1
|
Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning. Int J Mol Sci 2022; 23:ijms23073425. [PMID: 35408783 PMCID: PMC8998910 DOI: 10.3390/ijms23073425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.
Collapse
|
2
|
Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure. Antioxidants (Basel) 2021; 10:antiox10060931. [PMID: 34201261 PMCID: PMC8228897 DOI: 10.3390/antiox10060931] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022] Open
Abstract
Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.
Collapse
|
3
|
Nusier M, Alqudah M, Elimban V, Dhalla NS. Modification of ischemia/reperfusion induced infarct size by ischemic preconditioning in hypertrophied hearts. Can J Physiol Pharmacol 2021; 99:218-223. [PMID: 33546576 DOI: 10.1139/cjpp-2020-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of ischemic preconditioning (IP) on the ischemia/reperfusion (I/R) induced injury in normal and hypertrophied hearts. Cardiac hypertrophy in rabbits was induced by L-thyroxine (0.5 mg/kg/day for 16 days). Hearts with or without IP (3 cycles of 5 min ischemia and 10 min reperfusion) were subjected to I/R (60 min ischemia followed by 60 min reperfusion). IP reduced the I/R-induced infarct size from 68% to 24% and 57% to 33% in the normal and hypertrophied hearts, respectively. Leakage of creatine phosphokinase in the perfusate from the hypertrophied hearts due to I/R was markedly less than that form the normal hearts; IP prevented these changes. Although IP augmented the increase in phosphorylated p38-mitogen-activated protein kinase (p38-MAPK) content due to I/R, this effect was less in the hypertrophied than in the normal heart. These results suggest that reduced cardioprotection by IP of the I/R-induced injury in hypertrophied hearts may be due to reduced activation of p38-MAPK in comparison with normal hearts.
Collapse
Affiliation(s)
- Mohamad Nusier
- School of Medicine, Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alqudah
- School of Medicine, Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Sohrabi F, Dianat M, Badavi M, Radan M, Mard SA. Does gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1130-1138. [PMID: 32963734 PMCID: PMC7491503 DOI: 10.22038/ijbms.2020.46427.10721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant and anti-inflammatory effects, we hypothesized that gallic acid protects the lung and the related heart dysfunction in elastase-induced lung injury. Materials and Methods: Forty-eight Sprague-Dawley male rats were randomly divided into six groups: Control, Porcine pancreatic elastase (PPE) , PPE+GA, and 3 groups for different doses of gallic acid (GA 7.5, GA 15, GA 30 mg/kg). PPE was injected intra-tracheally on days 1 and 10 of the test. In each group, electrocardiography, hemodynamic parameters, oxidative stress, and bronchoalveolar lavage fluid were examined. Results: PPE administration showed a decrease in HR and QRS voltage of electrocardiogram parameters, as well as in hemodynamic parameters (P<0.05, P<0.01, and P<0.001) and superoxide dismutase (SOD) (P<0.05). Tumor Necrosis Factor α (TNF-α) (P<0.001), interleukin 6 (IL-6) (P<0.001), interleukin 6 (MDA) (P<0.001), and the total number of white blood cells (P<0.001) showed an increase in PPE groups. Gallic acid preserved the values of hemodynamic properties, oxidative stress, inflammation, and electrocardiogram parameters in comparison to the PPE group. Conclusion: Briefly, this study showed the valuable effect of gallic acid in cardiac dysfunction related to elastase-induced lung injury. These findings suggested that gallic acid, as a natural antioxidant, has a potential therapeutic effect on preventing oxidative stress, inflammation, and subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Farzaneh Sohrabi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle. Int J Mol Sci 2018; 19:ijms19020417. [PMID: 29385043 PMCID: PMC5855639 DOI: 10.3390/ijms19020417] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC). By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.
Collapse
Affiliation(s)
- Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Discrepancy in calcium release from the sarcoplasmic reticulum and intracellular acidic stores for the protection of the heart against ischemia/reperfusion injury. J Physiol Biochem 2016; 72:495-508. [PMID: 27325083 DOI: 10.1007/s13105-016-0498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
We and others have demonstrated a protective effect of pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection are not completely clear. In the present study, we evaluated the effects of calcium release from the sarcoplasmic reticulum (SR) and the novel intracellular acidic stores (AS). Isolated rat hearts (n = 6 per group) were subjected to coronary occlusion followed by reperfusion using a modified Langendorff system. Cardiac hemodynamics and contractility were assessed using a data acquisition program, and cardiac injury was evaluated by creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. The hearts were also subjected to PPC (3 cycles of 30 s of left ventricle (LV) pacing alternated with 30 s of right atrium (RA) pacing) and/or were treated during reperfusion with agonists or antagonists of release of calcium from SR or AS. PPC significantly (P < 0.05) normalized LV, contractility, and coronary vascular dynamics and significantly (P < 0.001) decreased heart enzyme levels compared to the control treatments. The blockade of SR calcium release resulted in a significant (P < 0.01) recovery in LV function and contractility and a significant reduction in CK and LDH levels (P < 0.01) when applied alone or in combination with PPC. Interestingly, the release of calcium from AS alone or in combination with PPC significantly improved LV function and contractility (P < 0.05) and significantly decreased the CK and LDH levels (P < 0.01) compared to the control treatments. An additive effect was produced when agonism of calcium release from AS or blockade of calcium release from the SR was combined with PPC. Calcium release from AS and blockade of calcium release from the SR protect the heart against I/R. Combining calcium release from acidic stores or blockade of calcium release from the SR with PPC produced a synergistic protective effect.
Collapse
|
7
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
8
|
Müller BAL, Dhalla NS. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr Cardiol Rev 2011; 6:255-64. [PMID: 22043201 PMCID: PMC3083806 DOI: 10.2174/157340310793566118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
Cardiac function is compromised by oxidative stress which occurs upon exposing the heart to ischemia reperfusion (I/R) for a prolonged period. The reactive oxygen species (ROS) that are generated during I/R incur extensive damage to the myocardium and result in subcellular organelle remodeling. The cardiac nucleus, glycocalyx, myofilaments, sarcoplasmic reticulum, sarcolemma, and mitochondria are affected by ROS during I/R injury. On the other hand, brief periods of ischemia followed by reperfusion, or ischemic preconditioning (IPC), have been shown to be cardioprotective against oxidative stress by attenuating the cellular damage and alterations of subcellular organelles caused by subsequent I/R injury. Endogenous defense mechanisms, such as antioxidant enzymes and heat shock proteins, are activated by IPC and thus prevent damage caused by oxidative stress. Although these cardioprotective effects of IPC against I/R injury are considered to be a consequence of changes in the redox state of cardiomyocytes, IPC is considered to promote the production of NO which may protect subcellular organelles from the deleterious actions of oxidative stress. The article is intended to focus on the I/R-induced oxidative damage to subcellular organelles and to highlight the cardioprotective effects of IPC. In addition, the actions of various endogenous cardioprotective interventions are discussed to illustrate that changes in the redox state due to IPC are cardioprotective against I/R injury to the heart.
Collapse
Affiliation(s)
- By Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | |
Collapse
|
9
|
Calderón-Sánchez EM, Ruiz-Hurtado G, Smani T, Delgado C, Benitah JP, Gómez AM, Ordóñez A. Cardioprotective action of urocortin in postconditioning involves recovery of intracellular calcium handling. Cell Calcium 2011; 50:84-90. [DOI: 10.1016/j.ceca.2011.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
10
|
Yu Z, Wang ZH, Yang HT. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 2009; 297:H735-42. [PMID: 19525372 DOI: 10.1152/ajpheart.01164.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent high-altitude (IHA) hypoxia-induced cardioprotection against ischemia-reperfusion (I/R) injury is associated with the preservation of sarcoplasmic reticulum (SR) function. Although Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and phosphatase are known to modulate the function of cardiac SR under physiological conditions, the status of SR CaMKII and phosphatase during I/R in the hearts from IHA hypoxic rats is unknown. In the present study, we determined SR and cytosolic CaMKII activity during preischemia and I/R (30 min/30 min) in perfused hearts from normoxic and IHA hypoxic rats. The left ventricular contractile recovery, SR CaMKII activity as well as phosphorylation of phospholamban at Thr(17), and Ca(2+)/CaM-dependent SR Ca(2+)-uptake activity were depressed in the I/R hearts from normoxic rats, whereas these changes were prevented in the hearts from IHA hypoxic rats. Such beneficial effects of IHA hypoxia were lost by treating the hearts with a specific CaMKII inhibitor, KN-93. I/R also depressed cytosolic CaMKII and SR phosphatase activity, but these alterations remained unchanged in IHA hypoxic group. Furthermore, we found that the autophosphorylation at Thr(287), which confers Ca(2+)/CaM-independent activity, was not altered by I/R in both groups. These findings indicate that preservation of SR CaMKII activity plays an important role in the IHA hypoxia-induced cardioprotection against I/R injury via maintaining SR Ca(2+)-uptake activity.
Collapse
Affiliation(s)
- Zhuo Yu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Ruijin Hospital, Shanghai, China
| | | | | |
Collapse
|
11
|
Wang C, Du JF, Wu F, Wang HC. Apelin decreases the SR Ca2+content but enhances the amplitude of [Ca2+]itransient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2008; 294:H2540-6. [DOI: 10.1152/ajpheart.00046.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, the effect of apelin on sarcoplasmic reticulum (SR) Ca2+content and its influence on intracellular Ca2+transient during excitation-contraction coupling remains poorly understood. In the present study, we determined the effect of apelin on Ca2+transient and contractions in isolated rat cardiomyocytes. When compared with control, treatment with apelin caused a 55.7 ± 13.9% increase in sarcomere fraction shortening and a 43.6 ± 4.56% increase in amplitude of electrical-stimulated intracellular Ca2+concentration (E[Ca2+]i) transients ( n = 14, P < 0.05). But SR Ca2+content measured by caffeine-induced [Ca2+]i(C[Ca2+]i) transient was decreased 8.41 ± 0.92% in response to apelin ( n = 14, P < 0.05). Na+/Ca2+exchanger (NCX) function was increased since half-decay time of C[Ca2+]iwas decreased 16.22 ± 1.36% in response to apelin. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was also increased by apelin. These responses can be partially or completely blocked by chelerythrine chloride, a PKC inhibitor. In addition, to confirm our data, we used indo-1 as another Ca2+indicator and rapid cooling as another way to measure SR Ca2+content, and we observed similar results. So we conclude that apelin has a positive inotropic effect on isolated myocytes, and increased amplitude of E[Ca2+]iis at least partially involved in the mechanism. NCX function and SERCA activity are increased by apelin, and the SR Ca2+content is decreased by apelin during twitches. PKC played an important role in these signaling mechanisms.
Collapse
|
12
|
Rodrigo GC, Samani NJ. Ischemic preconditioning of the whole heart confers protection on subsequently isolated ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 294:H524-31. [DOI: 10.1152/ajpheart.00980.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current cellular models of ischemic preconditioning (IPC) rely on inducing preconditioning in vitro and may not accurately represent complex pathways triggered by IPC in the intact heart. Here, we show that it is possible to precondition the intact heart and to subsequently isolate individual ventricular myocytes that retain the protection triggered by IPC. Myocytes isolated from Langendorff-perfused hearts preconditioned with three cycles of ischemia-reperfusion were exposed to metabolic inhibition and reenergization. Injury was assessed from induction of hypercontracture and loss of Ca2+ homeostasis and contractile function. IPC induced an immediate window of protection in isolated myocytes, with 64.3 ± 7.6% of IPC myocytes recovering Ca2+ homeostasis compared with 16.9 ± 2.4% of control myocytes ( P < 0.01). Similarly, 64.1 ± 5.9% of IPC myocytes recovered contractile function compared with 15.3 ± 2.2% of control myocytes ( P < 0.01). Protection was prevented by the presence of 0.5 mM 5-hydroxydecanoate during the preconditioning stimulus. This early protection disappeared after 6 h, but a second window of protection developed 24 h after preconditioning, with 54.9 ± 4.7% of preconditioned myocytes recovering Ca2+ homeostasis compared with 12.6 ± 2.9% of control myocytes ( P < 0.01). These data show that “true” IPC of the heart confers both windows of protection in the isolated myocytes, with a similar temporal relationship to in vivo preconditioning of the whole heart. The model should allow future studies in isolated cells of the protective mechanisms induced by true ischemia.
Collapse
|
13
|
Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 2007; 8:238-50. [PMID: 17413299 DOI: 10.2459/01.jcm.0000263489.13479.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have revealed varying degrees of changes in sarcoplasmic reticular and myofibrillar activities, protein content, gene expression and intracellular Ca-handling during cardiac dysfunction due to ischemia-reperfusion (I/R); however, relatively little is known about the sarcolemmal and mitochondrial alterations, as well as their mechanisms in the I/R hearts. Because I/R is associated with oxidative stress and intracellular Ca-overload, it has been indicated that changes in subcellular activities, protein content and gene expression due to I/R are related to both oxidative stress and Ca-overload. Intracellular Ca-overload appears to induce changes in subcellular activities, protein contents and gene expression (subcellular remodeling) by activation of proteases and phospholipases, as well as by affecting the genetic apparatus, whereas oxidative stress is considered to cause oxidation of functional groups of different subcellular proteins in addition to modifying the genetic machinery. Ischemic preconditioning, which is known to depress the development of both intracellular Ca-overload and oxidative stress due to I/R, was observed to attenuate the I/R-induced subcellular remodeling and improve cardiac performance. It is suggested that a combination therapy with antioxidants and interventions, which reduce the development of intracellular Ca-overload, may improve cardiac function by preventing or attenuating the occurrence of subcellular remodeling due to ischemic heart disease. It is proposed that defects in the activities of subcellular organelles may serve as underlying mechanisms for I/R-induced cardiac dysfunction under acute conditions, whereas subcellular remodeling due to alterations in gene expression may explain the impaired cardiac performance under chronic conditions of I/R.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, and Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Yeung HM, Kravtsov GM, Ng KM, Wong TM, Fung ML. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J Physiol Cell Physiol 2007; 292:C2046-56. [PMID: 17267548 DOI: 10.1152/ajpcell.00458.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined Ca(2+) handling mechanisms involved in cardioprotection induced by chronic intermittent hypoxia (CIH) against ischemia-reperfusion (I/R) injury. Adult male Sprague-Dawley rats were exposed to 10% inspired O(2) continuously for 6 h daily from 3, 7, and 14 days. In isolated perfused hearts subjected to I/R, CIH-induced cardioprotection was most significant in the 7-day group with less infarct size and lactate dehydrogenase release, compared with the normoxic group. The I/R-induced alterations in diastolic Ca(2+) level, amplitude, time-to-peak, and the decay time of both electrically and caffeine-induced Ca(2+) transients measured by spectrofluorometry in isolated ventricular myocytes of the 7-day CIH group were less than that of the normoxic group, suggesting an involvement of altered Ca(2+) handling of the sarcoplasmic reticulum (SR) and sarcolemma. We further determined the protein expression and activity of (45)Ca(2+) flux of SR-Ca(2+)-ATPase, ryanodine receptor (RyR) and sarcolemmal Na(+)/Ca(2+) exchange (NCX) in ventricular myocytes from the CIH and normoxic groups before and during I/R. There were no changes in expression levels of the Ca(2+)-handling proteins but significant increases in the RyR and NCX activities were remarkable during I/R in the CIH but not the normoxic group. The augmented RyR and NCX activities were abolished, respectively, by PKA inhibitor (0.5 microM KT5720 or 0.5 microM PKI(14-22)) and PKC inhibitor (5 microM chelerythrine chloride or 0.2 microM calphostin C) but not by Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN-93 (1 microM). Thus, CIH confers cardioprotection against I/R injury in rat cardiomyocytes by altered Ca(2+) handling with augmented RyR and NCX activities via protein kinase activation.
Collapse
Affiliation(s)
- Hang Mee Yeung
- Dept. of Physiology, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
15
|
Balakumar P, Singh M. The Possible Role of Caspase-3 in Pathological and Physiological Cardiac Hypertrophy in Rats. Basic Clin Pharmacol Toxicol 2006; 99:418-24. [PMID: 17169122 DOI: 10.1111/j.1742-7843.2006.pto_569.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study has been designed to investigate the effect of Ac-DEVD-CHO, a specific caspase-3 inhibitor in partial abdominal aortic constriction for 4 week-induced pathological and chronic swimming training for 8 week-induced physiological cardiac hypertrophy. Ac-DEVD-CHO (2 mg/kg intraperitoneally, day(-1)) treatment was started three days before partial abdominal aortic constriction and chronic swimming test and it was continued for 4 weeks in partial abdominal aortic constriction and 8 weeks in chronic swimming test experimental model. The left ventricular (LV) function and LV hypertrophy were assessed by measuring LV developed pressure, dp/dt(max), dp/dt(min), ratio of LV weight to body weight, LV wall thickness, LV collagen content, protein content and RNA concentration. Further, venous pressure and mean arterial blood pressure were recorded. The partial abdominal aortic constriction but not chronic swimming test produced LV dysfunction by decreasing LV developed pressure, dp/dt(max), dp/dt(min.)and increasing LV collagen content. Further, partial abdominal aortic constriction and chronic swimming test were noted to produce LV hypertrophy by increasing ratio of LV weight to body weight, LV wall thickness, LV protein content and LV RNA concentration. Moreover, in contrast to chronic swimming test, partial abdominal aortic constriction has significantly increased venous pressure and mean arterial blood pressure. The Ac-DEVD-CHO has markedly attenuated partial abdominal aortic constriction-induced LV dysfunction, LV hypertrophy, increase in venous pressure and mean arterial blood pressure. However it did not modulate chronic swimming test-induced LV hypertrophy. These results have implicated caspase-3 in partial abdominal aortic constriction-induced LV dysfunction and pathological cardiac hypertrophy. However, caspase-3 may not be involved in chronic swimming test-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | |
Collapse
|
16
|
Jiang M, Xu A, Narayanan N. Thyroid hormone downregulates the expression and function of sarcoplasmic reticulum-associated CaM kinase II in the rabbit heart. Am J Physiol Heart Circ Physiol 2006; 291:H1384-94. [PMID: 16617128 DOI: 10.1152/ajpheart.00875.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of sarcoplasmic reticulum (SR) Ca2+-cycling proteins by a membrane-associated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is a well-documented physiological mechanism for regulation of transmembrane Ca2+fluxes and the cardiomyocyte contraction-relaxation cycle. The present study investigated the effects of l-thyroxine-induced hyperthyroidism on protein expression of SR CaM kinase II and its substrates, endogenous CaM kinase II-mediated SR protein phosphorylation, and SR Ca2+pump function in the rabbit heart. Membrane vesicles enriched in junctional SR (JSR) or longitudinal SR (LSR) isolated from euthyroid and hyperthyroid rabbit hearts were utilized. Endogenous CaM kinase II-mediated phosphorylation of ryanodine receptor-Ca2+release channel (RyR-CRC), Ca2+-ATPase, and phospholamban (PLN) was significantly lower (30–70%) in JSR and LSR vesicles from hyperthyroid than from euthyroid rabbit heart. Western immunoblotting analysis revealed significantly higher (∼40%) levels of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) in JSR, but not in LSR, from hyperthyroid than from euthyroid rabbit heart. Maximal velocity of Ca2+uptake was significantly increased in JSR (130%) and LSR (50%) from hyperthyroid compared with euthyroid rabbit hearts. Apparent affinity of the Ca2+-ATPase for Ca2+did not differ between the two groups. Protein levels of PLN and CaM kinase II were significantly lower (30–40%) in JSR, LSR, and ventricular tissue homogenates from hyperthyroid rabbit heart. These findings demonstrate selective downregulation of expression and function of CaM kinase II in hyperthyroid rabbit heart in the face of upregulated expression and function of SERCA2 predominantly in the JSR compartment.
Collapse
Affiliation(s)
- Mao Jiang
- Department of Physiology and Pharmacology, Health Science Center, The University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
17
|
. PB, . MS. Effect of 3-Aminobenzamide, an Inhibitor of Poly (ADP-Ribose)Polymerase in Experimental Cardiac Hypertrophy. INT J PHARMACOL 2006. [DOI: 10.3923/ijp.2006.543.548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Hund TJ, Rudy Y. A role for calcium/calmodulin-dependent protein kinase II in cardiac disease and arrhythmia. Handb Exp Pharmacol 2006:201-20. [PMID: 16610345 DOI: 10.1007/3-540-29715-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
More than 20 years have passed since the discovery that a collection of specific calcium/calmodulin-dependent phosphorylation events is the result of a single multifunctional kinase. Since that time, we have learned a great deal about this multifunctional and ubiquitous kinase, known today as calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII is interesting not only for its widespread distribution and broad specificity but also for its biophysical properties, most notably its activation by the critical second messenger complex calcium/calmodulin and its autophosphorylating capability. A central role for CaMKII has been identified in regulating a diverse array of fundamental cellular activities. Furthermore, altered CaMKII activity profoundly impacts function in the brain and heart. Recent findings that CaMKII expression in the heart changes during hypertrophy, heart failure, myocardial ischemia, and infarction suggest that CaMKII may be a viable therapeutic target for patients suffering from common forms of heart disease.
Collapse
Affiliation(s)
- T J Hund
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, 660 S. Euclid Ave., Campus Box 8118, Saint Louis, MO 63118, USA.
| | | |
Collapse
|
19
|
Yamamura K, Steenbergen C, Murphy E. Protein kinase C and preconditioning: role of the sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 2005; 289:H2484-90. [PMID: 16055516 DOI: 10.1152/ajpheart.00590.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of protein kinase C (PKC) is cardioprotective, but the mechanism(s) by which PKC mediates protection is not fully understood. Inasmuch as PKC has been well documented to modulate sarcoplasmic reticulum (SR) Ca2+and because altered SR Ca2+handling during ischemia is involved in cardioprotection, we examined the role of PKC-mediated alterations of SR Ca2+in cardioprotection. Using isolated adult rat ventricular myocytes, we found that addition of 1,2-dioctanoyl- sn-glycerol (DOG), to activate PKC under conditions that reduced myocyte death associated with simulated ischemia and reperfusion, also reduced SR Ca2+. Cell death was 57.9 ± 2.9% and 47.3 ± 1.8% in untreated and DOG-treated myocytes, respectively ( P < 0.05). Using fura 2 fluorescence to monitor Ca2+transients and caffeine-releasable SR Ca2+, we examined the effect of DOG on SR Ca2+. Caffeine-releasable SR Ca2+was significantly reduced (by ∼65%) after 10 min of DOG treatment compared with untreated myocytes ( P < 0.05). From our examination of the mechanism by which PKC alters SR Ca2+, we present the novel finding that DOG treatment reduced the phosphorylation of phospholamban (PLB) at Ser16. This effect is mediated by PKC-ε, because a PKC-ε-selective inhibitory peptide blocked the DOG-mediated decrease in phosphorylation of PLB and abolished the DOG-induced reduction in caffeine-releasable SR Ca2+. Using immunoprecipitation, we further demonstrated that DOG increased the association between protein phosphatase 1 and PLB. These data suggest that activated PKC-ε reduces SR Ca2+content through PLB dephosphorylation and that reduced SR Ca2+may be important in cardioprotection.
Collapse
Affiliation(s)
- Ken Yamamura
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Dr., Bldg. 101, MD F2-07, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
20
|
Chen L, Lu XY, Li J, Fu JD, Zhou ZN, Yang HT. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol 2005; 290:C1221-9. [PMID: 16306124 DOI: 10.1152/ajpcell.00526.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that intermittent high-altitude (IHA) hypoxia significantly attenuates ischemia-reperfusion (I/R) injury-induced excessive increase in resting intracellular Ca(2+) concentrations ([Ca(2+)](i)). Because the sarcoplasmic reticulum (SR) and Na(+)/Ca(2+) exchanger (NCX) play crucial roles in regulating [Ca(2+)](i) and both are dysfunctional during I/R, we tested the hypothesis that IHA hypoxia may prevent I/R-induced Ca(2+) overload by maintaining Ca(2+) homeostasis via SR and NCX mechanisms. We thus determined the dynamics of Ca(2+) transients and cell shortening during preischemia and I/R injury in ventricular cardiomyocytes from normoxic and IHA hypoxic rats. IHA hypoxia did not affect the preischemic dynamics of Ca(2+) transients and cell shortening, but it significantly suppressed the I/R-induced increase in resting [Ca(2+)](i) levels and attenuated the depression of the Ca(2+) transients and cell shortening during reperfusion. Moreover, IHA hypoxia significantly attenuated I/R-induced depression of the protein contents of SR Ca(2+) release channels and/or ryanodine receptors (RyRs) and SR Ca(2+) pump ATPase (SERCA2) and SR Ca(2+) release and uptake. In addition, a delayed decay rate time constant of Ca(2+) transients and cell shortening of Ca(2+) transients observed during ischemia was accompanied by markedly inhibited NCX currents, which were prevented by IHA hypoxia. These findings indicate that IHA hypoxia may preserve Ca(2+) homeostasis and contraction by preserving RyRs and SERCA2 proteins as well as NCX activity during I/R.
Collapse
Affiliation(s)
- Le Chen
- Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, 225 Chong Qing Nan Rd., #1 Bldg., Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
21
|
Vahlhaus C, Neumann J, Lüss H, Wenzelburger F, Tjan TDT, Hammel D, Scheld HH, Schmitz W, Breithardt G, Wichter T. Ischemic Preconditioning by Unstable Angina Reduces the Release of CK-MB Following CABG and Stimulates Left Ventricular HSP-72 Protein Expression. J Card Surg 2005; 20:412-9. [PMID: 16153270 DOI: 10.1111/j.1540-8191.2005.2004107.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Whether the CK-MB reducing effect of ischemic preconditioning (IP) by unstable angina within 24 to 48 hours before CABG is achieved by early or by delayed preconditioning of left ventricular myocardium in humans is unknown. We investigated whether IP is associated with phosphorylation of p38 MAPK (characteristic for early preconditioning) or with increased protein expression of HSP-72 (characteristic for delayed preconditioning) at the time of CABG in patients. METHODS Nineteen patients were grouped according to the occurrence of ischemic episodes within 48 hours before CABG. The patients without angina were assigned to the control group (CON, n = 10) whereas patients who had experienced angina within 48 hours before CABG were assigned to the preconditioned group (IP, n = 9). The effect of IP on the CABG induced maximal release of creatine kinase (CK) and CK-MB was examined. Left ventricular biopsy specimens taken immediately before cross clamping from ischemic (ISCH) and from reference (REF) areas were processed to analyze p38 MAPK phosphorylation and HSP-72-protein expression. RESULTS While IP significantly reduced CK-MB (18.7 +/- 1.3 vs. 13.8 +/- 1.5 U/L, mean +/- SEM, p < 0.05), it only tended to reduce CK (292.7 +/- 32.8 vs. 274.1+/-31.1 U/L, p = NS, mean +/- SEM). CK-MB release for any given cross-clamp time was significantly reduced by IP (regression lines: CON, y= 0.4x+ 2, r= 0.8; IP, y= 0.1x+ 10, r= 0.2; p < 0.01, ANCOVA). There was no effect of IP on left ventricular p38 MAPK phosphorylation. IP increased left ventricular HSP-72-protein expression in ischemic areas when compared to reference areas (1.78 +/- 0.35 vs. 2.58 +/- 0.65, REF vs. ISCH, PhosphorImager units x10(6), mean +/- SEM, p < 0.05, ANCOVA). CONCLUSIONS Thus, in the human left ventricular myocardium there is a second window of protection lasting for at least 48 hours, while at that time the early phase of preconditioning has already gone.
Collapse
Affiliation(s)
- Christian Vahlhaus
- Department of Cardiology and Angiology, Hospital of the University of Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Takeda S, Mochizuki S, Saini HK, Elimban V, Dhalla NS. Modification of alterations in cardiac function and sarcoplasmic reticulum by vanadate in ischemic-reperfused rat hearts. J Appl Physiol (1985) 2005; 99:999-1005. [PMID: 15879166 DOI: 10.1152/japplphysiol.00234.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To study the cardioprotective effects of vanadate on ischemia-reperfusion (I/R) injury, isolated rat hearts perfused at constant flow were subjected to global ischemia for 30 min followed by reperfusion for 30 min. In this experimental model, I/R markedly decreased ventricular developed pressure and increased end-diastolic pressure. Pretreatment of hearts with 4 microM vanadate attenuated I/R-induced cardiac dysfunction. The reduction in sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+ release, as well as SR protein contents for Ca2+-pump ATPase and Ca2+-release channel, was also prevented by vanadate. Pretreatment of hearts with an antioxidant mixture containing superoxide dismutase + catalase exerted effects similar to those of vanadate in I/R hearts. Postischemic treatment of hearts with vanadate or superoxide dismutase + catalase also had beneficial effects on I/R-induced changes in cardiac performance and SR function. Alterations in cardiac function and SR Ca2+ transport due to an oxyradical-generating system (xanthine + xanthine oxidase) or an oxidant (H2O2) were attenuated by treatment with vanadate. These results suggest that vanadate may exert beneficial effects on cardiac performance and SR function in I/R hearts because of its antioxidant action.
Collapse
Affiliation(s)
- Satoshi Takeda
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, MB, Canada R2H 2A6
| | | | | | | | | |
Collapse
|
23
|
Shao Q, Ren B, Saini HK, Netticadan T, Takeda N, Dhalla NS. Sarcoplasmic reticulum Ca2+ transport and gene expression in congestive heart failure are modified by imidapril treatment. Am J Physiol Heart Circ Physiol 2005; 288:H1674-82. [PMID: 15576437 DOI: 10.1152/ajpheart.00945.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to test the hypothesis that blockade of the renin-angiotensin system improves cardiac function in congestive heart failure by preventing changes in gene expression of sarcoplasmic reticulum (SR) proteins. We employed rats with myocardial infarction (MI) to examine effects of an angiotensin-converting enzyme inhibitor, imidapril, on SR Ca2+ transport, protein content, and gene expression. Imidapril (1 mg·kg−1·day−1) was given for 4 wk starting 3 wk after coronary artery occlusion. Infarcted rats exhibited a fourfold increase in left ventricular end-diastolic pressure, whereas rates of pressure development and decay were decreased by 60 and 55%, respectively. SR Ca2+ uptake and Ca2+ pump ATPase, as well as Ca2+ release and ryanodine receptor binding activities, were depressed in the failing hearts; protein content and mRNA levels for Ca2+ pump ATPase, phospholamban, and ryanodine receptor were also decreased by ∼55–65%. Imidapril treatment of infarcted animals improved cardiac performance and attenuated alterations in SR Ca2+ pump and Ca2+ release activities. Changes in protein content and mRNA levels for SR Ca2+ pump ATPase, phospholamban, and ryanodine receptor were also prevented by imidapril treatment. Beneficial effects of imidapril on cardiac function and SR Ca2+ transport were not only seen at different intervals of MI but were also simulated by another angiotensin-converting enzyme inhibitor, enalapril, and an ANG II receptor antagonist, losartan. These results suggest that blockade of the renin-angiotensin system may increase the abundance of mRNA for SR proteins and, thus, may prevent the depression in SR Ca2+ transport and improve cardiac function in congestive heart failure due to MI.
Collapse
Affiliation(s)
- Qiming Shao
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | |
Collapse
|
24
|
Xie Y, Zhu Y, Zhu WZ, Chen L, Zhou ZN, Yuan WJ, Yang HT. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2005; 288:H2594-602. [PMID: 15637115 DOI: 10.1152/ajpheart.00926.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca(2+) overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca(2+)-pump ATPase, a critical regulator in intracellular Ca(2+) cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser(16) (PKA site) and Thr(17) (CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca(2+)-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser(16) phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr(17) phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser(16) phosphorylation, Ca(2+)-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr(17) phosphorylation, Ca(2+)-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca(2+)-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Yan Xie
- Laboratory of Molecular Cardiology, Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical Univ., Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Jiang M, Xu A, Jones DL, Narayanan N. Coordinate downregulation of CaM kinase II and phospholamban accompanies contractile phenotype transition in the hyperthyroid rabbit soleus. Am J Physiol Cell Physiol 2004; 287:C622-32. [PMID: 15115706 DOI: 10.1152/ajpcell.00352.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of l-thyroxine-induced hyperthyroidism on Ca2+/calmodulin (CaM)-dependent protein kinase (CaM kinase II)-mediated sarcoplasmic reticulum (SR) protein phosphorylation, SR Ca2+pump (Ca2+-ATPase) activity, and contraction duration in slow-twitch soleus muscle of the rabbit. Phosphorylation of Ca2+-ATPase and phospholamban (PLN) by endogenous CaM kinase II was found to be significantly lower (30–50%) in soleus of the hyperthyroid compared with euthyroid rabbit. Western blotting analysis revealed higher levels of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 (∼150%) Ca2+pump isoform, unaltered levels of SERCA2 Ca2+pump isoform, and lower levels of PLN (∼50%) and δ-, β-, and γ-CaM kinase II (40 ∼ 70%) in soleus of the hyperthyroid rabbit. SR vesicles from hyperthyroid rabbit soleus displayed approximately twofold higher ATP-energized Ca2+uptake and Ca2+-stimulated ATPase activities compared with that from euthyroid control. The Vmaxof Ca2+uptake (in nmol Ca2+·mg SR protein−1·min−1: euthyroid, 818 ± 73; hyperthyroid, 1,649 ± 90) but not the apparent affinity of the Ca2+-ATPase for Ca2+(euthyroid, 0.97 ± 0.02 μM, hyperthyroid, 1.09 ± 0.04 μM) differed significantly between the two groups. CaM kinase II-mediated stimulation of Ca2+uptake by soleus muscle SR was ∼60% lower in the hyperthyroid compared with euthyroid. Isometric twitch force of soleus measured in situ was significantly greater (∼36%), and the time to peak force and relaxation time were significantly lower (∼30–40%), in the hyperthyroid. These results demonstrate that thyroid hormone-induced transition in contractile properties of the rabbit soleus is associated with coordinate downregulation of the expression and function of PLN and CaM kinase II and selective upregulation of the expression and function of SERCA1, but not SERCA2, isoform of the SR Ca2+pump.
Collapse
Affiliation(s)
- M Jiang
- Dept. of Physiology and Pharmacology, Health Science Center, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
26
|
Mundiña-Weilenmann C, Said M, Vittone L, Ferrero P, Mattiazzi A. Phospholamban phosphorylation in ischemia-reperfused heart. Effect of pacing during ischemia and response to a beta-adrenergic challenge. Mol Cell Biochem 2004; 252:239-46. [PMID: 14577598 DOI: 10.1023/a:1025504709518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The status of phospholamban (PLB) phosphorylation in the ischemia-reperfused hearts remains controversial. Although a decrease in the phosphorylation of both PLB residues (Ser16, PKA site, and Thr17, CaMKII site) was previously reported, experiments from our laboratory failed to detect this decrease. In an attempt to elucidate the cause for this discrepancy, experiments were performed in Langendorff-perfused rat hearts with two main goals: (1) To determine whether keeping pacing during ischemia, a protocol followed in other ischemia-reperfusion models, decreases the phosphorylation of PLB residues, below pre-ischemic values; (2) To investigate whether a maximal beta-adrenergic challenge allows to detect a decrease in the ability of PLB to be phosphorylated in ischemia-reperfused hearts. Hearts were submitted to a global ischemia/reperfusion protocol (20/30 min) with (P) or without (NP) pacing during ischemia, and phosphorylation of PLB residues was assessed by immunodetection. The recovery of contractility upon reperfusion was lower in P vs. NP hearts. Ser16 of PLB, was phosphorylated at the end of ischemia in NP hearts. This increase appeared earlier in P hearts and was significantly diminished by catecholamine depletion and beta-blockade. Thr17 site was phosphorylated at the beginning of ischemia and the onset of reperfusion. The ischemia-induced phosphorylation of Thr17 was higher and more sustained in P vs. NP hearts, and inhibited by the calcium channel blocker, nifedipine, whereas the reperfusion-induced increase in Thr17 phosphorylation was similar in P and NP hearts and was significantly diminished by the Na+/Ca2+ exchanger inhibitor KB-R7943. Phosphorylation of PLB residues did not decrease below basal levels at any time during ischemia and reperfusion. However, the phosphorylation, inotropic and lusitropic response to beta-adrenergic stimulation was significantly decreased both in P and NP hearts.
Collapse
Affiliation(s)
- Cecilia Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | |
Collapse
|
27
|
Saini HK, Machackova J, Dhalla NS. Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal 2004; 6:393-404. [PMID: 15025941 DOI: 10.1089/152308604322899468] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioning (IPC) is an endogenous adaptive mechanism and is manifested by early and delayed phases of cardioprotection. Brief episodes of ischemia-reperfusion during IPC cause some subtle functional and structural alterations in sarcolemma, mitochondria, sarcoplasmic reticulum, myofibrils, glycocalyx, as well as nucleus, which render these subcellular organelles resistant to subsequent sustained ischemia-reperfusion insult. These changes occur in functional groups of various receptors, cation transporters, cation channels, and contractile and other proteins, and may explain the initial effects of IPC. On the other hand, induction of various transcriptional factors occurs to alter gene expression and structural changes in subcellular organelles and may be responsible for the delayed effects of IPC. Reactive oxygen species (ROS), which are formed during the IPC period, may cause these changes directly and indirectly and act as a trigger of IPC-induced cardioprotection. As ROS may be one of the several triggers proposed for IPC, this discussion is focused on the current knowledge of both ROS-dependent and ROS-independent mechanisms of IPC. Furthermore, some events, which are related to functional preservation of subcellular organelles, are described for a better understanding of the IPC phenomenon.
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
28
|
Pei JM, Kravtsov GM, Wu S, Das R, Fung ML, Wong TM. Calcium homeostasis in rat cardiomyocytes during chronic hypoxia: a time course study. Am J Physiol Cell Physiol 2004; 285:C1420-8. [PMID: 14600077 DOI: 10.1152/ajpcell.00534.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study determined Ca2+ handling in the hearts of rats subjected to chronic hypoxia (CH). Spectrofluorometry was used to measure intracellular Ca2+ concentration ([Ca2+]i) and its responses to electrical stimulation, caffeine, and isoproterenol in myocytes from the right ventricle of rats breathing 10% oxygen for 1, 3, 7, 14, 21, 28, and 56 days and age-matched controls. The protein expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and its ryanodine receptor (RyR) were measured. The uptake of 45Ca2+ by SERCA, release by RyR, and extrusion by Na+/Ca2+ exchange (NCX) were determined. It was found that Ca2+ homeostasis and Ca2+ responses to beta-adrenoceptor stimulation reached a new equilibrium after 4 wk of CH. Ca2+ content in the sarcoplasmic reticulum (SR) was reduced, but cytosolic Ca2+ remained unchanged after CH. Expression of SERCA and its Ca2+ uptake, Ca2+ release via RyR, and NCX activity were suppressed by CH. The results indicate impaired Ca2+ handling, which may be responsible for the attenuated Ca2+ responses to beta-adrenoceptor stimulation in CH.
Collapse
Affiliation(s)
- Jian-Ming Pei
- Dept. of Physiology, Faculty of Medicine, Univ. of Hong Kong, 21 Sassoon Rd., Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
29
|
Watanuki S, Matsuda N, Sakuraya F, Jesmin S, Hattori Y. Protein kinase C modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated phospholamban phosphorylation in diabetic rats. Br J Pharmacol 2003; 141:347-59. [PMID: 14691046 PMCID: PMC1574184 DOI: 10.1038/sj.bjp.0705455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The goal of this study was to elucidate the possible mechanisms by which protein kinase A (PKA)-mediated regulation of the sarcoplasmic reticulum (SR) via phospholambin protein phosphorylation is functionally impaired in streptozotocin-induced diabetic rats. 2. Phospholamban (PLB) protein and mRNA levels were 1.3-fold higher in diabetic than in control hearts, while protein expression of cardiac SR Ca(2+)-ATPase (SERCA2a) was unchanged. 3. Basal and isoprenaline-stimulated phosphorylation of PLB at Ser(16) or Thr(17) was unchanged in diabetic hearts. However, stronger immunoreactivity was observed at the basal level in diabetic hearts when antiphosphoserine antibody was used. 4. Basal (32)P incorporation into PLB was significantly higher in diabetic than in control SR vesicles, but the extent of the PKA-mediated increase in PLB phosphorylation was the same in the two groups of vesicles. 5. Stimulation of Ca(2+) uptake by PKA-catalyzed PLB phosphorylation was weaker in diabetic than in control SR vesicles. The PKA-induced increase in Ca(2+) uptake was attenuated when control SR vesicles were preincubated with protein kinase C (PKC). 6. PKC activities were increased by more than two-fold in the membranous fractions from diabetic hearts in comparison with control values, regardless of whether Ca(2+) was present. This was associated with increases in the protein content of PKCdelta, PKCeta, PKCiota, and PKClambda in diabetic membranous fractions. 7. The changes observed in diabetic rats were reversed by insulin therapy. 8. These results suggest that PKA-dependent phosphorylation may incompletely counteract the function of PLB as an inhibitor of SERCA2a activity in diabetes in which PKC expression and activity are enhanced.
Collapse
Affiliation(s)
- Satoko Watanuki
- Department of Pharmacology, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Naoyuki Matsuda
- Department of Pharmacology, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Department of Anesthesiology & Critical Care Medicine, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Fumika Sakuraya
- Department of Anesthesiology & Critical Care Medicine, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Subrina Jesmin
- Department of Cardiovascular Medicine, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yuichi Hattori
- Department of Pharmacology, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Author for correspondence:
| |
Collapse
|
30
|
Temsah RM, Netticadan T, Kawabata KI, Dhalla NS. Lack of both oxygen and glucose contributes to I/R-induced changes in cardiac SR function. Am J Physiol Cell Physiol 2002; 283:C1306-12. [PMID: 12225993 DOI: 10.1152/ajpcell.00138.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although ischemia-reperfusion (I/R) has been shown to depress cardiac performance and sarcoplasmic reticulum (SR) function, the mechanisms underlying these alterations are poorly understood. Because lack of oxygen and substrate deprivation are known to occur during the ischemic phase, we examined the effects of reperfusion on cardiac performance and SR function in hearts subjected to hypoxia and substrate lack. For this purpose, isolated rat hearts were perfused with hypoxic and/or glucose-free medium for 30 min and then reperfused with normal medium for 1 h; the SR vesicles were isolated for studying the Ca(2+)-transport activities. Reperfusion with normal medium of hearts deprived of oxygen or glucose showed no changes in cardiac performance and SR function. However, reperfusion of hearts perfused with hypoxic glucose-free medium showed ~45% decrease in cardiac contractile activities as well as 23 and 64% reduction in SR Ca(2+)-uptake and Ca(2+)-release activities, respectively, without any change in the level of SR Ca(2+)-cycling proteins. Depressed SR function in these hearts was associated with a reduction in Ca(2+)/calmodulin-dependent protein kinase (CaMK) phosphorylation of the SR Ca(2+)-cycling proteins and 34% decrease in SR CaMK activity. These changes in cardiac performance, SR function, and SR CaMK activity in the hypoxic, glucose-deprived, reperfused hearts were similar to those observed in hearts subjected to 30 min of global ischemia and 60 min of reperfusion. The results therefore suggest that the lack of both oxygen and substrate during the ischemic phase may contribute to the I/R-induced alterations in cardiac performance and SR function. Furthermore, these abnormalities were associated with reduced SR CaMK activity.
Collapse
Affiliation(s)
- Rana M Temsah
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | | | |
Collapse
|
31
|
Louch WE, Ferrier GR, Howlett SE. Changes in excitation-contraction coupling in an isolated ventricular myocyte model of cardiac stunning. Am J Physiol Heart Circ Physiol 2002; 283:H800-10. [PMID: 12124230 DOI: 10.1152/ajpheart.00020.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.
Collapse
Affiliation(s)
- William E Louch
- Cardiovascular Research Laboratories, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
32
|
Temsah RM, Kawabata K, Chapman D, Dhalla NS. Preconditioning prevents alterations in cardiac SR gene expression due to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2002; 282:H1461-6. [PMID: 11893583 DOI: 10.1152/ajpheart.00447.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that ischemic preconditioning (IP) improves cardiac performance and sarcoplasmic reticulum (SR) function in hearts subjected to ischemia-reperfusion (I/R). In this study, we examined the effect of IP on I/R-induced changes in gene expression for SR proteins such as the Ca(2+) release channel, Ca(2+) pump ATPase, phospholamban, and calsequestrin in the isolated rat heart. Normal isolated rat hearts exposed to three brief cycles of IP (5-min ischemia and 5-min reperfusion) exhibited a significant decrease in the transcript levels of SR genes. Nonpreconditioned I/R hearts when subjected to 30-min ischemia and 30-min reperfusion showed a marked decrease in mRNA levels for the SR proteins compared with normal hearts; this decrease was attenuated by preconditioning. Although hearts subjected to Ca(2+) paradox (CP) have been shown to exhibit intracellular Ca(2+) overload and SR dysfunction like those in I/R hearts, virtually nothing is known regarding the effect of CP on cardiac SR gene expression. Accordingly, CP (5-min Ca(2+)-free perfusion and 30-min reperfusion with normal medium) was observed to produce dramatic changes in SR gene expression, and the heart failed to contract; these alterations were attenuated by IP. Our results show that 1) both I/R and CP depress SR gene expression in the normal heart, 2) IP attenuates I/R- and CP-induced depression in cardiac function and SR gene expression, and 3) intracellular Ca(2+) overload may play a role in depressing SR gene expression in both I/R and CP hearts.
Collapse
Affiliation(s)
- Rana M Temsah
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | |
Collapse
|
33
|
Tupling R, Green H. Silver ions induce Ca2+ release from the SR in vitro by acting on the Ca2+ release channel and the Ca2+ pump. J Appl Physiol (1985) 2002; 92:1603-10. [PMID: 11896027 DOI: 10.1152/japplphysiol.00756.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Silver nitrate (AgNO3) is a sulfhydryl oxidizing agent that induces a biphasic Ca2+ release from isolated sarcoplasmic reticulum (SR) vesicles by presumably oxidizing critical sulfhydryl groups in the Ca2+ release channel (CRC), causing the channel to open. To further examine the effects of AgNO3 on the CRC and the Ca2+-ATPase, Ca2+ release was measured in muscle homogenates prepared from rat hindlimb muscle using indo 1. Cyclopiazonic acid (CPA) and ruthenium red (RR) were used to inhibit the Ca2+-ATPase and block the CRC, respectively, before inducing Ca2+ release with both AgNO3 and 4-chloro-m-cresol (4-CMC), a releasing agent specific for the CRC. With AgNO3 and CPA, the early rapid rate of release (phase 1) was increased (P < 0.05) by 42% (314 +/- 5 vs. 446 +/- 39 micromol x g protein(-1) x min(-1)), whereas the slower, more prolonged rate of release (phase 2) was decreased (P < 0.05) by 72% (267 +/- 39 vs. 74 +/- 7.7 micromol x g protein(-1) x min(-1)). RR, in combination with AgNO3, had no effect on phase 1 (P > 0.05) (314 +/- 51 vs. 334 +/- 43 micromol x g protein(-1) x min(-1)) and decreased phase 2 (P < 0.05) by 65% (245 +/- 34 vs. 105 +/- 8.2 micromol x g protein(-1) x min(-1)). With 4-CMC, CPA had no effect (P > 0.05) on either phase 1 or 2. With addition of RR, phase 1 was reduced (P < 0.05) by 59% (2,468 +/- 279 vs. 1,004 +/- 87 micromol x g protein(-1) x min(-1)), and RR completely blocked phase 2. Both AgNO3 and 4-CMC fully inhibited Ca2+-ATPase activity measured in homogenates. These findings indicate that AgNO3, but not 4-CMC, induces Ca2+ release by acting on both the CRC and the Ca2+-ATPase.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
34
|
Xu Z, Cohen MV, Downey JM, Vanden Hoek TL, Yao Z. Attenuation of oxidant stress during reoxygenation by AMP 579 in cardiomyocytes. Am J Physiol Heart Circ Physiol 2001; 281:H2585-9. [PMID: 11709426 DOI: 10.1152/ajpheart.2001.281.6.h2585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP 579, an adenosine A(1)/A(2) receptor agonist, has a strong anti-infarct effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether AMP 579 can reduce the production of reactive oxidant species (ROS) during reoxygenation in cultured chick embryonic cardiomyocytes. The intracellular fluorescent probe 2',7'-dichlorofluorescin diacetate (DCFH) was used to detect ROS. The cells were subjected to 60 min of simulated ischemia, followed by either 15 min or 3 h of reoxygenation. AMP 579 (0.5 and 1 microM), when started 10 min before reoxygenation, significantly reduced ROS generation from 4.86 +/- 0.30 (arbitrary units) in untreated cells to 2.72 +/- 0.31 and 1.85 +/- 0.14, respectively (P < 0.05). Cell death that was assessed by propidium iodide uptake was markedly reduced by AMP 579 (49.6 +/- 4.7% of control cells vs. 25.4 +/- 2.4%, P < 0.05). In contrast, adenosine did not alter ROS generation or cell death. Attenuation of ROS production by AMP 579 was completely prevented by simultaneous exposure of cells to the selective adenosine A(2) antagonist 8-(13-chlorostyryl) caffeine. These results indicate that AMP 579 directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates intracellular oxidant stress. Furthermore, adenosine could not duplicate these effects.
Collapse
Affiliation(s)
- Z Xu
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
35
|
Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS. Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 2001; 50:2133-8. [PMID: 11522681 DOI: 10.2337/diabetes.50.9.2133] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In view of the depressed sarcoplasmic reticulum (SR) Ca2+-pump and Ca2+-release activities in the diabetic heart and the critical role of phosphorylation in regulating the SR function, we examined the status of Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA)-mediated phosphorylations in the diabetic heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (65 mg/kg i.v.), and the animals were killed 6 weeks later for assessment of the ventricular SR function. Depressed cardiac performance and SR Ca2+-uptake and -release activities in diabetic animals were accompanied by a significant decrease in the level of SR Ca2+-cycling proteins, such as ryanodine receptor, Ca2+-pump ATPase, and phospholamban. On the other hand, the CaMK- and PKA-mediated phosphorylations of these Ca2+-cycling proteins, the endogenous SR CaMK and PKA activities, and the endogenous SR and cytosolic phosphatase activities were increased in the diabetic heart. Treatment of 3-week diabetic animals with insulin partially or fully prevented the diabetes-induced changes in cardiac performance, SR Ca2+-uptake and -release activites, and SR protein content, whereas the diabetes-induced changes in SR CaMK- and PKA-mediated phosphorylations and activities, as well as phosphatase activities, were not significantly affected. These results suggest that the reduced content of the Ca2+-cycling proteins, unlike alterations in PKA and phosphatase activities, appear to be the major defect underlying SR dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- T Netticadan
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
36
|
Tupling R, Green H, Senisterra G, Lepock J, McKee N. Effects of ischemia on sarcoplasmic reticulum Ca(2+) uptake and Ca(2+) release in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 281:E224-32. [PMID: 11440897 DOI: 10.1152/ajpendo.2001.281.2.e224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the hypothesis that prolonged ischemia would impair both sarcoplasmic reticulum (SR) Ca(2+) uptake and Ca(2+) release in skeletal muscle. To induce total ischemia (I), a tourniquet was placed around the upper hindlimb in 30 female Sprague-Dawley rats [wt = 256 +/- 6.7 (SE) g] and inflated to 350 mmHg for 4 h. The contralateral limb served as control (C). Immediately after the 4 h of ischemia, mixed gastrocnemius and tibialis anterior muscle was sampled from both limbs, and both crude muscle homogenates and SR vesicles were prepared. In another 10 control animals (CC), muscles were sampled and prepared exactly the same way, but immediately after anesthetization. Ca(2+) uptake and Ca(2+) release were measured in vitro with Indo-I on both homogenates and SR vesicles. As hypothesized, submaximal Ca(2+) uptake was lower (P < 0.05) in I compared with CC and C, by 25 and 45% in homogenates and SR vesicles, respectively. Silver nitrate (AgNO(3))-induced Ca(2+) release, which occurred in two phases (phase 1 and phase 2), was also altered in I compared with CC and C, in both muscle homogenates and SR vesicles. With ischemia, phase 1 peak Ca(2+) release was 26% lower (P < 0.05) in SR vesicles only. For phase 2, peak Ca(2+) release was 54 and 24% lower (P < 0.05) in SR vesicles and homogenates, respectively. These results demonstrate that prolonged skeletal muscle ischemia leads to a reduced SR Ca(2+) uptake in both homogenates and SR vesicles. The effects of ischemia on SR Ca(2+) release, however, depend on both the phase examined and the type of tissue preparation.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
37
|
Rao MK, Xu A, Narayanan N. Glucocorticoid modulation of protein phosphorylation and sarcoplasmic reticulum function in rat myocardium. Am J Physiol Heart Circ Physiol 2001; 281:H325-33. [PMID: 11406500 DOI: 10.1152/ajpheart.2001.281.1.h325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To decipher the mechanism(s) underlying glucocorticoid action on cardiac contractile function, this study investigated the effects of adrenalectomy and dexamethasone treatment on the contents of sarcoplasmic reticulum (SR) Ca(2+)-cycling proteins, their phosphorylation by endogenous Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II), and SR Ca(2+) sequestration in the rat myocardium. Cardiac SR vesicles from adrenalectomized rats displayed significantly diminished rates of ATP-energized Ca(2+) uptake in vitro compared with cardiac SR vesicles from control rats; in vivo administration of dexamethasone to adrenalectomized rats prevented the decline in SR function. Western immunoblotting analysis showed that the relative protein amounts of ryanodine receptor/Ca(2+)-release channel, Ca(2+)-ATPase, calsequestrin, and phospholamban were neither diminished significantly by adrenalectomy nor elevated by dexamethasone treatment. However, the relative amount of SR-associated CaM kinase II protein was increased 2.5- to 4-fold in dexamethasone-treated rats compared with control and adrenalectomized rats. Endogenous CaM kinase II activity, as judged from phosphorylation of ryanodine receptor, Ca(2+)-ATPase, and phospholamban protein, was also significantly higher (50--80% increase) in the dexamethasone-treated rats. The stimulatory effect of CaM kinase II activation on Ca(2+) uptake activity of SR was significantly depressed after adrenalectomy and greatly enhanced after dexamethasone treatment. These findings identify the SR as a major target for glucocorticoid actions in the heart and implicate modification of the SR CaM kinase II system as a component of the mechanisms by which dexamethasone influences SR Ca(2+)-cycling and myocardial contraction.
Collapse
Affiliation(s)
- M K Rao
- Department of Physiology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
38
|
Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V, Schaefer S. Preconditioning limits mitochondrial Ca(2+) during ischemia in rat hearts: role of K(ATP) channels. Am J Physiol Heart Circ Physiol 2001; 280:H2321-8. [PMID: 11299237 DOI: 10.1152/ajpheart.2001.280.5.h2321] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged myocardial ischemia results in an increase in intracellular calcium concentration ([Ca(2+)]i), which is thought to play a critical role in ischemia-reperfusion injury. Ischemic preconditioning (PC) improves myocardial function during ischemia-reperfusion, a process that may involve opening mitochondrial ATP-sensitive potassium (K(ATP)) channels. Because pharmacological limitation of mitochondrial calcium concentration ([Ca(2+)]m) overload during ischemia-reperfusion has been shown to improve myocardial function, we hypothesized that PC would reduce [Ca(2+)]m during ischemia-reperfusion and that this effect was mediated by opening mitochondrial K(ATP) channels. Isolated rat hearts were subjected to 25 min of global ischemia and 30 min of reperfusion with or without PC in the presence of mitochondrial K(ATP) channel opening (diazoxide, 100 microM) and blockade [5-hydroxydecanoic acid (5-HD), 100 microM]. Contracture during ischemia (end-diastolic pressure) and functional recovery on reperfusion (developed pressure) were assessed. Total [Ca(2+)]i and [Ca(2+)]m were measured using indo 1 fluorescence. Both PC and diazoxide limited the increase in end-diastolic pressure and resulted in greater functional recovery after 30 min of reperfusion, functional effects that were partially or completely abolished by 5-HD. PC and diazoxide also significantly limited the increase in [Ca(2+)]m during ischemia-reperfusion. In addition, PC lowered [Ca(2+)]i during reperfusion, whereas diazoxide paradoxically resulted in increased [Ca(2+)]i during reperfusion. There was an inverse linear relationship between [Ca(2+)]m and developed pressure during reperfusion. PC limits the ischemia-induced increase in mitochondrial, but not total, [Ca(2+)]i, an effect mediated by opening mitochondrial K(ATP) channels. These data suggest that the lowering of mitochondrial calcium overload is a mechanism of cardioprotection in PC.
Collapse
Affiliation(s)
- L Wang
- Division of Cardiovascular Medicine, University of California, Davis 95616, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Feng J, Chahine R, Nadeau R. Influence of extracellular potassium on the antiarrhythmic effect of global preconditioning in isolated perfused rat hearts. Mol Cell Biochem 2000; 214:75-80. [PMID: 11195793 DOI: 10.1023/a:1007183311209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to investigate if a variation in extracellular-K+ concentrations alters the effects of global pre-conditioning on ischemia-induced arrhythmias. Rat hearts were Langendorff-perfused with Krebs-Henseleit solution and randomised in 8 groups (n = 12/group): four control groups (K+: 2, 4, 6, or 8 mmol/L) which underwent 30-min coronary artery occlusion and four preconditioned groups (K+: 2, 4, 6, or 8 mmol/L) in which the 30-min regional ischemia was preceded by 2 cycles of 3 min global ischemia. In the presence of low K+ (2 mmol/L), there were no differences between control and preconditioning groups in the number of ventricular premature beats (VPBs): 194 +/- 64 vs. 217 +/- 81, the incidence of ventricular tachycardia (VT): 100% vs. 100% and of ventricular fibrillation (VF): 100% vs. 100%. In the presence of normal K+ concentration (4 mmol/L), ischemic preconditioning reduced the number of VPBs from 88 +/- 26 to 25 +/- 10, (p < 0.05), the incidence of VT from 100 to 50% (p < 0.05), and of VF from 67 to 16% (p < 0.05). In the condition of higher K+ concentration (6 mmol/ L), VPBs (34 +/- 8 vs. 11 +/- 4), the incidence of VT (100% vs. 25%; p < 0.05 ) and VF (25% vs. 8%) were further reduced in preconditioned hearts. In the condition of K+ concentration (8 mmol/L), there were no differences in VPBs (11 +/- 3 vs. 7 +/- 2), the incidence of VT (8% vs. 0%) and VF (8% vs. 0%) between control and preconditioned hearts. Our data show that ischemic preconditioning affords protection against arrhythmias during coronary artery occlusion in the isolated rat heart and that hypokalemia abolishes the antiarrhythmic effects of global preconditioning.
Collapse
Affiliation(s)
- J Feng
- Hopital du Sacre-Coeur de Montréal, Department of Physiology, Faculty of Medicine, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
40
|
Takeo S, Elmoselhi AB, Goel R, Sentex E, Wang J, Dhalla NS. Attenuation of changes in sarcoplasmic reticular gene expression in cardiac hypertrophy by propranolol and verapamil. Mol Cell Biochem 2000; 213:111-8. [PMID: 11129949 DOI: 10.1023/a:1007120332587] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of propranolol and verapamil on contractile dysfunction, subcellular remodeling and changes in gene expression in cardiac hypertrophy due to pressure overload were examined. Rats were subjected to banding of the abdominal aorta and then treated with either propranolol (10 mg/kg daily), verapamil (5 mg/kg daily) or vehicle for 8 weeks after the surgery. Depression of the left ventricular function in the hypertrophied heart was associated with decreases in myofibrillar and myosin Ca2+ ATPase activities as well as Ca2+-pump and Ca2+-release activities of the sarcoplasmic reticulum (SR). The level of alpha-myosin heavy chain (alpha-MHC) mRNA was decreased while that of beta-MHC mRNA was increased in the pressure-overloaded heart. The level of SR Ca2+-pump ATPase (SERCA2) mRNA and protein content for SERCA2 were decreased in the pressure overloaded heart. Treatment of the hypertrophied animals with propranolol or verapamil resulted in preservation of the left ventricular function and prevention of the subcellular alterations. Shift in the alpha- and beta-MHC mRNA levels and changes in the expression in SERCA2 mRNA level and protein content were also attenuated by these treatments. The results suggest that blockade of beta-adrenoceptors or voltage-dependent calcium channels normalizes the cardiac gene expression, prevents subcellular remodeling and thus attenuates heart dysfunction in rats with cardiac hypertrophy. Furthermore, both cardiac beta-adrenoceptors and L-type Ca2+-channels may be involved in the genesis of cardiac hypertrophy due to pressure overload.
Collapse
Affiliation(s)
- S Takeo
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
41
|
East JM. Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology (review). Mol Membr Biol 2000; 17:189-200. [PMID: 11302372 DOI: 10.1080/09687680010009646] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This review examines the structure and function of the sarco(endo)plasmic reticulum calcium pump (SERCA1a) in the light of the recent publication of the 2.6 A resolution structure of this protein, and looks at the increasing awareness of the key role played by SERCAs in calcium signalling. The roles played by the calcium pump isoforms, SERCA1a/b, SERCA2a/b and SERCA3a/b/c in cellular function are discussed, and the modulation of SERCA activity by phospholamban, sarcolipin and other modulatory influences is examined. The recent discoveries of human SERCA mutations leading to disease states is reviewed, and the insights into SERCA function using transgenic approaches are outlined.
Collapse
Affiliation(s)
- J M East
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK.
| |
Collapse
|
42
|
Osada M, Netticadan T, Kawabata K, Tamura K, Dhalla NS. Ischemic preconditioning prevents I/R-induced alterations in SR calcium-calmodulin protein kinase II. Am J Physiol Heart Circ Physiol 2000; 278:H1791-8. [PMID: 10843874 DOI: 10.1152/ajpheart.2000.278.6.h1791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.
Collapse
Affiliation(s)
- M Osada
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
43
|
Kawabata KI, Netticadan T, Osada M, Tamura K, Dhalla NS. Mechanisms of ischemic preconditioning effects on Ca(2+) paradox-induced changes in heart. Am J Physiol Heart Circ Physiol 2000; 278:H1008-15. [PMID: 10710371 DOI: 10.1152/ajpheart.2000.278.3.h1008] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of ischemic preconditioning (IP) on changes in cardiac performance and sarcoplasmic reticulum (SR) function due to Ca(2+) paradox were investigated. Isolated perfused hearts were subjected to IP (three cycles of 3-min ischemia and 3-min reperfusion) followed by Ca(2+)-free perfusion and reperfusion (Ca(2+) paradox). Perfusion of hearts with Ca(2+)-free medium for 5 min followed by reperfusion with Ca(2+)-containing medium for 30 min resulted in a dramatic decrease in the left ventricular (LV) developed pressure and a marked increase in LV end-diastolic pressure. Alterations in cardiac contractile activity due to Ca(2+) paradox were associated with depressed SR Ca(2+)-uptake, Ca(2+)-pump ATPase, and Ca(2+)-release activities as well as decreased SR protein contents for Ca(2+)-pump and Ca(2+) channels. All these changes due to Ca(2+) paradox were significantly prevented in hearts subjected to IP. The protective effects of IP on Ca(2+) paradox changes in cardiac contractile activity as well as SR Ca(2+)-pump and Ca(2+)-release activities were lost when the hearts were treated with 8-(p-sulfophenyl)-theophylline, an adenosine receptor antagonist; KN-93, a specific Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) inhibitor; or chelerythrine chloride, a protein kinase C (PKC) inhibitor. These results indicate that IP rendered cardioprotection by preventing a depression in SR function in Ca(2+) paradox hearts. Furthermore, these beneficial effects of IP may partly be mediated by adenosine receptors, PKC, and CaMK II.
Collapse
Affiliation(s)
- K I Kawabata
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | |
Collapse
|