1
|
Mosqueira M, Scheid LM, Kiemel D, Richardt T, Rheinberger M, Ollech D, Lutge A, Heißenberg T, Pfitzer L, Engelskircher L, Yildiz U, Porth I. nNOS-derived NO modulates force production and iNO-derived NO the excitability in C2C12-derived 3D tissue engineering skeletal muscle via different NO signaling pathways. Front Physiol 2022; 13:946682. [PMID: 36045747 PMCID: PMC9421439 DOI: 10.3389/fphys.2022.946682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide (NO) is a bioactive gas produced by one of the three NO synthases: neuronal NOS (nNOS), inducible (iNOS), and endothelial NOS (eNOS). NO has a relevant modulatory role in muscle contraction; this takes place through two major signaling pathways: (i) activation of soluble guanylate cyclase and, thus, protein kinase G or (ii) nitrosylation of sulfur groups of cysteine. Although it has been suggested that nNOS-derived NO is the responsible isoform in muscle contraction, the roles of eNOS and iNOS and their signaling pathways have not yet been clarified. To elucidate the action of each pathway, we optimized the generation of myooids, an engineered skeletal muscle tissue based on the C2C12 cell line. In comparison with diaphragm strips from wild-type mice, 180 myooids were analyzed, which expressed all relevant excitation–contraction coupling proteins and both nNOS and iNOS isoforms. Along with the biochemical results, myooids treated with NO donor (SNAP) and unspecific NOS blocker (L-NAME) revealed a comparable NO modulatory effect on force production as was observed in the diaphragm strips. Under the effects of pharmacological tools, we analyzed the myooids in response to electrical stimulation of two possible signaling pathways and NO sources. The nNOS-derived NO exerted its negative effect on force production via the sGG-PKG pathway, while iNOS-derived NO increased the excitability in response to sub-threshold electrical stimulation. These results strengthen the hypotheses of previous reports on the mechanism of action of NO during force production, showed a novel function of iNOS-derived NO, and establish the myooid as a novel and robust alternative model for pathophysiological skeletal muscle research.
Collapse
Affiliation(s)
- Matias Mosqueira
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Matias Mosqueira,
| | - Lisa-Mareike Scheid
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- PromoCell GmbH, Heidelberg, Germany
| | - Dominik Kiemel
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Talisa Richardt
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Mona Rheinberger
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Dirk Ollech
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Applied Physics Department, Science for Life Laboratory and KTH Royal Technical University, Solna, Sweden
| | - Almut Lutge
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Life Science at the University of Zürich, Zürich, Switzerland
| | - Tim Heißenberg
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Lena Pfitzer
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- myNEO NV, Ghent, Belgium
| | - Lisa Engelskircher
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Immatics Biotechnology GmbH, Tübingen, Germany
| | - Umut Yildiz
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Isabel Porth
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
2
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
3
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
4
|
Jeffries EP, Di Filippo M, Galbiati F. Failure to reabsorb the primary cilium induces cellular senescence. FASEB J 2018; 33:4866-4882. [PMID: 30596512 DOI: 10.1096/fj.201801382r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aurora kinase A (AURKA) is necessary for proper primary cilium disassembly before mitosis. We found that depletion of caveolin-1 expression promotes primary cilia formation through the proteasomal-dependent degradation of aurora kinase A and induces premature senescence in human fibroblasts. Down-regulation of intraflagellar transport-88, a protein essential for ciliogenesis, inhibits premature senescence induced by the depletion of caveolin-1. In support of these findings, we showed that alisertib, a pharmacological inhibitor of AURKA, causes primary cilia formation and cellular senescence by irreversibly arresting cell growth. Suppression of primary cilia formation limits cellular senescence induced by alisertib. The primary cilium must be disassembled to free its centriole to form the centrosome, a necessary structure for mitotic spindle assembly and cell division. We showed that the use of the centriole to form primary cilia blocks centrosome formation and mitotic spindle assembly and prevents the completion of mitosis in cells in which cellular senescence is caused by the inhibition of AURKA. We also found that AURKA is down-regulated and primary cilia formation is enhanced when cellular senescence is promoted by other senescence-inducing stimuli, such as oxidative stress and UV light. Thus, we propose that impaired AURKA function induces premature senescence by preventing reabsorption of the primary cilium, which inhibits centrosome and mitotic spindle formation and consequently prevents the completion of mitosis. Our study causally links the inability of the cell to disassemble the primary cilium, a microtubule-based cellular organelle, to the development of premature senescence, a functionally and pathologically relevant cellular state.-Jeffries, E. P., Di Filippo, M., Galbiati, F. Failure to reabsorb the primary cilium induces cellular senescence.
Collapse
Affiliation(s)
- Elizabeth P Jeffries
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michela Di Filippo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ferruccio Galbiati
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Volonte D, Vyas AR, Chen C, Dacic S, Stabile LP, Kurland BF, Abberbock SR, Burns TF, Herman JG, Di YP, Galbiati F. Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. J Biol Chem 2017; 293:1794-1809. [PMID: 29247004 DOI: 10.1074/jbc.m117.815902] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
Oncogene-induced senescence (OIS) is considered a powerful tumor suppressor mechanism. Caveolin-1 acts as a scaffolding protein to functionally regulate signaling molecules. We demonstrate that a lack of caveolin-1 expression inhibits oncogenic K-Ras (K-RasG12V)-induced premature senescence in mouse embryonic fibroblasts and normal human bronchial epithelial cells. Oncogenic K-Ras induces senescence by limiting the detoxification function of MTH1. We found that K-RasG12V promotes the interaction of caveolin-1 with MTH1, which results in inhibition of MTH1 activity. Lung cancer cells expressing oncogenic K-Ras have bypassed the senescence barrier. Interestingly, overexpression of caveolin-1 restores cellular senescence in both A549 and H460 lung cancer cells and inhibits their transformed phenotype. In support of these findings, our in vivo data demonstrate that overexpression of oncogenic K-Ras (K-RasG12D) induces cellular senescence in the lung of wildtype but not caveolin-1-null mice. A lack of K-RasG12D-induced premature senescence in caveolin-1-null mice results in the formation of more abundant lung tumors. Consistent with these data, caveolin-1-null mice overexpressing K-RasG12D display accelerated mortality. Finally, our animal data were supported by human sample analysis in which we show that caveolin-1 expression is dramatically down-regulated in lung adenocarcinomas from lung cancer patients, both at the mRNA and protein levels, and that low caveolin-1 expression is associated with poor survival. Together, our data suggest that lung cancer cells escape oncogene-induced premature senescence through down-regulation of caveolin-1 expression to progress from premalignant lesions to cancer.
Collapse
Affiliation(s)
| | - Avani R Vyas
- From the Department of Pharmacology and Chemical Biology
| | - Chen Chen
- the Department of Environmental and Occupational Health, and
| | - Sanja Dacic
- the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Laura P Stabile
- From the Department of Pharmacology and Chemical Biology.,the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Brenda F Kurland
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232.,the Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, and
| | - Shira R Abberbock
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Timothy F Burns
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - James G Herman
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Yuanpu Peter Di
- the Department of Environmental and Occupational Health, and
| | | |
Collapse
|
6
|
Pineda RH, Nedumaran B, Hypolite J, Pan XQ, Wilson S, Meacham RB, Malykhina AP. Altered expression and modulation of the two-pore-domain (K 2P) mechanogated potassium channel TREK-1 in overactive human detrusor. Am J Physiol Renal Physiol 2017; 313:F535-F546. [PMID: 28539337 DOI: 10.1152/ajprenal.00638.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 01/25/2023] Open
Abstract
Detrusor overactivity (DO) is the abnormal response of the urinary bladder to physiological stretch during the filling phase of the micturition cycle. The mechanisms of bladder smooth muscle compliance upon the wall stretch are poorly understood. We previously reported that the function of normal detrusor is regulated by TREK-1, a member of the mechanogated subfamily of two-pore-domain potassium (K2P) channels. In the present study, we aimed to identify the changes in expression and function of TREK-1 channels under pathological conditions associated with DO, evaluate the potential relationship between TREK-1 channels and cytoskeletal proteins in the human bladder, and test the possibility of modulation of TREK-1 channel expression by small RNAs. Expression of TREK-1 channels in DO specimens was 2.7-fold decreased compared with control bladders and was associated with a significant reduction of the recorded TREK-1 currents. Isolated DO muscle strips failed to relax when exposed to a TREK-1 channel opener. Immunocytochemical labeling revealed close association of TREK-1 channels with cell cytoskeletal proteins and caveolins, with caveolae microdomains being severely disrupted in DO specimens. Small activating RNA (saRNA) tested in vitro provided evidence that expression of TREK-1 protein could be partially upregulated. Our data confirmed a significant downregulation of TREK-1 expression in human DO specimens and provided evidence of close association between the channel, cell cytoskeleton, and caveolins. Upregulation of TREK-1 expression by saRNA could be a future step for the development of in vivo pharmacological and genetic approaches to treat DO in humans.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shandra Wilson
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
7
|
Keller TCS, Butcher JT, Broseghini-Filho GB, Marziano C, DeLalio LJ, Rogers S, Ning B, Martin JN, Chechova S, Cabot M, Shu X, Best AK, Good ME, Simão Padilha A, Purdy M, Yeager M, Peirce SM, Hu S, Doctor A, Barrett E, Le TH, Columbus L, Isakson BE. Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX). Hypertension 2016; 68:1494-1503. [PMID: 27802421 PMCID: PMC5159279 DOI: 10.1161/hypertensionaha.116.08171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/22/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
The ability of hemoglobin to scavenge the potent vasodilator nitric oxide (NO) in the blood has been well established as a mechanism of vascular tone homeostasis. In endothelial cells, the alpha chain of hemoglobin (hereafter, alpha globin) and endothelial NO synthase form a macromolecular complex, providing a sink for NO directly adjacent to the production source. We have developed an alpha globin mimetic peptide (named HbαX) that displaces endogenous alpha globin and increases bioavailable NO for vasodilation. Here we show that, in vivo, HbαX administration increases capillary oxygenation and blood flow in arterioles acutely and produces a sustained decrease in systolic blood pressure in normal and angiotensin II-induced hypertensive states. HbαX acts with high specificity and affinity to endothelial NO synthase, without toxicity to liver and kidney and no effect on p50 of O2 binding in red blood cells. In human vasculature, HbαX blunts vasoconstrictive response to cumulative doses of phenylephrine, a potent constricting agent. By binding to endothelial NO synthase and displacing endogenous alpha globin, HbαX modulates important metrics of vascular function, increasing vasodilation and flow in the resistance vasculature.
Collapse
Affiliation(s)
- T C Stevenson Keller
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Joshua T Butcher
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Gilson Brás Broseghini-Filho
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Corina Marziano
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Leon J DeLalio
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Stephen Rogers
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Bo Ning
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Jennifer N Martin
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Sylvia Chechova
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Maya Cabot
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Xiahong Shu
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Angela K Best
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Miranda E Good
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Alessandra Simão Padilha
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Michael Purdy
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Mark Yeager
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Shayn M Peirce
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Song Hu
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Allan Doctor
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Eugene Barrett
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Thu H Le
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Linda Columbus
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.)
| | - Brant E Isakson
- From the Department of Molecular Physiology and Biological Physics (T.C.S.K., C.M., M.C., M.P., M.Y., B.E.I.), Robert M. Berne Cardiovascular Research Center (T.C.S.K., J.T.B., G.B.B.-F., C.M., L.J.D., X.S., A.K.B., M.E.G., B.E.I.), Department of Pharmacology (L.J.D.), Division of Nephrology, Department of Medicine (S.C., T.H.L.), and Division of Endocrinology, Department of Medicine (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Physiological Sciences, Federal University of Espirito Santa, Brazil (G.B.B.-F., A.S.P.); Departments of Pediatrics and Biochemistry, Washington University in Saint Louis, MO (S.R., A.D.); Department of Biomedical Engineering (B.N., S.M.P., S.H.) and Department of Chemistry (J.N.M., L.C.), University of Virginia, Charlottesville; and College of Pharmacy, Dalian Medical University, Dalian, China (X.S.).
| |
Collapse
|
8
|
Reynolds LJ, Credeur DP, Manrique C, Padilla J, Fadel PJ, Thyfault JP. Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol (1985) 2016; 122:38-47. [PMID: 27789766 DOI: 10.1152/japplphysiol.00286.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)-1·min-1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM-1·min-1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D (P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion (P < 0.05) but did not increase with insulin in either group (P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 (P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Daniel P Credeur
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique
- Department of Medicine-Division of Endocrinology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and.,Department of Child Health, University of Missouri, Columbia, Missouri
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
9
|
Fernando CA, Liu Y, Sowa G, Segal SS. Attenuated rapid onset vasodilation with greater force production in skeletal muscle of caveolin-2-/- mice. Am J Physiol Heart Circ Physiol 2016; 311:H415-25. [PMID: 27317631 DOI: 10.1152/ajpheart.00082.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022]
Abstract
Caveolin-2 (Cav2) is a major protein component of caveolae in membranes of vascular smooth muscle and endothelium, yet its absence alters the ultrastructure of skeletal muscle fibers. To gain insight into Cav2 function in skeletal muscle, we tested the hypothesis that genetic deletion of Cav2 would alter microvascular reactivity and depress contractile function of skeletal muscle in vivo. In the left gluteus maximus muscle (GM) of anesthetized Cav2(-/-) and wild-type (WT) male mice (age, 6 mo), microvascular responses to physiological agonists and to GM contractions were studied at 34°C. For feed arteries (FA), first- (1A), second- (2A) and third-order (3A) arterioles, respective mean diameters at rest (45, 35, 25, 12 μm) and during maximal dilation (65, 55, 45, 30 μm) were similar between groups. Cumulative dilations to ACh (10(-9) to 10(-5) M) and constrictions to norepinephrine (10(-9) to 10(-5) M) were also similar between groups, as were steady-state dilations during rhythmic twitch contractions (2 and 4 Hz; 30 s). For single tetanic contractions (100 Hz; 100, 250, and 500 ms), rapid onset vasodilation (ROV) increased with contraction duration throughout networks in GM of both groups but was reduced by nearly half in Cav2(-/-) mice compared with WT mice (P < 0.05). Nevertheless, maximal force during tetanic contraction was ∼40% greater in GM of Cav2(-/-) vs. WT mice (152 ± 14 vs. 110 ± 3 mN per square millimeter, respectively; P < 0.05). Thus, while structural and functional properties of resistance networks are well maintained in the GM of Cav2(-/-) mice, diminished ROV with greater force production reveals novel physiological roles for Cav2 in skeletal muscle.
Collapse
Affiliation(s)
- Charmain A Fernando
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Yajun Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
10
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
11
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
12
|
Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 2015; 310:H326-36. [PMID: 26608338 PMCID: PMC4796623 DOI: 10.1152/ajpheart.00635.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis.
Collapse
Affiliation(s)
- I Mark Olfert
- Center for Cardiovascular and Respiratory Sciences and Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia;
| | - Oliver Baum
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ylva Hellsten
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Pojoga LH, Yao TM, Opsasnick LA, Siddiqui WT, Reslan OM, Adler GK, Williams GH, Khalil RA. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury. J Pharmacol Exp Ther 2015; 355:32-47. [PMID: 26183312 DOI: 10.1124/jpet.115.226043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022] Open
Abstract
Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1-replete or -deficient states would alter vascular function in a mouse model of low nitric oxide (NO)-high angiotensin II (AngII)-induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1-0.2 mg/ml in drinking water at days 1-11) plus AngII (0.7-2.8 mg/kg per day via an osmotic minipump at days 8-11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1(-/-) mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1(-/-) mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1(-/-) mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1(-/-) versus WT mice, further increased with L-NAME + AngII, and not affected by EPL. Vascular relaxation to the NO donor sodium nitroprusside was increased with L-NAME + AngII in WT mice but not in cav-1(-/-) mice. Plasma aldosterone levels increased and cardiac MR expression decreased in L-NAME + AngII treated WT and cav-1(-/-) mice and did not change with EPL. Thus, during L-NAME + AngII induced hypertension, MR blockade increases contraction and alters vascular relaxation via NO-cGMP, and these changes are absent in cav-1 deficiency states. The data suggest a cooperative role of MR and cav-1 in regulating vascular contraction and NO-cGMP-mediated relaxation during low NO-high AngII-dependent cardiovascular injury.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tham M Yao
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren A Opsasnick
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Waleed T Siddiqui
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ossama M Reslan
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gail K Adler
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gordon H Williams
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Gutierrez-Pajares JL, Iturrieta J, Dulam V, Wang Y, Pavlides S, Malacari G, Lisanti MP, Frank PG. Caveolin-3 Promotes a Vascular Smooth Muscle Contractile Phenotype. Front Cardiovasc Med 2015; 2:27. [PMID: 26664898 PMCID: PMC4671348 DOI: 10.3389/fcvm.2015.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/24/2015] [Indexed: 01/12/2023] Open
Abstract
Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle (SM) cells are believed to play an essential role in the development of these illnesses. Vascular SM cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature, contractile SM cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of SM cell phenotype. Caveolin-3 is expressed in vivo in normal arterial SM cells, but its expression appears to be lost in cultured SM cells. Our data show that caveolin-3 expression in the A7r5 SM cell line is associated with increased expression of contractility markers such as SM α-actin, SM myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing SM cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic SM cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating SM function in atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Jorge L Gutierrez-Pajares
- Faculté de Médecine, INSERM UMR1069 "Nutrition, Croissance et Cancer", Université François Rabelais de Tours , Tours , France ; Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA
| | - Jeannette Iturrieta
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA
| | - Vipin Dulam
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA
| | - Yu Wang
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA
| | - Stephanos Pavlides
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester , Manchester , UK ; The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester , Manchester , UK
| | - Gabriella Malacari
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA
| | - Michael P Lisanti
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester , Manchester , UK ; The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester , Manchester , UK
| | - Philippe G Frank
- Faculté de Médecine, INSERM UMR1069 "Nutrition, Croissance et Cancer", Université François Rabelais de Tours , Tours , France ; Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, PA , USA ; Department of Biochemistry and Molecular Biology, Thomas Jefferson University , Philadelphia, PA , USA
| |
Collapse
|
15
|
The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 2014; 185:153-71. [DOI: 10.1007/s00360-014-0877-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
16
|
Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep 2014; 11:1555-65. [PMID: 25405382 PMCID: PMC4270315 DOI: 10.3892/mmr.2014.2968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
The understanding of nitric oxide (NO) signaling has grown substantially since the identification of endothelial derived relaxing factor (EDRF). NO has emerged as a ubiquitous signaling molecule involved in diverse physiological and pathological processes. Perhaps the most significant function, independent of EDRF, is that of NO signaling mediated locally in signaling modules rather than relying upon diffusion. In this context, NO modulates protein function via direct post-translational modification of cysteine residues. This review explores NO signaling and related reactive nitrogen species involved in the regulation of the cardiovascular system. A critical concept in the understanding of NO signaling is that of the nitroso-redox balance. Reactive nitrogen species bioactivity is fundamentally linked to the production of reactive oxygen species. This interaction occurs at the chemical, enzymatic and signaling effector levels. Furthermore, the nitroso-redox equilibrium is in a delicate balance, involving the cross-talk between NO and oxygen-derived species signaling systems, including NADPH oxidases and xanthine oxidase.
Collapse
Affiliation(s)
- Adriana V Treuer
- Laboratory of Organic Synthesis, Institute of Chemistry of Natural Resources, University of Talca, Talca 3460000, Chile
| | - Daniel R Gonzalez
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
17
|
Golub AS, Pittman RN. Bang-bang model for regulation of local blood flow. Microcirculation 2014; 20:455-83. [PMID: 23441827 DOI: 10.1111/micc.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
Abstract
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2 (-) ) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the "bang-bang" or "on/off" regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2 (-) into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis, and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
18
|
Stary CM, Tsutsumi YM, Patel PM, Head BP, Patel HH, Roth DM. Caveolins: targeting pro-survival signaling in the heart and brain. Front Physiol 2012; 3:393. [PMID: 23060817 PMCID: PMC3464704 DOI: 10.3389/fphys.2012.00393] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022] Open
Abstract
The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Intapad S, Saengsirisuwan V, Prasannarong M, Chuncharunee A, Suvitayawat W, Chokchaisiri R, Suksamrarn A, Piyachaturawat P. Long-term effect of phytoestrogens from Curcuma comosa Roxb. on vascular relaxation in ovariectomized rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:758-764. [PMID: 22225491 DOI: 10.1021/jf203173b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytoestrogens have been implicated as promising therapeutic agents to treat the vascular impairment seen in menopausal women. The present study investigated the long-term effects of phytoestrogens from Curcuma comosa Roxb. on vascular relaxation of isolated thoracic aorta from ovariectomized (OVX) rats. Treatment of OVX rats for 12 weeks with C. comosa powder, hexane extract, and a novel phytoestrogen, diarylheptanoid-D3, [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol] prevented impairment of the endothelium-dependent relaxation response to acetylcholine in OVX, but not the endothelium-denude aortic ring relaxation in response to sodium nitroprusside. These data suggest that the vascular relaxation effect of C. comosa is mediated via endothelial cells. Treatment with D3 also increased endothelial nitric oxide synthase (eNOS) and estrogen receptor-α (ERα) protein expression in the aorta of OVX rats and suppressed elevated tumor necrosis factor-α (TNF-α) expression in OVX aortic rings. These results indicate that C. comosa treatment prevents impairment of vascular relaxation in estrogen-deficient animals via the ER-eNOS pathway as well as through its ability to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Physiology, Mahidol University, Bangkok, Thailand 10400
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zou H, Stoppani E, Volonte D, Galbiati F. Caveolin-1, cellular senescence and age-related diseases. Mech Ageing Dev 2011; 132:533-42. [PMID: 22100852 DOI: 10.1016/j.mad.2011.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 01/22/2023]
Abstract
According to the "free radical theory" of aging, normal aging occurs as the result of tissue damages inflicted by reactive oxygen species (ROS) when ROS production exceeds the antioxidant capacity of the cell. ROS induce cellular dysfunctions such as stress-induced premature senescence (SIPS), which is believed to contribute to normal organismal aging and play a role in age-related diseases. Consistent with this hypothesis, increased oxidative damage of DNA, proteins, and lipids have been reported in aged animals and senescent cells accumulate in vivo with advancing age. Caveolin-1 acts as a scaffolding protein that concentrates and functionally regulates signaling molecules. Recently, great progress has been made toward understanding of the role of caveolin-1 in stress-induced premature senescence. Data show that caveolin-mediated signaling may contribute to explain, at the molecular level, how oxidative stress promotes the deleterious effects of cellular senescence such as aging and age-related diseases. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of SIPS and their relevance to the biology of aging.
Collapse
Affiliation(s)
- Huafei Zou
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
21
|
Collins LL, Lee YF, Ting HJ, Lin WJ, Liu NC, Meshul CK, Uno H, Bao BY, Chen YT, Chang C. The roles of testicular nuclear receptor 4 (TR4) in male fertility-priapism and sexual behavior defects in TR4 knockout mice. Reprod Biol Endocrinol 2011; 9:138. [PMID: 21995792 PMCID: PMC3212810 DOI: 10.1186/1477-7827-9-138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/13/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Successful reproductive efforts require the establishment of a situation favorable for reproduction that requires integration of both behavior and internal physiological events. TR4 nuclear receptor is known to be involved in male fertility via controlling spermatogenesis, yet its roles in regulating other biological events related to reproduction have not been completely revealed. METHODS Male TR4 knockout (TR4 -/-) and wild type mice were used for the sexual behavior and penile dysfunction studies. Mice were sacrificed for histological examination and corresponding genes profiles were analyzed by quantitative RT-PCR. Reporter gene assays were performed. RESULTS We describe an unexpected finding of priapism in TR4 -/- mice. As a transcriptional factor, we demonstrated that TR4 transcriptionally modulates a key enzyme regulating penis erection and neuronal nitric oxide synthese NOS (nNOS). Thereby, elimination of TR4 results in nNOS reduction in both mRNA and protein levels, consequently may lead to erectile dysfunction. In addition, male TR4 -/- mice display defects in sexual and social behavior, with increased fear or anxiety, as well as reduced mounting, intromission, and ejaculation. Reduction of ER alpha, ER beta, and oxytocin in the hypothalamus may contribute to defects in sexual behavior and stress response. CONCLUSIONS Together, these results provide in vivo evidence of important TR4 roles in penile physiology, as well as in male sexual behavior. In conjunction with previous finding, TR4 represents a key factor that controls male fertility via regulating behavior and internal physiological events.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fertility
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth/growth & development
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Nitric Oxide Synthase Type I/genetics
- Nitric Oxide Synthase Type I/metabolism
- Nuclear Receptor Subfamily 2, Group C, Member 2/genetics
- Nuclear Receptor Subfamily 2, Group C, Member 2/physiology
- Penis/growth & development
- Penis/metabolism
- Penis/pathology
- Penis/physiopathology
- Priapism/metabolism
- Priapism/pathology
- Priapism/physiopathology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Response Elements
- Severity of Illness Index
- Sexual Behavior, Animal
- Transcriptional Activation
Collapse
Affiliation(s)
- Loretta L Collins
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Huei-Ju Ting
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen-Jye Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles K Meshul
- Research Services, V.A. Medical Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hideo Uno
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53708, USA
| | - Bo-Ying Bao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center and School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yen-Ta Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center and School of Pharmacy, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Trajanovska S, Donald JA. Endothelial nitric oxide synthase in the amphibian, Xenopus tropicalis. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:274-81. [PMID: 21199680 DOI: 10.1016/j.cbpb.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/19/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) is generated by NO synthase (NOS) of which there are three isoforms: neuronal NOS (nNOS, nos1), inducible NOS (iNOS, nos2), and endothelial NOS (eNOS, nos3). This study utilised the genome of Xenopus tropicalis to sequence a nos3 cDNA and determine if eNOS protein is expressed in blood vessels. A nos3 cDNA was sequenced that encoded a 1177 amino acid protein called XteNOS, which showed closest sequence identity to mammalian eNOS protein. The X. tropicalis nos3 gene and eNOS protein were determined to be an orthologue of mammalian nos3 and eNOS using gene synteny and phylogenetic analyses, respectively. In X. tropicalis, nos3 mRNA expression was highest in lung and skeletal muscle and lower in the liver, gut, kidney, heart and brain. Western analysis of kidney protein using an affinity-purified anti-XteNOS produced a single band at 140kDa. Immunohistochemistry showed XteNOS immunoreactivity in the proximal tubule of the kidney and endocardium of the heart, but not in the endothelium of blood vessels. Thus, X. tropicalis has a nos3 gene that appears not to be expressed in the vascular endothelium.
Collapse
Affiliation(s)
- Sofie Trajanovska
- School of Life and Environmental Sciences, Deakin University, Geelong, 3217, Australia.
| | | |
Collapse
|
23
|
|
24
|
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459:793-806. [PMID: 20012875 DOI: 10.1007/s00424-009-0767-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/08/2023]
Abstract
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to hemodynamic stimuli exerted on the luminal surface of endothelial cells by the streaming blood (shear stress) and the cyclic strain of the vascular wall. The endothelial NO synthase (eNOS) is activated in response to fluid shear stress and numerous agonists via cellular events such as; increased intracellular Ca(2+), interaction with substrate and co-factors, as well as adaptor and regulatory proteins, protein phosphorylation, and through shuttling between distinct sub-cellular domains. Dysregulation of these processes leads to attenuated eNOS activity and reduced NO output which is a characteristic feature of numerous patho-physiological disorders such as diabetes and atherosclerosis. This review summarizes some of the recent findings relating to the molecular events regulating eNOS activity.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Pojoga LH, Adamová Z, Kumar A, Stennett AK, Romero JR, Adler GK, Williams GH, Khalil RA. Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol 2010; 298:H1776-88. [PMID: 20363891 DOI: 10.1152/ajpheart.00661.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endothelial caveolin-1 (cav-1) is an anchoring protein in plasma membrane caveolae where it binds endothelial nitric oxide synthase (eNOS) and limits its activation, particularly in animals fed a high salt (HS) diet. Cav-1 also interacts with steroid receptors such as the mineralocorticoid receptor (MR). To test the hypothesis that vascular reactivity is influenced by an interplay between MR and cav-1 during HS diet, we examined the effects of MR blockade on NOS-mediated vascular relaxation in normal and cav-1-deficient mice. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) were fed for 14 days a HS (4% NaCl) diet with and without the MR antagonist eplerenone (Epl; 100 mg x kg(-1) x day(-1)). After systolic blood pressure (BP) was measured, the thoracic aorta was isolated for measurement of vascular reactivity, and the aorta and heart were used for measurement of eNOS and MR expression. BP was not different between WT + Epl and WT, but was higher in cav-1(-/-) + Epl than in cav-1(-/-) mice. Phenylephrine (Phe)-induced vascular contraction was less in cav-1(-/-) than WT, and significantly enhanced in cav-1(-/-) + Epl than in cav-1(-/-), but not in WT + Epl compared with WT. Endothelium removal and NOS blockade by N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced Phe contraction in cav-1(-/-), but not cav-1(-/-) + Epl. ACh-induced aortic relaxation was reduced in cav-1(-/-) + Epl versus cav-1(-/-), but not in WT + Epl compared with WT. Endothelium removal, l-NAME, and the guanylate cyclase inhibitor ODQ abolished the large ACh-induced relaxation in cav-1(-/-) and the remaining relaxation in the cav-1(-/-) + Epl but had similar inhibitory effect in WT and WT + Epl. Real-time RT-PCR indicated decreased eNOS mRNA expression in the aorta and heart, and Western blots revealed decreased total eNOS in the heart of cav-1(-/-) + Epl compared with cav-1(-/-). Vascular and cardiac MR expression was less in cav-1(-/-) than WT, but not in cav-1(-/-) + Epl compared with cav-1(-/-). Plasma aldosterone (Aldo) was not different between WT and cav-1(-/-) mice nontreated or treated with Epl. Thus in cav-1 deficiency states and HS diet MR blockade is associated with increased BP, enhanced vasoconstriction, and decreased NOS-mediated vascular relaxation and eNOS expression. The data suggest that, in the absence of cav-1, MR activation plays a beneficial role in regulating eNOS expression/activity and, consequently, the vascular function during HS diet.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Intapad S, Suksamrarn A, Piyachaturawat P. Enhancement of vascular relaxation in rat aorta by phytoestrogens from Curcuma comosa Roxb. Vascul Pharmacol 2009; 51:284-90. [PMID: 19665059 DOI: 10.1016/j.vph.2009.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
The present study aims to examine the effects and mechanisms of Curcuma comosa Roxb., an indigenous medicinal plant containing phytoestrogens, on vascular relaxation. Using an organ bath system, acute exposure of intact or endothelium-denuded aortic rings to the hexane extract of C. comosa or an isolated diarylheptanoid compound, D3, did not induce relaxation. However, pre-incubation of aortic rings for 20 min with hexane extract of C. comosa (10 microg/ml) or the isolated diarylheptanoid compound, D3, (0.1, 1 and 10 microg/ml) markedly enhanced endothelial-dependent relaxation in response to ACh. The hexane extract did not modulate the relaxation of denuded aortic rings in response to SNP, which suggested a predominant effect on endothelial cells rather than on vascular smooth muscle cells. Co-incubation with ICI 182,780 (estrogen receptor antagonist), L-NAME (nitric oxide synthase inhibitor) or ODQ (guanylase cyclase inhibitor) inhibited the enhancing effects of C. comosa on ACh-induced relaxation. These findings suggest that the actions of C. comosa are mediated through estrogen receptor (ER) and NO-cGMP-dependent mechanisms. In addition, C. comosa also increased the phosphorylation of serine 1177 eNOS and serine 473 Akt proteins, and these effects were abolished by ICI 182,780. The results suggest that C. comosa acutely increases endothelium-dependent relaxation of aortic rings through the ER-Akt-eNOS pathway. This is the first evidence indicating non-genomic action of a novel phytoestrogen from C. comosa, on vascular relaxation.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
27
|
Jeong K, Kwon H, Min C, Pak Y. Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts. Exp Mol Med 2009; 41:226-35. [PMID: 19299911 DOI: 10.3858/emm.2009.41.4.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We investigated the effect of phenylephrine (PE)- and isoproterenol (ISO)-induced cardiac hypertrophy on subcellular localization and expression of caveolin-3 and STAT3 in H9c2 cardiomyoblast cells. Caveolin-3 localization to plasma membrane was attenuated and localization of caveolin-3 to caveolae in the plasma membrane was 24.3% reduced by the catecholamine- induced hypertrophy. STAT3 and phospho-STAT3 were up-regulated but verapamil and cyclosporin A synergistically decreased the STAT3 and phospho- STAT3 levels in PE- and ISO-induced hypertrophic cells. Both expression and activation of STAT3 were increased in the nucleus by the hypertrophy. Immunofluorescence analysis revealed that the catecholamine- induced hypertrophy promoted nuclear localization of pY705-STAT3. Of interest, phosphorylation of pS727- STAT3 in mitochondria was significantly reduced by catecholamine-induced hypertrophy. In addition, mitochondrial complexes II and III were greatly down- regulated in the hypertrophic cells. Our data suggest that the alterations in nuclear and mitochondrial activation of STAT3 and caveolae localization of caveolin-3 are related to the development of the catecholamine-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | |
Collapse
|
28
|
Han G, Ma H, Chintala R, Fulton DJR, Barman SA, White RE. Essential role of the 90-kilodalton heat shock protein in mediating nongenomic estrogen signaling in coronary artery smooth muscle. J Pharmacol Exp Ther 2009; 329:850-5. [PMID: 19293389 DOI: 10.1124/jpet.108.149112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Under normal physiological conditions, estrogen is a coronary vasodilator, and this response involves production of NO from endothelial cells. In addition, estrogen also stimulates NO production in coronary artery smooth muscle (CASM); however, the molecular basis for this nongenomic effect of estrogen is unclear. The purpose of this study was to investigate a potential role for the 90-kDa heat shock protein (Hsp90) in estrogen-stimulated neuronal nitric-oxide synthase (nNOS) activity in coronary artery smooth muscle. 17Beta-estradiol produced a concentration-dependent relaxation of endothelium-denuded porcine coronary arteries in vitro, and this response was attenuated by inhibiting Hsp90 function with 1 microM geldanamycin (GA) or 100 microg/ml radicicol (RAD). These inhibitors also prevented estrogen-stimulated NO production in human CASM cells and reversed the stimulatory effect of estrogen on calcium-activated potassium (BK(Ca)) channels. These functional studies indicated a role for Hsp90 in coupling estrogen receptor activation to NOS stimulation in CASM. Furthermore, coimmunoprecipitation studies demonstrated that estrogen stimulates bimolecular interaction of immunoprecipitated nNOS with Hsp90 and that either GA or RAD could inhibit this association. Blocking estrogen receptors with ICI182780 (fulvestrant) also prevented this association. These findings indicate an essential role for Hsp90 in nongenomic estrogen signaling in CASM and further suggest that Hsp90 might represent a prospective therapeutic target to enhance estrogen-stimulated cardiovascular protection.
Collapse
Affiliation(s)
- Guichun Han
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kim DD, Kanetaka T, Durán RG, Sánhez FA, Bohlen HG, Durá WN. Independent regulation of periarteriolar and perivenular nitric oxide mechanisms in the in vivo hamster cheek pouch microvasculature. Microcirculation 2009; 16:323-30. [PMID: 19235626 DOI: 10.1080/10739680902734876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We tested the hypothesis that differential stimulation of nitric oxide (NO) production can be induced in pre- and postcapillary segments of the microcirculation in the hamster cheek pouch. MATERIALS AND METHODS We applied acetylcholine (ACh) or platelet-activating factor (PAF) topically and measured perivascular NO concentration ([NO]) with NO-sensitive microelectrodes in arterioles and venules of the hamster cheek pouch. We also measured NO in cultured coronary endothelial cells (CVEC) after ACh or PAF. RESULTS ACh increased periarteriolar [NO] significantly in a dose-dependent manner. ACh at 1 microM increased [NO] from 438.1+/-43.4 nM at baseline to 647.9+/-66.3 nM, while 10 microM of ACh increased [NO] from baseline to 1,035.0+/-59.2 nM (P<0.05). Neither 1 nor 10 microM of ACh changed perivenular [NO] in the hamster cheek pouch. PAF, at 100 nM, increased perivenular [NO] from 326.6+/-50.8 to 622.8+/-41.5 nM. Importantly, 100 nM of PAF did not increase periarteriolar [NO]. PAF increased [NO] from 3.6+/-2.1 to 455.5+/-19.9 in CVEC, while ACh had no effect. CONCLUSIONS We conclude that NO production can be stimulated in a differential manner in pre- and postcapillary segments in the hamster cheek pouch. ACh selectively stimulates the production of NO only in arterioles, while PAF stimulates the production of NO only in venules.
Collapse
Affiliation(s)
- David D Kim
- Program in Vascular Biology, Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07101-1709 USA
| | | | | | | | | | | |
Collapse
|
30
|
Capettini LSA, Cortes SF, Gomes MA, Silva GAB, Pesquero JL, Lopes MJ, Teixeira MM, Lemos VS. Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol 2008; 295:H2503-11. [PMID: 18952716 DOI: 10.1152/ajpheart.00731.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.
Collapse
Affiliation(s)
- L S A Capettini
- Department of Physiology and Biophysics, ICB, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Pampulha 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
El-Yazbi AF, Cho WJ, Cena J, Schulz R, Daniel EE. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine. J Cell Mol Med 2008; 12:1404-15. [PMID: 18400048 PMCID: PMC3865682 DOI: 10.1111/j.1582-4934.2008.00335.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca2+] through L-type Ca2+ channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 μM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-β cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-ω-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 μM) blocked the responses to KCl and LNNA confirming the role of L-type Ca2+ channels. ODQ (1 μM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. We conclude that the activation of nNOS, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
32
|
Fancher TT, Muto A, Fitzgerald TN, Magri D, Gortler D, Nishibe T, Dardik A. Control of blood vessel identity: from embryo to adult. Ann Vasc Dis 2008; 1:28-34. [PMID: 23555335 DOI: 10.3400/avd.avdrev07011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Accepted: 01/25/2008] [Indexed: 11/13/2022] Open
Abstract
Arteries and veins have been historically defined by the direction of blood flow and oxygen tension within the vessel, in addition to their functional, hemodynamic, and anatomical differences. It is now known that the molecular identity of these vessels is genetically predetermined, with specific molecular pathways activated during the development of arteries and veins. Eph-B4 is a determinant of venous differentiation and Ephrin-B2 is a determinant of arterial differentiation. Placement of a vein into the higher pressure and flow of the arterial circulation results in adaptation of the vein to the arterial environment. There is selective loss of Eph-B4 expression without induction of Ephrin-B2 expression during vein graft adaptation. These findings suggest that loss of venous identity is the crucial mechanism in vein graft adaptation and that developmentally critical determinants of vessel identity are plastic during adult life.
Collapse
Affiliation(s)
- Tiffany T Fancher
- Department of Surgery in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA ; Department of the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA ; Saint Mary's Health System, Waterbury, CT, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Pojoga LH, Yao TM, Sinha S, Ross RL, Lin JC, Raffetto JD, Adler GK, Williams GH, Khalil RA. Effect of dietary sodium on vasoconstriction and eNOS-mediated vascular relaxation in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol 2008; 294:H1258-65. [PMID: 18178722 DOI: 10.1152/ajpheart.01014.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Changes in dietary sodium intake are associated with changes in vascular volume and reactivity that may be mediated, in part, by alterations in endothelial nitric oxide synthase (eNOS) activity. Caveolin-1 (Cav-1), a transmembrane anchoring protein in the plasma membrane caveolae, binds eNOS and limits its translocation and activation. To test the hypothesis that endothelial Cav-1 participates in the dietary sodium-mediated effects on vascular function, we assessed vascular responses and nitric oxide (NO)-mediated mechanisms of vascular relaxation in Cav-1 knockout mice (Cav-1-/-) and wild-type control mice (WT; Cav-1+/+) placed on a high-salt (HS; 4% NaCl) or low-salt (LS; 0.08% NaCl) diet for 16 days. After the systolic blood pressure was measured, the thoracic aorta was isolated for measurement of vascular reactivity and NO production, and the heart was used for measurement of eNOS expression and/or activity. The blood pressure was elevated in HS mice treated with NG-nitro-l-arginine methyl ester and more so in Cav-1-/- than WT mice and was significantly reduced during the LS diet. Phenylephrine caused vascular contraction that was significantly reduced in Cav-1-/- (maximum 0.25 +/- 0.06 g/mg) compared with WT (0.75 +/- 0.22 g/mg) on the HS diet, and the differences were eliminated with the LS diet. Also, vascular contraction in response to membrane depolarization by high KCl (96 mM) was reduced in Cav-1-/- (0.27 +/- 0.05 g/mg) compared with WT mice (0.53 +/- 0.12 g/mg) on the HS diet, suggesting that the reduced vascular contraction is not limited to a particular receptor. Acetylcholine (10(-5) M) caused aortic relaxation in WT mice on HS (23.6 +/- 3.5%) and LS (23.7 +/- 5.5%) that was enhanced in Cav-1-/- HS (72.6 +/- 6.1%) and more so in Cav-1-/- LS mice (93.6 +/- 3.5%). RT-PCR analysis indicated increased eNOS mRNA expression in the aorta and heart, and Western blots indicated increased total eNOS and phosphorylated eNOS in the heart of Cav-1-/- compared with WT mice on the HS diet, and the genotypic differences were less apparent during the LS diet. Thus Cav-1 deficiency during the HS diet is associated with decreased vasoconstriction, increased vascular relaxation, and increased eNOS expression and activity, and these effects are altered during the LS diet. The data support the hypothesis that endothelial Cav-1, likely through an effect on eNOS activity, plays a prominent role in the regulation of vascular function during substantial changes in dietary sodium intake.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fleming I. Biology of Nitric Oxide Synthases. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Prakash YS, Thompson MA, Vaa B, Matabdin I, Peterson TE, He T, Pabelick CM. Caveolins and intracellular calcium regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1118-26. [PMID: 17704188 DOI: 10.1152/ajplung.00136.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is a key factor in airway smooth muscle (ASM) tone. In vascular smooth muscle, specialized membrane microdomains (caveolae) expressing the scaffolding protein caveolin-1 are thought to facilitate cellular signal transduction. In human ASM cells, we tested the hypothesis that caveolae mediate Ca(2+) responses to agonist stimulation. Fluorescence immunocytochemistry with confocal microscopy, as well as Western blot analysis, was used to determine that agonist receptors (M(3) muscarinic, bradykinin, and histamine) and store-operated Ca(2+) entry (SOCE)-regulatory mechanisms colocalize with caveolin-1. Although caveolin-2 coexpressed with caveolin-1, caveolin-3 was absent. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 microM ACh, 10 microM histamine, and 10 nM bradykinin, as well as SOCE, were attenuated (each to a different extent) after disruption of caveolae by the cholesterol-chelating drug methyl-beta-cyclodextrin. Transfection of ASM cells with 50 nM caveolin-1 small interfering RNA significantly weakened caveolin-1 expression and blunted [Ca(2+)](i) responses to bradykinin and histamine, as well as SOCE, but the response to ACh was less intense. These results indicate that caveolae are present in ASM and that caveolin-1 contributes to regulation of [Ca(2+)](i) responses to agonist.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA .
| | | | | | | | | | | | | |
Collapse
|
36
|
Stewart JM, Medow MS, Minson CT, Taneja I. Cutaneous neuronal nitric oxide is specifically decreased in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2007; 293:H2161-7. [PMID: 17660395 PMCID: PMC4511496 DOI: 10.1152/ajpheart.00600.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Low flow postural tachycardia syndrome (POTS), is associated with reduced nitric oxide (NO) activity assumed to be of endothelial origin. We tested the hypothesis that cutaneous microvascular neuronal NO (nNO) is impaired, rather than endothelial NO (eNO), in POTS. We performed three sets of experiments on subjects aged 22.5 +/- 2 yr. We used laser-Doppler flowmetry response to sequentially increase acetylcholine (ACh) doses and the local cutaneous heating response of the calf as bioassays for NO. During local heating we showed that when the selective neuronal nNO synthase (nNOS) inhibitor N(omega)-nitro-L-arginine-2,4-L-diaminobutyric amide (N(omega), 10 mM) was delivered by intradermal microdialysis, cutaneous vascular conductance (CVC) decreased by an amount equivalent to the largest reduction produced by the nonselective NO synthase (NOS) inhibitor nitro-L-arginine (NLA, 10 mM). We demonstrated that the response to ACh was minimally attenuated by nNOS blockade using N(omega) but markedly attenuated by NLA, indicating that eNO largely comprises the receptor-mediated NO release by ACh. We further demonstrated that the ACh dose response was minimally reduced, whereas local heat-mediated NO-dependent responses were markedly reduced in POTS compared with control subjects. This is consistent with intact endothelial function and reduced NO of neuronal origin in POTS. The local heating response was highly attenuated in POTS [60 +/- 6 percent maximum CVC(%CVC(max))] compared with control (90 +/- 4 %CVC(max)), but the plateau response decreased to the same level with nNOS inhibition (50 +/- 3 %CVC(max) in POTS compared with 47 +/- 2 %CVC(max)), indicating reduced nNO bioavailability in POTS patients. The data suggest that nNO activity but not NO of endothelial NOS origin is reduced in low-flow POTS.
Collapse
Affiliation(s)
- Julian M Stewart
- The Center for Pediatric Hypotension, New York Medical College, Ste. 3050, 19 Bradhurst Ave., Hawthorne, NY 10532, USA.
| | | | | | | |
Collapse
|
37
|
Kim DD, Pica AM, Durán RG, Durán WN. Acupuncture reduces experimental renovascular hypertension through mechanisms involving nitric oxide synthases. Microcirculation 2006; 13:577-85. [PMID: 16990216 PMCID: PMC1618823 DOI: 10.1080/10739680600885210] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To test the hypothesis that acupuncture on stomach 36 point (ST-36) reduces hypertension by activating nitric oxide synthase signaling mechanisms. METHODS The authors used the two-kidney, one-clip renal hypertension (2K1C) hamster model with electroacupuncture treatment. RESULTS Thirty-minute daily electroacupuncture treatment for 5 days reduced mean arterial pressure from 160.0 +/- 7.6 to 128.0 +/- 4.3 mmHg (mean +/- SEM), compared to 115.0 +/- 7.2 mmHg in sham-operated hamsters. Electroacupuncture increased periarteriolar NO concentration from 309.0 +/- 21.7 nM to 417.9 +/- 20.9 nM in the 2K1C hamster cheek pouch microcirculation when measured with NO-sensitive microelectrodes. Hypertension reduced endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) proteins relative to the sham-operated control, as measured by Western blotting. Electroacupuncture prevented the reduction of eNOS and nNOS associated with hypertension and showed even higher eNOS and nNOS expressions than sham-operated control in stomach and cheek pouch tissues, which are on the stomach meridian. Analysis of liver tissue, a non-stomach-meridian organ, indicated that electroacupuncture did not have a significant benefit in terms of enhanced expressions of eNOS and nNOS in the treated 2K1C hypertensive group. CONCLUSIONS Activation of eNOS and nNOS is one of the mechanisms through which ST-36 electroacupuncture reduces blood pressure; this reduction works through the stomach meridian.
Collapse
Affiliation(s)
- David D Kim
- Program in Vascular Biology, Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, 07101-1709, USA.
| | | | | | | |
Collapse
|
38
|
Gow AJ. The biological chemistry of nitric oxide as it pertains to the extrapulmonary effects of inhaled nitric oxide. Ann Am Thorac Soc 2006; 3:150-2. [PMID: 16565423 PMCID: PMC2658679 DOI: 10.1513/pats.200506-058bg] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemical properties of nitric oxide (NO) have been studied for over 200 years. However, it is only within the last 20 years that the biological implications of this chemistry have been considered. The classical model of NO action within the vasculature centers on production in the endothelium, diffusion to the smooth muscle, and subsequent activation of guanylate cyclase via binding to its heme iron. In the context of this model, it is difficult to conceptualize extrapulmonary effects of inhaled NO. However, NO possesses complex redox chemistry and is capable of forming a range of nitrogen oxide species and is therefore capable of interacting with a variety of biomolecules. Of particular interest is its reaction with reduced cysteine to form an S-nitrosothiol (SNO). SNOs are formed throughout NO biology and are a post-translational modification that has been shown to regulate many proteins under physiologic conditions. Hemoglobin, which was considered to be solely a consumer of NO, can form SNO in a conformationally dependent manner, which allows for the transport of inhaled NO beyond the realm of the lung. Higher oxides of nitrogen are capable of modifying proteins via nitration of tyrosines, which has been shown to occur under pathologic conditions. By virtue of its redox reactivity, one can appreciate that inhaled NO has a variety of routes by which it can act and that these routes may lead to extrapulmonary effects.
Collapse
Affiliation(s)
- Andrew J Gow
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
39
|
Wang H, Liu Z, Li G, Barrett EJ. The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab 2006; 291:E323-32. [PMID: 16569759 DOI: 10.1152/ajpendo.00047.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathways by which insulin exits the vasculature to muscle interstitium have not been characterized. In the present study, we infused FITC-labeled insulin to trace morphologically (using confocal immunohistochemical methods) insulin transport into rat skeletal muscle. We biopsied rectus muscle at 0, 10, 30, and 60 min after beginning a continuous (10 mU x min(-1) x kg(-1)), intravenous FITC-insulin infusion (with euglycemia maintained). The FITC-insulin distribution was compared with that of insulin receptors (IR), IGF-I receptors (IGF-IR), and caveolin-1 (a protein marker for caveolae) in skeletal muscle vasculature. We observed that muscle endothelium stained strongly for FITC-insulin within 10 min, and this persisted to 60 min. Endothelium stained more strongly for FITC-insulin than any other cellular elements in muscle. IR, IGF-IR, and caveolin-1 were also detected immunohistochemically in muscle endothelial cells. We further compared their intracellular distribution with that of FITC-insulin in cultured bovine aortic endothelial cells (bAECs). Considerable colocalization of IR or IGF-IR with FITC-insulin was noted. There was some but less overlap of IR or IGF-IR or FITC-insulin with caveolin-1. Immunoprecipitation of IR coprecipitated caveolin-1, and conversely the precipitation of caveolin-1 brought down IR. Furthermore, insulin increased the tyrosine phosphorylation of caveolin-1, and filipin (which inhibits caveolae formation) blocked insulin uptake. Finally, the ability of insulin, IGF-I, and IGF-I-blocking antibody to diminish insulin transport across bAECs grown on transwell plates suggested that IGF-IR, in addition to IR, can also mediate transendothelial insulin transit. We conclude that in vivo endothelial cells rapidly take up and concentrate insulin relative to plasma and muscle interstitium and that IGF-IR, like IR, may mediate insulin transit through endothelial cells in a process involving caveolae.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology and Metabolism, Departmetn of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
40
|
Hardin CD, Vallejo J. Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res 2006; 69:808-15. [PMID: 16386721 PMCID: PMC1446070 DOI: 10.1016/j.cardiores.2005.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/31/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022] Open
Abstract
Caveolae are becoming increasingly recognized as an important organizational structure for a variety of signal and energy-transducing systems in vascular smooth muscle (VSM). In this review, we discuss the emerging role of the caveolins in organizing and modulating the basic functions of smooth muscle: contraction, growth/proliferation, and the energetic support systems that support these functions. With clear alterations in cell metabolism and function in VSM with altered caveolin-1 (Cav-1) protein expression and with cardiovascular abnormalities associated with Cav-1 null mice, the caveolin family of proteins may play an important role in the function and dysfunction of VSM.
Collapse
Affiliation(s)
- Christopher D Hardin
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
41
|
Rodriguez JA, De la Cerda P, Collyer E, Decap V, Vio CP, Velarde V. Cyclooxygenase-2 induction by bradykinin in aortic vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2006; 290:H30-6. [PMID: 16143655 DOI: 10.1152/ajpheart.00349.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cell proliferation and migration play an important role in the pathophysiology of several vascular diseases, including atherosclerosis. Prostaglandins that have been implicated in this process are synthesized by two isoforms of cyclooxygenase (COX), with the expression of the regulated COX-2 isoform increased in atherosclerotic plaques. Bradykinin (BK), a vasoactive peptide increased in inflammation, induces the formation of prostaglandins through specific receptor activation. We hypothesized that BK plays an important role in the regulation of COX-2, contributing to the increase in production of prostaglandins in vascular smooth muscle cells. Herein we examined the signaling pathways that participate in the BK regulation of COX-2 protein levels in primary cultured aortic vascular smooth muscle cells. We observed an increase in COX-2 protein levels induced by BK that was maximal at 24 h. This increase was blocked by a B2 kinin receptor antagonist but not a B1 receptor antagonist, suggesting that the B2 receptor is involved in this pathway. In addition, we conclude that the activation of mitogen-activated protein kinases p42/p44, protein kinase C, and nitric oxide synthase is necessary for the increase in COX-2 levels induced by BK because either of the specific inhibitors for these enzymes blocked the effect of BK. Using a similar approach, we further demonstrated that reactive oxygen species and cAMP were not mediators on this pathway. These results suggest that BK activates several intracellular pathways that act in combination to increase COX-2 protein levels. This study suggests a role for BK on the evolution of the atheromatous plaque by virtue of controlling the levels of COX-2.
Collapse
Affiliation(s)
- Jorge A Rodriguez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, PO Box 114D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
42
|
El-Yazbi AF, Cho WJ, Boddy G, Daniel EE. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine. Br J Pharmacol 2005; 145:1017-26. [PMID: 15937515 PMCID: PMC1576236 DOI: 10.1038/sj.bjp.0706289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1(-/-)) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1(-/-) mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1(-/-) mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10(-4) M), but relaxation of Cav1(-/-) animals was affected much less. Also, Cav1(-/-) mice tissues showed reduced relaxation responses to sodium nitroprusside (100 microM) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3': 5'-cyclic monophosphate (100 microM). Apamin (10(-6) M) significantly reduced relaxations to EFS in NANC conditions in Cav1(-/-) mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Woo-Jung Cho
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Edwin E Daniel
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
43
|
Hernández-Deviez DJ, Martin S, Laval SH, Lo HP, Cooper ST, North KN, Bushby K, Parton RG. Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet 2005; 15:129-42. [PMID: 16319126 DOI: 10.1093/hmg/ddi434] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the dysferlin (DYSF) and caveolin-3 (CAV3) genes are associated with muscle disease. Dysferlin is mislocalized, by an unknown mechanism, in muscle from patients with mutations in caveolin-3 (Cav-3). To examine the link between Cav-3 mutations and dysferlin mistargeting, we studied their localization at high resolution in muscle fibers, in a model muscle cell line, and upon heterologous expression of dysferlin in muscle cell lines and in wild-type or caveolin-null fibroblasts. Dysferlin shows only partial overlap with Cav-3 on the surface of isolated muscle fibers but co-localizes with Cav-3 in developing transverse (T)-tubules in muscle cell lines. Heterologously expressed dystrophy-associated mutant Cav3R26Q accumulates in the Golgi complex of muscle cell lines or fibroblasts. Cav3R26Q and other Golgi-associated mutants of both Cav-3 (Cav3P104L) and Cav-1 (Cav1P132L) caused a dramatic redistribution of dysferlin to the Golgi complex. Heterologously expressed epitope-tagged dysferlin associates with the plasma membrane in primary fibroblasts and muscle cells. Transport to the cell surface is impaired in the absence of Cav-1 or Cav-3 showing that caveolins are essential for dysferlin association with the PM. These results suggest a functional role for caveolins in a novel post-Golgi trafficking pathway followed by dysferlin.
Collapse
Affiliation(s)
- Delia J Hernández-Deviez
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis and School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 2005; 146:4690-6. [PMID: 16099860 DOI: 10.1210/en.2005-0505] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In muscle, physiologic hyperinsulinemia, presumably acting on endothelial cells (ECs), dilates arterioles and regulates both total blood flow and capillary recruitment, which in turn influences glucose disposal. In cultured ECs, however, supraphysiological (e.g. >or=10 nM) insulin concentrations are typically used to study insulin receptor (IR) signaling pathways and nitric oxide generation. IGF-I receptors (IGF-IRs) are more abundant than IR in ECs, and they also respond to high concentrations of insulin. To address whether IR mediates responses to physiologic insulin stimuli, we examined the insulin concentration dependence of IR and IGF-IR-mediated insulin signaling in bovine aortic ECs (bAECs). We also assessed whether insulin/IGF-I hybrid receptors were present in bAECs. Insulin, at 100-500 pM, significantly stimulated the phosphorylation of IRbeta, Akt1, endothelial isoform of nitric oxide synthase, and ERK 1/2 but not the IGF-IRbeta subunit. At concentrations 1-5 nm or greater, insulin dose-dependently enhanced the tyrosine phosphorylation of IGF-IRbeta, and this was inhibited by IGF-IR neutralizing antibody. In addition, immunoprecipitation of IRbeta pulled down the IGF-IRbeta, and the IRbeta immunocytochemically colocalized with IGF-IRbeta, suggesting that ECs have insulin/IGF-I hybrid receptors. We conclude that: 1) insulin at physiological concentrations selectively activates IR signaling in bAECs; 2) bAECs express IGF-IR and insulin/IGF-I hybrid receptors in addition to IR; 3) high concentrations of insulin (>or=1-5 nM) activate IGF-IR and hybrid receptors as well as IR; and 4) this crossover activation can confound interpretation of studies of insulin action in ECs when high insulin concentrations are used.
Collapse
Affiliation(s)
- Guolian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, P.O. Box 801410, Charlottesville, Virginia 22908-1410, USA
| | | | | | | | | |
Collapse
|
45
|
Ostrom RS. Caveolins muscle their way into the regulation of cell differentiation, development, and function.Focus on “Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells.”. Am J Physiol Cell Physiol 2005; 288:C507-9. [PMID: 15692149 DOI: 10.1152/ajpcell.00531.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Capozza F, Cohen AW, Cheung MWC, Sotgia F, Schubert W, Battista M, Lee H, Frank PG, Lisanti MP. Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. Am J Physiol Cell Physiol 2005; 288:C677-91. [PMID: 15548572 DOI: 10.1152/ajpcell.00232.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally well accepted that caveolin-3 expression is muscle specific, whereas caveolin-1 and -2 are coexpressed in a variety of cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. Caveolin-1 and -2 are known to form functional hetero-oligomeric complexes in cells where they are coexpressed, whereas caveolin-3 forms homo-oligomeric high molecular mass complexes. Although caveolin-2 might be expected to interact in a similar manner with caveolin-3, most studies indicate that this is not the case. However, this view has recently been challenged as it has been demonstrated that caveolin-2 and -3 are coexpressed in primary cultures of cardiac myocytes, where these two proteins can be coimmunoprecipitated. Thus it remains controversial whether caveolin-2 interacts with caveolin-3. Here, we directly address the issue of caveolin isoform protein-protein interactions by means of three distinct molecular genetic approaches. First, using caveolin-1-deficient mouse embryonic fibroblasts, in which we have stably expressed caveolin-1, -2, or -3, we find that caveolin-1 interacts with caveolin-2 in this setting, whereas caveolin-3 does not, in agreement with most published observations. Next, we used a transfected L6 myoblast cell system expressing all three caveolin proteins. Surprisingly, we found that caveolin-1, -2, and -3 all coimmunoprecipitate in this cell type, suggesting that this interaction is muscle cell specific. Similar results were obtained when the skeletal muscle of caveolin-1 transgenic animals was analyzed for caveolin-1 and caveolin-3 coimmunoprecipitation. Thus we conclude that all three caveolins can interact to form a discrete hetero-oligomeric complex, but that such complex formation is clearly muscle specific.
Collapse
Affiliation(s)
- Franco Capozza
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, and The Albert Einstein Cancer Center, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Glass CA, Pocock TM, Curry FE, Bates DO. Cytosolic Ca2+ concentration and rate of increase of the cytosolic Ca2+ concentration in the regulation of vascular permeability in Rana in vivo. J Physiol 2005; 564:817-27. [PMID: 15718259 PMCID: PMC1464473 DOI: 10.1113/jphysiol.2005.083220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vascular permeability is assumed to be regulated by the cytosolic Ca(2+) concentration ([Ca(2+)](c)) of the endothelial cells. When permeability is increased, however, the maximum [Ca(2+)](c) appears to occur after the maximum permeability increase, suggesting that Ca(2+)-dependent mechanisms other than the absolute Ca(2+) concentration may regulate permeability. Here we investigate whether the rate of increase of the [Ca(2+)](c) (d[Ca(2+)](c)/dt) may more closely approximate the time course of the permeability increase. Hydraulic conductivity (L(p)) and endothelial [Ca(2+)](c) were measured in single perfused frog mesenteric microvessels in vivo. The relationships between the time courses of the increased L(p), [Ca(2+)](c) and d[Ca(2+)](c)/dt were examined. L(p) peaked significantly earlier than [Ca(2+)](c) in all drug treatments examined (Ca(2+) store release, store-mediated Ca(2+) influx, and store-independent Ca(2+) influx). When L(p) was increased in a store-dependent manner the time taken for L(p) to peak (3.6 +/- 0.9 min during store release, 1.2 +/- 0.3 min during store-mediated Ca(2+) influx) was significantly less than the time taken for [Ca(2+)](c) to peak (9.2 +/- 2.8 min during store release, 2.1 +/- 0.7 min during store-mediated influx), but very similar to that for the peak d[Ca(2+)](c)/dt to occur (4.3 +/- 2.0 min during store release, 1.1 +/- 0.5 min during Ca(2+) influx). Additionally, when the increase was independent of intracellular Ca(2+) stores, L(p) (0.38 +/- 0.03 min) and d[Ca(2+)](c)/dt (0.30 +/- 0.1 min) both peaked significantly before the [Ca(2+)](c) (1.05 +/- 0.31 min). These data suggest that the regulation of vascular permeability by endothelial cell Ca(2+) may be regulated by the rate of change of the [Ca(2+)](c) rather than the global [Ca(2+)].
Collapse
Affiliation(s)
- C A Glass
- Microvascular Research Laboratories, Department of Physiology, School of Veterinary Sciences, Southwell Street, University of Bristol, Bristol BS2 8EJ, UK
| | | | | | | |
Collapse
|
48
|
Baum O, Da Silva-Azevedo L, Willerding G, Wöckel A, Planitzer G, Gossrau R, Pries AR, Zakrzewicz A. Endothelial NOS is main mediator for shear stress-dependent angiogenesis in skeletal muscle after prazosin administration. Am J Physiol Heart Circ Physiol 2004; 287:H2300-8. [PMID: 15231496 DOI: 10.1152/ajpheart.00065.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increase of wall shear stress in capillaries by oral administration of the α1-adrenergic receptor antagonist prazosin induces angiogenesis in skeletal muscles. Because endothelial nitric oxide synthase (eNOS) is upregulated in response to elevated wall shear stress, we investigated the relevance of eNOS for prazosin-induced angiogenesis in skeletal muscles. Prazosin and/or the NOS inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) were given to C57BL/6 wild-type mice and eNOS-knockout mice for 14 days. The capillary-to-fiber (C/F) ratio and capillary density (CD; no. of capillaries/mm2) were determined in frozen sections from extensor digitorum longus (EDL) muscles of these mice. Immunoblotting was performed to quantify eNOS expression in endothelial cells isolated from skeletal muscles, whereas VEGF (after precipitation with heparin-agarose) and neuronal NOS (nNOS) concentrations were determined in EDL solubilizates. In EDL muscles of C57BL/6 mice treated for 14 days, the C/F ratio was 28% higher after prazosin administration and 11% higher after prazosin and l-NAME feeding, whereas the CD increased by 21 and 13%, respectively. The C/F ratio was highest after day 4 of prazosin treatment and decreased gradually to almost constant values after day 8. Prazosin administration led to elevation of eNOS expression. VEGF levels were lowest at day 4, whereas nNOS values decreased after day 8. In EDL muscles of eNOS-knockout mice, no significant changes in C/F ratio, CD, or VEGF and nNOS expression were observed in response to prazosin administration. Our data suggest that the presence of eNOS is essential for prazosin-induced angiogenesis in skeletal muscle, albeit other signaling molecules might partially compensate for or contribute to this angiogenic activity. Furthermore, subsequent remodeling of the capillary system accompanied by sequential downregulation of VEGF and nNOS in skeletal muscle fibers characterizes shear stress-dependent angiogenesis.
Collapse
Affiliation(s)
- Oliver Baum
- Department of Anatomy and Physiology, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Königin-Luise-Str. 15, D-14195 Berlin-Dahlem, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 2004; 287:L262-8. [PMID: 15246980 DOI: 10.1152/ajplung.00295.2003] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO), despite an apparently simple diatomic structure, has a wide variety of functions in both physiology and pathology and within every major organ system. It has become an increasingly important scientific challenge to decipher how this wide range of activity is achieved. To this end a number of investigators have begun to explore how NO-mediated posttranslational modifications of proteins may represent mechanisms of cellular signaling. These modifications include: 1). binding to metal centers; 2). nitrosylation of thiol and amine groups; 3). nitration of tyrosine, tryptophan, amine, carboxylic acid, and phenylalanine groups; and 4). oxidation of thiols (both cysteine and methionine residues) and tyrosine. However, two particular modifications have recently received much attention, nitrosylation of thiols to produce S-nitrosothiol and nitration of tyrosine residues to produce nitrotyrosine. It is the purpose of this review to examine the possibility that these modifications may play a role in NO-mediated signaling.
Collapse
Affiliation(s)
- Andrew J Gow
- Children's Hospital of Philadelphia, Abramson Research Center, Rm 416, 34th & Civic Center Blvd., Philadelphia, PA 19104, USA. )
| | | | | | | | | |
Collapse
|
50
|
Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett EJ. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 2004; 53:1418-23. [PMID: 15161743 DOI: 10.2337/diabetes.53.6.1418] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insulin increases glucose disposal into muscle. In addition, in vivo insulin elicits distinct nitric oxide synthase-dependent vascular responses to increase total skeletal muscle blood flow and to recruit muscle capillaries (by relaxing resistance and terminal arterioles, respectively). In the current study, we compared the temporal sequence of vascular and metabolic responses to a 30-min physiological infusion of insulin (3 mU. min(-1). kg(-1), euglycemic clamp) or saline in rat skeletal muscle in vivo. We used contrast-enhanced ultrasound to continuously quantify microvascular volume. Insulin recruited microvasculature within 5-10 min (P < 0.05), and this preceded both activation of insulin-signaling pathways and increases in glucose disposal in muscle, as well as changes in total leg blood flow. Moreover, l-NAME (N(omega)-nitro-l-arginine-methyl ester), a specific inhibitor of nitric oxide synthase, blocked this early microvascular recruitment (P < 0.05) and at least partially inhibited early increases in muscle glucose uptake (P < 0.05). We conclude that insulin rapidly recruits skeletal muscle capillaries in vivo by a nitric oxide-dependent action, and the increase in capillary recruitment may contribute to the subsequent glucose uptake.
Collapse
Affiliation(s)
- Michelle A Vincent
- Department of Internal Medicine, Box 801410, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|