1
|
Coveney S, Afzali M, Mueller L, Teh I, Das A, Dall'Armellina E, Szczepankiewicz F, Jones DK, Schneider JE. Outlier detection in cardiac diffusion tensor imaging: Shot rejection or robust fitting? Med Image Anal 2025; 101:103386. [PMID: 39667253 DOI: 10.1016/j.media.2024.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024]
Abstract
Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental. Multiple voxel outlier detection (MVOD), using a local myocardial neighbourhood, may overcome the shared deficiencies of SR and SVOD for cDTI while keeping the benefits of both. Here, robust fitting methods using M-estimators are derived for both non-linear least squares and weighted least squares fitting, and outlier detection is applied using (i) SVOD; and (ii) SVOD and MVOD. These methods, along with non-robust fitting with/without SR, are applied to cDTI datasets from healthy volunteers and hypertrophic cardiomyopathy patients. Robust fitting methods produce larger group differences with more statistical significance for MD, FA, and E2A, versus non-robust methods, with MVOD giving the largest group differences for MD and FA. Visual analysis demonstrates the superiority of robust-fitting methods over SR, especially when it is difficult to partition the images into good and bad sets. Synthetic experiments confirm that MVOD gives lower root-mean-square-error than SVOD.
Collapse
Affiliation(s)
- Sam Coveney
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
| | - Maryam Afzali
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lars Mueller
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Arka Das
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jurgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
2
|
Afzali M, Mueller L, Coveney S, Fasano F, Evans CJ, Engel M, Szczepankiewicz F, Teh I, Dall’Armellina E, Jones DK, Schneider JE. In vivo diffusion MRI of the human heart using a 300 mT/m gradient system. Magn Reson Med 2024; 92:1022-1034. [PMID: 38650395 PMCID: PMC7617480 DOI: 10.1002/mrm.30118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure. METHODS Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation (M 2 $$ {M}_2 $$ andM 3 $$ {M}_3 $$ ) andb = 100 , 450 $$ b=100,450 $$ , and 1000s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ (twice theb max $$ {b}_{\mathrm{max}} $$ commonly used on clinical scanners). Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and secondary eigenvector angle (E2A) were calculated for b = [100, 450]s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ and b = [100, 1000]s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ for bothM 2 $$ {M}_2 $$ andM 3 $$ {M}_3 $$ . RESULTS The MD values withM 3 $$ {M}_3 $$ are slightly higher than withM 2 $$ {M}_2 $$ withΔ MD = 0 . 05 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 5 ) $$ \Delta \mathrm{MD}=0.05\pm 0.05\kern0.3em \left[\times 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-5\right) $$ forb max = 450 s / mm 2 $$ {b}_{\mathrm{max}}=450\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ andΔ MD = 0 . 03 ± 0 . 03 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 4 ) $$ \Delta \mathrm{MD}=0.03\pm 0.03\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-4\right) $$ forb max = 1000 s / mm 2 $$ {b}_{\mathrm{max}}=1000\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ . A reduction in MD is observed by increasing theb max $$ {b}_{\mathrm{max}} $$ from 450 to 1000s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ (Δ MD = 0 . 06 ± 0 . 04 [ × 1 0 - 3 mm 2 / s ] ( p = 1 . 6 e - 9 ) $$ \Delta \mathrm{MD}=0.06\pm 0.04\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1.6e-9\right) $$ forM 2 $$ {M}_2 $$ andΔ MD = 0 . 08 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 1 e - 9 ) $$ \Delta \mathrm{MD}=0.08\pm 0.05\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1e-9\right) $$ forM 3 $$ {M}_3 $$ ). The difference between FA, E2A, and HA was not significant in different schemes (p > 0 . 05 $$ p>0.05 $$ ). CONCLUSION This work demonstrates cardiac DWI in vivo with higher b-value and higher order of motion compensated diffusion gradient waveforms than is commonly used. Increasing the motion compensation order fromM 2 $$ {M}_2 $$ toM 3 $$ {M}_3 $$ and the maximum b-value from 450 to 1000 s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ affected the MD values but FA and the angular metrics (HA and E2A) remained unchanged. Our work paves the way for cardiac DWI on the next-generation MR scanners with high-performance gradient systems.
Collapse
Affiliation(s)
- Maryam Afzali
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Lars Mueller
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sam Coveney
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Christopher John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | | | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Erica Dall’Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Jürgen E. Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Rodero C, Baptiste TMG, Barrows RK, Lewalle A, Niederer SA, Strocchi M. Advancing clinical translation of cardiac biomechanics models: a comprehensive review, applications and future pathways. FRONTIERS IN PHYSICS 2023; 11:1306210. [PMID: 38500690 PMCID: PMC7615748 DOI: 10.3389/fphy.2023.1306210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cardiac mechanics models are developed to represent a high level of detail, including refined anatomies, accurate cell mechanics models, and platforms to link microscale physiology to whole-organ function. However, cardiac biomechanics models still have limited clinical translation. In this review, we provide a picture of cardiac mechanics models, focusing on their clinical translation. We review the main experimental and clinical data used in cardiac models, as well as the steps followed in the literature to generate anatomical meshes ready for simulations. We describe the main models in active and passive mechanics and the different lumped parameter models to represent the circulatory system. Lastly, we provide a summary of the state-of-the-art in terms of ventricular, atrial, and four-chamber cardiac biomechanics models. We discuss the steps that may facilitate clinical translation of the biomechanics models we describe. A well-established software to simulate cardiac biomechanics is lacking, with all available platforms involving different levels of documentation, learning curves, accessibility, and cost. Furthermore, there is no regulatory framework that clearly outlines the verification and validation requirements a model has to satisfy in order to be reliably used in applications. Finally, better integration with increasingly rich clinical and/or experimental datasets as well as machine learning techniques to reduce computational costs might increase model reliability at feasible resources. Cardiac biomechanics models provide excellent opportunities to be integrated into clinical workflows, but more refinement and careful validation against clinical data are needed to improve their credibility. In addition, in each context of use, model complexity must be balanced with the associated high computational cost of running these models.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tiffany M. G. Baptiste
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rosie K. Barrows
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alexandre Lewalle
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing Institute, London, United Kingdom
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Dileep D, Syed TA, Sloan TFW, Dhandapany PS, Siddiqi K, Sirajuddin M. Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber continuum in heart walls. EMBO J 2023; 42:e113288. [PMID: 37671467 PMCID: PMC10548172 DOI: 10.15252/embj.2022113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
Coordinated cardiomyocyte contraction drives the mammalian heart to beat and circulate blood. No consensus model of cardiomyocyte geometrical arrangement exists, due to the limited spatial resolution of whole heart imaging methods and the piecemeal nature of studies based on histological sections. By combining microscopy and computer vision, we produced the first-ever three-dimensional cardiomyocyte orientation reconstruction across mouse ventricular walls at the micrometer scale, representing a gain of three orders of magnitude in spatial resolution. We recovered a cardiomyocyte arrangement aligned to the long-axis direction of the outer ventricular walls. This cellular network lies in a thin shell and forms a continuum with longitudinally arranged cardiomyocytes in the inner walls, with a complex geometry at the apex. Our reconstruction methods can be applied at fine spatial scales to further understanding of heart wall electrical function and mechanics, and set the stage for the study of micron-scale fiber remodeling in heart disease.
Collapse
Affiliation(s)
- Drisya Dileep
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
- The University of Trans‐Disciplinary Health Sciences and Technology (TDU)BengaluruIndia
| | - Tabish A Syed
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | | | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| |
Collapse
|
5
|
Valle C, Ujvari A, Elia E, Lu M, Gauthier N, Hoganson D, Marx G, Powell AJ, Ferraro A, Lakatos B, Tősér Z, Merkely B, Kovacs A, Harrild DM. Right ventricular contraction patterns in healthy children using three-dimensional echocardiography. Front Cardiovasc Med 2023; 10:1141027. [PMID: 37600046 PMCID: PMC10435279 DOI: 10.3389/fcvm.2023.1141027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Background The right ventricle (RV) has complex geometry and function, with motion along three separate axes-longitudinal, radial, and anteroposterior. Quantitative assessment of RV function by two-dimension echocardiography (2DE) has been limited as a consequence of this complexity, whereas newer three dimensional (3D) analysis offers the potential for more comprehensive assessment of the contributors to RV function. The aims of this study were to quantify the longitudinal, radial and anteroposterior components of global RV function using 3D echocardiography in a cohort of healthy children and to examine maturational changes in these parameters. Methods Three-dimensional contours of the RV were generated from a cohort of healthy pediatric patients with structurally normal hearts at two centers. Traditional 2D and 3D echo characteristics were recorded. Using offline analysis of 3D datasets, RV motion was decomposed into three components, and ejection fractions (EF) were calculated (longitudinal-LEF; radial-REF; and anteroposterior-AEF). The individual decomposed EF values were indexed against the global RVEF. Strain values were calculated as well. Results Data from 166 subjects were included in the analysis; median age was 13.5 years (range 0 to 17.4 years). Overall, AEF was greater than REF and LEF (29.2 ± 6.2% vs. 25.1 ± 7.2% and 25.7 ± 6.0%, respectively; p < 0.001). This remained true when indexed to overall EF (49.8 ± 8.7% vs. 43.3 ± 11.6% and 44.4 ± 10%, respectively; p < 0.001). Age-related differences were present for global RVEF, REF, and all components of RV strain. Conclusions In healthy children, anteroposterior shortening is the dominant component of RV contraction. Evaluation of 3D parameters of the RV in children is feasible and enhances the overall understanding of RV function, which may allow improvements in recognition of dysfunction and assessment of treatment effects in the future.
Collapse
Affiliation(s)
- Christopher Valle
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Adrienn Ujvari
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Eleni Elia
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford, United Kingdom
| | - Minmin Lu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Naomi Gauthier
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David Hoganson
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Gerald Marx
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Andrew J. Powell
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Alessandra Ferraro
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Bálint Lakatos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Tősér
- Argus Cognitive, Inc., Lebanon, NH, United States
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovacs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Argus Cognitive, Inc., Lebanon, NH, United States
| | - David M. Harrild
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Neelakantan S, Kumar M, Mendiola EA, Phelan H, Serpooshan V, Sadayappan S, Avazmohammadi R. Multiscale characterization of left ventricle active behavior in the mouse. Acta Biomater 2023; 162:240-253. [PMID: 36963596 PMCID: PMC10416730 DOI: 10.1016/j.actbio.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The myocardium possesses an intricately designed microarchitecture to produce an optimal cardiac contraction. The contractile behavior of the heart is generated at the sarcomere level and travels across several length scales to manifest as the systolic function at the organ level. While passive myocardial behavior has been studied extensively, the translation of active tension produced at the fiber level to the organ-level function is not well understood. Alterations in cardiac systolic function are often key sequelae in structural heart diseases, such as myocardial infarction and systolic heart failure; thus, characterization of the contractile behavior of the heart across multiple length scales is essential to improve our understanding of mechanisms collectively leading to depressed systolic function. In this study, we present a methodology to characterize the active behavior of left ventricle free wall (LVFW) myocardial tissues in mice. Combined with active tests in papillary muscle fibers and conventional in vivo contractility measurement at the organ level in an animal-specific manner, we establish a multiscale active characterization of the heart from fiber to organ. In addition, we quantified myocardial architecture from histology to shed light on the directionality of the contractility at the tissue level. The LVFW tissue activation-relaxation behavior under isometric conditions was qualitatively similar to that of the papillary muscle fiber bundle. However, the maximum stress developed in the LVFW tissue was an order of magnitude lower than that developed by a fiber bundle, and the time taken for active forces to plateau was 2-3 orders of magnitude longer. Although the LVFW tissue exhibited a slightly stiffer passive response in the circumferential direction, the tissues produced significantly larger active stresses in the longitudinal direction during active testing. Also, contrary to passive viscoelastic stress relaxation, active stresses relaxed faster in the direction with larger peak stresses. The multiscale experimental pipeline presented in this work is expected to provide crucial insight into the contractile adaptation mechanisms of the heart with impaired systolic function. STATEMENT OF SIGNIFICANCE: Heart failure cause significant alterations to the contractile-relaxation behavior of the yocardium. Multiscale characterization of the contractile behavior of the myocardium is essential to advance our understanding of how contractility translates from fiber to organ and to identify the multiscale mechanisms leading to impaired cardiac function. While passive myocardial behavior has been studied extensively, the investigation of tissue-level contractile behavior remains critically scarce in the literature. To the best of our knowledge, our study here is the first to investigate the contractile behavior of the left ventricle at multiple length scales in small animals. Our results indicate that the active myocardial wall is a function of transmural depth and relaxes faster in the direction with larger peak stresses.
Collapse
Affiliation(s)
- Sunder Neelakantan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mohit Kumar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Emilio A Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Haley Phelan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA.
| |
Collapse
|
7
|
Kamali R, Kwan E, Regouski M, Bunch TJ, Dosdall DJ, Hsu E, Macleod RS, Polejaeva I, Ranjan R. Contribution of atrial myofiber architecture to atrial fibrillation. PLoS One 2023; 18:e0279974. [PMID: 36719871 PMCID: PMC9888724 DOI: 10.1371/journal.pone.0279974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The role of fiber orientation on a global chamber level in sustaining atrial fibrillation (AF) is unknown. The goal of this study was to correlate the fiber direction derived from Diffusion Tensor Imaging (DTI) with AF inducibility. METHODS Transgenic goats with cardiac-specific overexpression of constitutively active TGF-β1 (n = 14) underwent AF inducibility testing by rapid pacing in the left atrium. We chose a minimum of 10 minutes of sustained AF as a cut-off for AF inducibility. Explanted hearts underwent DTI to determine the fiber direction. Using tractography data, we clustered, visualized, and quantified the fiber helix angles in 8 different regions of the left atrial wall using two reference vectors defined based on anatomical landmarks. RESULTS Sustained AF was induced in 7 out of 14 goats. The mean helix fiber angles in 7 out of 8 selected regions were statistically different (P-Value < 0.05) in the AF inducible group. The average fractional anisotropy (FA) and the mean diffusivity (MD) were similar in the two groups with FA of 0.32±0.08 and MD of 8.54±1.72 mm2/s in the non-inducible group and FA of 0.31±0.05 (P-value = 0.90) and MD of 8.68±1.60 mm2/s (P-value = 0.88) in the inducible group. CONCLUSIONS DTI based fiber direction shows significant variability across subjects with a significant difference between animals that are AF inducible versus animals that are not inducible. Fiber direction might be contributing to the initiation and sustaining of AF, and its role needs to be investigated further.
Collapse
Affiliation(s)
- Roya Kamali
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
| | - Eugene Kwan
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - T. Jared Bunch
- Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Derek J. Dosdall
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Ed Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Rob S. Macleod
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Irina Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Ravi Ranjan
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lashgari M, Ravikumar N, Teh I, Li JR, Buckley DL, Schneider JE, Frangi AF. Three-dimensional micro-structurally informed in silico myocardium-Towards virtual imaging trials in cardiac diffusion weighted MRI. Med Image Anal 2022; 82:102592. [PMID: 36095906 DOI: 10.1016/j.media.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
In silico tissue models (viz. numerical phantoms) provide a mechanism for evaluating quantitative models of magnetic resonance imaging. This includes the validation and sensitivity analysis of imaging biomarkers and tissue microstructure parameters. This study proposes a novel method to generate a realistic numerical phantom of myocardial microstructure. The proposed method extends previous studies by accounting for the variability of the cardiomyocyte shape, water exchange between the cardiomyocytes (intercalated discs), disorder class of myocardial microstructure, and four sheetlet orientations. In the first stage of the method, cardiomyocytes and sheetlets are generated by considering the shape variability and intercalated discs in cardiomyocyte-cardiomyocyte connections. Sheetlets are then aggregated and oriented in the directions of interest. The morphometric study demonstrates no significant difference (p>0.01) between the distribution of volume, length, and primary and secondary axes of the numerical and real (literature) cardiomyocyte data. Moreover, structural correlation analysis validates that the in-silico tissue is in the same class of disorderliness as the real tissue. Additionally, the absolute angle differences between the simulated helical angle (HA) and input HA (reference value) of the cardiomyocytes (4.3°±3.1°) demonstrate a good agreement with the absolute angle difference between the measured HA using experimental cardiac diffusion tensor imaging (cDTI) and histology (reference value) reported by (Holmes et al., 2000) (3.7°±6.4°) and (Scollan et al. 1998) (4.9°±14.6°). Furthermore, the angular distance between eigenvectors and sheetlet angles of the input and simulated cDTI is much smaller than those between measured angles using structural tensor imaging (as a gold standard) and experimental cDTI. Combined with the qualitative results, these results confirm that the proposed method can generate richer numerical phantoms for the myocardium than previous studies.
Collapse
Affiliation(s)
- Mojtaba Lashgari
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK.
| | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France
| | - David L Buckley
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Jurgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK; INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France; Medical Imaging Research Center (MIRC), Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Medical Imaging Research Center (MIRC), Department of Electrical Engineering, KU Leuven, Leuven, Belgium; Alan Turing Institute, London, UK.
| |
Collapse
|
9
|
Wilson AJ, Sands GB, LeGrice IJ, Young AA, Ennis DB. Myocardial mesostructure and mesofunction. Am J Physiol Heart Circ Physiol 2022; 323:H257-H275. [PMID: 35657613 PMCID: PMC9273275 DOI: 10.1152/ajpheart.00059.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
The complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%. Remarkably, however, the left ventricular wall thickens by up to 30-40%. To accommodate this, the myocardium must undergo significant structural rearrangement during contraction. At the mesoscale, collections of cardiomyocytes are organized into sheetlets, and sheetlet shear is the fundamental mechanism of rearrangement that produces wall thickening. Herein, we review the histological and physiological studies of myocardial mesostructure that have established the sheetlet shear model of wall thickening. Recent developments in tissue clearing techniques allow for imaging of whole hearts at the cellular scale, whereas magnetic resonance imaging (MRI) and computed tomography (CT) can image the myocardium at the mesoscale (100 µm to 1 mm) to resolve cardiomyocyte orientation and organization. Through histology, cardiac diffusion tensor imaging (DTI), and other modalities, mesostructural sheetlets have been confirmed in both animal and human hearts. Recent in vivo cardiac DTI methods have measured reorientation of sheetlets during the cardiac cycle. We also examine the role of pathological cardiac remodeling on sheetlet organization and reorientation, and the impact this has on ventricular function and dysfunction. We also review the unresolved mesostructural questions and challenges that may direct future work in the field.
Collapse
Affiliation(s)
- Alexander J Wilson
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California
- Veterans Administration Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
10
|
Abstract
Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,A.A. Martinos Center for Biomedical Imaging (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge (D.E.S.)
| | - Marielle Scherrer-Crosbie
- Cardiology Division, Hospital of the University of Pennsylvania and Perelman School of Medicine, Philadelphia (M.S.-C)
| |
Collapse
|
11
|
Stimm J, Guenthner C, Kozerke S, Stoeck CT. Comparison of interpolation methods of predominant cardiomyocyte orientation from in vivo and ex vivo cardiac diffusion tensor imaging data. NMR IN BIOMEDICINE 2022; 35:e4667. [PMID: 34964179 PMCID: PMC9285076 DOI: 10.1002/nbm.4667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Cardiac electrophysiology and cardiac mechanics both depend on the average cardiomyocyte long-axis orientation. In the realm of personalized medicine, knowledge of the patient-specific changes in cardiac microstructure plays a crucial role. Patient-specific computational modelling has emerged as a tool to better understand disease progression. In vivo cardiac diffusion tensor imaging (cDTI) is a vital tool to non-destructively measure the average cardiomyocyte long-axis orientation in the heart. However, cDTI suffers from long scan times, rendering volumetric, high-resolution acquisitions challenging. Consequently, interpolation techniques are needed to populate bio-mechanical models with patient-specific average cardiomyocyte long-axis orientations. In this work, we compare five interpolation techniques applied to in vivo and ex vivo porcine input data. We compare two tensor interpolation approaches, one rule-based approximation, and two data-driven, low-rank models. We demonstrate the advantage of tensor interpolation techniques, resulting in lower interpolation errors than do low-rank models and rule-based methods adapted to cDTI data. In an ex vivo comparison, we study the influence of three imaging parameters that can be traded off against acquisition time: in-plane resolution, signal to noise ratio, and number of acquired short-axis imaging slices.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Christian Guenthner
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
- Division of Surgical ResearchUniversity Hospital ZurichUniversity ZurichSwitzerland
| |
Collapse
|
12
|
Rahman T, Moulin K, Perotti LE. Cardiac Diffusion Tensor Biomarkers of Chronic Infarction Based on In Vivo Data. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 36032414 PMCID: PMC9408809 DOI: 10.3390/app12073512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In vivo cardiac diffusion tensor imaging (cDTI) data were acquired in
swine subjects six to ten weeks post-myocardial infarction (MI) to identify
microstructural-based biomarkers of MI. Diffusion tensor invariants, diffusion
tensor eigenvalues, and radial diffusivity (RD) are evaluated in the infarct,
border, and remote myocardium, and compared with extracellular volume fraction
(ECV) and native T1 values. Additionally, to aid the interpretation of the
experimental results, the diffusion of water molecules was numerically simulated
as a function of ECV. Finally, findings based on in vivo measures were confirmed
using higher-resolution and higher signal-to-noise data acquired ex vivo in the
same subjects. Mean diffusivity, diffusion tensor eigenvalues, and RD increased
in the infarct and border regions compared to remote myocardium, while
fractional anisotropy decreased. Secondary (e2) and tertiary
(e3) eigenvalues increased more significantly than the primary
eigenvalue in the infarct and border regions. These findings were confirmed by
the diffusion simulations. Although ECV presented the largest increase in
infarct and border regions, e2, e3, and RD increased the
most among non-contrast-based biomarkers. RD is of special interest as it
summarizes the changes occurring in the radial direction and may be more robust
than e2 or e3 alone.
Collapse
Affiliation(s)
- Tanjib Rahman
- Department of Mechanical and Aerospace Engineering,
University of Central Florida, Orlando, FL 32816, USA
| | - Kévin Moulin
- CREATIS Laboratory, Univ. Lyon, UJM-Saint-Etienne, INSA,
CNRS UMR 5520, INSERM, 69100 Villeurbanne, France
- Department of Radiology, University Hospital Saint-Etienne,
42270 Saint-Priest-en-Jarez, France
| | - Luigi E. Perotti
- Department of Mechanical and Aerospace Engineering,
University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
13
|
Holz D, Du'o'ng MT, Martonová D, Alkassar M, Leyendecker S. A Transmural Path Model Improves the Definition of the Orthotropic Tissue Structure in Heart Simulations. J Biomech Eng 2022; 144:1116030. [PMID: 34423814 DOI: 10.1115/1.4052219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/19/2023]
Abstract
In the past decades, the structure of the heart, human as well as other species, has been explored in a detailed way, e.g., via histological studies or diffusion tensor magnetic resonance imaging. Nevertheless, the assignment of the characteristic orthotropic structure in a patient-specific finite element model remains a challenging task. Various types of rule-based models, which define the local fiber and sheet orientation depending on the transmural depth, have been developed. However, the correct assessment of the transmural depth is not trivial. Its accuracy has a substantial influence on the overall mechanical and electrical properties in rule-based models. The main purpose of this study is the development of a finite element-based approach to accurately determine the transmural depth on a general unstructured grid. Instead of directly using the solution of the Laplace problem as the transmural depth, we make use of a well-established model for the assessment of the transmural thickness. It is based on two hyperbolic first-order partial differential equations for the definition of a transmural path, whereby the transmural thickness is defined as the arc length of this path. Subsequently, the transmural depth is determined based on the position on the transmural path. Originally, the partial differential equations were solved via finite differences on structured grids. In order to circumvent the need of two grids and mapping between the structured (to determine the transmural depth) and unstructured (electromechanical heart simulation) grids, we solve the equations directly on the same unstructured tetrahedral mesh. We propose a finite-element-based discontinuous Galerkin approach. Based on the accurate transmural depth, we assign the local material orientation of the orthotropic tissue structure in a usual fashion. We show that this approach leads to a more accurate definition of the transmural depth. Furthermore, for the left ventricle, we propose functions for the transmural fiber and sheet orientation by fitting them to literature-based diffusion tensor magnetic resonance imaging data. The proposed functions provide a distinct improvement compared to existing rules from the literature.
Collapse
Affiliation(s)
- David Holz
- Institute of Applied Dynamics (LTD), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Bavaria, Germany
| | - Minh Tuấn Du'o'ng
- Institute of Applied Dynamics (LTD), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Bavaria, Germany; School of Mechanical Engineering, Hanoi University of Science and Technology, Ha Noi, Viet Nam
| | - Denisa Martonová
- Institute of Applied Dynamics (LTD), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Bavaria, Germany
| | - Muhannad Alkassar
- Pediatric Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Bavaria, Germany
| | - Sigrid Leyendecker
- Institute of Applied Dynamics (LTD), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Bavaria, Germany
| |
Collapse
|
14
|
Putra MA, Sandora N, Nurhayati RW, Nauli R, Kusuma TR, Fitria NA, Muttaqin C, Makdinata W, Alwi I. Transport viable heart tissue at physiological temperature yielded higher human cardiomyocytes compared to the conventional temperature. Cell Tissue Bank 2022; 23:717-727. [PMID: 34993730 DOI: 10.1007/s10561-021-09978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
This study investigated the optimum transport condition for heart tissue to recover single-cell cardiomyocytes for future in-vitro or in-vivo studies. The heart tissues were obtained from removing excessive myocardium discharged during the repair surgery of an excessive right atrial hypertrophy due to a congenital disease. The transportation temperature studied was the most used temperature (4 °C) or the conventional condition, compared to a physiological temperature(37 °C). The heart tissues were transported from the operating theatre to the lab maintained less than 30 min consistently. Single-cell isolation was enzymatically and mechanically performed using collagenase-V (160 U/mg) and proteinase-XXIV (7-14 U/mg) following the previously described protocol. The impact of temperature differences was observed by the density of cells harvested per mg tissue, cell viability, and the senescence signals, identified by the p21, p53 and caspase-9 mRNA expressions. Results the heart tissue transported at 37 °C yielded significantly higher viable cell density (p < 0.01) yielded viable cells significantly higher density (p < 0.01) than the 4 °C; 2,335 ± 849 cells per mg tissue, and 732 ± 425 cells per mg tissue, respectively. The percentage of viable cells in both groups showed no difference. Although the 37 °C group expressed the apoptosis genes such as p21, p53 and caspase9 by 2.5-, 5.41-, 5-fold respectively (p > 0.05). Nonetheless, the Nk×2.5 and MHC genes were expressed 1,7- and 3.56-fold higher than the 4 °C. and the c-Kit+ expression was 17.56-fold, however, statistically insignificant. Conclusion When needed for single-cell isolation, a heart tissue transported at 37 °C yielded higher cell density per mg tissue compared to at 4 °C, while other indicators of gene expressions for apoptosis, cardiac structural proteins, cardiac progenitor cells showed no difference. Further investigations of the isolated cells at different temperature conditions towards their proliferation and differentiation capacities in a 3-D scaffold would be essential.
Collapse
Affiliation(s)
- Muhammad Arza Putra
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
| | - Normalina Sandora
- Human Reproduction Infertility and Family Planning Research Center, Indonesia Medical Education and Research Institute, 10430, Jakarta, Indonesia.
| | - Retno Wahyu Nurhayati
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, 10430, Jakarta, Indonesia
| | - Raisa Nauli
- Human Reproduction Infertility and Family Planning Research Center, Indonesia Medical Education and Research Institute, 10430, Jakarta, Indonesia
| | - Tyas Rahmah Kusuma
- Human Reproduction Infertility and Family Planning Research Center, Indonesia Medical Education and Research Institute, 10430, Jakarta, Indonesia
| | - Nur Amalina Fitria
- Human Reproduction Infertility and Family Planning Research Center, Indonesia Medical Education and Research Institute, 10430, Jakarta, Indonesia
| | - Chaidar Muttaqin
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
| | - William Makdinata
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
| | - Idrus Alwi
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
| |
Collapse
|
15
|
Stimm J, Nordsletten DA, Jilberto J, Miller R, Berberoğlu E, Kozerke S, Stoeck CT. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods. Front Physiol 2022; 13:1042537. [PMID: 36518106 PMCID: PMC9742433 DOI: 10.3389/fphys.2022.1042537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simulations of cardiac electrophysiology and mechanics have been reported to be sensitive to the microstructural anisotropy of the myocardium. Consequently, a personalized representation of cardiac microstructure is a crucial component of accurate, personalized cardiac biomechanical models. In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic resonance imaging technique capable of probing the heart's microstructure. Being a rather novel technique, issues such as low resolution, signal-to noise ratio, and spatial coverage are currently limiting factors. We outline four interpolation techniques with varying degrees of data fidelity, different amounts of smoothing strength, and varying representation error to bridge the gap between the sparse in-vivo data and the model, requiring a 3D representation of microstructure across the myocardium. We provide a workflow to incorporate in-vivo myofiber orientation into a left ventricular model and demonstrate that personalized modelling based on fiber orientations from in-vivo cDTI data is feasible. The interpolation error is correlated with a trend in personalized parameters and simulated physiological parameters, strains, and ventricular twist. This trend in simulation results is consistent across material parameter settings and therefore corresponds to a bias introduced by the interpolation method. This study suggests that using a tensor interpolation approach to personalize microstructure with in-vivo cDTI data, reduces the fiber uncertainty and thereby the bias in the simulation results.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David A Nordsletten
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Javiera Jilberto
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Kovacheva E, Thämer L, Fritz T, Seemann G, Ochs M, Dössel O, Loewe A. Estimating cardiac active tension from wall motion-An inverse problem of cardiac biomechanics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3448. [PMID: 33606343 DOI: 10.1002/cnm.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/21/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The contraction of the human heart is a complex process as a consequence of the interaction of internal and external forces. In current clinical routine, the resulting deformation can be imaged during an entire heart beat. However, the active tension development cannot be measured in vivo but may provide valuable diagnostic information. In this work, we present a novel numerical method for solving an inverse problem of cardiac biomechanics-estimating the dynamic active tension field, provided the motion of the myocardial wall is known. This ill-posed non-linear problem is solved using second order Tikhonov regularization in space and time. We conducted a sensitivity analysis by varying the fiber orientation in the range of measurement accuracy. To achieve RMSE <20% of the maximal tension, the fiber orientation needs to be provided with an accuracy of 10°. Also, variation was added to the deformation data in the range of segmentation accuracy. Here, imposing temporal regularization led to an eightfold decrease in the error down to 12%. Furthermore, non-contracting regions representing myocardial infarct scars were introduced in the left ventricle and could be identified accurately in the inverse solution (sensitivity >0.95). The results obtained with non-matching input data are promising and indicate directions for further improvement of the method. In future, this method will be extended to estimate the active tension field based on motion data from clinical images, which could provide important insights in terms of a new diagnostic tool for the identification and treatment of diseased heart tissue.
Collapse
Affiliation(s)
- Ekaterina Kovacheva
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Laura Thämer
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Thomas Fritz
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Ochs
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
17
|
Hayashi H, Oda S, Kidoh M, Nakaura T, Morita K, Nagayama Y, Yoneda T, Takashio S, Misumi Y, Ueda M, Tsujita K, Hirai T. Can myocardial susceptibility quantification be an imaging biomarker for cardiac amyloidosis? Jpn J Radiol 2021; 40:500-507. [PMID: 34841460 PMCID: PMC9068634 DOI: 10.1007/s11604-021-01228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Purpose This study aimed to evaluate whether quantification of myocardial susceptibility by cardiac magnetic resonance imaging (CMR) can be an imaging biomarker for cardiac amyloidosis (CA). Materials and methods Twenty-six patients with CA underwent CMR, including magnetic phase imaging with a 3.0-T magnetic resonance imaging scanner. Myocardial susceptibility was quantified as a phase shift slope value by magnetic phase analysis. Those values from patients with CA were compared with corresponding values from 18 controls and 15 healthy volunteers. A univariate logistic regression analysis was conducted to identify significant parameters related to CA. Results The phase shift slope, a quantitative parameter of myocardial susceptibility, was significantly lower in the CA group compared with the control group and compared with healthy volunteers (p < 0.01). From a total of 17 tested variables, 6 were considered to be significant predictors of CA (p ≤ 0.05) during the univariate analysis. The phase shift slope yielded the best AUC of 0.89 (95% CI = 0.79–0.98) for the prediction of CA (p < 0.01). The phase shift slope was significantly correlated with the end-diastolic thickness of the interventricular septum (r = − 0.39, p < 0.01) and posterior wall of the left ventricle (r = − 0.35, p = 0.02). Conclusion Myocardial susceptibility analysis by CMR helps in the diagnosis of patients with CA and can be a new quantitative imaging biomarker for CA.
Collapse
Affiliation(s)
- Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kosuke Morita
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Misumi
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
18
|
Finocchiaro G, Sheikh N, Leone O, Westaby J, Mazzarotto F, Pantazis A, Ferrantini C, Sacconi L, Papadakis M, Sharma S, Sheppard MN, Olivotto I. Arrhythmogenic potential of myocardial disarray in hypertrophic cardiomyopathy: genetic basis, functional consequences and relation to sudden cardiac death. Europace 2021; 23:985-995. [PMID: 33447843 DOI: 10.1093/europace/euaa348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Myocardial disarray is defined as disorganized cardiomyocyte spatial distribution, with loss of physiological fibre alignment and orientation. Since the first pathological descriptions of hypertrophic cardiomyopathy (HCM), disarray appeared as a typical feature of this condition and sparked vivid debate regarding its specificity to the disease and clinical significance as a diagnostic marker and a risk factor for sudden death. Although much of the controversy surrounding its diagnostic value in HCM persists, it is increasingly recognized that myocardial disarray may be found in physiological contexts and in cardiac conditions different from HCM, raising the possibility that central focus should be placed on its quantity and distribution, rather than a mere presence. While further studies are needed to establish what amount of disarray should be considered as a hallmark of the disease, novel experimental approaches and emerging imaging techniques for the first time allow ex vivo and in vivo characterization of the myocardium to a molecular level. Such advances hold the promise of filling major gaps in our understanding of the functional consequences of myocardial disarray in HCM and specifically on arrhythmogenic propensity and as a risk factor for sudden death. Ultimately, these studies will clarify whether disarray represents a major determinant of the HCM clinical profile, and a potential therapeutic target, as opposed to an intriguing but largely innocent bystander.
Collapse
Affiliation(s)
- Gherardo Finocchiaro
- Cardiothoracic Centre, Guy's and St Thomas' Hospital, London, UK.,King's College London
| | - Nabeel Sheikh
- Cardiothoracic Centre, Guy's and St Thomas' Hospital, London, UK.,King's College London
| | - Ornella Leone
- Cardiovascular and Cardiac Transplant Pathology Unit, Department of Pathology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Joe Westaby
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Francesco Mazzarotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Italy.,National Heart and Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, UK
| | - Antonis Pantazis
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, UK
| | - Cecilia Ferrantini
- University of Florence, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, Florence, Italy.,Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Papadakis
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Sanjay Sharma
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Mary N Sheppard
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
19
|
Etzel R, Mekkaoui C, Ivshina ES, Reese TG, Sosnovik DE, Hansen SLJD, Ghotra A, Kutscha N, Chemlali C, Wald LL, Mahnken AH, Keil B. Optimized 64-channel array configurations for accelerated simultaneous multislice acquisitions in 3T cardiac MRI. Magn Reson Med 2021; 86:2276-2289. [PMID: 34028882 DOI: 10.1002/mrm.28843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Three 64-channel cardiac coils with different detector array configurations were designed and constructed to evaluate acceleration capabilities in simultaneous multislice (SMS) imaging for 3T cardiac MRI. METHODS Three 64-channel coil array configurations obtained from a simulation-guided design approach were constructed and systematically evaluated regarding their encoding capabilities for accelerated SMS cardiac acquisitions at 3T. Array configuration AUni-sized consists of uniformly distributed equally sized loops in an overlapped arrangement, BGapped uses a gapped array design with symmetrically distributed equally sized loops, and CDense has non-uniform loop density and size, where smaller elements were centered over the heart and larger elements were placed surrounding the target region. To isolate the anatomic variation from differences in the coil configurations, all three array coils were built with identical semi-adjustable housing segments. The arrays' performance was compared using bench-level measurements and imaging performance tests, including signal-to-noise ratio (SNR) maps, array element noise correlation, and SMS acceleration capabilities. Additionally, all cardiac array coils were evaluated on a healthy volunteer. RESULTS The array configuration CDense with the non-uniformly distributed loop density showed the best overall cardiac imaging performance in both SNR and SMS encoding power, when compared to the other constructed arrays. The diffusion weighted cardiac acquisitions on a healthy volunteer support the favorable accelerated SNR performance of this array configuration. CONCLUSION Our results indicate that optimized highly parallel cardiac arrays, such as the 64-channel coil with a non-uniform loop size and density improve highly accelerated SMS cardiac MRI in comparison to symmetrically distributed loop array designs.
Collapse
Affiliation(s)
- Robin Etzel
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany.,Clinic of Diagnostic and Interventional Radiology, Philipps-University of Marburg, Marburg, Germany
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Sam-Luca J D Hansen
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Anpreet Ghotra
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Nicolas Kutscha
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Chaimaa Chemlali
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Andreas H Mahnken
- Clinic of Diagnostic and Interventional Radiology, Philipps-University of Marburg, Marburg, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany.,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
20
|
Chowdhury RA, Debney MT, Protti A, Handa BS, Patel KHK, Lyon AR, Shah AM, Ng FS, Peters NS. Rotigaptide Infusion for the First 7 Days After Myocardial Infarction-Reperfusion Reduced Late Complexity of Myocardial Architecture of the Healing Border-Zone and Arrhythmia Inducibility. J Am Heart Assoc 2021; 10:e020006. [PMID: 33870715 PMCID: PMC8200720 DOI: 10.1161/jaha.120.020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Survivors of myocardial infarction are at increased risk of late ventricular arrhythmias, with infarct size and scar heterogeneity being key determinants of arrhythmic risk. Gap junctions facilitate the passage of small ions and morphogenic cell signaling between myocytes. We hypothesized that gap junctions enhancement during infarction–reperfusion modulates structural and electrophysiological remodeling and reduces late arrhythmogenesis. Methods and Results Infarction–reperfusion surgery was carried out in male Sprague‐Dawley rats followed by 7 days of rotigaptide or saline administration. The in vivo and ex vivo arrhythmogenicity was characterized by programmed electrical stimulation 3 weeks later, followed by diffusion‐weighted magnetic resonance imaging and Masson's trichrome histology. Three weeks after 7‐day postinfarction administration of rotigaptide, ventricular tachycardia/ventricular fibrillation was induced on programmed electrical stimulation in 20% and 53% of rats, respectively (rotigaptide versus control), resulting in reduction of arrhythmia score (3.2 versus 1.4, P=0.018), associated with the reduced magnetic resonance imaging parameters fractional anisotropy (fractional anisotropy: −5% versus −15%; P=0.062) and mean diffusivity (mean diffusivity: 2% versus 6%, P=0.042), and remodeling of the 3‐dimensional laminar structure of the infarct border zone with reduction of the mean (16° versus 19°, P=0.013) and the dispersion (9° versus 12°, P=0.015) of the myofiber transverse angle. There was no change in ECG features, spontaneous arrhythmias, or mortality. Conclusions Enhancement of gap junctions function by rotigaptide administered during the early healing phase in reperfused infarction reduces later complexity of infarct scar morphology and programmed electrical stimulation–induced arrhythmias, and merits further exploration as a feasible and practicable intervention in the acute myocardial infarction management to reduce late arrhythmic risk.
Collapse
Affiliation(s)
- Rasheda A Chowdhury
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Michael T Debney
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Andrea Protti
- King's British Heart Foundation Centre School of Cardiovascular Medicine and Sciences Kings College London London United Kingdom
| | - Balvinder S Handa
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Kiran H K Patel
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Alexander R Lyon
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Ajay M Shah
- King's British Heart Foundation Centre School of Cardiovascular Medicine and Sciences Kings College London London United Kingdom
| | - Fu Siong Ng
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Nicholas S Peters
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| |
Collapse
|
21
|
Stimm J, Buoso S, Berberoğlu E, Kozerke S, Genet M, Stoeck CT. A 3D personalized cardiac myocyte aggregate orientation model using MRI data-driven low-rank basis functions. Med Image Anal 2021; 71:102064. [PMID: 33957560 DOI: 10.1016/j.media.2021.102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Cardiac myocyte aggregate orientation has a strong impact on cardiac electrophysiology and mechanics. Studying the link between structural characteristics, strain, and stresses over the cardiac cycle and cardiac function requires a full volumetric representation of the microstructure. In this work, we exploit the structural similarity across hearts to extract a low-rank representation of predominant myocyte orientation in the left ventricle from high-resolution magnetic resonance ex-vivo cardiac diffusion tensor imaging (cDTI) in porcine hearts. We compared two reduction methods, Proper Generalized Decomposition combined with Singular Value Decomposition and Proper Orthogonal Decomposition. We demonstrate the existence of a general set of basis functions of aggregated myocyte orientation which defines a data-driven, personalizable, parametric model featuring higher flexibility than existing atlas and rule-based approaches. A more detailed representation of microstructure matching the available patient data can improve the accuracy of personalized computational models. Additionally, we approximate the myocyte orientation of one ex-vivo human heart and demonstrate the feasibility of transferring the basis functions to humans.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Stefano Buoso
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Martin Genet
- Laboratoire de Mécanique des Solides, École Polytechnique, Palaiseau, France; M3DISIM team, Inria / Université Paris-Saclay, Palaiseau, France; C.N.R.S./Université Paris-Saclay, Palaiseau, France
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Chowdhary A, Brown LAE, Saunderson CED, Craven TP, Chew PG, Jex N, Swoboda PP, Levelt E, Greenwood JP, Schneider JE, Plein S, Dall'Armellina E. Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology 2021; 299:86-96. [PMID: 33560187 DOI: 10.1148/radiol.2021203208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Cardiac diffusion tensor imaging (cDTI) allows for in vivo characterization of myocardial microstructure. In cDTI, mean diffusivity and fractional anisotropy (FA)-markers of magnitude and anisotropy of diffusion of water molecules-are known to change after myocardial infarction. However, little is known about regional changes in helix angle (HA) and secondary eigenvector angle (E2A), which reflects orientations of laminar sheetlets, and their association with long-term recovery of left ventricular ejection fraction (LVEF). Purpose To assess serial changes in cDTI biomarkers in participants following ST-segment elevation myocardial infarction (STEMI) and to determine their associations with long-term left ventricular remodeling. Materials and Methods In this prospective study, 30 participants underwent cardiac MRI (3 T) after STEMI at 5 days and 3 months after reperfusion (National Institute of Health Research study no. 33963 and Research Ethics no. REC17/YH/0062). Spin-echo cDTI with second-order motion-compensation (approximate duration, 13 minutes; three sections; 18 noncollinear diffusion-weighted scans with b values of 100 sec/mm2 [three acquisitions], 200 sec/mm2 [three acquisitions], and 500 sec/mm2 [12 acquisitions]), functional images, and late gadolinium enhancement images were obtained. Multiple regression analysis was used to assess associations between acute cDTI parameters and 3-month LVEF. Results Acutely infarcted myocardium had reduced FA, E2A, and myocytes with right-handed orientation (RHM) on HA maps compared with remote myocardium (mean remote FA = 0.36 ± 0.02 [standard deviation], mean infarcted FA = 0.25 ± 0.03, P < .001; mean remote E2A = 55° ± 9, mean infarcted E2A = 49° ± 10, P < .001; mean remote RHM = 16% ± 6, mean infarcted RHM = 9% ± 5, P < .001). All three parameters (FA, E2A, and RHM) correlated with 3-month LVEF (r = 0.68, r = 0.59, and r = 0.53, respectively), with acute FA being independently predictive of 3-month LVEF (standardized β = 0.56, P = .008) after multivariable analysis adjusting for factors, including acute LVEF and infarct size. Conclusion After ST-segment elevation myocardial infarction, diffusion becomes more isotropic in acutely infarcted myocardium as reflected by decreased fractional anisotropy. Reductions in secondary eigenvector angle suggest that the myocardial sheetlets are unable to adopt their usual steep orientations in systole, whereas reductions in myocytes with right-handed orientation on helix angle maps are likely reflective of a loss of organization among subendocardial myocytes. Correlations between these parameters and 3-month left ventricular ejection fraction highlight the potential clinical use of cardiac diffusion tensor imaging after myocardial infarction in predicting long-term remodeling. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Arka Das
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher Kelly
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Irvin Teh
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christian T Stoeck
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Amrit Chowdhary
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Louise A E Brown
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher E D Saunderson
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Thomas P Craven
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Pei G Chew
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Nicholas Jex
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Peter P Swoboda
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Eylem Levelt
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - John P Greenwood
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Jurgen E Schneider
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sven Plein
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Erica Dall'Armellina
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| |
Collapse
|
23
|
Das A, Chowdhary A, Kelly C, Teh I, Stoeck CT, Kozerke S, Maxwell N, Craven TP, Jex NJ, Saunderson CED, Brown LAE, Ben-Arzi H, Sengupta A, Page SP, Swoboda PP, Greenwood JP, Schneider JE, Plein S, Dall'Armellina E. Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging. J Magn Reson Imaging 2021; 53:73-82. [PMID: 32558016 DOI: 10.1002/jmri.27257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) remains the commonest cause of sudden cardiac death among young athletes. Differentiating between physiologically adaptive left ventricular (LV) hypertrophy observed in athletes' hearts and pathological HCM remains challenging. By quantifying the diffusion of water molecules, diffusion tensor imaging (DTI) MRI allows voxelwise characterization of myocardial microstructure. PURPOSE To explore microstructural differences between healthy volunteers, athletes, and HCM patients using DTI. STUDY TYPE Prospective cohort. POPULATION Twenty healthy volunteers, 20 athletes, and 20 HCM patients. FIELD STRENGTH/SEQUENCE 3T/DTI spin echo. ASSESSMENT In-house MatLab software was used to derive mean diffusivity (MD) and fractional anisotropy (FA) as markers of amplitude and anisotropy of the diffusion of water molecules, and secondary eigenvector angles (E2A)-reflecting the orientations of laminar sheetlets. STATISTICAL TESTS Independent samples t-tests were used to detect statistical significance between any two cohorts. Analysis of variance was utilized for detecting the statistical difference between the three cohorts. Statistical tests were two-tailed. A result was considered statistically significant at P ≤ 0.05. RESULTS DTI markers were significantly different between HCM, athletes, and volunteers. HCM patients had significantly higher global MD and E2A, and significantly lower FA than athletes and volunteers. (MDHCM = 1.52 ± 0.06 × 10-3 mm2 /s, MDAthletes = 1.49 ± 0.03 × 10-3 mm2 /s, MDvolunteers = 1.47 ± 0.02 × 10-3 mm2 /s, P < 0.05; E2AHCM = 58.8 ± 4°, E2Aathletes = 47 ± 5°, E2Avolunteers = 38.5 ± 7°, P < 0.05; FAHCM = 0.30 ± 0.02, FAAthletes = 0.35 ± 0.02, FAvolunteers = 0.36 ± 0.03, P < 0.05). HCM patients had significantly higher E2A in their thickest segments compared to the remote (E2Athickest = 66.8 ± 7, E2Aremote = 51.2 ± 9, P < 0.05). DATA CONCLUSION DTI depicts an increase in amplitude and isotropy of diffusion in the myocardium of HCM compared to athletes and volunteers as reflected by increased MD and decreased FA values. While significantly higher E2A values in HCM and athletes reflect steeper configurations of the myocardial sheetlets than in volunteers, HCM patients demonstrated an eccentric rise in E2A in their thickest segments, while athletes demonstrated a concentric rise. Further studies are required to determine the diagnostic capabilities of DTI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Arka Das
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Amrit Chowdhary
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chris Kelly
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Nicholas Maxwell
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Thomas P Craven
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nicholas J Jex
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Christopher E D Saunderson
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Louise A E Brown
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Hadar Ben-Arzi
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Anshuman Sengupta
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Stephen P Page
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Peter P Swoboda
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John P Greenwood
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jurgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
24
|
Agger P, Stephenson RS. Assessing Myocardial Architecture: The Challenges and Controversies. J Cardiovasc Dev Dis 2020; 7:jcdd7040047. [PMID: 33137874 PMCID: PMC7711767 DOI: 10.3390/jcdd7040047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decades, investigators have strived to describe and quantify the orientation of the cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are, however, striking differences between the investigations from both a technical and methodological standpoint, thus limiting their comparability and impeding the drawing of appropriate physiological conclusions from the structural assessments. This review aims to elucidate these differences, and to propose guidance to establish methodological consensus in the field. The review outlines the theory behind myocyte orientation analysis, and importantly has identified pronounced differences in the definitions of otherwise widely accepted concepts of myocytic orientation. Based on the findings, recommendations are made for the future design of studies in the field of myocardial morphology. It is emphasised that projection of myocyte orientations, before quantification of their angulation, introduces considerable bias, and that angles should be assessed relative to the epicardial curvature. The transmural orientation of the cardiomyocytes should also not be neglected, as it is an important determinant of cardiac function. Finally, there is considerable disagreement in the literature as to how the orientation of myocardial aggregates should be assessed, but to do so in a mathematically meaningful way, the normal vector of the aggregate plane should be utilised.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, 8220 Aarhus N, Denmark
- Department of Pediatrics, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark
- Correspondence:
| | - Robert S. Stephenson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
25
|
Abstract
Classification of heart failure is based on the left ventricular ejection fraction (EF): preserved EF, midrange EF, and reduced EF. There remains an unmet need for further heart failure phenotyping of ventricular structure-function relationships. Because of high spatiotemporal resolution, cardiac magnetic resonance (CMR) remains the reference modality for quantification of ventricular contractile function. The authors aim to highlight novel frameworks, including theranostic use of ferumoxytol, to enable more efficient evaluation of ventricular function in heart failure patients who are also frequently anemic, and to discuss emerging quantitative CMR approaches for evaluation of ventricular structure-function relationships in heart failure.
Collapse
|
26
|
Abstract
Advances in technology have made it possible to image the microstructure of the heart with diffusion-weighted magnetic resonance. The technique provides unique insights into the cellular architecture of the myocardium and how this is perturbed in a range of disease contexts. In this review, the physical basis of diffusion MRI and the challenges of implementing it in the beating heart are discussed. Cutting edge acquisition and analysis techniques, as well as the results of initial clinical studies, are reported.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
27
|
Nguyen TD, Kadri OE, Voronov RS. An Introductory Overview of Image-Based Computational Modeling in Personalized Cardiovascular Medicine. Front Bioeng Biotechnol 2020; 8:529365. [PMID: 33102452 PMCID: PMC7546862 DOI: 10.3389/fbioe.2020.529365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases account for the number one cause of deaths in the world. Part of the reason for such grim statistics is our limited understanding of the underlying mechanisms causing these devastating pathologies, which is made difficult by the invasiveness of the procedures associated with their diagnosis (e.g., inserting catheters into the coronal artery to measure blood flow to the heart). Likewise, it is also difficult to design and test assistive devices without implanting them in vivo. However, with the recent advancements made in biomedical scanning technologies and computer simulations, image-based modeling (IBM) has arisen as the next logical step in the evolution of non-invasive patient-specific cardiovascular medicine. Yet, due to its novelty, it is still relatively unknown outside of the niche field. Therefore, the goal of this manuscript is to review the current state-of-the-art and the limitations of the methods used in this area of research, as well as their applications to personalized cardiovascular investigations and treatments. Specifically, the modeling of three different physics – electrophysiology, biomechanics and hemodynamics – used in the cardiovascular IBM is discussed in the context of the physiology that each one of them describes and the mechanisms of the underlying cardiac diseases that they can provide insight into. Only the “bare-bones” of the modeling approaches are discussed in order to make this introductory material more accessible to an outside observer. Additionally, the imaging methods, the aspects of the unique cardiac anatomy derived from them, and their relation to the modeling algorithms are reviewed. Finally, conclusions are drawn about the future evolution of these methods and their potential toward revolutionizing the non-invasive diagnosis, virtual design of treatments/assistive devices, and increasing our understanding of these lethal cardiovascular diseases.
Collapse
Affiliation(s)
- Thanh Danh Nguyen
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Olufemi E Kadri
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,UC-P&G Simulation Center, University of Cincinnati, Cincinnati, OH, United States
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
28
|
Tous C, Gentles TL, Young AA, Pontré BP. Ex vivo cardiovascular magnetic resonance diffusion weighted imaging in congenital heart disease, an insight into the microstructures of tetralogy of Fallot, biventricular and univentricular systemic right ventricle. J Cardiovasc Magn Reson 2020; 22:69. [PMID: 32951605 PMCID: PMC7504600 DOI: 10.1186/s12968-020-00662-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Common types of congenital heart disease exhibit a variety of structural and functional variations which may be accompanied by changes in the myocardial microstructure. We aimed to compare myocardial architecture from magnetic resonance diffusion tensor imaging (DTI) in preserved pathology specimens. MATERIALS AND METHODS Pathology specimens (n = 24) formalin-fixed for 40.8 ± 7.9 years comprised tetralogy of Fallot (TOF, n = 10), dextro-transposition of great arteries (D-TGA, n = 8) five with ventricular septal defect (VSD), systemic right ventricle (n = 4), situs inversus totalis (SIT, n = 1) and levo-TGA (L-TGA, n = 1). Specimens were imaged using a custom spin-echo sequence and segmented automatically according to tissue volume fraction. In each specimen T1, T2, fractional anisotropy, mean diffusivity, helix angle (HA) and sheet angle (E2A) were quantified. Pathologies were compared according to their HA gradient, HA asymmetry and E2A mean value in each myocardial segment (anterior, posterior, septal and lateral walls). RESULTS TOF and D-TGA with VSD had decreased helix angle gradient by - 0.34°/% and remained symmetric in the septum in comparison to D-TGA without VSD. Helix angle range was decreased by 45°. It was associated with a decreased HA gradient in the right ventricular (RV) wall, i.e. predominant circumferential myocytes. The sheet angle in the septum of TOF was opposing those of the left ventricular (LV) free wall. Univentricular systemic RV had the lowest HA gradient (- 0.43°/%) and the highest HA asymmetry (75%). HA in SIT was linear, asymmetric, and reversed with a sign change at about 70% of the depth at mid-ventricle. In L-TGA with VSD, HA was asymmetric (90%) and its gradients were decreased in the septum, anterior and lateral wall. CONCLUSION The organization of the myocytes as determined by DTI differs between TOF, D-TGA, L-TGA, systemic RV and SIT specimens. These differences in cardiac structure may further enlighten our understanding of cardiac function in these diverse congenital heart diseases.
Collapse
Affiliation(s)
- Cyril Tous
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Laboratory of Clinical Image Processing Le Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Thomas L Gentles
- Green Lane Paediatric and Congenital Cardiac Service, Starship Children's Hospital, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, UK
| | - Beau P Pontré
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
29
|
Li DS, Avazmohammadi R, Rodell CB, Hsu EW, Burdick JA, Gorman JH, Gorman RC, Sacks MS. How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium. Acta Biomater 2020; 114:296-306. [PMID: 32739434 PMCID: PMC7484038 DOI: 10.1016/j.actbio.2020.07.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022]
Abstract
Expansion of myocardium after myocardial infarction (MI) has long been identified as the primary mechanism that drives adverse left ventricular (LV) remodeling towards heart failure and death. Direct injection of hydrogels into the myocardium to mechanically constrain the infarct has demonstrated promise in limiting its remodeling and expansion. Despite early successes, there remain open questions in the determination of optimal hydrogel therapies, key application characteristics for which include injected polymer volume, stiffness, and spatial placement. Addressing these questions is complicated by the substantial variations in infarct type and extent, as well as limited understanding of the underlying mechanisms. Herein, we present an investigation on how hydrogel inclusions affect the effective tissue-level stiffness and strain fields in myocardium using full three-dimensional (3D) finite element simulations at early and late post-MI time points. We calibrated our simulations to triaxial mechanical and structural measurements of cuboidal LV myocardial specimens of post-infarcted myocardium, 0 and 4 weeks post-MI, injected with a dual-crosslinking hyaluronic acid-based hydrogel. Simulations included multiple deformation modes that spanned the anticipated physiological range in order to assess the effects of variations in inclusion size, location, and modulus on tissue-level myocardial mechanics. We observed significant local stiffening in the hydrogel-injected specimens that was highly dependent on the volume and mechanical properties of the injected hydrogel. Simulations revealed that the primary effect of the injections under physiological loading was a reduction in myocardial strain. This result suggests that hydrogel injections reduce infarct expansion by limiting the peak strains over the cardiac cycle. Overall, our study indicated that modulation of local effective tissue stiffness and corresponding strain reduction are governed by the volume and stiffness of the hydrogel, but relatively insensitive to its transmural placement. These findings provide important insights into mechanisms for ameliorating post-MI remodeling, as well as guidance for the future design of post-MI therapies.
Collapse
Affiliation(s)
- David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Reza Avazmohammadi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; Polymeric Biomaterials Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward W Hsu
- Preclinical Imaging Core Facility, Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A Burdick
- Polymeric Biomaterials Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
31
|
Lohr D, Terekhov M, Veit F, Schreiber LM. Longitudinal assessment of tissue properties and cardiac diffusion metrics of the ex vivo porcine heart at 7 T: Impact of continuous tissue fixation using formalin. NMR IN BIOMEDICINE 2020; 33:e4298. [PMID: 32207190 DOI: 10.1002/nbm.4298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
In this study we aimed to assess the effects of continuous formalin fixation on diffusion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts were measured fresh within 3 hours of cardiac arrest followed by immersion in 10% neutral buffered formalin. T2* and T2 were assessed using a gradient multi-echo and multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated echo sequence were employed to assess diffusion time-dependent changes in metrics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution: 1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased significantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days postfixation were 90% and 80%, while respective relative ADC values at those fixation stages were 78% and 92%. Statistical helix and sheetlet angle distributions as well as respective mean and median values showed no systematic influence of continuous formalin fixation. Similar to changes in the ADC, values for T2 , T2* and SNR dropped initially postfixation. Respective relative values compared with fresh hearts at day 7 were 64%, 79% and 68%, whereas continuous fixation restored T2 , T2* and SNR leading to relative values of 74%, 100%, and 81% at day 200, respectively. Relaxation parameters and diffusion metrics are significantly altered by continuous formalin fixation. The preservation of microstructure metrics following prolonged fixation is a key finding that may enable future studies of ventricular remodeling in cardiac pathologies.
Collapse
Affiliation(s)
- David Lohr
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Franziska Veit
- Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Maria Schreiber
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
32
|
Campanale CM, Scherrer B, Afacan O, Majeed A, Warfield SK, Sanders SP. Myofiber organization in the failing systemic right ventricle. J Cardiovasc Magn Reson 2020; 22:49. [PMID: 32600420 PMCID: PMC7322876 DOI: 10.1186/s12968-020-00637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/13/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The right ventricle (RV) often fails when functioning as the systemic ventricle, but the cause is not understood. We tested the hypothesis that myofiber organization is abnormal in the failing systemic right ventricle. METHODS We used diffusion-weighted cardiovascular magnetic resonance imaging to examine 3 failing hearts explanted from young patients with a systemic RV and one structurally normal heart with postnatally acquired RV hypertrophy for comparison. Diffusion compartment imaging was computed to separate the free diffusive component representing free water from an anisotropic component characterizing the orientation and diffusion characteristics of myofibers. The orientation of each anisotropic compartment was displayed in glyph format and used for qualitative description of myofibers and for construction of tractograms. The helix angle was calculated across the ventricular walls in 5 locations and displayed graphically. Scalar parameters (fractional anisotropy and mean diffusivity) were compared among specimens. RESULTS The hypertrophied systemic RV has an inner layer, comprising about 2/3 of the wall, composed of hypertrophied trabeculae and an epicardial layer of circumferential myofibers. Myofibers within smaller trabeculae are aligned and organized with parallel fibers while larger, composite bundles show marked disarray, largely between component trabeculae. We observed a narrow range of helix angles in the outer, compact part of the wall consistent with aligned, approximately circumferential fibers. However, there was marked variation of helix angle in the inner, trabecular part of the wall consistent with marked variation in fiber orientation. The apical whorl was disrupted or incomplete and we observed myocardial whorls or vortices at other locations. Fractional anisotropy was lower in abnormal hearts while mean diffusivity was more variable, being higher in 2 but lower in 1 heart, compared to the structurally normal heart. CONCLUSIONS Myofiber organization is abnormal in the failing systemic RV and might be an important substrate for heart failure and arrhythmia. It is unclear if myofiber disorganization is due to hemodynamic factors, developmental problems, or both.
Collapse
MESH Headings
- Adolescent
- Child, Preschool
- Diffusion Magnetic Resonance Imaging
- Female
- Heart Defects, Congenital/diagnostic imaging
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Heart Defects, Congenital/surgery
- Heart Failure/diagnostic imaging
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Failure/surgery
- Heart Transplantation
- Heart Ventricles/diagnostic imaging
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Heart Ventricles/surgery
- Humans
- Male
- Myocardium/pathology
- Myofibrils/pathology
- Predictive Value of Tests
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/surgery
- Ventricular Function, Right
- Young Adult
Collapse
Affiliation(s)
- Cosimo M. Campanale
- Unit of Perinatal Cardiology, Department of Neonatology, Ospedale Pediatrico Bambino Gesù di Roma, Rome, Italy
| | - Benoit Scherrer
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - Amara Majeed
- Department of Cardiology, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - Stephen P. Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA. and Department of Pediatrics, Harvard Medical School, Boston, MA USA
| |
Collapse
|
33
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Martinez-Naharro A, Fontana M, Hawkins P, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circ Cardiovasc Imaging 2020; 13:e009901. [PMID: 32408830 DOI: 10.1161/circimaging.119.009901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Cardiac amyloidosis (CA) is a disease of interstitial myocardial infiltration, usually by light chains or transthyretin. We used diffusion tensor cardiovascular magnetic resonance (DT-CMR) to noninvasively assess the effects of amyloid infiltration on the cardiac microstructure. Methods DT-CMR was performed at diastole and systole in 20 CA, 11 hypertrophic cardiomyopathy, and 10 control subjects with calculation of mean diffusivity, fractional anisotropy, and sheetlet orientation (secondary eigenvector angle). Results Mean diffusivity was elevated and fractional anisotropy reduced in CA compared with both controls and hypertrophic cardiomyopathy (P<0.001). In CA, mean diffusivity was correlated with extracellular volume (r=0.68, P=0.004), and fractional anisotropy was inversely correlated with circumferential strain (r=-0.65, P=0.02). In CA, diastolic secondary eigenvector angle was elevated, and secondary eigenvector angle mobility was reduced compared with controls (both P<0.001). Diastolic secondary eigenvector angle was correlated with amyloid burden measured by extracellular volume in transthyretin, but not light chain amyloidosis. Conclusions DT-CMR can characterize the microstructural effects of amyloid infiltration and is a contrast-free method to identify the location and extent of the expanded disorganized myocardium. The diffusion biomarkers mean diffusivity and fractional anisotropy effectively discriminate CA from hypertrophic cardiomyopathy. DT-CMR demonstrated that failure of sheetlet relaxation in diastole correlated with extracellular volume in transthyretin, but not light chain amyloidosis. This indicates that different mechanisms may be responsible for impaired contractility in CA, with an amyloid burden effect in transthyretin, but an idiosyncratic effect in light chain amyloidosis. Consequently, DT-CMR offers a contrast-free tool to identify novel pathophysiology, improve diagnostics, and monitor disease through noninvasive microstructural assessment.
Collapse
Affiliation(s)
- Zohya Khalique
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital Sydney Street, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.).,National Heart and Lung Institute, Imperial College, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.)
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital Sydney Street, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.).,National Heart and Lung Institute, Imperial College, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.)
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital Sydney Street, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.).,National Heart and Lung Institute, Imperial College, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.)
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital Sydney Street, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.).,National Heart and Lung Institute, Imperial College, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.)
| | - Ana Martinez-Naharro
- National Amyloidosis Centre, University College London Royal Free Hospital, United Kingdom (A.M.-N., M.F., P.H.)
| | - Marianna Fontana
- National Amyloidosis Centre, University College London Royal Free Hospital, United Kingdom (A.M.-N., M.F., P.H.)
| | - Phillip Hawkins
- National Amyloidosis Centre, University College London Royal Free Hospital, United Kingdom (A.M.-N., M.F., P.H.)
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital Sydney Street, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.).,National Heart and Lung Institute, Imperial College, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.)
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital Sydney Street, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.).,National Heart and Lung Institute, Imperial College, London, United Kingdom (Z.K., P.F.F., A.D.S., S.N.-V., D.N.F., D.J.P.)
| |
Collapse
|
34
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
35
|
Carruth ED, Teh I, Schneider JE, McCulloch AD, Omens JH, Frank LR. Regional variations in ex-vivo diffusion tensor anisotropy are associated with cardiomyocyte remodeling in rats after left ventricular pressure overload. J Cardiovasc Magn Reson 2020; 22:21. [PMID: 32241289 PMCID: PMC7114814 DOI: 10.1186/s12968-020-00615-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pressure overload left ventricular (LV) hypertrophy is characterized by increased cardiomyocyte width and ventricle wall thickness, however the regional variation of this remodeling is unclear. Cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) may provide a non-invasive, comprehensive, and geometrically accurate method to detect regional differences in structural remodeling in hypertrophy. We hypothesized that DTI parameters, such as fractional and planar anisotropy, would reflect myocyte remodeling due to pressure overload in a regionally-dependent manner. METHODS We investigated the regional distributions of myocyte remodeling in rats with or without transverse aortic constriction (TAC) via direct measurement of myocyte dimensions with confocal imaging of thick tissue sections, and correlated myocyte cross-sectional area and other geometric features with parameters of diffusivity from ex-vivo DTI in the same regions of the same hearts. RESULTS We observed regional differences in several parameters from DTI between TAC hearts and SHAM controls. Consistent with previous studies, helix angles from DTI correlated strongly with those measured directly from histological sections (p < 0.001, R2 = 0.71). There was a transmural gradient in myocyte cross-sectional area in SHAM hearts that was diminished in the TAC group. We also found several regions of significantly altered DTI parameters in TAC LV compared to SHAM, especially in myocyte sheet angle dispersion and planar anisotropy. Among others, these parameters correlated significantly with directly measured myocyte aspect ratios. CONCLUSIONS These results show that structural remodeling in pressure overload LV hypertrophy is regionally heterogeneous, especially transmurally, with a greater degree of remodeling in the sub-endocardium compared to the sub-epicardium. Additionally, several parameters derived from DTI correlated significantly with measurements of myocyte geometry from direct measurement in histological sections. We suggest that DTI may provide a non-invasive, comprehensive method to detect regional structural myocyte LV remodeling during disease.
Collapse
Affiliation(s)
- Eric D Carruth
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Irvin Teh
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
- Department of Medicine, University of California San Diego, La Jolla, California, USA.
| | - Lawrence R Frank
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Mojica M, Pop M, Sermesant M, Ebrahimi M. Novel atlas of fiber directions built from ex-vivo diffusion tensor images of porcine hearts. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105200. [PMID: 31830700 DOI: 10.1016/j.cmpb.2019.105200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Cardiac MR image-based predictive models integrating statistical atlases of heart anatomy and fiber orientations can aid in better diagnosis of cardiovascular disease, a major cause of death worldwide. Such atlases have been built from diffusion tensor (DT) images and can be used in anisotropic models for personalized computational electro-mechanical simulations when the fiber directions from DTI are not available. In this paper, we propose a framework for building the first statistical fiber atlas from high-resolution ex-vivo DT images of porcine hearts. A mean geometry that represents the average cardiac morphology of the dataset was first generated via groupwise registration. Then, the associated average cardiac fiber architecture was mapped out by computing the mean of the transformed DT fields of the subjects. To evaluate the stability of the atlas, we performed leave-one-out cross-validation. The resulting tensor statistics indicate that the fiber atlas could accurately describe the fiber architecture of a healthy pig heart.
Collapse
Affiliation(s)
- Mia Mojica
- Faculty of Science, University of Ontario Institute of Technology, ON, Canada.
| | - Mihaela Pop
- Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, ON, Canada.
| | | | - Mehran Ebrahimi
- Faculty of Science, University of Ontario Institute of Technology, ON, Canada.
| |
Collapse
|
37
|
Ariga R, Tunnicliffe EM, Manohar SG, Mahmod M, Raman B, Piechnik SK, Francis JM, Robson MD, Neubauer S, Watkins H. Identification of Myocardial Disarray in Patients With Hypertrophic Cardiomyopathy and Ventricular Arrhythmias. J Am Coll Cardiol 2020; 73:2493-2502. [PMID: 31118142 PMCID: PMC6548973 DOI: 10.1016/j.jacc.2019.02.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/07/2019] [Accepted: 02/26/2019] [Indexed: 01/26/2023]
Abstract
Background Myocardial disarray is a likely focus for fatal arrhythmia in hypertrophic cardiomyopathy (HCM). This microstructural abnormality can be inferred by mapping the preferential diffusion of water along cardiac muscle fibers using diffusion tensor cardiac magnetic resonance (DT-CMR) imaging. Fractional anisotropy (FA) quantifies directionality of diffusion in 3 dimensions. The authors hypothesized that FA would be reduced in HCM due to disarray and fibrosis that may represent the anatomic substrate for ventricular arrhythmia. Objectives This study sought to assess FA as a noninvasive in vivo biomarker of HCM myoarchitecture and its association with ventricular arrhythmia. Methods A total of 50 HCM patients (47 ± 15 years of age, 77% male) and 30 healthy control subjects (46 ± 16 years of age, 70% male) underwent DT-CMR in diastole, cine, late gadolinium enhancement (LGE), and extracellular volume (ECV) imaging at 3-T. Results Diastolic FA was reduced in HCM compared with control subjects (0.49 ± 0.05 vs. 0.52 ± 0.03; p = 0.0005). Control subjects had a mid-wall ring of high FA. In HCM, this ring was disrupted by reduced FA, consistent with published histology demonstrating that disarray and fibrosis invade circumferentially aligned mid-wall myocytes. LGE and ECV were significant predictors of FA, in line with fibrosis contributing to low FA. Yet FA adjusted for LGE and ECV remained reduced in HCM (p = 0.028). FA in the hypertrophied segment was reduced in HCM patients with ventricular arrhythmia compared to patients without (n = 15; 0.41 ± 0.03 vs. 0.46 ± 0.06; p = 0.007). A decrease in FA of 0.05 increased odds of ventricular arrhythmia by 2.5 (95% confidence interval: 1.2 to 5.3; p = 0.015) in HCM and remained significant even after correcting for LGE, ECV, and wall thickness (p = 0.036). Conclusions DT-CMR assessment of left ventricular myoarchitecture matched patterns reported previously on histology. Low diastolic FA in HCM was associated with ventricular arrhythmia and is likely to represent disarray after accounting for fibrosis. The authors propose that diastolic FA could be the first in vivo marker of disarray in HCM and a potential independent risk factor.
Collapse
Affiliation(s)
- Rina Ariga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elizabeth M Tunnicliffe
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan K Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jane M Francis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew D Robson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
38
|
Giannakidis A, Gullberg GT. Transmural Remodeling of Cardiac Microstructure in Aged Spontaneously Hypertensive Rats by Diffusion Tensor MRI. Front Physiol 2020; 11:265. [PMID: 32296341 PMCID: PMC7136532 DOI: 10.3389/fphys.2020.00265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
The long-standing high blood pressure (also known as hypertension) overworks the heart. Microstructural remodeling is a key factor of hypertensive heart disease progression. Diffusion tensor magnetic resonance imaging (DT-MRI) is a powerful tool for the rapid noninvasive nondestructive delineation of the cardiomyocyte organization. The spontaneously hypertensive rat (SHR) is a well-established model of genetic hypertension. The goal of this study was to employ high-resolution DT-MRI and the SHR animal model to assess the transmural layer-specific remodeling of myocardial microstructure associated with hypertension. Ex vivo experiments were performed on excised formalin-fixed hearts of aged SHRs (n = 4) and age-matched controls (n = 4). The DT-MRI-derived fractional anisotropy (FA), longitudinal diffusivity (λL), transversal diffusivity (λT), and mean diffusivity (MD) served as the readout parameters investigated at three transmural zones (i.e., endocardium, mesocardium, and epicardium). The helix angles (HAs) of the aggregated cardiomyocytes and the orientation of laminar sheetlets were also studied. Compared with controls, the SHRs exhibited decreased epicardial FA, while FA changes in the other two transmural regions were insignificant. No substantial differences were observed in the diffusivity parameters and the transmural course of HAs between the two groups. A consistent distribution pattern of laminar sheetlet orientation was not identified for either group. Our findings are in line with the known cellular microstructure from early painstaking histological studies. Biophysical explanations of the study outcomes are provided. In conclusion, our experimental findings indicate that the epicardial microstructure is more vulnerable to high blood pressure leading to more pronounced changes in this region during remodeling. DT-MRI is well-suited for elucidating these alterations. The revealed transmural nonuniformity of myocardial reorganization may shed light on the mechanisms of the microstructure-function relationship in hypertension progression. Our results provide insights into the management of patients with systemic arterial hypertension, thus prevent the progression toward heart failure. The findings of this study should be acknowledged by electromechanical models of the heart that simulate the specific cardiac pathology.
Collapse
Affiliation(s)
- Archontis Giannakidis
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Grant T Gullberg
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
39
|
Oda H, Roth HR, Sugino T, Sunaguchi N, Usami N, Oda M, Shimao D, Ichihara S, Yuasa T, Ando M, Akita T, Narita Y, Mori K. Cardiac fiber tracking on super high-resolution CT images: a comparative study. J Med Imaging (Bellingham) 2020; 7:026001. [PMID: 32206685 PMCID: PMC7064862 DOI: 10.1117/1.jmi.7.2.026001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose: High-resolution cardiac imaging and fiber analysis methods are required to understand cardiac anatomy. Although refraction-contrast x-ray CT (RCT) has high soft tissue contrast, it cannot be commonly used because it requires a synchrotron system. Microfocus x-ray CT (μCT) is another commercially available imaging modality. Approach: We evaluate the usefulness of μCT for analyzing fibers by quantitatively and objectively comparing the results with RCT. To do so, we scanned a rabbit heart by both modalities with our original protocol of prepared materials and compared their image-based analysis results, including fiber orientation estimation and fiber tracking. Results: Fiber orientations estimated by two modalities were closely resembled under the correlation coefficient of 0.63. Tracked fibers from both modalities matched well the anatomical knowledge that fiber orientations are different inside and outside of the left ventricle. However, the μCT volume caused incorrect tracking around the boundaries caused by stitching scanning. Conclusions: Our experimental results demonstrated that μCT scanning can be used for cardiac fiber analysis, although further investigation is required in the differences of fiber analysis results on RCT and μCT.
Collapse
Affiliation(s)
- Hirohisa Oda
- Nagoya University, Graduate School of Informatics, Nagoya, Japan
| | - Holger R Roth
- Nagoya University, Graduate School of Informatics, Nagoya, Japan
| | - Takaaki Sugino
- Nagoya University, Graduate School of Informatics, Nagoya, Japan
| | - Naoki Sunaguchi
- Nagoya University Graduate School of Medicine, Department of Radiological and Medical Laboratory Sciences, Nagoya, Japan
| | - Noriko Usami
- Nagoya University School of Medicine, Department of Tissue Engineering, Nagoya, Japan
| | - Masahiro Oda
- Nagoya University, Graduate School of Informatics, Nagoya, Japan
| | - Daisuke Shimao
- Hokkaido University of Science, Department of Radiological Technology, Sapporo, Japan
| | - Shu Ichihara
- Nagoya Medical Center, Clinical Research Center, Department of Pathology, Nagoya, Japan
| | - Tetsuya Yuasa
- Yamagata University, Graduate School of Engineering and Science, Yamagata, Japan
| | - Masami Ando
- Tokyo University of Science, Research Institute of Science and Technology, Tokyo, Japan
| | - Toshiaki Akita
- Nagoya University School of Medicine, Department of Tissue Engineering, Nagoya, Japan
| | - Yuji Narita
- Nagoya University School of Medicine, Department of Tissue Engineering, Nagoya, Japan
| | - Kensaku Mori
- Nagoya University, Graduate School of Informatics, Nagoya, Japan.,Nagoya University, Information Technology Center, Nagoya, Japan.,National Institute of Informatics, Research Center for Medical Bigdata, Tokyo, Japan
| |
Collapse
|
40
|
Li DS, Avazmohammadi R, Merchant SS, Kawamura T, Hsu EW, Gorman JH, Gorman RC, Sacks MS. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics. J Mech Behav Biomed Mater 2020; 103:103508. [PMID: 32090941 PMCID: PMC7045908 DOI: 10.1016/j.jmbbm.2019.103508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Myocardium possesses a hierarchical structure that results in complex three-dimensional (3D) mechanical behavior, forming a critical component of ventricular function in health and disease. A wide range of constitutive model forms have been proposed for myocardium since the first planar biaxial studies were performed by Demer and Yin (J. Physiol. 339 (1), 1983). While there have been extensive studies since, none have been based on full 3D kinematic data, nor have they utilized optimal experimental design to estimate constitutive parameters, which may limit their predictive capability. Herein we have applied our novel 3D numerical-experimental methodology (Avazmohammadi et al., Biomechanics Model. Mechanobiol. 2018) to explore the applicability of an orthotropic constitutive model for passive ventricular myocardium (Holzapfel and Ogden, Philos. Trans. R. Soc. Lond.: Math. Phys. Eng. Sci. 367, 2009) by integrating 3D optimal loading paths, spatially varying material structure, and inverse modeling techniques. Our findings indicated that the initial model form was not successful in reproducing all optimal loading paths, due to previously unreported coupling behaviors via shearing of myofibers and extracellular collagen fibers in the myocardium. This observation necessitated extension of the constitutive model by adding two additional terms based on the I8(C) pseudo-invariant in the fiber-normal and sheet-normal directions. The modified model accurately reproduced all optimal loading paths and exhibited improved predictive capabilities. These unique results suggest that more complete constitutive models are required to fully capture the full 3D biomechanical response of left ventricular myocardium. The present approach is thus crucial for improved understanding and performance in cardiac modeling in healthy, diseased, and treatment scenarios.
Collapse
Affiliation(s)
- David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Reza Avazmohammadi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Samer S Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Tomonori Kawamura
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward W Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
41
|
Agger P, Omann C, Laustsen C, Stephenson RS, Anderson RH. Anatomically correct assessment of the orientation of the cardiomyocytes using diffusion tensor imaging. NMR IN BIOMEDICINE 2020; 33:e4205. [PMID: 31829484 DOI: 10.1002/nbm.4205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Diffusion tensor imaging has been used for assessing the orientation of cardiac myocytes for decades. Striking methodological differences exist between studies when quantifying these orientations. This limits the comparability between studies, and impedes collaboration and the drawing of appropriate physiological conclusions. We have sought to elucidate these differences, permitting us to propose a standardised "tool set" that might better establish consensus in future studies. We fixed hearts from seven 25 kg pigs in formalin, and scanned them using diffusion tensor imaging. Using various angle definitions as found in literature, we assessed the orientations of cardiomyocytes, comparing them in terms of helical and intrusion angles, along with the orientation of their aggregations. The difference between assessment of the helical angle with and without relation to the epicardial curvature was 25.2° (SD: 7.9) at the base, 5.8° (1.9) at the equatorial level, and 28.0° (7.0) at the apex, ANOVA P = 0.001. In comparable fashion, the intrusion angle differed by 25.9° (12.9), 7.6° (0.98) and 17.5° (4.7), P = 0.01, and the angle of the aggregates (E3-angle) differed by 25.0° (13.5) at the base, 9.4° (1.7) at the equator, and 23.1° (6.2) apically, P = 0.003. When assessing 14 definitions used in literature to calculate the orientation of aggregates, only 4 rendered identical results. The findings show that any attempt to use projection of eigenvectors introduces considerable bias. The epicardial curvature of the ventricular cone needs to be taken into account when seeking to provide accurate quantification of the orientation of the aggregated cardiomyocytes, especially in the apical and basal regions. This means that projection of eigenvectors should be avoided prior to quantifying myocyte orientation, especially when assessing radial orientation. Based on our results, we suggest appropriate methods for valid assessment of myocyte orientation using diffusion tensor imaging.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Camilla Omann
- Dept. of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Institute of Clinical Sciences, The University of Birmingham, Birmingham, UK
| | - Robert H Anderson
- Institute Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
42
|
Niu P, Li L, Yin Z, Du J, Tan W, Huo Y. Speckle tracking echocardiography could detect the difference of pressure overload-induced myocardial remodelling between young and adult rats. J R Soc Interface 2020; 17:20190808. [PMID: 32093537 DOI: 10.1098/rsif.2019.0808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The assessment by speckle tracking echocardiography (STE) provides useful information on regional and global left ventricular (LV) functions. The aim of the study is to investigate if STE-based strain analysis could detect the difference of pressure overload-induced myocardial remodelling between young and adult rats. Physiological, haemodynamic, histological measurements were performed post-operatively in young and adult rats with transverse aortic constriction (TAC) as well as the age-matched shams. Two-way ANOVA was used to detect the statistical difference of various measured parameters. Pressure overload decreased the ejection fraction, fractional shortening, dp/dtmax and |dp/dtmin|, but increased the LV end-diastolic (ED) pressure in adult rat hearts for nine weeks after TAC operation than those in young rat hearts. Pressure overload also resulted in different changes of peak strain and strain rate in the free wall, but similar changes in the interventricular septum of young and adult rat hearts. The changes in myocardial remodelling were confirmed by the histological analysis including the increased apoptosis rate of myocytes and collagen area ratio in the free wall of adult rat hearts of LV hypertrophy when compared with the young. Pressure overload alters myocardial components in different degrees between young and adult animals. STE-based strain analysis could detect the subtle difference of pressure overload-induced myocardial remodelling between young and adult rats.
Collapse
Affiliation(s)
- Pei Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Zhongjie Yin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Jie Du
- Beijing Anzhen Hospital Capital Medical University, Beijing, People's Republic of China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China.,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, People's Republic of China.,Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, People's Republic of China
| | - Yunlong Huo
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, People's Republic of China.,Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Benson AP, Stevenson-Cocks HJ, Whittaker DG, White E, Colman MA. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function. Methods 2020; 185:60-81. [PMID: 31988002 DOI: 10.1016/j.ymeth.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Computational models of the heart, from cell-level models, through one-, two- and three-dimensional tissue-level simplifications, to biophysically-detailed three-dimensional models of the ventricles, atria or whole heart, allow the simulation of excitation and propagation of this excitation, and have provided remarkable insight into the normal and pathological functioning of the heart. In this article we present equations for modelling cellular excitation (i.e. the cell action potential) from both a phenomenological and a biophysical perspective. Hodgkin-Huxley formalism is discussed, along with the current generation of biophysically-detailed cardiac cell models. Alternative Markovian formulations for modelling ionic currents are also presented. Equations describing propagation of this cellular excitation, through one-, two- and three-dimensional idealised or realistic tissues, are then presented. For all types of model, from cell to tissue, methods for discretisation and integration of the underlying equations are discussed. The article finishes with a discussion of two tissue-level experimental imaging techniques - diffusion tensor magnetic resonance imaging and optical imaging - that can be used to provide data for parameterisation and validation of cell- and tissue-level cardiac models.
Collapse
Affiliation(s)
- Alan P Benson
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK.
| | | | - Dominic G Whittaker
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK; School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ed White
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Colman
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
44
|
Diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy: a comparison of motion-compensated spin echo and stimulated echo techniques. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:331-342. [PMID: 31758419 PMCID: PMC7230046 DOI: 10.1007/s10334-019-00799-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
Objectives Diffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients. Materials and methods Biphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T. Results Adequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE). Discussion In HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease. Electronic supplementary material The online version of this article (10.1007/s10334-019-00799-3) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
46
|
Huang J, Wang L, Chu C, Liu W, Zhu Y. Accelerating cardiac diffusion tensor imaging combining local low-rank and 3D TV constraint. MAGMA (NEW YORK, N.Y.) 2019; 32:407-422. [PMID: 30903326 DOI: 10.1007/s10334-019-00747-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Diffusion tensor magnetic resonance imaging (DT-MRI, or DTI) is a promising technique for invasively probing biological tissue structures. However, DTI is known to suffer from much longer acquisition time with respect to conventional MRI and the problem is worsened when dealing with in vivo acquisitions. Therefore, faster DTI for both ex vivo and in vivo scans is highly desired. MATERIALS AND METHODS This paper proposes a new compressed sensing (CS) reconstruction method that employs local low-rank (LLR) model and three-dimensional (3D) total variation (TV) constraint to reconstruct cardiac diffusion-weighted (DW) images from highly undersampled k-space data. The LLR model takes the set of DW images corresponding to different diffusion gradient directions as a 3D image volume and decomposes the latter into overlapping 3D blocks. Then, the 3D blocks are stacked as two-dimensional (2D) matrix. Finally, low-rank property is applied to each block matrix and the 3D TV constraint to the 3D image volume. The underlying constrained optimization problem is finally solved using the first-order fast method. The proposed method is evaluated on real ex vivo cardiac DTI data as a prerequisite to in vivo cardiac DTI applications. RESULTS The results on real human ex vivo cardiac DTI images demonstrate that the proposed method exhibits lower reconstruction errors for DTI indices, including fractional anisotropy (FA), mean diffusivities (MD), transverse angle (TA), and helix angle (HA), compared to existing CS-based DTI image reconstruction techniques. CONCLUSION The proposed method provides better reconstruction quality and more accurate DTI indices in comparison with the state-of-the-art CS-based DW image reconstruction methods.
Collapse
Affiliation(s)
- Jianping Huang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Heilongjiang, 150040, Harbin, China.
- Metislab, LIA CNRS, Harbin Institute of Technology, Heilongjiang, 150001, Harbin, China.
- CREATIS, CNRS UMR5220, Inserm U1206, INSA Lyon, University of Lyon, Lyon, France.
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Chunyu Chu
- College of Engineering, Bohai University, Jinzhou, 121013, China
| | - Wanyu Liu
- Metislab, LIA CNRS, Harbin Institute of Technology, Heilongjiang, 150001, Harbin, China
| | - Yuemin Zhu
- Metislab, LIA CNRS, Harbin Institute of Technology, Heilongjiang, 150001, Harbin, China
- CREATIS, CNRS UMR5220, Inserm U1206, INSA Lyon, University of Lyon, Lyon, France
| |
Collapse
|
47
|
Lee AWC, Nguyen UC, Razeghi O, Gould J, Sidhu BS, Sieniewicz B, Behar J, Mafi-Rad M, Plank G, Prinzen FW, Rinaldi CA, Vernooy K, Niederer S. A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data. Med Image Anal 2019; 57:197-213. [PMID: 31326854 PMCID: PMC6746621 DOI: 10.1016/j.media.2019.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Background Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. Objective Patient specific computational models allow the activation pattern following CRT implant to be predicted and this may be used to optimize CRT lead placement. Methods In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial conduction, slow septal conduction, functional block) on accurately predicting the electrical activation of the LV epicardium were tested to determine the minimal detail required to create a rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 12 lead ECG) from eighteen patients from two centers were used to investigate the models. Results Validation with invasive electro-anatomical mapping data identified that computer models with fast endocardial conduction were able to predict the electrical activation with a mean distance errors of 9.2 ± 0.5 mm (CMR data) or (CT data) 7.5 ± 0.7 mm. Conclusion This study identified a simple rule-based fast endocardial conduction model, built using non-invasive clinical data that can be used to rapidly and robustly predict the electrical activation of the heart. Pre-procedural prediction of the latest electrically activating region to identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT procedures.
Collapse
Affiliation(s)
- A W C Lee
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - U C Nguyen
- Department of Physiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Department of Cardiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - O Razeghi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J Gould
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - B S Sidhu
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - B Sieniewicz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J Behar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - M Mafi-Rad
- Department of Cardiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - G Plank
- Department of Biophysics, Medical University of Graz, Graz, Austria
| | - F W Prinzen
- Department of Physiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - C A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - K Vernooy
- Department of Cardiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - S Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
48
|
Omann C, Agger P, Bøgh N, Laustsen C, Ringgaard S, Stephenson RS, Anderson RH, Hjortdal VE, Smerup M. Resolving the natural myocardial remodelling brought upon by cardiac contraction; a porcine ex-vivo cardiovascular magnetic resonance study of the left and right ventricle. J Cardiovasc Magn Reson 2019; 21:35. [PMID: 31256759 PMCID: PMC6600899 DOI: 10.1186/s12968-019-0547-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The three-dimensional rearrangement of the right ventricular (RV) myocardium during cardiac deformation is unknown. Previous in-vivo studies have shown that myocardial left ventricular (LV) deformation is driven by rearrangement of aggregations of cardiomyocytes that can be characterised by changes in the so-called E3-angle. Ex-vivo imaging offers superior spatial resolution compared with in-vivo measurements, and can thus provide novel insight into the deformation of the myocardial microstructure in both ventricles. This study sought to describe the dynamic changes of the orientations of the cardiomyocytes in both ventricles brought upon by cardiac contraction, with particular interest in the thin-walled RV, which has not previously been described in terms of its micro-architecture. METHODS The hearts of 14 healthy 20 kg swine were excised and preserved in either a relaxed state or a contracted state. Myocardial architecture was assessed and compared between the two contractional states by quantification of the helical, transmural and E3-angles of the cardiomyocytes using high-resolution diffusion tensor imaging. RESULTS The differences between the two states of contraction were most pronounced in the endocardium where the E3-angle decreased from 78.6° to 24.8° in the LV and from 82.6° to 68.6° in the RV. No significant change in neither the helical nor the transmural angle was found in the cardiomyocytes of the RV. In the endocardium of the LV, however, the helical angle increased from 35.4° to 47.8° and the transmural angle increased from 3.1° to 10.4°. CONCLUSION The entire myocardium rearranges through the cardiac cycle with the change in the orientation of the aggregations of cardiomyocytes being the predominant mediator of myocardial wall thickening. Interestingly, differences also exist between the RV and LV, which helps in the explanation of the different physiological capabilities of the ventricles.
Collapse
Affiliation(s)
- Camilla Omann
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Comparative Medicine Lab, Aarhus University Hospital, Skejby, Denmark
| | - Nikolaj Bøgh
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- MR Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Robert S. Stephenson
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Comparative Medicine Lab, Aarhus University Hospital, Skejby, Denmark
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - Robert H. Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Morten Smerup
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
49
|
Modeling left ventricular dynamics with characteristic deformation modes. Biomech Model Mechanobiol 2019; 18:1683-1696. [PMID: 31129860 PMCID: PMC6825036 DOI: 10.1007/s10237-019-01168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/12/2019] [Indexed: 01/07/2023]
Abstract
A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each mode to wall motion is determined by a corresponding time-dependent deformation variable. The principle of virtual work is applied to these deformation variables, yielding a system of ordinary differential equations for LV dynamics, including effects of muscle fiber orientations, active and passive stresses, and surface tractions. Passive stress is governed by a transversely isotropic elastic model. Active stress acts in the fiber direction and incorporates length-tension and force-velocity properties of cardiac muscle. Preload and afterload are represented by lumped vascular models. The variational equations and their numerical solutions are verified by comparison to analytic solutions of the strong form equations. Deformation modes are constructed using Fourier series with an arbitrary number of terms. Greater numbers of deformation modes increase deformable model resolution but at increased computational cost. Simulations of normal LV motion throughout the cardiac cycle are presented using models with 8, 23, or 46 deformation modes. Aggregate quantities that describe LV function vary little as the number of deformation modes is increased. Spatial distributions of stress and strain change as more deformation modes are included, but overall patterns are conserved. This approach yields three-dimensional simulations of the cardiac cycle on a clinically relevant time-scale.
Collapse
|
50
|
Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM. Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia. Front Physiol 2019; 10:580. [PMID: 31156460 PMCID: PMC6531915 DOI: 10.3389/fphys.2019.00580] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
In the chronic stage of myocardial infarction, a significant number of patients develop life-threatening ventricular tachycardias (VT) due to the arrhythmogenic nature of the remodeled myocardium. Radiofrequency ablation (RFA) is a common procedure to isolate reentry pathways across the infarct scar that are responsible for VT. Unfortunately, this strategy show relatively low success rates; up to 50% of patients experience recurrent VT after the procedure. In the last decade, intensive research in the field of computational cardiac electrophysiology (EP) has demonstrated the ability of three-dimensional (3D) cardiac computational models to perform in-silico EP studies. However, the personalization and modeling of certain key components remain challenging, particularly in the case of the infarct border zone (BZ). In this study, we used a clinical dataset from a patient with a history of infarct-related VT to build an image-based 3D ventricular model aimed at computational simulation of cardiac EP, including detailed patient-specific cardiac anatomy and infarct scar geometry. We modeled the BZ in eight different ways by combining the presence or absence of electrical remodeling with four different levels of image-based patchy fibrosis (0, 10, 20, and 30%). A 3D torso model was also constructed to compute the ECG. Patient-specific sinus activation patterns were simulated and validated against the patient's ECG. Subsequently, the pacing protocol used to induce reentrant VTs in the EP laboratory was reproduced in-silico. The clinical VT was induced with different versions of the model and from different pacing points, thus identifying the slow conducting channel responsible for such VT. Finally, the real patient's ECG recorded during VT episodes was used to validate our simulation results and to assess different strategies to model the BZ. Our study showed that reduced conduction velocities and heterogeneity in action potential duration in the BZ are the main factors in promoting reentrant activity. Either electrical remodeling or fibrosis in a degree of at least 30% in the BZ were required to initiate VT. Moreover, this proof-of-concept study confirms the feasibility of developing 3D computational models for cardiac EP able to reproduce cardiac activation in sinus rhythm and during VT, using exclusively non-invasive clinical data.
Collapse
Affiliation(s)
- Alejandro Lopez-Perez
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Universitat de València, Valencia, Spain
| | - M Izquierdo
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ricardo Ruiz
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Martin Bishop
- Division of Imaging Sciences & Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Jose M Ferrero
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|