1
|
Miri S, Safari T, Komeili GR, Nematbakhsh M, Niazi AA, Jahantigh M, Bagheri H, Maghool F. Sex Difference in Gentamicin-induced Nephrotoxicity: Influence of L-arginine in Rat Model. Int J Prev Med 2018; 9:108. [PMID: 30687459 PMCID: PMC6326024 DOI: 10.4103/ijpvm.ijpvm_54_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022] Open
Abstract
Background: L-arginine is an important precursor for the formation of nitric oxide (NO). According to previous studies, NO function is related to gender. Likewise, chronic renal diseases have lower prevalence in female. Gentamicin (GM) is an aminoglycoside antibiotic. According to some studies, males are more sensitive to GM renal nephrotoxicity. This study attempts to find protective effects of L-arginine on GM nephrotoxicity in male and female rats. Methods: Male and female rats were divided into eight groups: Rats were randomly assigned to 8 groups each including both male and female rats. The first and second groups received vehicle (saline), the third and fourth groups received gentamicin (80 mg/kg), the fifth and sixth groups received L-arginine (150 mg/kg), and finally, seventh and eighth groups received gentamicin+ L- arginine. Next, 9 days after administering drugs, blood samples were collected from the heart. After making sacrifices, the level of blood urea, creatinine (Cr), nitrite, and malondialdehyde (MDA) was measured in serums. Likewise, nitrite and MDA were measured in the homogenized kidney tissue. Results: GM significantly increased serum level of urea and Cr in male and female rats (P < 0.05). However, co-administration of GM + L-arginine significantly did not decrease urea and Cr level in male rats, whereas, in female rats, they significantly reduced (P < 0.05). In response to GM, renal MDA level increased in male and female rats (P < 0.05), and in the presence of GM + L-arginine, the level of MDA significantly decreased in both genders (P < 0.05). Conclusions: L-arginine demonstrated some protective effects in female rats but did not protect against GM nephrotoxicity in male rats for unknown reasons, probably related to the effects of sex hormones which needs further studies to be confirmed.
Collapse
Affiliation(s)
- Saide Miri
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tahereh Safari
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholam Reza Komeili
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Nematbakhsh
- Department of Physiology, Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbass Ali Niazi
- Department of Pathology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Jahantigh
- Department of Pathology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Bagheri
- Department of Medical English, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Maghool
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
de Wijs-Meijler DPM, Danser AHJ, Reiss IKM, Duncker DJ, Merkus D. Sex differences in pulmonary vascular control: focus on the nitric oxide pathway. Physiol Rep 2018; 5:5/11/e13200. [PMID: 28596298 PMCID: PMC5471427 DOI: 10.14814/phy2.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 01/23/2023] Open
Abstract
Although the incidence of pulmonary hypertension is higher in females, the severity and prognosis of pulmonary vascular disease in both neonates and adults have been shown to be worse in male subjects. Studies of sex differences in pulmonary hypertension have mainly focused on the role of sex hormones. However, the contribution of sex differences in terms of vascular signaling pathways regulating pulmonary vascular function remains incompletely understood. Consequently, we investigated pulmonary vascular function of male and female swine in vivo, both at rest and during exercise, and in isolated small pulmonary arteries in vitro, with a particular focus on the NO‐cGMP‐PDE5 pathway. Pulmonary hemodynamics at rest and during exercise were virtually identical in male and female swine. Moreover, NO synthase inhibition resulted in a similar degree of pulmonary vasoconstriction in male and female swine. However, NO synthase inhibition blunted bradykinin‐induced vasodilation in pulmonary small arteries to a greater extent in male than in female swine. PDE5 inhibition resulted in a similar degree of vasodilation in male and female swine at rest, while during exercise there was a trend towards a larger effect in male swine. In small pulmonary arteries, PDE5 inhibition failed to augment bradykinin‐induced vasodilation in either sex. Finally, in the presence of NO synthase inhibition, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in female swine both in vivo and in vitro. In conclusion, the present study demonstrated significant sex differences in the regulation of pulmonary vascular tone, which may contribute to understanding sex differences in incidence, treatment response, and prognosis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Daphne P M de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands .,Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Crystal GJ, Klein LW. Fractional flow reserve: physiological basis, advantages and limitations, and potential gender differences. Curr Cardiol Rev 2015; 11:209-19. [PMID: 25329922 PMCID: PMC4558352 DOI: 10.2174/1573403x10666141020113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/04/2014] [Accepted: 10/15/2014] [Indexed: 01/31/2023] Open
Abstract
Fractional flow reserve (FFR) is a physiological index of the severity of a stenosis in an epicardial coronary artery, based on the pressure differential across the stenosis. Clinicians are increasingly relying on this method because it is independent of baseline flow, relatively simple, and cost effective. The accurate measurement of FFR is predicated on maximal hyperemia being achieved by pharmacological dilation of the downstream resistance vessels (arterioles). When the stenosis causes FFR to be impaired by > 20%, it is considered to be significant and to justify revascularization. A diminished hyperemic response due to microvascular dysfunction can lead to a false normal FFR value, and a misguided clinical decision. The blunted vasodilation could be the result of defects in the signaling pathways modulated (activated or inhibited) by the drug. This might involve a downregulation or reduced number of vascular receptors, endothelial impairment, or an increased activity of an opposing vasoconstricting mechanism, such as the coronary sympathetic nerves or endothelin. There are data to suggest that microvascular dysfunction is more prevalent in post-menopausal women, perhaps due to reduced estrogen levels. The current review discusses the historical background and physiological basis for FFR, its advantages and limitations, and the phenomenon of microvascular dysfunction and its impact on FFR measurements. The question of whether it is warranted to apply gender-specific guidelines in interpreting FFR measurements is addressed.
Collapse
Affiliation(s)
- George J Crystal
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 West Wellington Avenue, Chicago, IL 60657, USA.
| | | |
Collapse
|
4
|
Sublingual Nitroglycerin Administration in Coronary Computed Tomography Angiography: a Systematic Review. Eur Radiol 2015; 25:3536-42. [PMID: 25994194 PMCID: PMC4636517 DOI: 10.1007/s00330-015-3791-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To systematically investigate the literature for the influence of sublingual nitroglycerin administration on coronary diameter, the number of evaluable segments, image quality, heart rate and blood pressure, and diagnostic accuracy of coronary computed tomography (CT) angiography. METHODS A systematic search was performed in PubMed, EMBASE and Web of Science. The studies were evaluated for the effect of sublingual nitroglycerin on coronary artery diameter, evaluable segments, objective and subjective image quality, systemic physiological effects and diagnostic accuracy. Due to the heterogeneous reporting of outcome measures, a narrative synthesis was applied. RESULTS Of the 217 studies identified, nine met the inclusion criteria: seven reported on the effect of nitroglycerin on coronary artery diameter, six on evaluable segments, four on image quality, five on systemic physiological effects and two on diagnostic accuracy. Sublingual nitroglycerin administration resulted in an improved evaluation of more coronary segments, in particular, in smaller coronary branches, better image quality and improved diagnostic accuracy. Side effects were mild and were alleviated without medical intervention. CONCLUSION Sublingual nitroglycerin improves the coronary diameter, the number of assessable segments, image quality and diagnostic accuracy of coronary CT angiography without major side effects or systemic physiological changes. KEY POINTS • Sublingual nitroglycerin administration results in significant coronary artery dilatation. • Nitroglycerin increases the number of evaluable coronary branches. • Image quality is improved the most in smaller coronary branches. • Nitroglycerin increases the diagnostic accuracy of coronary CT angiography. • Most side effects are mild and do not require medical intervention.
Collapse
|
5
|
Hiteshi AK, Li D, Gao Y, Chen A, Flores F, Mao SS, Budoff MJ. Gender differences in coronary artery diameter are not related to body habitus or left ventricular mass. Clin Cardiol 2014; 37:605-9. [PMID: 25269657 DOI: 10.1002/clc.22310] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Smaller coronary artery diameter portends worse outcomes after coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI). The suggestion that women have smaller coronary artery diameters than men has not been validated by a large-scale study. HYPOTHESIS We sought to confirm a gender difference with respect to coronary artery diameter, even after accounting for body habitus and left ventricular mass (LVM). METHODS From 4200 subjects evaluated for cardiovascular disease by computed tomography angiography, we selected 710 subjects (383 males, 327 females) with coronary artery calcium (CAC) scores <100, eliminating patients with artery remodeling. Diameters of the left main (LM), left anterior descending (LAD), left circumflex (CX), and right coronary arteries (RCA), were measured. Measurements were compared using a 2-sample t test and the multiple regression model, accounting for body habitus and LVM. RESULTS After adjusting for age, race, weight, height, body mass index, body surface index, LVM, and CAC, women have smaller diameters in the LM (males 4.35 mm, females 3.91 mm), LAD (males 3.54 mm, females 3.24 mm), CX (males 3.18, females 2.75 mm), and RCA (males 3.70 mm, females 3.26 mm) (P < 0.001). This difference is not related to body habitus or LVM. CONCLUSIONS Gender significantly influences artery diameter of the LM, LAD, CX, and RCA. This may warrant gender specific approaches during PCI and CABG. As neither body habitus nor LVM relate to the difference in coronary artery diameter, our study encourages a search for inherent differences between genders that can account for this difference.
Collapse
Affiliation(s)
- Amit K Hiteshi
- Los Angeles Biomedical Research Institute, Department of Medicine, Harbor University of California Los Angeles Medical Center, Torrance, California
| | | | | | | | | | | | | |
Collapse
|
6
|
Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, Dorbala S, Blankstein R, Rimoldi O, Camici PG, Di Carli MF. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014; 129:2518-27. [PMID: 24787469 DOI: 10.1161/circulationaha.113.008507] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a prevalent and prognostically important finding in patients with symptoms suggestive of coronary artery disease. The relative extent to which CMD affects both sexes is largely unknown. METHODS AND RESULTS We investigated 405 men and 813 women who were referred for evaluation of suspected coronary artery disease with no previous history of coronary artery disease and no visual evidence of coronary artery disease on rest/stress positron emission tomography myocardial perfusion imaging. Coronary flow reserve was quantified, and coronary flow reserve <2.0 was used to define the presence of CMD. Major adverse cardiac events, including cardiac death, nonfatal myocardial infarction, late revascularization, and hospitalization for heart failure, were assessed in a blinded fashion over a median follow-up of 1.3 years (interquartile range, 0.5-2.3 years). CMD was highly prevalent both in men and women (51% and 54%, respectively; Fisher exact test =0.39; equivalence P=0.0002). Regardless of sex, coronary flow reserve was a powerful incremental predictor of major adverse cardiac events (hazard ratio, 0.80 [95% confidence interval, 0.75-086] per 10% increase in coronary flow reserve; P<0.0001) and resulted in favorable net reclassification improvement (0.280 [95% confidence interval, 0.049-0.512]), after adjustment for clinical risk and ventricular function. In a subgroup (n=404; 307 women/97 men) without evidence of coronary artery calcification on gated computed tomography imaging, CMD was common in both sexes, despite normal stress perfusion imaging and no coronary artery calcification (44% of men versus 48% of women; Fisher exact test P=0.56; equivalence P=0.041). CONCLUSIONS CMD is highly prevalent among at-risk individuals and is associated with adverse outcomes regardless of sex. The high prevalence of CMD in both sexes suggests that it may be a useful target for future therapeutic interventions.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Masanao Naya
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Viviany R Taqueti
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Courtney R Foster
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Mariya Gaber
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Jon Hainer
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Sharmila Dorbala
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Ron Blankstein
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Ornella Rimoldi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Paolo G Camici
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.)
| | - Marcelo F Di Carli
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, and Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI (V.L.M.); Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology (V.L.M., M.N., V.R.T., S.D., R.B., M.F.D.C.), and Division of Cardiovascular Medicine, Department of Medicine (V.L.M., V.R.T., J.H., S.D., R.B., M.F.D.C.), Brigham & Women's Hospital, Boston, MA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology (C.R.F., M.G., J.H., S.D., M.F.D.C.), and Istituto di Bioimmagini e Fisiologia Molecolare (O.R.), Consiglio Nazionale delle Ricerche and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.).
| |
Collapse
|
7
|
Sexual dimorphism of cardiovascular ischemia susceptibility is mediated by heme oxygenase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:521563. [PMID: 24163720 PMCID: PMC3791627 DOI: 10.1155/2013/521563] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
Abstract
We investigated the gender differences in heme-oxygenase (HO) enzyme, which produces endogenous vascular protective carbon monoxide (CO). We studied (1) the activity and expression of HO enzymes in the left ventricle (LV) and aorta, (2) basal increase in basal blood pressure provoked by arginine vasopressine (AVP) in vivo, (3) the heart perfusion induced by AVP, (4) the ST segment depression provoked by adrenaline and 30 seconds later phentolamine, and (5) the aorta ring contraction induced by AVP in female and male Wistar rats. We found that HO activity and the expression of HO-1 and HO-2 were increased in female rat aorta and LV. We demonstrated that the basal blood pressure and administration of AVP provoked blood pressure response are increased in the males; the female myocardium was less sensitive towards angina. Both differences could be aggravated by the inhibition of HO. The aorta rings were more susceptible towards vasoconstriction by AVP in males; isolated heart perfusion decrease was higher in males. The HO inhibition aggravated the heart perfusion in both sexes. In conclusion, the increased HO activity and expression in females might play a role in the sexual dimorphism of cardiovascular ischemia susceptibility during the reproductive age.
Collapse
|
8
|
Abstract
PURPOSE We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. METHODS We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography (OCT). Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in x-ray angiograms of barium-perfused autopsy hearts. RESULTS Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. CONCLUSIONS This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of wall shear stress, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur.
Collapse
|
9
|
Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 2013; 35:65-71. [PMID: 23994446 DOI: 10.1016/j.niox.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/15/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022]
Abstract
l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tushar V Gadkari
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | | | | | | | | |
Collapse
|
10
|
Murata T, Dietrich HH, Xiang C, Dacey RG. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke 2013; 44:779-85. [PMID: 23362079 DOI: 10.1161/strokeaha.112.678177] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Reduced risk and severity of stroke in adult females are thought to depend on normal levels of endogenous estrogen, which is a known neuro- and vasoprotective agent in experimental cerebral ischemia. Recently, a novel G protein-coupled estrogen receptor (GPER, formerly GPR30) has been identified and may mediate the vasomotor and -protective effects of estrogen. However, the signaling mechanisms associated with GPER in the cerebral microcirculation remain unclear. We investigated the mechanism of GPER-mediated vasoreactivity and also its vasoprotective effect after hypoxia/reoxygenation (H/RO) injury. METHODS Rat cerebral penetrating arterioles from both sexes were isolated, cannulated, and pressurized. Vessel diameters were recorded by computer-aided videomicroscopy. To investigate vasomotor mechanism of the GPER agonist (G-1), several inhibitors with or without endothelial impairment were tested. Ischemia/reperfusion injury was simulated using H/RO. Vasomotor responses to adenosine triphophate after H/RO were measured with or without G-1 and compared with controls. RESULTS G-1 produced a vasodilatory response, which was partially dependent on endothelium-derived nitric oxide (NO) but not arachidonic acid cascades and endothelial hyperpolarization factor. Attenuation of G-1-vasodilation by the NO synthase inhibitor and endothelium-impairment were greater in vessels from female than male animals. G-1 treatment after H/RO injury fully restored arteriolar dilation to adenosine triphophate compared with controls. CONCLUSIONS GPER agonist elicited dilation, which was partially caused by endothelial NO pathway and induced by direct relaxation of smooth muscle cells. Further, GPER agonist restored vessel function of arterioles after H/RO injury and may play an important role in the ability of estrogen to protect the cerebrovasculature against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Takahiro Murata
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
11
|
Reimann K, Krishnamoorthy G, Wangemann P. NOS inhibition enhances myogenic tone by increasing rho-kinase mediated Ca2+ sensitivity in the male but not the female gerbil spiral modiolar artery. PLoS One 2013; 8:e53655. [PMID: 23301097 PMCID: PMC3536759 DOI: 10.1371/journal.pone.0053655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
Cochlear blood flow regulation is important to prevent hearing loss caused by ischemia and oxidative stress. Cochlear blood supply is provided by the spiral modiolar artery (SMA). The myogenic tone of the SMA is enhanced by the nitric oxide synthase (NOS) blocker L-NG-Nitro-Arginine (LNNA) in males, but not in females. Here, we investigated whether this gender difference is based on differences in the cytosolic Ca2+ concentration and/or the Ca2+ sensitivity of the myofilaments. Vascular diameter, myogenic tone, cytosolic Ca2+, and Ca2+ sensitivity were evaluated in pressurized SMA segments isolated from male and female gerbils using laser-scanning microscopy and microfluorometry. The gender difference of the LNNA-induced tone was compared, in the same vessel segments, to tone induced by 150 mM K+ and endothelin-1, neither of which showed an apparent gender-difference. Interestingly, LNNA-induced tone in male SMAs was observed in protocols that included changes in intramural pressure, but not when the intramural pressure was held constant. LNNA in male SMAs did not increase the global Ca2+ concentration in smooth muscle cells but increased the Ca2+ sensitivity. This increase in the Ca2+ sensitivity was abolished in the presence of the guanylyl cyclase inhibitor ODQ or by extrinsic application of either the nitric oxide (NO)-donor DEA-NONOate or the cGMP analog 8-pCPT-cGMP. The rho-kinase blocker Y27632 decreased the basal Ca2+ sensitivity and abolished the LNNA-induced increase in Ca2+ sensitivity in male SMAs. Neither LNNA nor Y27632 changed the Ca2+ sensitivity in female SMAs. The data suggest that the gender difference in LNNA-induced tone is based on a gender difference in the regulation of rho-kinase mediated Ca2+ sensitivity. Rho-kinase and NO thus emerge as critical factors in the regulation of cochlear blood flow. The larger role of NO-dependent mechanisms in male SMAs predicts greater restrictions on cochlear blood flow under conditions of impaired endothelial cell function.
Collapse
Affiliation(s)
- Katrin Reimann
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States of America
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Eberhard-Karls Universität, Tübingen, Germany
| | - Gayathri Krishnamoorthy
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Philine Wangemann
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 2012; 304:H58-71. [PMID: 23103495 DOI: 10.1152/ajpheart.00476.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
L-type Ca(2+) channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca(2+) channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca(2+) channels are expressed in rat cerebral arterial smooth muscle and determined their contribution to the myogenic response. mRNA analysis revealed that the α(1)-subunit of L-type (Ca(v)1.2) and T-type (Ca(v)3.1 and Ca(v)3.2) Ca(2+) channels are present in isolated smooth muscle cells. Western blot analysis subsequently confirmed protein expression in whole arteries. With the use of patch clamp electrophysiology, nifedipine-sensitive and -insensitive Ba(2+) currents were isolated and each were shown to retain electrical characteristics consistent with L- and T-type Ca(2+) channels. The nifedipine-insensitive Ba(2+) current was blocked by mibefradil, kurtoxin, and efonidpine, T-type Ca(2+) channel inhibitors. Pressure myography revealed that L-type Ca(2+) channel inhibition reduced tone at 20 and 80 mmHg, with the greatest effect at high pressure when the vessel is depolarized. In comparison, the effect of T-type Ca(2+) channel blockade on myogenic tone was more limited, with their greatest effect at low pressure where vessels are hyperpolarized. Blood flow modeling revealed that the vasomotor responses induced by T-type Ca(2+) blockade could alter arterial flow by ∼20-50%. Overall, our findings indicate that L- and T-type Ca(2+) channels are expressed in cerebral arterial smooth muscle and can be electrically isolated from one another. Both conductances contribute to myogenic tone, although their overall contribution is unequal.
Collapse
Affiliation(s)
- Rasha R Abd El-Rahman
- Hotchkiss Brain and Libin Cardiovascular Research Institute and Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Nausch LWM, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 2012; 302:H594-602. [PMID: 22140050 PMCID: PMC3353782 DOI: 10.1152/ajpheart.00773.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/28/2011] [Indexed: 12/18/2022]
Abstract
It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Signaling/physiology
- Connexins/genetics
- Endothelium, Vascular/metabolism
- Feedback, Physiological/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Receptors, Adrenergic, alpha/metabolism
- Sympathetic Nervous System/physiology
- Vasoconstriction/physiology
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Lydia W M Nausch
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT05405, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea. PLoS One 2011; 6:e25659. [PMID: 21980520 PMCID: PMC3183064 DOI: 10.1371/journal.pone.0025659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/09/2011] [Indexed: 11/20/2022] Open
Abstract
Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels.
Collapse
|
15
|
Lekontseva O, Chakrabarti S, Jiang Y, Cheung CC, Davidge ST. Role of neuronal nitric-oxide synthase in estrogen-induced relaxation in rat resistance arteries. J Pharmacol Exp Ther 2011; 339:367-75. [PMID: 21807885 DOI: 10.1124/jpet.111.183798] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Estrogen has antihypertensive and vasorelaxing properties, partly via activation of endothelial nitric-oxide synthase (eNOS). Recently, neuronal nitric-oxide synthase (nNOS) has been detected in vascular cells, although the significance of this is unclear. Estrogen was found to stimulate nNOS in certain cultured cells. We hypothesized that estrogen regulates vascular tone partly via endothelium-derived nNOS. Human umbilical vein endothelial cells were used to test whether acute (5 min) stimulation with 17β-estradiol (E2) at 1 or 10 nM affected nNOS activity. Small mesenteric arteries from Sprague-Dawley rats were examined for relaxation to E2 (0.001-10 μM) in the absence or presence of selective nNOS inhibitor [N-propyl-L-arginine (L-NPA); 2 μM] or pan-NOS inhibitor [Nω-nitro-L-arginine methyl ester (L-NAME); 100 μM] using a wire myograph. Immunostaining was used to visualize nNOS in rat mesenteric artery cross-sections. Western blotting measured total and phospho-nNOS in endothelial cell lysates and thoracic aorta homogenates. E2 rapidly increased (p < 0.001) activating phosphorylation of nNOS and nitric oxide (NO) production (as measured by 4-amino-5-methylamino-2,7-difluorofluorescein fluorescence) in endothelial cells. Likewise, E2 caused dose-dependent relaxation of arteries from female rats, which was blunted by both l-NPA and l-NAME (p < 0.001). In contrast, E2 response was modest in male animals and unaffected by NOS inhibition. It is noteworthy that there was a greater baseline presence of phospho-nNOS in male relative to female aortas. Although eNOS is believed to be the main source of NO in the vascular endothelium, we confirmed nNOS expression in endothelial cells. Endothelial nNOS mediated E2 relaxation in isolated arteries from female animals. Altogether, these data suggest vascular nNOS as a novel mechanism in E2 signaling.
Collapse
Affiliation(s)
- Olga Lekontseva
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
16
|
Socha MJ, Hakim CH, Jackson WF, Segal SS. Temperature effects on morphological integrity and Ca²⁺ signaling in freshly isolated murine feed artery endothelial cell tubes. Am J Physiol Heart Circ Physiol 2011; 301:H773-83. [PMID: 21705671 DOI: 10.1152/ajpheart.00214.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To study Ca(2+) signaling in the endothelium of murine feed arteries, we determined the in vitro stability of endothelial cell (EC) tubes freshly isolated from abdominal muscle feed arteries of male and female C57BL/6 mice (5-9 mo, 25-35 g). We tested the hypothesis that intracellular Ca(2+) concentration ([Ca(2+)](i)) responses to muscarinic receptor activation would increase with temperature. Intact EC tubes (length: 1-2 mm, width: 65-80 μm) were isolated using gentle enzymatic digestion with trituration to remove smooth muscle cells. A freshly isolated EC tube was secured in a chamber and superfused at 24 (room temperature), 32, or 37°C. Using fura-2 dye, [Ca(2+)](i) was monitored (ratio of fluorescence at 340- to 380-nm wavelength) at rest and in response to bolus doses of ACh (20 nmol to 200 μmol). The morphological integrity of EC tubes was preserved at 24 and 32°C. Based on the Ca(2+) K(d) values we determined for fura-2 (174 nM at 24°C and 146 nM at 32°C), resting [Ca(2+)](i) remained stable for 180 min at both 24 and 32°C (27 ± 4 and 34 ± 2 nM, respectively), with peak responses to ACh (20 μmol) increasing from ∼220 nM at 24°C to ∼500 nM at 32°C (P < 0.05). There was no difference in responses to ACh between EC tubes from male versus female mice. When EC tubes were maintained at 37°C (typical in vivo temperature), resting [Ca(2+)](i) increased by ∼30% within 15 min, and gaps formed between individual ECs as they retracted and extruded dye, precluding further study. We conclude that EC tubes enable Ca(2+) signaling to be evaluated in the freshly isolated endothelium of murine feed arteries. While Ca(2+) responses are enhanced by approximately twofold at 32 versus 24°C, the instability of EC tubes at 37°C precludes their study at typical body temperature.
Collapse
Affiliation(s)
- Matthew J Socha
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality for both men and women in the USA. However, there are differences between the sexes in age-dependent onset, severity, symptoms and outcomes. Basic research into the causes of sex-dependent differences in cardiovascular disease is ongoing and includes investigation into genetic variation in expression and distribution of receptors for the sex steroids; specificity of natural and synthetic ligands that activate the sex steroid receptors; and intracellular mechanisms that are activated by the receptors in all components of the vessel wall and blood elements, which integrate to regulate vascular tone, vascular repair and remodeling in health and disease. In this era of personalized medicine, basic research into mechanisms of sex differences in vascular function will result in improved prevention, detection and treatment of cardiovascular disease in both men and women.
Collapse
Affiliation(s)
- V M Miller
- Departments of Surgery & Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Estrogen dependence of the renal vasodilatory effect of nicotine in rats: role of α7 nicotinic cholinergic receptor/eNOS signaling. Life Sci 2010; 88:187-93. [PMID: 21092740 DOI: 10.1016/j.lfs.2010.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/19/2010] [Accepted: 11/09/2010] [Indexed: 11/22/2022]
Abstract
AIMS We recently reported that acute exposure to nicotine vasodilates the renal vasculature of male rats via facilitation of endothelial nitric oxide synthase (eNOS). In this study, we investigated whether this effect of nicotine is sexually dimorphic and the role of estrogen in modulating the nicotine effect. MAIN METHODS Nicotine-evoked vasodilation was evaluated in phenylephrine-preconstricted perfused kidneys obtained from male, proestrus female, ovariectomized (OVX) and estrogen-replaced OVX (OVXE(2)) rats. KEY FINDINGS Nicotine infusion (5×10(-5), 1×10(-4), and 5×10(-4) M) produced greater concentration-dependent reductions in the renal perfusion pressure (RPP) in an isolated kidney from proestrus females than from males. Inhibition of NOS by N(G)-nitro-L-arginine abolished the nicotine-evoked reduction in RPP and abolished the gender difference in the nicotine effect. Nicotine vasodilation was also attenuated in kidneys isolated from OVX and diestrus rats, models characterized by reduced estrogen levels. Further, estrogen or L-arginine supplementation in OVX rats largely restored the renal vasodilatory response to nicotine. Estrogen receptor blockade by tamoxifen abrogated the enhanced nicotine-evoked vasodilation elicited by E(2) in OVX rats. The nitrite/nitrate levels and protein expressions of eNOS and α(7) nicotinic cholinergic receptor (α(7) nAChRs) were significantly higher in renal tissues of OVXE(2) compared with OVX rats, suggesting a facilitatory effect for E(2) on α(7) nAChRs/eNOS signaling. SIGNIFICANCE Estrogen-dependent facilitation of NOS signaling mediates the enhanced vasodilator capacity of nicotine in the renal vasculature of female rats. Preliminary evidence also suggests a potential role for α(7) nAChRs in this estrogen-dependent phenomenon.
Collapse
|
19
|
Hughes JM, Riddle MA, Paffett ML, Gonzalez Bosc LV, Walker BR. Novel role of endothelial BKCa channels in altered vasoreactivity following hypoxia. Am J Physiol Heart Circ Physiol 2010; 299:H1439-50. [PMID: 20817829 DOI: 10.1152/ajpheart.00124.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The systemic vasculature exhibits attenuated vasoconstriction following hypobaric chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased activity of endothelial cell (EC) large-conductance, calcium-activated potassium (BK(Ca)) channels contributes to this response. Gracilis resistance arteries from hypobaric CH (barometric pressure = 380 mmHg for 48 h) rats demonstrated reduced myogenic reactivity and hyperpolarized VSM membrane potential (E(m)) compared with controls under normoxic ex vivo conditions. These differences were eliminated by endothelial disruption. In the presence of cyclooxygenase and nitric oxide synthase inhibition, combined intraluminal administration of the intermediate and small-conductance, calcium-activated K(+) channel blockers TRAM-34 and apamin was without effect on myogenic responsiveness and VSM E(m) in both groups; however, these variables were normalized in CH arteries by intraluminal administration of the BK(Ca) inhibitor iberiotoxin (IBTX). Basal EC E(m) was hyperpolarized in arteries from CH rats compared with controls and was restored by IBTX, but not by TRAM-34/apamin. K(+) channel blockers were without effect on EC basal E(m) in controls. Similarly, IBTX blocked acetylcholine-induced dilation in arteries from CH rats, but was without effect in controls, whereas TRAM-34/apamin eliminated dilation in controls. Acetylcholine-induced EC hyperpolarization and calcium responses were inhibited by IBTX in CH arteries and by TRAM-34/apamin in controls. Patch-clamp experiments on freshly isolated ECs demonstrated greater K(+) current in cells from CH rats that was normalized by IBTX. IBTX was without effect on K(+) current in controls. We conclude that hypobaric CH induces increased endothelial BK(Ca) channel activity that contributes to reduced myogenic responsiveness and EC and VSM cell hyperpolarization.
Collapse
Affiliation(s)
- Jennifer M Hughes
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center,Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
20
|
Mufti RE, Brett SE, Tran CHT, Abd El-Rahman R, Anfinogenova Y, El-Yazbi A, Cole WC, Jones PP, Chen SRW, Welsh DG. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J Physiol 2010; 588:3983-4005. [PMID: 20736418 DOI: 10.1113/jphysiol.2010.193300] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study examined whether elevated intravascular pressure stimulates asynchronous Ca(2+) waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20-100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (V(M)) were monitored using conventional techniques; Ca(2+) wave generation and myosin light chain (MLC(20))/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca(2+) waves as well as event frequency. Ca(2+) wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca(2+), eliminated these events. Ca(2+) wave generation was voltage insensitive as Ca(2+) channel blockade and perturbations in extracellular [K(+)] had little effect on measured parameters. Ryanodine-induced inhibition of Ca(2+) waves attenuated myogenic tone and MLC(20) phosphorylation without altering arterial V(M). Thapsigargin, an SR Ca(2+)-ATPase inhibitor also attenuated Ca(2+) waves, pressure-induced constriction and MLC(20) phosphorylation. The SR-driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca(2+) waves facilitated pressure-induced MLC(20) phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca(2+) wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca(2+) required to directly control MLC(20) phosphorylation.
Collapse
Affiliation(s)
- Rania E Mufti
- Hotchkiss Brain Institute, Libin Cardiovascular Institute, Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Levy AS, Chung JCS, Kroetsch JT, Rush JWE. Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vasc Health Risk Manag 2009; 5:1075-87. [PMID: 20057900 PMCID: PMC2801631 DOI: 10.2147/vhrm.s7464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Indexed: 11/23/2022] Open
Abstract
This review highlights a number of nitric oxide (NO)-related mechanisms that contribute to coronary vascular function and that are likely affected by hypertension and thus become important clinically as potential considerations in prevention, diagnosis, and treatment of coronary complications of hypertension. Coronary vascular resistance is elevated in hypertension in part due to impaired endothelium-dependent function of coronary arteries. Several lines of evidence suggest that other NO synthase isoforms and dilators other than NO may compensate for impairments in endothelial NO synthase (eNOS) to protect coronary artery function, and that NO-dependent function of coronary blood vessels depends on the position of the vessel in the vascular tree. Adaptations in NOS isoforms in the coronary circulation to hypertension are not well described so the compensatory relationship between these and eNOS in hypertensive vessels is not clear. It is important to understand potential functional consequences of these adaptations as they will impact the efficacy of treatments designed to control hypertension and coronary vascular disease. Polymorphisms of the eNOS gene result in significant associations with incidence of hypertension, although mechanistic details linking the polymorphisms with alterations in coronary vasomotor responses and adaptations to hypertension are not established. This understanding should be developed in order to better predict those individuals at the highest risk for coronary vascular complications of hypertension. Greater endothelium-dependent dilation observed in female coronary arteries is likely related to endothelial Ca(2+) control and eNOS expression and activity. In hypertension models, the coronary vasculature has not been studied extensively to establish mechanisms for sex differences in NO-dependent function. Genomic and nongenomic effects of estrogen on eNOS and direct and indirect antioxidant activities of estrogen are discussed as potential mechanisms of interest in coronary circulation that could have implications for sex- and estrogen status-dependent therapy for hypertension and coronary dysfunction. The current review identifies some important basic knowledge gaps and speculates on the potential clinical relevance of hypertension adaptations in factors regulating coronary NO function.
Collapse
Affiliation(s)
- Andrew S Levy
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
do Nascimento GRA, Barros YVR, Wells AK, Khalil RA. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease. Curr Hypertens Rev 2009; 5:283-306. [PMID: 20694192 DOI: 10.2174/157340209789587717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca(2+)](i), protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, "hormone bioidenticals" and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to the outcome of MHT in postmenopausal CVD, as more specific modulators of sex hormone receptors become available and are used at the right dose, route of administration and timing, depending on the subject's age and preexisting cardiovascular condition.
Collapse
|
23
|
Intapad S, Suksamrarn A, Piyachaturawat P. Enhancement of vascular relaxation in rat aorta by phytoestrogens from Curcuma comosa Roxb. Vascul Pharmacol 2009; 51:284-90. [PMID: 19665059 DOI: 10.1016/j.vph.2009.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
The present study aims to examine the effects and mechanisms of Curcuma comosa Roxb., an indigenous medicinal plant containing phytoestrogens, on vascular relaxation. Using an organ bath system, acute exposure of intact or endothelium-denuded aortic rings to the hexane extract of C. comosa or an isolated diarylheptanoid compound, D3, did not induce relaxation. However, pre-incubation of aortic rings for 20 min with hexane extract of C. comosa (10 microg/ml) or the isolated diarylheptanoid compound, D3, (0.1, 1 and 10 microg/ml) markedly enhanced endothelial-dependent relaxation in response to ACh. The hexane extract did not modulate the relaxation of denuded aortic rings in response to SNP, which suggested a predominant effect on endothelial cells rather than on vascular smooth muscle cells. Co-incubation with ICI 182,780 (estrogen receptor antagonist), L-NAME (nitric oxide synthase inhibitor) or ODQ (guanylase cyclase inhibitor) inhibited the enhancing effects of C. comosa on ACh-induced relaxation. These findings suggest that the actions of C. comosa are mediated through estrogen receptor (ER) and NO-cGMP-dependent mechanisms. In addition, C. comosa also increased the phosphorylation of serine 1177 eNOS and serine 473 Akt proteins, and these effects were abolished by ICI 182,780. The results suggest that C. comosa acutely increases endothelium-dependent relaxation of aortic rings through the ER-Akt-eNOS pathway. This is the first evidence indicating non-genomic action of a novel phytoestrogen from C. comosa, on vascular relaxation.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
24
|
Wang Z, Huang Z, Lu G, Lin L, Ferrari M. Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring. Am J Physiol Heart Circ Physiol 2009; 296:H1321-8. [PMID: 19304947 DOI: 10.1152/ajpheart.00440.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to an adverse intrauterine environment increases the risk of cardiovascular disease later in adult life. However, the time course relationship between prenatal hypoxia and the onset of atherosclerosis in offspring remains unknown. The purpose of this study is to evaluate the role of reduced fetal oxygen supply on early development of atherogenesis in the adult offspring and further assess its susceptibility to sex-, hyperlipidemia-, and postnatal hypoxemia-related differences. Based on a 4 x 2 full factorial design consisting of four factors of maternal hypoxia, sex, hyperlipidemia, and postnatal hypoxemia, characteristics of growth were determined, and histopathological observation and morphometric analysis of the thoracic aortas were performed in Sprague-Dawley rat offspring. Intrauterine growth restriction, altered body shape at birth, and accelerated postnatal weight gain occurred in the maternal hypoxia group but did not occur in the control group. In 16-mo-old maternal hypoxia offspring, the thoracic aortas exhibited lesions similar to early events in atherosclerosis that involved impaired endothelial cells, thickening and fibration of intimas, infiltration of inflammatory cells to the subendothelial space, and migration and proliferation of vascular smooth muscle cells to the intima. In contrast, no detectable pathological changes were observed in the offspring without maternal hypoxia exposure. Morphometric analysis further demonstrated that prenatal hypoxia caused a significant thickening of intima (P < 0.001) with a main effect of 5.5 mum, an approximately twofold increase compared with controls. In addition, there was a positive additive relationship between prenatal hypoxia and hyperlipidemia on the intimal thickness (P < 0.05). There were no other main effects or interaction among these four factors. In summary, our results indicate that maternal hypoxia during pregnancy leads to early pathological appearances of atherogenesis in adult offspring. This effect was enhanced with hyperlipemia but was unaffected by postnatal hypoxia or sex.
Collapse
Affiliation(s)
- Zhenhua Wang
- Dept. of Cardiology, Second Affiliated Hospital of Fujian Medical Univ., Zhongshan North Road 34, 362000 Quanzhou, Fujian, P. R. China
| | | | | | | | | |
Collapse
|
25
|
Burger NZ, Kuzina OY, Osol G, Gokina NI. Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca2+. Am J Physiol Endocrinol Metab 2009; 296:E503-12. [PMID: 19126786 PMCID: PMC2660142 DOI: 10.1152/ajpendo.90517.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the regulation of vascular microcirculatory tone. This study explores the role of estrogen in controlling EDHF-mediated vasodilation of uterine resistance arteries of the rat and also analyzes the contribution of endothelial cell (EC) Ca(2+) signaling to this process. A parallel study was also performed with mesenteric arteries to provide comparison with a nonreproductive vasculature. Mature female rats underwent ovariectomy, with one half receiving 17beta-estradiol replacement (OVX+E) and the other half serving as estrogen-deficient controls (OVX). Uterine or mesenteric resistance arteries were harvested, cannulated, and pressurized. Nitric oxide and prostacyclin production were inhibited with 200 microM N(G)-nitro-l-arginine and 10 microM indomethacin, respectively. ACh effectively dilated the arteries preconstricted with phenylephrine but failed to induce dilation of vessels preconstricted with high-K(+) solution. ACh EC(50) values were decreased by estrogen replacement by five- and twofold in uterine and mesenteric arteries, respectively. As evidenced by fura-2-based measurements of EC cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), estrogen replacement was associated with increased basal and ACh-stimulated EC [Ca(2+)](i) rise in uterine, but not mesenteric, vessels. These data demonstrate that EDHF contributes to endothelium-dependent vasodilation of uterine and mesenteric resistance arteries and that estrogen controls EDHF-related mechanism(s) more efficiently in reproductive vs. nonreproductive vessels. Enhanced endothelial Ca(2+) signaling may be an important underlying mechanism in estrogenic modulation of EDHF-mediated vasodilation in small resistance uterine arteries.
Collapse
Affiliation(s)
- Natalie Z Burger
- Department of Obstetrics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
26
|
Lott MEJ, Hogeman C, Herr M, Bhagat M, Sinoway LI. Sex differences in limb vasoconstriction responses to increases in transmural pressures. Am J Physiol Heart Circ Physiol 2008; 296:H186-94. [PMID: 19028800 DOI: 10.1152/ajpheart.00248.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Women compared with men are more likely to have orthostatic intolerance. The purpose of this study was to examine whether sex affects limb vasoconstrictor response to increases in transmural pressure. Brachial and femoral mean blood velocity (MBV) and diameter (Doppler Ultrasound) were measured in 10 women and 10 men as transmural pressure was altered by applying local suction (-25, -50, -75, and -100 mmHg) via pressurized-limb tanks for 1 min to a single arm and leg. With the abrupt application of forearm suction (-75 and -100 mmHg), women compared with men had a greater initial rise in MBV (peak), followed by a quicker dynamic rate of velocity reduction. In the leg, women had a tendency for higher peak MBV but had similar dynamic velocity reductions compared with men. After 60 s of suction, women compared with men had attenuated reductions in brachial flow and conductance (-8.05 +/- 1.71 vs. -16.25 +/- 1.71 ml/min; -0.12 +/- 0.03 vs. -0.20 +/- 0.03 ml x min(-1) x mmHg(-1); main effect, P < 0.05), as well as attenuated femoral flow and conductance to sustained leg negative pressure at -100 mmHg (P < 0.05). When the data were expressed as percent change, women compared with men continued to have attenuated brachial flow responses (-24 +/- 2 vs. -36 +/- 2%, main effect, P < 0.05), with a trend toward attenuation at the highest leg pressure (-25 +/- 11 vs. -46 +/- 4%; P = 0.08). These sex differences remained after normalizing the flow responses by limb volume (percent change). Our findings suggest that young women compared with men have attenuated brachial and femoral vasoconstrictor responses to increases in transmural pressure, which may have implications for the greater incidence of orthostatic intolerance in women.
Collapse
Affiliation(s)
- Mary E J Lott
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, the goal of this review is to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared with men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis, and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine, and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. Although consensus opinions are emphasized, controversial views are presented to stimulate future research.
Collapse
Affiliation(s)
- Virginia M. Miller
- Professor, Surgery and Physiology, Mayo Clinic College of Medicine, , Phone: 507-284-2290, Fax: 507-266-2233
| | - Sue P. Duckles
- Professor, Pharmacology, University of California, Irvine, School of Medicine, , Phone: 949-824-4265, Fax: 949-824-4855
| |
Collapse
|
28
|
Patel PD, Arora RR. Review: Endothelial dysfunction: A potential tool in gender related cardiovascular disease. Ther Adv Cardiovasc Dis 2008; 2:89-100. [DOI: 10.1177/1753944707088904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The overwhelming importance of distinctive cardiovascular disease profile in women has stimulated enormous efforts to disclose its cause. In this review, we discuss vascular endothelium as a potential phenotypic marker for the genetic difference. As it is a potentially modifiable factor for cardiovascular disease, every effort should be made to detect it, either directly or indirectly, at the earliest in females who are at risk, so that the future cardiovascular events might be prevented.
Collapse
Affiliation(s)
- Pawan D. Patel
- Department of Cardiology, Chicago Medical School, North Chicago VA Medical Centre-133B, 3001, Green Bay Road, North Chicago, IL-60064,
| | - Rohit R. Arora
- Department of Medicine, The Chicago Medical School, Chicago, IL
| |
Collapse
|
29
|
Li M, Kuo L, Stallone JN. Estrogen potentiates constrictor prostanoid function in female rat aorta by upregulation of cyclooxygenase-2 and thromboxane pathway expression. Am J Physiol Heart Circ Physiol 2008; 294:H2444-55. [PMID: 18310519 DOI: 10.1152/ajpheart.01121.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17beta-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 +/- 1.9 and 1,723 +/- 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 +/- 4.2 and 1,488 +/- 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups (P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher (P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.
Collapse
Affiliation(s)
- Min Li
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
30
|
Ledoux J, Bonev AD, Nelson MT. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium. ACTA ACUST UNITED AC 2008; 131:125-35. [PMID: 18195387 PMCID: PMC2213563 DOI: 10.1085/jgp.200709875] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
31
|
Loyer X, Oliviero P, Damy T, Robidel E, Marotte F, Heymes C, Samuel JL. Effects of sex differences on constitutive nitric oxide synthase expression and activity in response to pressure overload in rats. Am J Physiol Heart Circ Physiol 2007; 293:H2650-8. [PMID: 17890423 DOI: 10.1152/ajpheart.00883.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinical studies have documented sex differences in left ventricular (LV) hypertrophy patterns, but the mechanisms are so far poorly defined. This study aimed to determine whether 1) severe pressure overload altered expression and/or activity of cardiac constitutive nitric oxide synthase (NOS1 and NOS3) and 2) these changes were modulated according to sex. Analyses were performed 0.4–20 wk after thoracic aortic constriction (TAC) in male and female Wistar rats. Male rats with TAC exhibited early signs of cardiac dysfunction, as shown by echocardiographic and LV end-diastolic pressure measurements, whereas females with TAC exhibited higher LV hypertrophy (+96% vs. males at 20 wk; P < 0.05). After TAC, cardiac NOS1 expression was rapidly induced (0.4 wk) and stable afterward in males ( P < 0.05 vs. sham groups), whereas it was delayed in females. Accordingly, specific NOS1 activity was increased by 2 wk in male rats with TAC (+122%; P < 0.001 vs. sham groups) and only by 20 wk in females (+220%; P < 0.001 vs. sham groups). NOS1 activity was correlated with NOS1 level. Regarding cardiac NOS3, expression was unaffected by TAC, and the decrease in activity observed at early and late times in male and female rats with TAC, respectively, is shown to be related to NOS3 allosteric regulator caveolin-1 level. The data demonstrated a unique sex-dependent regulation of the constitutive NOSs in response to TAC in rats; such a difference might play a role in the sex-dependent adaptability of the heart in response to pressure overload.
Collapse
Affiliation(s)
- Xavier Loyer
- Institut National de la Santé et de la Recherche Médicale U689, Centre de Recherche Cardiovasculaire Inserm Lariboisière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Paffett ML, Naik JS, Resta TC, Walker BR. Reduced store-operated Ca2+ entry in pulmonary endothelial cells from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1135-42. [PMID: 17693482 DOI: 10.1152/ajplung.00432.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension may influence basal endothelial cell (EC) intracellular Ca(2+) concentration ([Ca(2+)](i)). We hypothesized that CH decreases EC [Ca(2+)](i) associated with membrane depolarization and reduced Ca(2+) entry. To test this hypothesis, we assessed 1) basal endothelial Ca(2+) in pressurized pulmonary arteries and freshly isolated ECs, 2) EC membrane potential (E(m)), 3) store-operated Ca(2+) current (I(SOC)), and 4) store-operated Ca(2+) (SOC) entry in arteries from control and CH rats. We found that basal EC Ca(2+) was significantly lower in pressurized pulmonary arteries and freshly isolated ECs from CH rats compared with controls. Similarly, ECs in intact arteries from CH rats were depolarized compared with controls, although no differences were observed between groups in isolated cells. I(SOC) activation by 1 muM thapsigargin displayed diminished inward current and a reversal potential closer to 0 mV in cells from CH rats compared with controls. In addition, SOC entry determined by fura 2 fluorescence and Mn(2+) quenching revealed a parallel reduction in Ca(2+) entry following CH. We conclude that differences in the magnitude of SOC entry exist between freshly dispersed ECs from CH and control rats and correlates with the decrease in basal EC [Ca(2+)](i). In contrast, basal EC Ca(2+) influx is unaffected and membrane depolarization is limited to intact arteries, suggesting that E(m) may not play a major role in determining basal EC [Ca(2+)](i) following CH.
Collapse
Affiliation(s)
- Michael L Paffett
- Vascular Physiology Group, Dept. of Cell Biology and Physiology, Univ. of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
33
|
Kubota Y, Isotani E, Mizuno Y, Ohno K, Azuma H. Alterations of intracellular calcium concentration and nitric oxide generation in pulmonary artery endothelium after subarachnoid hemorrhage of the rabbit. Vascul Pharmacol 2007; 47:90-8. [PMID: 17524957 DOI: 10.1016/j.vph.2007.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 04/12/2007] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate whether endothelial intracellular calcium concentration ([Ca(2+)](i)), endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) generation altered in association with impaired endothelium-dependent relaxation (EDR) in pulmonary artery (PA) specimens from experimental subarachnoid hemorrhage (SAH) rabbits. Injecting non-heparinized autologous arterial blood into cisterna magna induced the SAH. Simultaneous measurements of endothelial [Ca(2+)](i) and isometric tension of PA specimens were performed using fura 2. The subjects included normal control rabbits (group N), SAH rabbits with normal EDR (group A) and with impaired EDR (group B). When treated with 10(-7) M acetylcholine (ACh), endothelial [Ca(2+)](i) was significantly lower in group B (74.1+/-8.5 nM) than that in groups A (153.0+/-28.0 nM, p<0.05) and N (184.8+/-27.8 nM, p<0.01). Basal and ACh-stimulated cyclic GMP productions as a marker of NO generation were also significantly (p<0.005) decreased in group B as compared to those in the other two groups. Meanwhile, there were no differences in eNOS activity per se among the three groups. These results suggest that the attenuated endothelial [Ca(2+)](i) elevation leads to the impaired NO generation in PA endothelium, which in turn impairs the EDR and possibly increases the vascular resistance of PA following SAH.
Collapse
Affiliation(s)
- Yoshihiro Kubota
- Department of Neurosurgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
34
|
Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A. Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int 2006; 70:840-53. [PMID: 16837917 DOI: 10.1038/sj.ki.5001680] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular endothelium plays a crucial role in the regulation of vascular homeostasis and in preventing the initiation and progress of cardiovascular disease by controlling mechanical functions of the underlying vascular smooth muscle. Three vasodilators: nitric oxide (NO), prostacyclin, and endothelium-derived hyperpolarizing factor, produced by the endothelium, underlie this activity. These substances act in a co-ordinated interactive manner to maintain normal endothelial function and operate as support mechanisms when one pathway malfunctions. In this review, we discuss recent advances in our understanding of how gender influences the interaction of these factors resulting in the vascular protective effects seen in pre-menopausal women. We also discuss how endothelial NO synthase (NOS) can act in both a pro- and anti-inflammatory action and therefore is likely to be pivotal in the initiation and time course of an inflammatory response, particularly with respect to inflammatory cardiovascular disorders. Finally, we review recent evidence demonstrating that it is not solely NOS-derived NO that mediates many of the beneficial effects of the endothelium, in particular, nitrite acts as a store of NO released during pathological episodes associated with NOS inactivity (ischemia/hypoxia). Each of these more recent findings has emphasized new pathways involved in endothelial biology, and following further research and understanding of the significance and mechanisms of these systems, it is likely that new and improved treatments for cardiovascular disease will result.
Collapse
Affiliation(s)
- I C Villar
- Clinical Pharmacology, William Harvey Research Institute, Barts & The London Medical School, Charterhouse Square, London, UK
| | | | | | | | | |
Collapse
|
35
|
McSherry IN, Sandow SL, Campbell WB, Falck JR, Hill MA, Dora KA. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. Microcirculation 2006; 13:119-30. [PMID: 16459325 DOI: 10.1080/10739680500466400] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The authors probed endothelium-dependent dilation and endothelial cell Ca2+ handling in myogenically active resistance arteries. METHODS First-order arteries were removed from rat cremaster muscles, cannulated, and pressurized (75 mmHg). Vessel diameter and endothelial cell Ca2+ were monitored using confocal microscopy, and arterial ultrastructure was determined using electron microscopy. RESULTS Acetylcholine (ACh) stimulated elevations and oscillations in endothelial cell Ca2+, and concentration-dependently dilated arteries with myogenic tone. NO-independent dilation was blocked by 35 mM K+. Combined IK(Ca) (1 microM TRAM-34) and SK(Ca) (100 nM apamin) blockade partially inhibited NO-independent relaxations, with residual relaxations sensitive to BK(Ca) or cytochrome P-450 inhibition (100 nM iberiotoxin, and 20 microM 17-ODYA or 10 microM MS-PPOH). 11,12-EET stimulated iberiotoxin-sensitive dilation, but did not affect endothelial cell Ca2+. 15 mM K+ evoked dilation sensitive to inhibition of K(IR) (30 microM Ba2+) and Na+/K+-ATPase (10 microM ouabain), whereas these blockers did not affect ACh-mediated dilations. Homo- and heterocellular gap junctions were identified in radial sections through arteries. CONCLUSION These data suggest that rises in endothelial cell Ca2+ stimulate SK(Ca) and IK(Ca) channels, leading to hyperpolarization and dilation, likely due to electrical coupling. In addition, a component was unmasked following SK(Ca) and IK(Ca) blockade, attributable to activation of BK(Ca) channels by cytochrome P-450 metabolites.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Arteries/physiology
- Arteries/ultrastructure
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Enzyme Inhibitors/pharmacology
- Gap Junctions/metabolism
- Gap Junctions/ultrastructure
- Male
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/metabolism
- Rats
- Rats, Wistar
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
|
36
|
Matrai M, Mericli M, Nadasy GL, Szekeres M, Varbiro S, Banhidy F, Acs N, Monos E, Szekacs B. Gender differences in biomechanical properties of intramural coronary resistance arteries of rats, an in vitro microarteriographic study. J Biomech 2006; 40:1024-30. [PMID: 16730738 DOI: 10.1016/j.jbiomech.2006.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The prevalence of ischemic heart disease is lower in premenopausal females than in males of corresponding age. This should be related to gender differences in coronary functions. We tested whether biomechanical differences exist between intramural coronary resistance arteries of male and female rats. Intramural branches of the left anterior descending coronary artery (uniformly approximately 200microm in diameter) were isolated, cannulated and studied by microarteriography. Intraluminal pressure was increased from 2 to 90mmHg in steps and steady-state diameters were measured. Measurements were repeated in the presence of vasoconstrictor U46619 (10(-6)M) and the endothelial coronary vasodilator bradykinin (BK) (10(-6)M). Finally, passive diameters were recorded in calcium-free saline. A similar inner radius and a higher wall thickness (41.5+/-2.9microm vs. 31.4+/-2.7microm at 50mmHg in the passive condition, p<0.05) resulted in lower tangential wall stresses in male rats (18.9+/-1.9kPa vs. 24.9+/-2.5kPa at 50mmHg, p<0.05). Isobaric elastic modulus of vessels from male animals was significantly smaller at higher pressures. Vasoconstrictor response was significantly stronger in male than in female animals. Endothelial relaxations induced by BK were not different. This is the first demonstration that biomechanical characteristics of intramural coronary resistance arteries of a mammalian species are different in the male and female sexes. Higher wall thickness and higher vascular contractility in males are associated with similar endothelial function and larger high-pressure elasticity compared to females. These gender differences in biomechanics of coronary resistance arteries of rats may contribute to our better understanding the characteristic physiological and pathological differences in humans.
Collapse
Affiliation(s)
- Mate Matrai
- Institute of Human Physiology and Clinical Experimental Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gokina NI, Goecks T. Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries. Am J Physiol Heart Circ Physiol 2005; 290:H2124-35. [PMID: 16327017 DOI: 10.1152/ajpheart.00813.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is characterized by an increased uterine blood flow due to growth and remodeling of the maternal uterine vasculature and enhanced vasodilation of the uterine arteries. The objective of the present study was to examine the role of endothelial cell Ca2+ signaling in augmented endothelium-mediated vasodilation of uteroplacental arteries in late pregnancy. We performed fura-2-based measurements of the intracellular Ca2+ concentration ([Ca2+]i) in the cytoplasm of endothelial cells simultaneously with diameter in pressurized uterine arteries from nonpregnant (NP) and late-pregnant (LP) rats. Basal levels of endothelial cell [Ca2+]i were higher in arteries from LP rats compared with NP controls. Withdrawal of extracellular Ca2+ resulted in a decrease in the level of basal [Ca2+]i that was significantly larger in arteries of LP than NP rats. The rate of Mn2+ -induced quenching of fura-2 fluorescence was significantly elevated in late pregnancy, implicating augmented Ca2+ influx as a cause of increased basal levels of [Ca2+]i in endothelial cells. Elevation of intraluminal pressure resulted in a transient increase in endothelial [Ca2+]i that was markedly potentiated in late gestation. ACh-induced [Ca2+]i and vasodilator responses were significantly augmented in arteries of LP compared with NP rats and were abolished by BAPTA treatment, demonstrating a critical role of [Ca2+]i elevation in the production of endothelium-derived vasodilators. Together, these results indicate that late pregnancy is a state of enhanced basal and stimulated Ca2+ signaling in endothelial cells of uterine vessels, which may represent an important underlying mechanism for augmented vasodilation in the maternal uterine circulation.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics and Gynecology, University of Vermont, College of Medicine, Burlington, VT 05405, USA.
| | | |
Collapse
|
38
|
Hemmings DG, Williams SJ, Davidge ST. Increased myogenic tone in 7-month-old adult male but not female offspring from rat dams exposed to hypoxia during pregnancy. Am J Physiol Heart Circ Physiol 2005; 289:H674-82. [PMID: 15833805 DOI: 10.1152/ajpheart.00191.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of cardiovascular disease later in life. Vascular dysfunction occurs in adult offspring from animal models of IUGR including maternal undernutrition, but the influence of reduced fetal oxygen supply on adult vascular function is unclear. Myogenic responses, essential for vascular tone regulation, have not been evaluated in these offspring. We hypothesized that 7-mo-old offspring from hypoxic (12% O(2); H) or nutrient-restricted (40% of control; NR) rat dams would show greater myogenic responses than their 4-mo-old littermates or control (C) offspring through impaired modulation by vasodilators. Growth restriction occurred in male H (P < 0.01), male NR (P < 0.01), and female NR (P < 0.02), but not female H, offspring. Myogenic responses in mesenteric arteries from males but not females were increased at 7 mo in H (P < 0.01) and NR (P < 0.05) vs. C offspring. There was less modulation of myogenic responses after inhibition of nitric oxide synthase (P < 0.05), prostaglandin H synthase (P < 0.005), or both enzymes (P < 0.001) in arteries from 7-mo male H vs. C offspring. Thus reduced vasodilator modulation may explain elevated myogenic responses in 7-mo male H offspring. In contrast, there was increased modulation of myogenic responses in arteries from 7-mo female H vs. C or NR offspring after inhibition of both enzymes (P < 0.05). Thus increased vasodilator modulation may maintain myogenic responses in female H offspring at control levels. In summary, vascular responses in adult offspring from adverse intrauterine environments are impaired in a gender-specific, age-dependent, and maternal insult-dependent manner, with males more profoundly affected.
Collapse
Affiliation(s)
- D G Hemmings
- Perinatal Research Centre, Department of Obstetrics and Gynecology, 220 Heritage Medical Research Centre, Univ. of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
39
|
Ahmed A, Waters CM, Leffler CW, Jaggar JH. Ionic mechanisms mediating the myogenic response in newborn porcine cerebral arteries. Am J Physiol Heart Circ Physiol 2004; 287:H2061-9. [PMID: 15284060 DOI: 10.1152/ajpheart.00660.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms that underlie autoregulation in the newborn vasculature are unclear. Here we tested the hypothesis that in newborn porcine cerebral arteries intravascular pressure elevates wall tension, leading to an increase in intracellular calcium concentration ([Ca2+]i) and a constriction that is opposed by pressure-induced K+channel activation. Incremental step (20 mmHg) elevations in intravascular pressure between 10 and 90 mmHg induced an immediate transient elevation in arterial wall [Ca2+]iand a short-lived constriction that was followed by a smaller steady-state [Ca2+]ielevation and sustained constriction. Pressures between 10 and 90 mmHg increased steady-state arterial wall [Ca2+]ibetween ∼142 and 299 nM and myogenic (defined as passive-active) tension between 25 and 437 dyn/cm. The relationship between pressure and myogenic tension was strongly Ca2+dependent until forced dilation. At low pressure, 60 mM K+induced a steady-state elevation in arterial wall [Ca2+]iand a constriction. Nimodipine, a voltage-dependent Ca2+channel blocker, and removal of extracellular Ca2+similarly dilated arteries at low or high pressures. 4-Aminopyridine, a voltage-dependent K+(Kv) channel blocker, induced significantly larger constrictions at high pressure, when compared with those at low pressure. Although selective Ca2+-activated K+(KCa) channel blockers and intracellular Ca2+release inhibitors induced only small constrictions at low and high pressures, a low concentration of caffeine (1 μM), a ryanodine-sensitive Ca2+release (RyR) channel activator, increased KCachannel activity and induced dilation. These data suggest that in newborn cerebral arteries, intravascular pressure elevates wall tension, leading to voltage-dependent Ca2+channel activation, an increase in wall [Ca2+]iand Ca2+-dependent constriction. In addition, pressure strongly activates Kvchannels that opposes constriction but only weakly activates KCachannels.
Collapse
Affiliation(s)
- Abu Ahmed
- Dept. of Physiology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
40
|
Bowles DK, Maddali KK, Ganjam VK, Rubin LJ, Tharp DL, Turk JR, Heaps CL. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle. Am J Physiol Heart Circ Physiol 2004; 287:H2091-8. [PMID: 15242831 DOI: 10.1152/ajpheart.00258.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.
Collapse
Affiliation(s)
- D K Bowles
- E102 Veterinary Medicine, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Veerareddy S, Cooke CLM, Baker PN, Davidge ST. Gender differences in myogenic tone in superoxide dismutase knockout mouse: animal model of oxidative stress. Am J Physiol Heart Circ Physiol 2004; 287:H40-5. [PMID: 14975934 DOI: 10.1152/ajpheart.01179.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.
Collapse
Affiliation(s)
- Sukrutha Veerareddy
- Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
42
|
Abstract
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.
Collapse
Affiliation(s)
- Julia M Orshal
- Harvard Medical School, VA Boston Healthcare-Research, 1400 VFW Parkway 3/2B123, Boston, MA 02132, USA
| | | |
Collapse
|
43
|
Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 2003; 285:H1590-9. [PMID: 12805022 DOI: 10.1152/ajpheart.00376.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated the role of endothelial intermediate conductance calcium-sensitive potassium channels (IKCa) in the mechanism of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in pressurized cerebral arteries. Male rat middle cerebral arteries (MCA) were mounted in an isolated vessel chamber, pressurized (85 mmHg), and luminally perfused (100 microl/min). Artery diameter was measured simultaneously with either endothelial intracellular Ca2+ concentration ([Ca2+]i; fura-2) or changes in endothelial membrane potential [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS)]. Nitric oxide synthase and cyclooxygenase inhibitors were present throughout. Luminal application of UTP produced EDHF-mediated dilations that correlated with significant endothelial hyperpolarization. The dilation and endothelial hyperpolarization were virtually abolished by inhibitors of IKCa channels but not by selective inhibitors of small or large conductance KCa channels (apamin and iberiotoxin, respectively). Additionally, direct stimulation of endothelial IKCa channels with 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial hyperpolarization and vasodilatation that were blocked by inhibitors of IKCa channels. 1-EBIO hyperpolarized the endothelium but did not affect endothelial [Ca2+]i. We conclude that the mechanism of EDHF-mediated dilations in cerebral arteries requires stimulation of endothelial IKCa channels to promote endothelial hyperpolarization and subsequent vasodilatation.
Collapse
Affiliation(s)
- Sean P Marrelli
- Baylor College of Medicine, Department of Anesthesiology, One Baylor Plaza, Suite 434-D, Houston, TX 77030, USA.
| | | | | |
Collapse
|
44
|
Earley S, Walker BR. Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction. Am J Physiol Heart Circ Physiol 2003; 284:H1655-61. [PMID: 12511430 DOI: 10.1152/ajpheart.00964.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries from CH rats (barometric pressure = 380 Torr; 48 h) was greater than that of controls (barometric pressure = 630 Torr). In addition, studies employing pressurized mesenteric arteries (100-200 microM ID) abluminally loaded with the Ca(2+) indicator fura 2-AM demonstrated that although NO synthase (NOS) inhibition normalized agonist-induced vasoconstrictor responses between groups, VSM cell [Ca(2+)] in vessels from CH rats remained diminished compared with controls. To determine whether elevated NO production following CH results from increased NOS protein levels, we performed Western blots for NOS isoforms by using mesenteric arteries from control and CH rats. Endothelial NOS levels did not differ between groups, and other NOS isoforms were not detected in these samples. Selective endothelial loading of fura 2-AM was employed to test the hypothesis that elevated endothelial cell [Ca(2+)] following CH accounts for enhanced NOS activity. These experiments demonstrated greater endothelial cell [Ca(2+)] in mesenteric arteries isolated from CH rats compared with controls. We conclude that enhanced production of NO resulting from elevated endothelial cell [Ca(2+)] contributes to attenuated reactivity following CH by decreasing VSM cell Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Scott Earley
- Vascular Physiology Group, Department of Cell Biology & Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
45
|
Grasemann H, Storm van's Gravesande K, Buscher R, Knauer N, Silverman ES, Palmer LJ, Drazen JM, Ratjen F. Endothelial nitric oxide synthase variants in cystic fibrosis lung disease. Am J Respir Crit Care Med 2003; 167:390-4. [PMID: 12406848 DOI: 10.1164/rccm.200202-155oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Variants in the genes encoding for the nitric oxide synthases may act as disease modifier loci in cystic fibrosis, affecting both an individual's nitric oxide level and pulmonary function. In this study, the 894G/T variant in exon 7 of the endothelial nitric oxide synthase gene was related to exhaled nitric oxide and pulmonary function in 70 cystic fibrosis patients who were aged 14.8 +/- 6.9 years (mean +/- SD), with a FEV1 of 69.4 +/- 24.8% predicted. Although there was no association between endothelial nitric oxide synthase genotypes and exhaled nitric oxide in males, nitric oxide levels were significantly higher in female cystic fibrosis patients with an 894T mutant allele, compared with female patients homozygous for the 894G wild-type allele (7.0 +/- 4.4 versus 3.6 +/- 1.9 parts per billion, p = 0.02). Furthermore, in female patients, colonization of airways with Pseudomonas aeruginosa was significantly (p < 0.05) less frequent when carrying an 894T mutant allele as compared with wild type. These data suggest that the 894T variant in the endothelial nitric oxide synthase gene is associated with increased airway nitric oxide formation in female cystic fibrosis patients, possibly affecting colonization of airways with P. aeruginosa.
Collapse
|
46
|
Adams-Hamoda MG, Caldwell MA, Stotts NA, Drew BJ. Factors to Consider When Analyzing 12-Lead Electrocardiograms for Evidence of Acute Myocardial Ischemia. Am J Crit Care 2003. [DOI: 10.4037/ajcc2003.12.1.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An important factor to consider when using findings on electrocardiograms for clinical decision making is that the waveforms are influenced by normal physiological and technical factors as well as by pathophysiological factors. Traditionally, the focus of bedside monitoring is detection of arrhythmia. However, continuous ST-segment monitoring for the detection of myocardial ischemia is now readily available. Many factors affect electrocardiographic waveforms and may interfere with diagnosis of myocardial ischemia based on electrocardiographic findings. Accordingly, a principal leadership role for clinical nurse specialists and nurse practitioners is to become knowledgeable about interpretation of 12-lead electrocardiograms and to share this knowledge with staff nurses who care for patients with acute coronary syndromes. The factors that alter electrocardiographic findings are reviewed, and the alterations that interfere with electrocardiogram-based diagnosis of myocardial ischemia are discussed.
Collapse
|
47
|
Ghisdal P, Morel N. Cellular target of voltage and calcium-dependent K(+) channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery. Br J Pharmacol 2001; 134:1021-8. [PMID: 11682450 PMCID: PMC1573040 DOI: 10.1038/sj.bjp.0704348] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We have investigated the cellular target of K(+) channel blockers responsible for the inhibition of the EDHF-mediated relaxation in the rat mesenteric artery by studying their effects on tension, smooth muscle cell (SMC) membrane potential and endothelial cell Ca(2+) signal ([Ca(2+)](endo)). 2. In arteries contracted with prostaglandin F(2 alpha) (2.5 - 10 microM), relaxation evoked by ACh (0.01 - 3 microM) was abolished by a combination of charybdotoxin (ChTX, 0.1 microM) plus apamin (Apa, 0.1 microM) and was inhibited by 68+/-6% (n=6) by 4-aminopyridine (4-AP, 5 mM). 3. ACh(0.001 - 3 microM) increased [Ca(2+)](endo) and hyperpolarized SMCs with the same potency, the pD(2) values were equal to 7.2+/-0.08 (n=4) and 7.2+/-0.07 (n=9), respectively. SMCs hyperpolarization to ACh (1 microM) was abolished by high K(+) solution or by ChTX/Apa. It was decreased by 66+/-5% (n=6) by 4-AP. 4. The increase in [Ca(2+)](endo) evoked by ACh (1 microM) was insensitive to ChTX/Apa but was depressed by 58+/-16% (n=6) and 27+/-4% (n=7) by raising external K(+) concentration and by 4-AP, respectively. 5. The effect of 4-AP on [Ca(2+)](endo) was not affected by increasing external K(+) concentration. In Ca-free/EGTA solution, the transient increase in [Ca(2+)](endo) evoked by ACh (1 microM) was abolished by thapsigargin (1 microM) and was decreased by 75+/-7% (n=5) by 4-AP. 6. These results show that inhibition of EDHF-evoked responses by 4-AP may be attributed to a decrease in the Ca(2+) release activated by ACh in endothelial cells. The abolition of SMCs hyperpolarization to ACh by ChTX/Apa is not related to an interaction with the [Ca(2+)](endo).
Collapse
MESH Headings
- 4-Aminopyridine/pharmacology
- Acetylcholine/pharmacology
- Animals
- Apamin/pharmacology
- Biological Factors/physiology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Charybdotoxin/pharmacology
- Cytosol/drug effects
- Cytosol/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Potassium/pharmacology
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/physiology
- Rats
- Rats, Inbred WKY
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Philippe Ghisdal
- Laboratoire de Pharmacologie, Université Catholique de Louvain, UCL 5410, Avenue Hippocrate, 54 - B 1200 Bruxelles, Belgium
| | - Nicole Morel
- Laboratoire de Pharmacologie, Université Catholique de Louvain, UCL 5410, Avenue Hippocrate, 54 - B 1200 Bruxelles, Belgium
- Author for correspondence:
| |
Collapse
|
48
|
Marrelli SP. Mechanisms of endothelial P2Y(1)- and P2Y(2)-mediated vasodilatation involve differential [Ca2+]i responses. Am J Physiol Heart Circ Physiol 2001; 281:H1759-66. [PMID: 11557568 DOI: 10.1152/ajpheart.2001.281.4.h1759] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to evaluate the role of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) in the difference between P2Y(1)- and P2Y(2)-mediated vasodilatations in cerebral arteries. Rat middle cerebral arteries were cannulated, pressurized, and luminally perfused. The endothelium was selectively loaded with fura 2, a fluorescent Ca(2+) indicator, for simultaneous measurement of endothelial [Ca(2+)](i) and diameter. Luminal administration of 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP), an endothelial P2Y(1) agonist, resulted in purely nitric oxide (NO)-dependent dilation and [Ca(2+)](i) increases up to approximately 300 nM (resting [Ca(2+)](i) = 145 nM). UTP, an endothelial P2Y(2) agonist, resulted in dilations that were both endothelium-derived hyperpolarizing factor (EDHF)- and NO-dependent with [Ca(2+)](i) increases to >400 nM. In the presence of N(G)-nitro-L-arginine-indomethacin to inhibit NO synthase and cyclooxygenase, UTP resulted in an EDHF-dependent dilation alone. The [Ca(2+)](i) threshold for NO-dependent dilation was 220 vs. 340 nM for EDHF. In summary, the differences in the mechanism of vasodilatation resulting from stimulation of endothelial P2Y(1) and P2Y(2) purinoceptors result in part from differential [Ca(2+)](i) responses. Consistent with this finding, these studies also demonstrate a higher [Ca(2+)](i) threshold for EDHF-dependent responses compared with NO.
Collapse
Affiliation(s)
- S P Marrelli
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
49
|
Ungvari Z, Sun D, Huang A, Kaley G, Koller A. Role of endothelial [Ca2+]i in activation of eNOS in pressurized arterioles by agonists and wall shear stress. Am J Physiol Heart Circ Physiol 2001; 281:H606-12. [PMID: 11454563 DOI: 10.1152/ajpheart.2001.281.2.h606] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cultured endothelial cells, Ca2+-dependent and -independent activation of nitric oxide (NO) synthesis to agonists and flow/wall shear stress (WSS) has been demonstrated. However, the presence and function of these pathways are less well known in microvessels that can be exposed to a high level of WSS. We hypothesized that the role of changes in endothelial intracellular calcium concentration ([Ca2+]i) is different in agonist- and WSS-induced release of NO. Thus changes in endothelial [Ca2+]i and diameter of intact pressurized (approximately 100 microm at 80 mmHg) gracilis skeletal muscle arterioles of rats were measured by fluorescent videomicroscopy. Acetylcholine (ACh) and increases in WSS (by increasing intraluminal flow) elicited dilations (maximum 91 +/- 2% and 34 +/- 4%) that could be inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME), a NO synthase blocker. In diameter-clamped arterioles, ACh caused substantial increases in the endothelial calcium fluorescence ratio (ER(Ca), maximum 43 +/- 5%), which was significantly greater than changes in ER(Ca) (maximum approximately 10%) to increases in WSS. The Ca(2+) ionophore A-23187 also substantially increased ER(Ca) (maximum 38 +/- 5%) and elicited significant L-NAME-sensitive arteriolar dilations (maximum 45 +/- 7%). Intraluminal administration of the tyrosine kinase inhibitor genistein had no effect on dilations induced by ACh or the NO donor sodium nitroprusside, whereas it eliminated WSS-induced dilations. Collectively, our data suggest that, in endothelium of skeletal muscle arterioles, NO synthesis is activated by shear stress without a substantial increase in [Ca2+]i, most likely by activation of tyrosine kinase pathways, whereas NO release by ACh and A-23187 is associated with substantial increases in [Ca2+]i.
Collapse
Affiliation(s)
- Z Ungvari
- Department of Pathophysiology, Semmelweis University of Medicine, H-1445 Budapest, Hungary
| | | | | | | | | |
Collapse
|
50
|
Geary GG, Krause DN, Duckles SP. Gonadal hormones affect diameter of male rat cerebral arteries through endothelium-dependent mechanisms. Am J Physiol Heart Circ Physiol 2000; 279:H610-8. [PMID: 10924060 DOI: 10.1152/ajpheart.2000.279.2.h610] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gender is known to influence the incidence and severity of cerebrovascular disease. In the present study, luminal diameter was measured in vitro in pressurized middle cerebral artery segments from male rats that were either untreated, orchiectomized (ORX), ORX with testosterone treatment (ORX+TEST), or ORX with estrogen treatment (ORX+EST). The maximal passive diameters (0 Ca(2+) + 3 mM EDTA) of arteries from all four groups were similar. In endothelium-intact arteries, myogenic tone was significantly greater in arteries from untreated and ORX+TEST compared with arteries from either ORX or ORX+EST. During exposure to N(G)-nitro-L-arginine-methyl ester (L-NAME), an NO synthase (NOS) inhibitor, myogenic tone significantly increased in all groups. The effect of L-NAME was significantly greater in arteries from untreated and ORX+EST compared with arteries from ORX and ORX+TEST rats. Differences in myogenic tone between ORX and ORX+TEST persisted after inhibition of NOS. After endothelium removal or inhibition of the cyclooxygenase pathway combined with K(+) channel blockers, myogenic tone differences between ORX and ORX+TEST were abolished. Wall thickness and forced dilation were not significantly different between arteries from ORX and ORX+TEST. Our data show that gonadal hormones affect myogenic tone in male rat cerebral arteries through NOS- and/or endothelium-dependent mechanisms.
Collapse
Affiliation(s)
- G G Geary
- Department of Pharmacology, College of Medicine, University of California, Irvine, California 92697-4625, USA.
| | | | | |
Collapse
|