission are also discussed, particularly in light of hypertensive states where NO availability is diminished.
Collapse
Affiliation(s)
- H Macarthur
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|
24
|
Gilpin NW, Misra K, Herman MA, Cruz MT, Koob GF, Roberto M. Neuropeptide Y opposes alcohol effects on gamma-aminobutyric acid release in amygdala and blocks the transition to alcohol dependence. Biol Psychiatry 2011; 69:1091-9. [PMID: 21459365 PMCID: PMC3090491 DOI: 10.1016/j.biopsych.2011.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND During the transition to alcohol and drug addiction, neuromodulator systems in the extended amygdala are recruited to mediate aspects of withdrawal and relapse via convergence on inhibitory gamma-aminobutyric acid (GABA) neurons in central amygdala (CeA). METHODS This study investigated the role of neuropeptide Y (NPY) in excessive alcohol drinking by making rats dependent on alcohol via alcohol vapor inhalation. This study also utilized intracellular and whole-cell recording techniques to determine the effects of NPY on GABAergic inhibitory transmission in CeA, synaptic mechanisms involved in these NPY effects, and NPY interactions with alcohol in the CeA of alcohol-naive and alcohol-dependent rats. RESULTS Chronic NPY treatment blocked excessive operant alcohol-reinforced responding associated with alcohol dependence, as well as gradual increases in alcohol responding by intermittently tested nondependent control animals. Neuropeptide Y decreased baseline GABAergic transmission and reversed alcohol-induced enhancement of inhibitory transmission in CeA by suppressing GABA release via actions at presynaptic Y(2) receptors. CONCLUSIONS These results highlight NPY modulation of GABAergic signaling in central amygdala as a promising pharmacotherapeutic target for the treatment of alcoholism. Gamma-aminobutyric acid neurons in the CeA likely constitute a major point of convergence for neuromodulator systems recruited during the transition to alcohol dependence.
Collapse
|
25
|
Moore-Dotson JM, Papke JB, Harkins AB. Upregulation of synaptotagmin IV inhibits transmitter release in PC12 cells with targeted synaptotagmin I knockdown. BMC Neurosci 2010; 11:104. [PMID: 20735850 PMCID: PMC2939654 DOI: 10.1186/1471-2202-11-104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/24/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The function of synaptotagmins (syt) in Ca2+-dependent transmitter release has been attributed primarily to Ca2+-dependent isoforms such as syt I. Recently, syt IV, an inducible Ca2+-independent isoform has been implicated in transmitter release. We postulated that the effects of syt IV on transmitter release are dependent on the expression of syt I. RESULTS To test this, we increased syt IV expression in PC12 cells by either upregulation with forskolin treatment or overexpression with transfection. Two separately generated stable PC12 cell lines with syt I expression abolished by RNAi targeting were used and compared to control cells. We measured catecholamine release from single vesicles by amperometry and neuropeptide Y release from populations of cells by an immunoassay. In syt I targeted cells with forskolin-induced syt IV upregulation, amperometry measurements showed a reduction in the number of release events and the total amount of transmitter molecules released per cell. In cells with syt IV overexpressed, similar amperometry results were obtained, except that the rate of expansion for full fusion was slowed. Neuropeptide Y (NPY) release from syt I knockdown cells was decreased, and overexpression of syt IV did not rescue this effect. CONCLUSIONS These data support an inhibitory effect of syt IV on release of vesicles and their transmitter content. The effect became more pronounced when syt I expression was abolished.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St, Louis, MO 63104, USA
| | | | | |
Collapse
|
26
|
Tasan RO, Lin S, Hetzenauer A, Singewald N, Herzog H, Sperk G. Increased novelty-induced motor activity and reduced depression-like behavior in neuropeptide Y (NPY)-Y4 receptor knockout mice. Neuroscience 2008; 158:1717-30. [PMID: 19121371 DOI: 10.1016/j.neuroscience.2008.11.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/29/2008] [Accepted: 11/20/2008] [Indexed: 01/16/2023]
Abstract
There is growing evidence that neuropeptide Y (NPY) acting through Y1 and Y2 receptors has a prominent role in modulating anxiety- and depression-like behavior in rodents. However, a role of other Y-receptors like that of Y4 receptors in this process is poorly understood. We now investigated male Y2, Y4 single and Y2/Y4 double knockout mice in behavioral paradigms for changes in motor activity, anxiety and depression-like behavior. Motor activity was increased in Y2, Y4 and Y2/Y4 knockout mice under changing and stressful conditions, but not altered in a familiar environment. Y4 and Y2 knockout mice revealed an anxiolytic phenotype in the light/dark test, marble burying test and in stress-induced hyperthermia, and reduced depression-like behavior in the forced swim and tail suspension tests. In Y2/Y4 double knockout mice, the response in the light/dark test and in the forced swim test was further enhanced compared with Y4 and Y2 knockout mice, respectively. High levels of Y4 binding sites were observed in brain stem nuclei including nucleus of solitary tract and area postrema. Lower levels were found in the medial amygdala and hypothalamus. Peripheral administration of pancreatic polypeptide (PP) induced Y4 receptor-dependent c-Fos expression in brain stem, hypothalamus and amygdala. PP released peripherally from the pancreas in response to food intake, may act not only as a satiety signal but also modulate anxiety-related locomotion.
Collapse
Affiliation(s)
- R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
27
|
Utz AL, Lawson EA, Misra M, Mickley D, Gleysteen S, Herzog DB, Klibanski A, Miller KK. Peptide YY (PYY) levels and bone mineral density (BMD) in women with anorexia nervosa. Bone 2008; 43:135-139. [PMID: 18486583 PMCID: PMC2493518 DOI: 10.1016/j.bone.2008.03.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/16/2007] [Accepted: 03/08/2008] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Anorexia nervosa (AN) is a psychiatric illness that results in significant bone loss. Studies examining the neuroendocrine dysregulation that occurs in AN may increase understanding of endocrine systems that regulate bone mass. Peptide YY (PYY) is an anorexigenic peptide derived primarily from the intestine, with actions mediated via activation of Y receptors. We have previously shown that PYY levels are elevated in adolescents with AN. Y2 receptor knockout mice have increased bone mineral density (BMD) and thus PYY may play a role in regulating bone mass. We hypothesized that PYY levels would be inversely associated with BMD in women with AN. METHODS This was a cross-sectional study performed in a General Clinical Research Center of 12 adult women with AN, (mean+/-SEM) mean age 30.9+/-1.8 years, BMI 17.1+/-0.4 kg/m2, and % ideal body weight 77.5+/-1.7%. PYY concentrations were measured hourly from 20:00 h to 08:00 h. BMD was measured using dual X-ray absorptiometry (DXA). RESULTS In women with AN, mean overnight PYY levels strongly inversely correlated with BMD at the PA spine (r=-0.77, p=0.003), lateral spine (r=-0.82, p=0.002), total hip (r=-0.75, p=0.005), femoral neck (r=-0.72, p=0.009), total radius (r=-0.72, p=0.009) and 1/3 distal radius (r=-0.81, p=0.002). Body mass index was inversely correlated with PYY level (r=-0.64, p=0.03). Multivariate stepwise regression analysis was performed to determine the contribution of age, duration of AN, BMI, fat-free mass, and PYY to BMD. For PA and lateral spine, PYY was the primary determinant of BMD, accounting for 59% and 67% of the variability, respectively. Fat-free mass and duration of anorexia nervosa were the primary determinants of BMD at other skeletal sites. CONCLUSIONS In women with anorexia nervosa, an elevated PYY level is strongly associated with diminished BMD, particularly at the spine. Therefore further investigation of the hypothesis that PYY may contribute to the prevalent bone pathology in this disorder is merited.
Collapse
Affiliation(s)
- Andrea L Utz
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; MassGeneral Hospital for Children and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Mickley
- Wilkins Center for Eating Disorders, Greenwich, CT 06831, USA
| | - Suzanne Gleysteen
- Department of Internal Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02114, USA
| | - David B Herzog
- Harris Center and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Xanthakos SA. Bariatric surgery for extreme adolescent obesity: indications, outcomes, and physiologic effects on the gut-brain axis. ACTA ACUST UNITED AC 2008; 15:135-46. [PMID: 18585904 DOI: 10.1016/j.pathophys.2008.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This review will summarize current indications, limitations and outcomes of bariatric surgery in adolescents, as well as provide an overview of the physiologic effects of bariatric surgery on enteric hormones involved in regulating appetite, satiation and maintenance of weight. RESULTS Extreme obesity (BMI≥99 percentile) now affects 4% of children and adolescents in the United States. Traditional dietary and behavioral weight management methods have no demonstrated efficacy for extremely obese children and adolescents, in contrast with bariatric surgery which has produced significant and sustainable weight loss and associated improvements in comorbid diseases for the extremely obese. Roux-en-Y gastric bypass (RYGB) and laparoscopic adjustable gastric banding (LAGB) are the most commonly performed bariatric surgical procedures in adolescents, but vertical sleeve gastrectomy may be a promising new option for selected extremely obese adolescents. A mean weight loss of 37-40% is achieved in adolescents after RYGB, with LAGB showing similar results, albeit attained at a slower rate. CONCLUSION Alterations in the enteric hormones involved in the gut-brain axis that regulates appetite and energy expenditure may play a role in both the anorexigenic and weight-reducing effects of certain bariatric surgical procedures. In particular, RYGB induces a rise in both fasting and post-prandial peptide tyrosine-tyrosine which could contribute to the more rapid and greater degree of weight loss than is seen with LAGB. Limitations of bariatric surgery however include the potential for post-operative morbidity and mortality, as well as possible weight regain in a small proportion of patients.
Collapse
Affiliation(s)
- Stavra A Xanthakos
- Surgical Weight Loss Program for Teens, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, MLC 2010, Cincinnati, OH 45229, USA.
| |
Collapse
|
29
|
Huang XF, Yu Y, Li Y, Tim S, Deng C, Wang Q. Ventromedial Hypothalamic NPY Y2 Receptor in the Maintenance of Body Weight in Diet-Induced Obesity in Mice. Neurochem Res 2008; 33:1881-8. [DOI: 10.1007/s11064-008-9661-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022]
|
30
|
Pinilla L, Fernández-Fernández R, Roa J, Castellano JM, Tena-Sempere M, Aguilar E. Selective role of neuropeptide Y receptor subtype Y2 in the control of gonadotropin secretion in the rat. Am J Physiol Endocrinol Metab 2007; 293:E1385-92. [PMID: 17785504 DOI: 10.1152/ajpendo.00274.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different signals with key roles in energy homeostasis regulate the reproductive axis. These include neuropeptide Y and polypeptide YY(3-36), whose type Y(2) receptor is the most abundant of this family in the brain. We evaluated herein the putative roles of Y(2) receptors in the control of gonadotropin secretion by means of central administration of PYY(13-36) (agonist of Y(2) receptors) and BIIE 0246 (antagonist of Y(2) receptors) to intact and orchidectomized male rats. In addition, the ability of PYY(13-36) to elicit GnRH and gonadotropin secretion in vitro and the impact of fasting on LH responses to PYY(13-36) in vivo were also monitored. Central administration of PYY(13-36) significantly decreased the circulating levels of both gonadotropins, an effect that was observed in prepubertal and adult rats. Yet a dual action of Y(2) receptors in the control of male gonadotropic axis was evidenced as their activation induced 1) stimulation of gonadotropin responses to GnRH at the pituitary but 2) inhibition of GnRH secretion at the hypothalamus. Antagonization of Y(2) receptors failed to modify basal LH secretion in intact males either after being fed ad libitum or after being fasted. In contrast, their central blockade in orchidectomized rats evoked a significant increase in circulating LH and FSH level, suggesting the constitutive activation of Y(2) receptor in such stimulated conditions. In summary, our data evidence a complex mode of action of Y(2) receptors in the control of gonadotropic axis, with stimulatory and inhibitory actions at different levels of the system that are sensitive to the gonadal status.
Collapse
Affiliation(s)
- L Pinilla
- Physiology Section, Department of Cell Biology, Physiology, and Immunology, Faculty of Medicine, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Roden WH, Papke JB, Moore JM, Cahill AL, Macarthur H, Harkins AB. Stable RNA interference of synaptotagmin I in PC12 cells results in differential regulation of transmitter release. Am J Physiol Cell Physiol 2007; 293:C1742-52. [PMID: 17913838 DOI: 10.1152/ajpcell.00482.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In sympathetic neurons, it is well-established that the neurotransmitters, norepinephrine (NE), neuropeptide Y (NPY), and ATP are differentially coreleased from the same neurons. In this study, we determined whether synaptotagmin (syt) I, the primary Ca(2+) sensor for regulated release, could function as the protein that differentially regulates release of these neurotransmitters. Plasmid-based RNA interference was used to specifically and stably silence expression of syt I in a model secretory cell line. Whereas stimulated release of NPY and purines was abolished, stimulated catecholamine (CA) release was only reduced by approximately 50%. Although expression levels of tyrosine hydroxylase, the rate-limiting enzyme in the dopamine synthesis pathway, was unaffected, expression of the vesicular monoamine transporter 1 was reduced by 50%. To evaluate whether NPY and CAs are found within the same vesicles and whether syt I is found localized to each of these NPY- and CA-containing vesicles, we used immunocytochemistry to determine that syt I colocalized with large dense core vesicles, with NPY, and with CAs. Furthermore, both CAs and NPY colocalized with one another and with large dense core vesicles. Electron micrographs show that large dense core vesicles are synthesized and available for release in cells that lack syt I. These results are consistent with syt I regulating differential release of transmitters.
Collapse
Affiliation(s)
- William H Roden
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Papadimitriou MA, Krzemien AA, Hahn PM, Van Vugt DA. Peptide YY3–36-induced inhibition of food intake in female monkeys. Brain Res 2007; 1175:60-5. [PMID: 17870058 DOI: 10.1016/j.brainres.2007.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/26/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
Peptide YY (PYY) is produced in L cells of the intestine and is released after eating. PYY circulates in a truncated form designated PYY(3-36). PYY(3-36) is thought to be a physiologic anorexigenic peptide. The objective of the current study was to test the effect of exogenous PYY(3-36) on food intake in non-human primates exposed to different ovarian steroid milieus. The study was conducted in four ovariectomized cynomolgus monkeys replaced with estrogen alone for 2 weeks followed by estrogen in combination with progesterone for 2 weeks to mimic the menstrual cycle. The effect of PYY(3-36) on food intake was tested during each week of the simulated menstrual cycle by comparing the 2 h food intake following intracerebroventricular (icv) injection of artificial cerebrospinal fluid (aCSF) or PYY(3-36). Despite considerable variation in food intake following aCSF, PYY(3-36) consistently inhibited food consumption, except during week 2 of estrogen plus progesterone replacement. PYY(3-36) reduced food consumption by 16.2 g (95% confidence interval (CI)=4.5-27.9 g) and 26.6 g (95% CI=7.3-45.9 g) in weeks 1 and 2 respectively of estrogen only treatment and by 38.2 g (95% CI=26.1-50.2 g) in week 1 of estrogen plus progesterone treatment. In contrast, PYY(3-36) injected in week 2 of estrogen plus progesterone did not consistently inhibit food intake (13.1 g; CI=-49.5-75.7). This is the first study to report the effect of PYY(3-36) on food consumption in female monkeys. We conclude that icv administration of PYY(3-36) has a strong anorexic effect in female cynomolgus monkeys and that sensitivity to PYY(3-36) may be influenced by the ovarian steroid milieu.
Collapse
|
33
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
34
|
Cao G, Gardner A, Westfall TC. Mechanism of dopamine mediated inhibition of neuropeptide Y release from pheochromocytoma cells (PC12 cells). Biochem Pharmacol 2007; 73:1446-54. [PMID: 17286966 PMCID: PMC2709075 DOI: 10.1016/j.bcp.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 12/30/2022]
Abstract
In rat pheochromocytoma (PC12) cells the dopamine D(2) receptor agonists apomorphine (APO) and n-propylnorapomorphine (NPA) produced a concentration dependent inhibition of K(+)-evoked neuropeptide Y release (NPY-ir). The effect of APO was blocked by the dopamine D(2)-receptor antagonist, eticlopride, but not the D(1)/D(3) or the D(4)/D(2) antagonists, SCH23390 or clozapine, respectively. The D(1)/D(5) receptor agonist, SKF38393 or the D(3) agonists PD128907 and 7-OH DPAT had no effect. Selective N and L-type voltage gated Ca(2+) channel blockers, omega-conotoxin GVIa (Ctx-GVIa) and nifedipine, respectively, produced a concentration dependent inhibition of NPY-ir release but were not additive with APO. The Ca(2+)/calmodulin-dependent protein kinase (CaM kinase) II inhibitor KN-62 produced a concentration-dependent inhibition of NPY-ir release but the combination of KN-62 and APO produced no further inhibition. PMA-mediated protein kinase C stimulation significantly increased both basal and K(+)-evoked release of NPY-ir, and in the presence of PMA APO had no inhibitory effect. The PKC antagonist, chelerythrine, inhibited K(+)-evoked NPY-ir release but was not additive with APO. Neither forskolin-mediated adenylate cyclase activation and the active cAMP analog Sp-cAMPS, nor the adenylate cyclase inhibitor SQ 22536, and the competitive inhibitor of cAMP-dependent protein kinases Rp-cAMPS, had any significant effect on K(+)-evoked NPY-ir release. This suggests the inhibitory effect of APO on K(+)-evoked release of NPY-ir from PC12 cells is most likely mediated through activation of dopamine D(2) receptors leading to direct inhibition of N and L-type voltage gated Ca(2+) channels, or indirect inhibition of PKC, both of which would reduce [Ca(2+)](i) and inactivate CaM kinase.
Collapse
Affiliation(s)
| | - Alice Gardner
- Corresponding author at: Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy - Worcester, 19 Foster St., Worcester, MA 01608, United States, Tel: + 1 508 373 5665; FAX: + 1 508 890 5618, Email address:
| | | |
Collapse
|
35
|
Westfall TC, Yang CL, Chen X, Naes L, Vickery L, Macarthur H, Han S. A novel mechanism prevents the development of hypertension during chronic cold stress. ACTA ACUST UNITED AC 2006; 25:171-7. [PMID: 16176449 DOI: 10.1111/j.1474-8673.2005.00349.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1 Chronic cold exposure of rats (7 days in a cold room at 4 degrees C) attenuated the sympathetic nerve stimulation (NS)-induced overflow of noradrenaline (NE) (measured by high-performance liquid chromatography, coupled to electrochemical detection) appearing in the perfusate/superfusate of the perfused mesenteric arterial bed as well as the increase in the perfusion pressure. 2 The same type of cold exposure resulted in an increase in tyrosine hydroxylase (TH) gene expression measured in the superior cervical ganglion and NE content measured in the mesenteric artery obtained from cold-exposed rats. 3 Addition of sodium nitroprusside, a nitric oxide (NO) donor, to the buffer perfusing the mesenteric arterial bed obtained from rats maintained at room temperature also resulted in an attenuation of the NS-induced overflow of NE and increase in perfusion pressure. 4 N(c)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, placed in the drinking water prevented the attenuation of the pre- and post-junctional responses to NS of the mesenteric arterial bed obtained from cold-exposed rats. 5 L-NAME treatment also increased the cold-induced elevation of blood pressure seen in whole animals. 6 The present results are consistent with the idea that cold exposure leads to a concomitant increase in sympathetic nerve activity and production of NO. We hypothesize that the increase in production and release of NO results in a decrease in the biologically active form of NE despite increased synthesis and release of the catecholamine. 7 It is concluded that the above-mentioned interactions serve as a protective mechanism offsetting the increased release and action of NE from sympathetic nerves and thus preventing the development of hypertension.
Collapse
Affiliation(s)
- T C Westfall
- Department of Pharmacological and Physiological Science, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Han S, Chen X, Yang CL, Vickery L, Wu Y, Naes L, Macarthur H, Westfall TC. Influence of cold stress on neuropeptide Y and sympathetic neurotransmission. Peptides 2005; 26:2603-9. [PMID: 15992963 DOI: 10.1016/j.peptides.2005.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/27/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Chronic cold stress of rats (4 degrees C; 1-3 weeks) induced a marked increase in gene expression (adrenal medulla; superior cervical ganglia), tissue content (mesenteric arterial bed) and nerve stimulation-induced overflow of NPY-immunoreactivity (NPYir) from the perfused mesenteric arterial bed. In contrast increased NPY neurotransmission was offset by an apparent decrease in the evoked overflow of norepinephrine (NE) due to a presumed deactivation of NE by nitric oxide (NO), despite increased sympathetic nerve activity. The net effect of these offsetting system was no change in basal or the evoked increase in perfusion pressure (sympathetic tone). It is concluded that differences in NPY and NE transmission act as an important compensatory mechanism preventing dramatic changes in arterial pressure when sympathetic nerve activity is high during cold stress.
Collapse
Affiliation(s)
- Songping Han
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kohno D, Gao HZ, Muroya S, Kikuyama S, Yada T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 2003; 52:948-56. [PMID: 12663466 DOI: 10.2337/diabetes.52.4.948] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ghrelin is a newly discovered peptide that is released from the stomach and from neurons in the hypothalamic arcuate nucleus (ARC) and potently stimulates growth hormone release and food intake. Neuropeptide-Y (NPY) neurons in the ARC play an important role in the stimulation of food intake. The present study aimed to determine whether ghrelin directly activates NPY neurons and, if so, to explore its signaling mechanisms. Whether the neurons that respond to ghrelin could be regulated by orexin and leptin was also examined. We isolated single neurons from the ARC of rats and measured the cytosolic Ca(2+) concentration ([Ca(2+)](i)) with fura-2 fluorescence imaging. Ghrelin (10(-12) to 10(-8) mol/l) concentration-dependently increased [Ca(2+)](i), which occurred in 35% of the ARC neurons. Approximately 80% of these ghrelin-responsive neurons were proved to be NPY-containing by immunocytochemical staining, and 58% of them were glucose-sensitive neurons as judged by their responses to lowering glucose concentrations. The [Ca(2+)](i) responses to ghrelin were markedly attenuated by inhibitors of protein kinase A (PKA) but not protein kinase C and by a blocker of N-type but not L-type Ca(2+) channels. Orexin increased [Ca(2+)](i) and leptin attenuated ghrelin-induced [Ca(2+)](i) increases in the majority (80%) of ghrelin-responsive NPY neurons. These results demonstrate that ghrelin directly interacts with NPY neurons in the ARC to induce Ca(2+) signaling via PKA and N-type Ca(2+) channel-dependent mechanisms. The integration of stimulatory effects of ghrelin and orexin and inhibitory effect of leptin may play an important role in the regulation of the activity of NPY neurons and thereby feeding.
Collapse
Affiliation(s)
- Daisuke Kohno
- Department of Physiology, Jichi Medical School, School of Medicine, Minamikawachi, Tochigi, Japan
| | | | | | | | | |
Collapse
|