1
|
The endocannabinoid system. Essays Biochem 2021; 64:485-499. [PMID: 32648908 DOI: 10.1042/ebc20190086] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.
Collapse
|
2
|
Bondarenko O, Corzo G, Santana FL, Río‐Portilla F, Darszon A, López‐González I. Nonenzymatically oxidized arachidonic acid regulates T‐type Ca
2+
currents in mouse spermatogenic cells. FEBS Lett 2019; 593:1735-1750. [DOI: 10.1002/1873-3468.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Olga Bondarenko
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Félix L. Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Federico Río‐Portilla
- Departamento de Biomacromoléculas. Instituto de Química Universidad Nacional Autónoma de México México México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Ignacio López‐González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| |
Collapse
|
3
|
Teplov IY, Tuleukhanov ST, Zinchenko VP. Regulation of Action Potential Frequency and Amplitude by T-type Ca2+ Channel During Spontaneous Synchronous Activity of Hippocampal Neurons. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Lacinová Ľ. Regulation of the Ca V3.2 calcium channels in health and disease Regulácia Ca V3.2 vápnikových kanálov v zdraví a chorobe. EUROPEAN PHARMACEUTICAL JOURNAL 2017. [DOI: 10.1515/afpuc-2017-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Family of T-type or low-voltage activated calcium channels consists of three members: CaV3.1, CaV3.2, and CaV3.3. CaV3.2 channel has almost identical biophysical properties as the CaV3.1 channel, but is distinguished by a specific tissue expression profile and a prominent role in several pathologies, including neuropathic pain, epilepsy, and dysregulation of cardiac rhythm. Further, it may be involved in phenotype of autism spectrum disorders, and amyotrophic lateral sclerosis. It represents a promising target for future pharmacotherapies.
Collapse
Affiliation(s)
- Ľ. Lacinová
- Slovenská akadémia vied, Biomedicínske centrum SAV, Bratislava , Slovakia
- Univerzita sv. Cyrila a Metoda v Trnave, Fakulta prírodných vied, Trnava , Slovakia
| |
Collapse
|
5
|
Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol 2017; 8:43. [PMID: 28220076 PMCID: PMC5292575 DOI: 10.3389/fphys.2017.00043] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.
Collapse
Affiliation(s)
- Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| | - Sara I Liin
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
6
|
Chemin J, Cazade M, Lory P. Modulation of T-type calcium channels by bioactive lipids. Pflugers Arch 2014; 466:689-700. [PMID: 24531745 DOI: 10.1007/s00424-014-1467-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/10/2023]
Abstract
T-type calcium channels (T-channels/CaV3) have unique biophysical properties allowing a calcium influx at resting membrane potential of most cells. T-channels are ubiquitously expressed in many tissues and contribute to low-threshold spikes and burst firing in central neurons as well as to pacemaker activities in cardiac cells. They also emerged as potential targets to treat cancer and hypertension. Regulation of these channels appears complex, and several studies have indicated that CaV3.1, CaV3.2, and CaV3.3 currents are directly inhibited by multiple endogenous lipids independently of membrane receptors or intracellular pathways. These bioactive lipids include arachidonic acid and ω3 poly-unsaturated fatty acids; the endocannabinoid anandamide and other N-acylethanolamides; the lipoamino-acids and lipo-neurotransmitters; the P450 epoxygenase metabolite 5,6-epoxyeicosatrienoic acid; as well as similar molecules with 18-22 carbons in the alkyl chain. In this review, we summarize evidence for direct effects of these signaling molecules, the molecular mechanisms underlying the current inhibition, and the involved chemical features. The impact of this modulation in physiology and pathophysiology is discussed with a special emphasis on pain aspects and vasodilation. Overall, these data clearly indicate that T-current inhibition is an important mechanism by which bioactive lipids mediate their physiological functions.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, Universités Montpellier 1 & 2, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France,
| | | | | |
Collapse
|
7
|
Dziegielewska B, Gray LS, Dziegielewski J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch 2014; 466:801-10. [PMID: 24449277 DOI: 10.1007/s00424-014-1444-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 12/18/2022]
Abstract
T-type calcium channels are involved in a multitude of cellular processes, both physiological and pathological, including cancer. T-type channels are also often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation, migration, and survival. Here, we review the recent literature and discuss the controversies, supporting the role of T-type Ca(2+) channels in cancer cells and the proposed use of channels blockers as anticancer agents. A growing number of reports show that pharmacological inhibition or RNAi-mediated downregulation of T-type channels leads to inhibition of cancer cell proliferation and increased cancer cell death. In addition to a single agent activity, experimental results demonstrate that T-type channel blockers enhance the anticancer effects of conventional radio- and chemotherapy. At present, the detailed biological mechanism(s) underlying the anticancer activity of these channel blockers is not fully understood. Recent findings and ideas summarized here identify T-type Ca(2+) channels as a molecular target for anticancer therapy and offer new directions for the design of novel therapeutic strategies employing channels blockers. Physiological relevance: T-type calcium channels are often aberrantly expressed or deregulated in cancer cells, supporting their proliferation, survival, and resistance to treatment; therefore, T-type Ca(2+) channels could be attractive molecular targets for anticancer therapy.
Collapse
Affiliation(s)
- Barbara Dziegielewska
- Department of Radiation Oncology, University of Virginia, PO Box 800383, Charlottesville, VA, 22908, USA
| | | | | |
Collapse
|
8
|
Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium 2014; 55:48-58. [DOI: 10.1016/j.ceca.2013.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/26/2013] [Accepted: 11/27/2013] [Indexed: 11/22/2022]
|
9
|
Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J. 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflugers Arch 2013; 466:1759-68. [DOI: 10.1007/s00424-013-1411-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
|
10
|
Cazade M, Nuss CE, Bidaud I, Renger JJ, Uebele VN, Lory P, Chemin J. Cross-modulation and molecular interaction at the Cav3.3 protein between the endogenous lipids and the T-type calcium channel antagonist TTA-A2. Mol Pharmacol 2013; 85:218-25. [PMID: 24214826 DOI: 10.1124/mol.113.089581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T-type calcium channels (T/Ca(v)3-channels) are implicated in various physiologic and pathophysiologic processes such as epilepsy, sleep disorders, hypertension, and cancer. T-channels are the target of endogenous signaling lipids including the endocannabinoid anandamide, the ω3-fatty acids, and the lipoamino-acids. However, the precise molecular mechanism by which these molecules inhibit T-current is unknown. In this study, we provided a detailed electrophysiologic and pharmacologic analysis indicating that the effects of the major N-acyl derivatives on the Ca(v)3.3 current share many similarities with those of TTA-A2 [(R)-2-(4-cyclopropylphenyl)-N-(1-(5-(2,2,2-trifluoroethoxy)pyridin-2-yl)ethyl)acetamide], a synthetic T-channel inhibitor. Using radioactive binding assays with the TTA-A2 derivative [(3)H]TTA-A1 [(R)-2-(4-(tert-butyl)phenyl)-N-(1-(5-methoxypyridin-2-yl)ethyl)acetamide], we demonstrated that polyunsaturated lipids, which inhibit the Ca(v)3.3 current, as NAGly (N-arachidonoyl glycine), NASer (N-arachidonoyl-l-serine), anandamide, NADA (N-arachidonoyl dopamine), NATau (N-arachidonoyl taurine), and NA-5HT (N-arachidonoyl serotonin), all displaced [(3)H]TTA-A1 binding to membranes prepared from cells expressing Ca(v)3.3, with Ki in a micromolar or submicromolar range. In contrast, lipids with a saturated alkyl chain, as N-arachidoyl glycine and N-arachidoyl ethanolamine, which did not inhibit the Ca(v)3.3 current, had no effect on [(3)H]TTA-A1 binding. Accordingly, bio-active lipids occluded TTA-A2 effect on Ca(v)3.3 current. In addition, TTA-Q4 [(S)-4-(6-chloro-4-cyclopropyl-3-(2,2-difluoroethyl)-2-oxo-1,2,3,4-tetrahydroquinazolin-4-yl)benzonitrile], a positive allosteric modulator of [(3)H]TTA-A1 binding and TTA-A2 functional inhibition, acted in a synergistic manner to increase lipid-induced inhibition of the Ca(v)3.3 current. Overall, our results demonstrate a common molecular mechanism for the synthetic T-channel inhibitors and the endogenous lipids, and indicate that TTA-A2 and TTA-Q4 could be important pharmacologic tools to dissect the involvement of T-current in the physiologic effects of endogenous lipids.
Collapse
Affiliation(s)
- Magali Cazade
- Institut de Génomique Fonctionnelle, Universités Montpellier 1 and 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale U661, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., I.B., P.L., J.C.); and Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania (C.E.N., J.J.R., V.N.U.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Gilmore AJ, Heblinski M, Reynolds A, Kassiou M, Connor M. Inhibition of human recombinant T-type calcium channels by N-arachidonoyl 5-HT. Br J Pharmacol 2013; 167:1076-88. [PMID: 22624680 DOI: 10.1111/j.1476-5381.2012.02047.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND AND PURPOSE N-arachidonoyl 5-HT (NA-5HT) has anti-nociceptive effects reported to be mediated by inhibitory actions at the transient receptor potential vanilloid receptor 1 (TRPV1) and fatty acid amide hydrolase (FAAH). Anandamide and N-arachidonoyl dopamine (NA-DA), endocannabinoids that activate TRPV1 or are metabolized by FAAH, also inhibit T-type calcium channels (I(Ca) ). T-type I(Ca) are expressed by many excitable cells, including neurons involved in pain detection and processing. We sought to determine whether NA-5HT also modulates T-type I(Ca) . EXPERIMENTAL APPROACH Human recombinant T-type I(Ca) (Ca(V) 3 channels) expressed in HEK 293 cells were examined using standard whole-cell voltage-clamp electrophysiology techniques. KEY RESULTS NA-5HT completely inhibited Ca(V) 3 channels with a rank order of potency (pEC(50) ) of Ca(V) 3.1 (7.4) > Ca(V) 3.3 (6.8) ≥ Ca(V) 3.2 (6.6). The effects of NA-5HT were voltage-dependent, and it produced significant hyperpolarizing shifts in Ca(V) 3 steady-state inactivation relationships. NA-5HT selectively affected Ca(V) 3.3 channel kinetics. CONCLUSIONS AND IMPLICATIONS NA-5HT increases the steady-state inactivation of Ca(V) 3 channels, reducing the number of channels available to open during depolarization. These effects occur at NA-5HT concentrations at or below those at which NA-5HT affects TRPV1 receptors and FAAH. NA-5HT is one of the most potent inhibitors of T-type I(Ca) described to date, and it is likely to exert some of its biological effects, including anti-nociception, via inhibition of these channels.
Collapse
Affiliation(s)
- Andrew J Gilmore
- Pain Management Research Institute, Kolling Institute, University of Sydney at Royal North Hospital St Leonards, Australia
| | | | | | | | | |
Collapse
|
12
|
Modulation of low-voltage-activated T-type Ca²⁺ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1550-9. [PMID: 22975282 DOI: 10.1016/j.bbamem.2012.08.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/16/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
13
|
|
14
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
15
|
Ferreira JCB, Mochly-Rosen D, Boutjdir M. Regulation of cardiac excitability by protein kinase C isozymes. Front Biosci (Schol Ed) 2012. [PMID: 22202075 DOI: 10.2741/283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac excitability and electrical activity are determined by the sum of individual ion channels, gap junctions and exchanger activities. Electrophysiological remodeling during heart disease involves changes in membrane properties of cardiomyocytes and is related to higher prevalence of arrhythmia-associated morbidity and mortality. Pharmacological and genetic manipulation of cardiac cells as well as animal models of cardiovascular diseases are used to identity changes in electrophysiological properties and the molecular mechanisms associated with the disease. Protein kinase C (PKC) and several other kinases play a pivotal role in cardiac electrophysiological remodeling. Therefore, identifying specific therapies that regulate these kinases is the main focus of current research. PKC, a family of serine/threonine kinases, has been implicated as potential signaling nodes associated with biochemical and biophysical stress in cardiovascular diseases. In this review, we describe the role of PKC isozymes that are involved in cardiac excitability and discuss both genetic and pharmacological tools that were used, their attributes and limitations. Selective and effective pharmacological interventions to normalize cardiac electrical activities and correct cardiac arrhythmias will be of great clinical benefit.
Collapse
|
16
|
Todorovic SM, Jevtovic-Todorovic V. T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 2011; 163:484-95. [PMID: 21306582 DOI: 10.1111/j.1476-5381.2011.01256.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is well recognized that voltage-gated calcium (Ca(2+)) channels modulate the function of peripheral and central pain pathways by influencing fast synaptic transmission and neuronal excitability. In the past, attention focused on the modulation of different subtypes of high-voltage-activated-type Ca(2+) channels; more recently, the function of low-voltage-activated or transient (T)-type Ca(2+) channels (T-channels) in nociception has been well documented. Currently, available pain therapies remain insufficient for certain forms of pain associated with chronic disorders (e.g. neuropathic pain) and often have serious side effects. Hence, the identification of selective and potent inhibitors and modulators of neuronal T-channels may help greatly in the development of safer, more effective pain therapies. Here, we summarize the available information implicating peripheral and central T-channels in nociception. We also discuss possible future developments aimed at selective modulation of function of these channels, which are highly expressed in nociceptors.
Collapse
Affiliation(s)
- Slobodan M Todorovic
- Department of Anesthesiology and Neuroscience, University of Virginia School of Medicine, Charlottesville, 22908-0710, USA.
| | | |
Collapse
|
17
|
Roberts-Crowley ML, Rittenhouse AR. Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVbeta subunits. ACTA ACUST UNITED AC 2010; 133:387-403. [PMID: 19332620 PMCID: PMC2699108 DOI: 10.1085/jgp.200810047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.
Collapse
Affiliation(s)
- Mandy L Roberts-Crowley
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
18
|
Heneghan JF, Mitra-Ganguli T, Stanish LF, Liu L, Zhao R, Rittenhouse AR. The Ca2+ channel beta subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current. ACTA ACUST UNITED AC 2010; 134:369-84. [PMID: 19858357 PMCID: PMC2768801 DOI: 10.1085/jgp.200910203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In superior cervical ganglion (SCG) neurons, stimulation of M1 receptors (M1Rs) produces a distinct pattern of modulation of N-type calcium (N-) channel activity, enhancing currents elicited with negative test potentials and inhibiting currents elicited with positive test potentials. Exogenously applied arachidonic acid (AA) reproduces this profile of modulation, suggesting AA functions as a downstream messenger of M1Rs. In addition, techniques that diminish AA's concentration during M1R stimulation minimize N-current modulation. However, other studies suggest depletion of phosphatidylinositol-4,5-bisphosphate during M1R stimulation suffices to elicit modulation. In this study, we used an expression system to examine the physiological mechanisms regulating modulation. We found the β subunit (CaVβ) acts as a molecular switch regulating whether modulation results in enhancement or inhibition. In human embryonic kidney 293 cells, stimulation of M1Rs or neurokinin-1 receptors (NK-1Rs) inhibited activity of N channels formed by CaV2.2 and coexpressed with CaVβ1b, CaVβ3, or CaVβ4 but enhanced activity of N channels containing CaVβ2a. Exogenously applied AA produced the same pattern of modulation. Coexpression of CaVβ2a, CaVβ3, and CaVβ4 recapitulated the modulatory response previously seen in SCG neurons, implying heterogeneous association of CaVβ with CaV2.2. Further experiments with mutated, chimeric CaVβ subunits and free palmitic acid revealed that palmitoylation of CaVβ2a is essential for loss of inhibition. The data presented here fit a model in which CaVβ2a blocks inhibition, thus unmasking enhancement. Our discovery that the presence or absence of palmitoylated CaVβ2a toggles M1R- or NK-1R–mediated modulation of N current between enhancement and inhibition identifies a novel role for palmitoylation. Moreover, these findings predict that at synapses, modulation of N-channel activity by M1Rs or NK-1Rs will fluctuate between enhancement and inhibition based on the presence of palmitoylated CaVβ2a.
Collapse
Affiliation(s)
- John F Heneghan
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zheng M, Wang Y, Kang L, Shimaoka T, Marni F, Ono K. Intracellular Ca(2+)- and PKC-dependent upregulation of T-type Ca(2+) channels in LPC-stimulated cardiomyocytes. J Mol Cell Cardiol 2009; 48:131-9. [PMID: 19744490 DOI: 10.1016/j.yjmcc.2009.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 08/11/2009] [Accepted: 08/29/2009] [Indexed: 11/15/2022]
Abstract
Lysophosphatidylcholine (LPC) accumulation in intracellular and/or interstitial space in cardiomyocytes may underlie as a mechanism for tachycardia and various arrhythmias during cardiac ischemia, which is usually accompanied by elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). The present study was therefore designed to investigate possible mechanisms responsible for [Ca(2+)](i) elevation by LPC focusing on T-type Ca(2+) channel current (I(Ca.T)). LPC as well as phorbol 12-myristate 13-acetate (PMA) significantly accelerated the beating rates of neonatal rat cardiomyocytes. Augmentation of I(Ca.T) by LPC was dependent on the intracellular Ca(2+) concentration: an increase of I(Ca.T) was significantly larger in high [Ca(2+)](i) condition (pCa=7) than those in low [Ca(2+)](i) condition (pCa=11). In heterologous expression system by use of human cardiac Ca(V)3.1 and Ca(V)3.2 channels expressed in HEK293 cells, LPC augmented Ca(V)3.2 channel current (I(Cav3.2)) in a concentration-dependent manner but not Ca(V)3.1 channel current (I(Cav3.1)). Augmentation of I(Cav3.2) by LPC was highly [Ca(2+)](i) dependent: I(Cav3.2) was unchanged when pCa was 11 but was markedly increased when [Ca(2+)](i) was higher than 10(-10) M (pCa<or=10) by LPC application (10-50 microM). A specific inhibitor of protein kinase Calpha (Ro-32-0432) attenuated the increase of I(Cav3.2) by LPC. LPC stimulates I(Ca.T) in a [Ca(2+)](i)-dependent manner via PKCalpha activation, which may play a role in triggering arrhythmias in pathophysiological conditions of the heart.
Collapse
Affiliation(s)
- Mingqi Zheng
- Heart Center, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
20
|
Roberts-Crowley ML, Mitra-Ganguli T, Liu L, Rittenhouse AR. Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 2009; 45:589-601. [PMID: 19419761 PMCID: PMC2964877 DOI: 10.1016/j.ceca.2009.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/23/2022]
Abstract
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca(2+) channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in Ca(V)2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP(2)), a palmitoylated accessory subunit (beta(2a)) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M(1) muscarinic receptors may stimulate multiple lipases to break down the PIP(2) associated with VGCCs and leave PIP(2)'s freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.
Collapse
Affiliation(s)
- Mandy L. Roberts-Crowley
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Tora Mitra-Ganguli
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Liwang Liu
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Ann R. Rittenhouse
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| |
Collapse
|
21
|
Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 2009; 29:1615-25. [PMID: 19211869 DOI: 10.1523/jneurosci.2081-08.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Absence seizures are a leading form of childhood epilepsy. Human and mouse P/Q-type calcium channel gene mutations initiate a complex absence epilepsy and ataxia phenotype, and in mice, secondarily elevate neuronal low-voltage-activated T-type calcium currents. These currents influence thalamocortical network activity and contribute to the generation of cortical spike-wave discharges (SWDs) associated with absence seizures. To address whether enhanced thalamocortical T-type currents suffice to induce an epileptic phenotype, two BAC transgenic mouse lines overexpressing the Cacna1g gene for alpha1G T-type calcium channels were generated with low and high transgene copy numbers that exhibit elevated alpha1G expression and showed increased functional T-type currents measured in thalamic neurons. Both lines exhibit frequent bilateral cortical SWDs associated with behavioral arrest but lack other overt neurological abnormalities. These models provide the first evidence that primary elevation of brain T-type currents are causally related to pure absence epilepsy, and selectively identify Cacna1g, one of the three T-type calcium channel genes, as a key component of a genetically complex epileptogenic pathway.
Collapse
|
22
|
Rimoli MG, Russo E, Cataldi M, Citraro R, Ambrosino P, Melisi D, Curcio A, De Lucia S, Patrignani P, De Sarro G, Abignente E. T-type channel blocking properties and antiabsence activity of two imidazo[1,2-b]pyridazine derivatives structurally related to indomethacin. Neuropharmacology 2009; 56:637-46. [DOI: 10.1016/j.neuropharm.2008.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/24/2008] [Accepted: 11/20/2008] [Indexed: 12/21/2022]
|
23
|
Ross HR, Gilmore AJ, Connor M. Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine. Br J Pharmacol 2009; 156:740-50. [PMID: 19226289 DOI: 10.1111/j.1476-5381.2008.00072.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE N-arachidonoyl dopamine (NADA) has complex effects on nociception mediated via cannabinoid CB(1) receptors and the transient receptor potential vanilloid receptor 1 (TRPV1). Anandamide, the prototypic CB(1)/TRPV1 agonist, also inhibits T-type voltage-gated calcium channel currents (I(Ca)). These channels are expressed by many excitable cells, including neurons involved in pain detection and processing. We sought to determine whether NADA and the prototypic arachidonoyl amino acid, N-arachidonoyl glycine (NAGly) modulate T-type I(Ca) EXPERIMENTAL APPROACH Human recombinant T-type I(Ca) (Ca(V)3 channels) expressed in HEK 293 cells and native mouse T-type I(Ca) were examined using standard whole-cell voltage clamp electrophysiology techniques. KEY RESULTS N-arachidonoyl dopamine completely inhibited Ca(V)3 channels with a rank order of potency (pEC(50)) of Ca(V)3.3 (6.45) > or = Ca(V)3.1 (6.29) > Ca(V)3.2 (5.95). NAGly (10 micromol.L(-1)) inhibited Ca(V)3 I(Ca) by approximately 50% or less. The effects of NADA and NAGly were voltage- but not use-dependent, and both compounds produced significant hyperpolarizing shifts in Ca(V)3 channel steady-state inactivation relationships. By contrast with anandamide, NADA and NAGly had modest effects on Ca(V)3 channel kinetics. Both NAGly and NADA inhibited native T-type I(Ca) in mouse sensory neurons. CONCLUSIONS AND IMPLICATIONS N-arachidonoyl dopamine and NAGly increase the steady-state inactivation of Ca(V)3 channels, reducing the number of channels available to open during depolarization. These effects occur at NADA concentrations at or below to those affecting CB(1) and TRPV1 receptors. Together with anandamide, the arachidonoyl neurotransmitter amides, NADA and NAGly, represent a new family of endogenous T-type I(Ca) modulators.
Collapse
Affiliation(s)
- Hamish R Ross
- Pain Management Research Institute, Kolling Institute, University of Sydney at Royal North Hospital, St Leonards, NSW, Australia, and
| | | | | |
Collapse
|
24
|
Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys 2008; 52:59-84. [PMID: 18830821 DOI: 10.1007/s12013-008-9027-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2008] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.
Collapse
|
25
|
Sun H, Varela D, Chartier D, Ruben PC, Nattel S, Zamponi GW, Leblanc N. Differential interactions of Na+ channel toxins with T-type Ca2+ channels. ACTA ACUST UNITED AC 2008; 132:101-13. [PMID: 18591418 PMCID: PMC2442173 DOI: 10.1085/jgp.200709883] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two types of voltage-dependent Ca2+ channels have been identified in heart: high (ICaL) and low (ICaT) voltage-activated Ca2+ channels. In guinea pig ventricular myocytes, low voltage–activated inward current consists of ICaT and a tetrodotoxin (TTX)-sensitive ICa component (ICa(TTX)). In this study, we reexamined the nature of low-threshold ICa in dog atrium, as well as whether it is affected by Na+ channel toxins. Ca2+ currents were recorded using the whole-cell patch clamp technique. In the absence of external Na+, a transient inward current activated near −50 mV, peaked at −30 mV, and reversed around +40 mV (HP = −90 mV). It was unaffected by 30 μM TTX or micromolar concentrations of external Na+, but was inhibited by 50 μM Ni2+ (by ∼90%) or 5 μM mibefradil (by ∼50%), consistent with the reported properties of ICaT. Addition of 30 μM TTX in the presence of Ni2+ increased the current approximately fourfold (41% of control), and shifted the dose–response curve of Ni2+ block to the right (IC50 from 7.6 to 30 μM). Saxitoxin (STX) at 1 μM abolished the current left in 50 μM Ni2+. In the absence of Ni2+, STX potently blocked ICaT (EC50 = 185 nM) and modestly reduced ICaL (EC50 = 1.6 μM). While TTX produced no direct effect on ICaT elicited by expression of hCaV3.1 and hCaV3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni2+ (IC50 increased to 550 μM Ni2+ for CaV3.1 and 15 μM Ni2+ for CaV3.2); in contrast, 30 μM TTX directly inhibited hCaV3.3-induced ICaT and the addition of 750 μM Ni2+ to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni2+ alone. 1 μM STX directly inhibited CaV3.1-, CaV3.2-, and CaV3.3-mediated ICaT but did not enhance the ability of Ni2+ to block these currents. These findings provide important new implications for our understanding of structure–function relationships of ICaT in heart, and further extend the hypothesis of a parallel evolution of Na+ and Ca2+ channels from an ancestor with common structural motifs.
Collapse
Affiliation(s)
- Hui Sun
- Excigen, Inc., Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
27
|
Liu SJ. Inhibition of L-type Ca2+channel current and negative inotropy induced by arachidonic acid in adult rat ventricular myocytes. Am J Physiol Cell Physiol 2007; 293:C1594-604. [PMID: 17804608 DOI: 10.1152/ajpcell.00284.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown an increase in arachidonic acid (AA) release in response to proinflammatory cytokines in adult rat ventricular myocytes (ARVM). AA is known to alter channel activities; however, its effects on cardiac L-type Ca2+channel current ( ICa,L) and excitation-contraction coupling remain unclear. The present study examined effects of AA on ICa,L, using the whole cell patch-clamp technique, and on cell shortening (CS) and the Ca2+transient of ARVM. ICa,Lwas monitored in myocytes held at −70 mV and internally equilibrated and externally perfused with Na+- and K+-free solutions. Exposure to AA caused a voltage-dependent block of ICa,Lconcentration dependently (IC508.5 μM). The AA-induced inhibition of ICa,Lis consistent with its hyperpolarizing shift in the voltage-dependent properties and reduction in maximum slope conductance. In the presence of AA, BSA completely blocked the AA-induced suppression of ICa,Land CS. Intracellular load with AA had no effect on the current density but caused a small depolarizing shift in the ICa,Lactivation curve, suggesting a site-specific action of AA. Moreover, intracellular AA had no effect on the extracellular AA-induced decrease in ICa,L. Pretreatment with indomethacin, an inhibitor of cyclooxygenase, or addition of nordihydroguaiaretic acid, an inhibitor of lipoxygenase, had no effect on AA-induced changes in ICa,L. Furthermore, AA suppressed CS and Ca2+transients of intact ARVM with no significant effect on SR function and myofilament Ca2+sensitivity. Therefore, these results suggest that AA inhibits contractile function of ARVM, primarily due to its direct inhibition of ICa,Lat an extracellular site.
Collapse
Affiliation(s)
- Shi J Liu
- Dept. of Pharmaceutical Sciences and Dept. of Pharmacology & Toxicology, Univ. of Arkansas for Medical Sciences, 4301 West Markham St. MS 522-3, Little Rock, AR 72205, USA.
| |
Collapse
|
28
|
Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH. Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. J Physiol 2006; 577:513-23. [PMID: 17008378 PMCID: PMC1890444 DOI: 10.1113/jphysiol.2006.117440] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/25/2006] [Indexed: 11/08/2022] Open
Abstract
T-type Ca2+ channels play essential roles in numerous cellular processes. Recently, we reported that phorbol-12-myristate-13-acetate (PMA) potently enhanced the current amplitude of Cav3.2 T-type channels reconstituted in Xenopus oocytes. Here, we have compared PMA modulation of the activities of Cav3.1, Cav3.2 and Cav3.3 channels, and have investigated the underlying mechanism. PMA augmented the current amplitudes of the three T-type channel isoforms, but the fold stimulations and time courses differed. The augmentation effects were not mimicked by 4alpha-PMA, an inactive stereoisomer of PMA, but were abolished by preincubation with protein kinase C (PKC) inhibitors, indicating that PMA augmented T-type channel currents via activation of oocyte PKC. The stimulation effect on Cav3.1 channel activity by PKC was mimicked by endothelin when endothelin receptor type A was coexpressed with Cav3.1 in the Xenopus oocyte system. Pharmacological studies combined with fluorescence imaging revealed that the surface density of Cav3.1 T-type channels was not significantly changed by activation of PKC. The PKC effect on Cav3.1 was localized to the cytoplasmic II-III loop using chimeric channels with individual cytoplasmic loops of Cav3.1 replaced by those of Cav2.1.
Collapse
Affiliation(s)
- Jin-Yong Park
- Department of Life Science, Sogang University, Shinsu-dong, Seoul 121-742, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu L, Zhao R, Bai Y, Stanish LF, Evans JE, Sanderson MJ, Bonventre JV, Rittenhouse AR. M1 muscarinic receptors inhibit L-type Ca2+ current and M-current by divergent signal transduction cascades. J Neurosci 2006; 26:11588-98. [PMID: 17093080 PMCID: PMC6674797 DOI: 10.1523/jneurosci.2102-06.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ion channels reside in a sea of phospholipids. During normal fluctuations in membrane potential and periods of modulation, lipids that directly associate with channel proteins influence gating by incompletely understood mechanisms. In one model, M(1)-muscarinic receptors (M(1)Rs) may inhibit both Ca(2+) (L- and N-) and K(+) (M-) currents by losing a putative interaction between channels and phosphatidylinositol-4,5-bisphosphate (PIP(2)). However, we found previously that M(1)R inhibition of N-current in superior cervical ganglion (SCG) neurons requires loss of PIP(2) and generation of a free fatty acid, probably arachidonic acid (AA) by phospholipase A(2) (PLA(2)). It is not known whether PLA(2) activity and AA also participate in L- and M-current modulation in SCG neurons. To test whether PLA(2) plays a similar role in M(1)R inhibition of L- and M-currents, we used several experimental approaches and found unanticipated divergent signaling. First, blocking resynthesis of PIP(2) minimized M-current recovery from inhibition, whereas L-current recovered normally. Second, L-current inhibition required group IVa PLA(2) [cytoplasmic PLA(2) (cPLA(2))], whereas M-current did not. Western blot and imaging studies confirmed acute activation of cPLA(2) by muscarinic stimulation. Third, in type IIa PLA(2) [secreted (sPLA(2))](-/-)/cPLA(2)(-/-) double-knock-out SCG neurons, muscarinic inhibition of L-current decreased. In contrast, M-current inhibition remained unaffected but recovery was impaired. Our results indicate that L-current is inhibited by a pathway previously shown to control M-current over-recovery after washout of muscarinic agonist. Our findings support a model of M(1)R-meditated channel modulation that broadens rather than restricts the roles of phospholipids and fatty acids in regulating ion channel activity.
Collapse
Affiliation(s)
- Liwang Liu
- Program in Neuroscience and
- Departments of Physiology and
| | | | - Yan Bai
- Departments of Physiology and
| | | | - James E. Evans
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | | | - Joseph V. Bonventre
- Harvard Institute of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | |
Collapse
|
30
|
Fisyunov A, Tsintsadze V, Min R, Burnashev N, Lozovaya N. Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons. J Neurophysiol 2006; 96:1267-77. [PMID: 16738209 DOI: 10.1152/jn.01227.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endocannabinoids released by postsynaptic cells inhibit neurotransmitter release in many central synapses by activating presynaptic cannabinoid CB1 receptors. In particular, in the cerebellum, endocannabinoids inhibit synaptic transmission at granule cell to Purkinje cell synapses by modulating presynaptic calcium influx via N-, P/Q-, and R-type calcium channels. Using whole cell patch-clamp techniques, we show that in addition to this presynaptic action, both synthetic and endogenous cannabinoids inhibit P-type calcium currents in isolated rat Purkinje neurons independent of CB1 receptor activation. The IC50 for the anandamide (AEA)-induced inhibition of P-current peak amplitude was 1.04 +/- 0.04 microM. In addition, we demonstrate that all the tested cannabinoids in a physiologically relevant range of concentrations strongly accelerate inactivation of P currents. The effects of AEA cannot be attributed to the metabolism of AEA because a nonhydrolyzing analogue of AEA, methanandamide inhibited P-type currents with a similar efficacy. All effects of cannabinoids on P-type Ca2+ currents were insensitive to antagonists of CB1 cannabinoid or vanilloid TRPV1 receptors. In cerebellar slices, WIN 55,212-2 significantly affected spontaneous firing of Purkinje neurons in the presence of CB1 receptor antagonist, in a manner similar to that of a specific P-type channel antagonist, indicating a possible functional implication of the direct effects of cannabinoids on P current. Taken together these findings demonstrate a functionally important direct action of cannabinoids on P-type calcium currents.
Collapse
Affiliation(s)
- Alexander Fisyunov
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | | | | | | | | |
Collapse
|
31
|
Crump SM, Correll RN, Schroder EA, Lester WC, Finlin BS, Andres DA, Satin J. L-type calcium channel alpha-subunit and protein kinase inhibitors modulate Rem-mediated regulation of current. Am J Physiol Heart Circ Physiol 2006; 291:H1959-71. [PMID: 16648185 DOI: 10.1152/ajpheart.00956.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subunit (Ca(V)1.2) to Ca(V)beta2-Rem inhibition of Ca channel current. Specifically, we addressed whether protein kinase A (PKA) modulation of the Ca channel modifies Ca(V)beta2-Rem inhibition of Ca channel current. We first tested the effect of Rem on Ca(V)1.2 in human embryonic kidney 293 (HEK-293) cells using the whole cell patch-clamp configuration. Rem coexpression with Ca(V)1.2 reduces Ba current expression under basal conditions, and Ca(V)beta2a coexpression enhances Rem block of Ca(V)1.2 current. Surprisingly, PKA inhibition by 133 nM H-89 or 50 microM Rp-cAMP-S partially relieved the Rem-mediated inhibition of current activity both with and without Ca(V)beta2a. To test whether the H-89 action was a consequence of the phosphorylation status of Ca(V)1.2, we examined Rem regulation of the PKA-insensitive Ca(V)1.2 serine 1928 (S1928) to alanine mutation (Ca(V)1.2-S1928A). Ca(V)1.2-S1928A current was not inhibited by Rem and when coexpression with Ca(V)beta2a was not completely blocked by Rem coexpression, suggesting that the phosphorylation of S1928 contributes to Rem-mediated Ca channel modulation. As a model for native Ca channel complexes, we tested the ability of Rem overexpression in HIT-T15 cells and embryonic ventricular myocytes to interfere with native current. We find that native current is also sensitive to Rem block and that H-89 pretreatment relieves the ability of Rem to regulate Ca current. We conclude that Rem is capable of regulating L-type current, that release of Rem block is modulated by cellular kinase pathways, and that the Ca(V)1.2 COOH terminus contributes to Rem-dependent channel inhibition.
Collapse
Affiliation(s)
- Shawn M Crump
- Dept. of Physiology, MS-508, Univ. of Kentucky College of Medicine, 800 Rose St. Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Zheng M, Uchino T, Kaku T, Kang L, Wang Y, Takebayashi S, Ono K. Lysophosphatidylcholine augments Ca(v)3.2 but not Ca(v)3.1 T-type Ca(2+) channel current expressed in HEK-293 cells. Pharmacology 2006; 76:192-200. [PMID: 16543777 DOI: 10.1159/000092041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/19/2006] [Indexed: 11/19/2022]
Abstract
Lysophosphatidylcholine (LPC) has been shown to induce electrophysiological disturbances to arrhythmogenesis. However, the effects of LPC on the low-voltage-activated T-type Ca(2+) channels in the heart are not understood yet. We found that LPC increases the T-type Ca(2+) channel current (I(Ca.T)) in neonatal rat cardiomyocytes. To further investigate the underlying modulatory mechanism of LPC on T-type Ca(2+) channels, we utilized HEK-293 cells stably expressing alpha1G and alpha1H subunits (HEK-293/alpha1G and HEK-293/alpha1H), by use of patch-clamp techniques. A low concentration of LPC (10 micromol/l) significantly increased Ca(v)3.2 I(Ca.T) (alpha1H) that were similar to those observed in neonatal rat cardiomyocytes. Activation and steady-state inactivation curves were shifted in the hyperpolarized direction by 5.1 +/- 0.2 and 4.6 +/- 0.4 mV, respectively, by application of 10 micromol/l LPC. The pretreatment of cells with a protein kinase C inhibitor (chelerythrine) attenuated the effects of LPC on I(Ca.T) (alpha1H). However, the application of LPC failed to modify Ca(v)3.1 (alpha1G) I(Ca.T) at concentrations of 10-50 micromol/l. In conclusion, these data demonstrate that extracellularly applied LPC augments Ca(v)3.2 I(Ca.T) (alpha1H) but not Ca(v)3.1 I(Ca.T) (alpha1G) in a heterologous expression system, possibly by modulating protein kinase C signaling.
Collapse
Affiliation(s)
- Mingqi Zheng
- Department of Cardiovascular Science, Oita University, Oita, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Vitko I, Chen Y, Arias JM, Shen Y, Wu XR, Perez-Reyes E. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 2005; 25:4844-55. [PMID: 15888660 PMCID: PMC6724770 DOI: 10.1523/jneurosci.0847-05.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/06/2005] [Accepted: 04/10/2005] [Indexed: 11/21/2022] Open
Abstract
Sequencing of the T-type Ca2+ channel gene CACNA1H revealed 12 nonsynonymous single nucleotide polymorphisms (SNPs) that were found only in childhood absence epilepsy (CAE) patients. One SNP, G773D, was found in two patients. The present study reports the finding of a third patient with this SNP, as well as analysis of their parents. Because of the role of T-channels in determining the intrinsic firing patterns of neurons involved in absence seizures, it was suggested that these SNPs might alter channel function. The goal of the present study was to test this hypothesis by introducing these polymorphisms into a human Ca(v)3.2a cDNA and then study alterations in channel behavior using whole-cell patch-clamp recording. Eleven SNPs altered some aspect of channel gating. Computer simulations predict that seven of the SNPs would increase firing of neurons, with three of them inducing oscillations at similar frequencies, as observed during absence seizures. Three SNPs were predicted to decrease firing. Some CAE-specific SNPs (e.g., G773D) coexist with SNPs also found in controls (R788C); therefore, the effect of these polymorphisms were studied. The R788C SNP altered activity in a manner that would also lead to enhanced burst firing of neurons. The G773D-R788C combination displayed different behavior than either single SNP. Therefore, common polymorphisms can alter the effect of CAE-specific SNPs, highlighting the importance of sequence background. These results suggest that CACNA1H is a susceptibility gene that contributes to the development of polygenic disorders characterized by thalamocortical dysrhythmia, such as CAE.
Collapse
Affiliation(s)
- Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
34
|
Leresche N, Hering J, Lambert RC. Paradoxical potentiation of neuronal T-type Ca2+ current by ATP at resting membrane potential. J Neurosci 2004; 24:5592-602. [PMID: 15201332 PMCID: PMC6729316 DOI: 10.1523/jneurosci.1038-04.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the marked influence on neuronal physiology of the low-voltage activated T-type Ca(2+) currents, little is known about the intracellular pathways and neurotransmitters involved in their regulations. Here, we report that in thalamocortical neurons a phosphorylation mechanism induces an increase both in the current amplitude (1.5 +/- 0.27-fold in the ventrobasal nucleus) and its inactivation kinetics. Dialysis of the neuron with an ATP-free solution suppresses the T-current potentiation, whereas it becomes irreversible in the presence of ATPgammaS. Phosphorylation occurs when the channels are inactivated and is slowly removed when they recover from inactivation and remain in closed states (time constants of the induction and removal of the potentiation: 579 +/- 143 msec and 4.9 +/- 1.1 sec, respectively, at 25 degrees C). The resulting apparent voltage sensitivity of this regulation follows the voltage dependence of the current steady-state inactivation. Thus, the current is paradoxically inhibited when the preceding hyperpolarization is lengthened, and maximal currents are generated after transient hyperpolarizations with a duration (0.7-1.5 sec) that is defined by the balance between the kinetics of the dephosphorylation and deinactivation. In addition, the phosphorylation will facilitate the generation of T current at resting membrane potential. This potentiation, which is specific to sensory thalamocortical neurons, would markedly influence the electroresponsiveness of these neurons and represent the first evidence of a regulation of native Cav3.1 channels.
Collapse
Affiliation(s)
- Nathalie Leresche
- Neurobiologie des Processus Adaptatifs, Unité Mixte de Recherche (UMR) 7102 Centre National de la Recherche Scientifique, Université Paris 6, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
35
|
Ye D, Zhou W, Lee HC. Activation of rat mesenteric arterial KATP channels by 11,12-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 2004; 288:H358-64. [PMID: 15331373 DOI: 10.1152/ajpheart.00423.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs), the cytochrome P-450 epoxygenase metabolites of arachidonic acid, are candidates of endothelium-derived hyperpolarizing factors. We have previously reported that EETs are potent activators of cardiac ATP-sensitive K(+) (K(ATP)) channels, but their effects on the vascular K(ATP) channels are unknown. With the use of whole cell patch-clamp techniques with 0.1 mM ATP in the pipette and holding at -60 mV, freshly isolated smooth muscle cells from rat mesenteric arteries had small glibenclamide-sensitive currents at baseline (13.1 +/- 3.9 pA, n = 5) that showed a 7.2-fold activation by 10 microM pinacidil (94.1 +/- 21.9 pA, n = 7, P < 0.05). 11,12-EET dose dependently activated the K(ATP) current with an apparent EC(50) of 87 nM. Activation of the K(ATP) channels by 500 nM 11,12-EET was inhibited by inclusion of the PKA inhibitor peptide (5 microM) but not by the inclusion of the PKC inhibitor peptide (100 microM) in the pipette solution. These results were corroborated by vasoreactivity studies. 11,12-EET produced dose-dependent vasorelaxation in isolated small mesenteric arteries, and this effect was reduced by 50% with glibenclamide (1 microM) preincubation. The 11,12-EET effects on vasorelaxation were also significantly attenuated by preincubation with cell-permeant PKA inhibitor myristoylated PKI(14-22), and, in the presence of PKA inhibitor, glibenclamide had no additional effects. These results suggest that 11,12-EET is a potent activator of the vascular K(ATP) channels, and its effects are dependent on PKA activities.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Adenosine Triphosphate/physiology
- Animals
- Cyclic AMP-Dependent Protein Kinases/physiology
- In Vitro Techniques
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Rats
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Dan Ye
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
36
|
Talavera K, Staes M, Janssens A, Droogmans G, Nilius B. Mechanism of arachidonic acid modulation of the T-type Ca2+ channel alpha1G. ACTA ACUST UNITED AC 2004; 124:225-38. [PMID: 15314070 PMCID: PMC2233885 DOI: 10.1085/jgp.200409050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arachidonic acid (AA) modulates T-type Ca(2+) channels and is therefore a potential regulator of diverse cell functions, including neuronal and cardiac excitability. The underlying mechanism of modulation is unknown. Here we analyze the effects of AA on the T-type Ca(2+) channel alpha(1G) heterologously expressed in HEK-293 cells. AA inhibited alpha(1G) currents within a few minutes, regardless of preceding exposure to inhibitors of AA metabolism (ETYA and 17-ODYA). Current inhibition was also observed in cell-free inside-out patches, indicating a membrane-delimited interaction of AA with the channel. AA action was consistent with a decrease of the open probability without changes in the size of unitary currents. AA shifted the inactivation curve to more negative potentials, increased the speed of macroscopic inactivation, and decreased the extent of recovery from inactivation at -80 mV but not at -110 mV. AA induced a slight increase of activation near the threshold and did not significantly change the deactivation kinetics or the rectification pattern. We observed a tonic current inhibition, regardless of whether the channels were held in resting or inactivated states during AA perfusion, suggesting a state-independent interaction with the channel. Model simulations indicate that AA inhibits T-type currents by switching the channels into a nonavailable conformation and by affecting transitions between inactivated states, which results in the negative shift of the inactivation curve. Slow-inactivating alpha(1G) mutants showed an increased affinity for AA with respect to the wild type, indicating that the structural determinants of fast inactivation are involved in the AA-channel interaction.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratorium voor Fysiologie, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Zhang Y, Vilaythong AP, Yoshor D, Noebels JL. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma. J Neurosci 2004; 24:5239-48. [PMID: 15175394 PMCID: PMC6729193 DOI: 10.1523/jneurosci.0992-04.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recessive mutations in genes encoding voltage-gated Ca2+ channel subunits alter high-voltage-activated (HVA) calcium currents, impair neurotransmitter release, and stimulate thalamic low-voltage-activated (LVA) currents that contribute to a cortical spike-wave epilepsy phenotype in mice. We now report thalamic LVA current elevations in a non-Ca2+ channel mutant. EEG analysis of Coloboma (Cm/+), an autosomal dominant mutant mouse lacking one copy of the gene for a synaptosomal-associated protein (SNAP25) that interacts with HVA channels, reveals abnormal spike-wave discharges (SWDs) in the behaving animal. We compared the biophysical properties of both LVA and HVA currents in Cm/+ and wild-type thalamic neurons and observed a 54% increase in peak current density of LVA currents evoked at -50 mV from -110 mV in Cm/+ before the developmental onset of seizures relative to control. The midpoint voltage for steady-state inactivation of LVA currents in Cm/+ was shifted in a depolarized direction by 8 mV before epilepsy onset, and the mean time constant for decay of LVA Ca2+ currents at -50 mV was also prolonged. No significant differences were found in recovery from inactivation of LVA currents or in HVA current densities and kinetics. Our data demonstrate that a non-Ca2+ channel subunit gene mutation leads to potentiated thalamic LVA currents that precede the appearance of SWDs and that altered somatodendritic HVA currents are not required for abnormal thalamocortical oscillations. We suggest that presynaptic release defects shared by these mutants lead to postsynaptic LVA excitability increases in thalamic pacemaker neurons that favor rebound bursting and absence epilepsy.
Collapse
Affiliation(s)
- Yi Zhang
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Zhang YM, Shang L, Hartzell C, Narlow M, Cribbs L, Dudley SC. Characterization and regulation of T-type Ca2+ channels in embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2003; 285:H2770-9. [PMID: 12919937 DOI: 10.1152/ajpheart.01114.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T-type Ca2+ channels may play a role in cardiac development. We studied the developmental regulation of the T-type currents (ICa,T) in cardiomyocytes (CMs) derived from mouse embryonic stem cells (ESCs). ICa,T was studied in isolated CMs by whole cell patch clamp. Subsequently, CMs were identified by the myosin light chain 2v-driven green fluorescent protein expression, and laser capture microdissection was used to isolate total RNA from groups of cells at various developmental time points. ICa,T showed characteristics of Cav3.1, such as resistance to Ni2+ block, and a transient increase during development, correlating with measures of spontaneous electrical activity. Real-time RT-PCR showed that Cav3.1 mRNA abundance correlated (r2 = 0.81) with ICa,T. The mRNA copy number was low at 7+4 days (2 copies/cell), increased significantly by 7+10 days (27/cell; P < 0.01), peaked at 7+16 days (174/cell), and declined significantly at 7+27 days (25/cell). These data suggest that ICa,T is developmentally regulated at the level of mRNA abundance and that this regulation parallels measures of pacemaker activity, suggesting that ICa,T might play a role in the spontaneous contractions during CM development.
Collapse
Affiliation(s)
- Ying Ming Zhang
- Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | | | | | | | | |
Collapse
|
39
|
Finlin BS, Crump SM, Satin J, Andres DA. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc Natl Acad Sci U S A 2003; 100:14469-74. [PMID: 14623965 PMCID: PMC283615 DOI: 10.1073/pnas.2437756100] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca2+ channel beta-subunits (CaV beta) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca2+ channel subunits CaV1.2, CaV beta 2a, and Rem or Rad, but CaV1.2 and CaV beta 2a transfected cells elicit Ca2+ channel currents in the absence of these small G proteins. Importantly, CaV3 (T type) Ca2+ channels, which do not require accessory subunits for ionic current expression, are not inhibited by expression of Rem. Rem is expressed in primary skeletal myoblasts and, when overexpressed in C2C12 myoblasts, wild-type Rem inhibits L type Ca2+ channel activity. Deletion analysis demonstrates a critical role for the Rem C terminus in both regulation of functional Ca2+ channel expression and beta-subunit association. These results suggest that all members of the RGK GTPase family, via direct interaction with auxiliary beta-subunits, serve as regulators of L type Ca2+ channel activity. Thus, the RGK GTPase family may provide a mechanism for achieving cross talk between Ras-related GTPases and electrical signaling pathways.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
40
|
Abstract
T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias. In addition to a pacemaker role, Ca2+ entry via T-type channels can directly regulate intracellular Ca2+ concentrations, which is an important second messenger for a variety of cellular processes. Molecular cloning revealed the existence of three T-type channel genes. The deduced amino acid sequence shows a similar four-repeat structure to that found in high-voltage-activated (HVA) Ca2+ channels, and Na+ channels, indicating that they are evolutionarily related. Hence, the alpha1-subunits of T-type channels are now designated Cav3. Although mRNAs for all three Cav3 subtypes are expressed in brain, they vary in terms of their peripheral expression, with Cav3.2 showing the widest expression. The electrophysiological activities of recombinant Cav3 channels are very similar to native T-type currents and can be differentiated from HVA channels by their activation at lower voltages, faster inactivation, slower deactivation, and smaller conductance of Ba2+. The Cav3 subtypes can be differentiated by their kinetics and sensitivity to block by Ni2+. The goal of this review is to provide a comprehensive description of T-type currents, their distribution, regulation, pharmacology, and cloning.
Collapse
Affiliation(s)
- Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
41
|
Hanck DA, Martin RL, Tytgat J, Ulens C. Newly Cloned Threshold Channels. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 2002. [PMID: 12151514 DOI: 10.1523/jneurosci.22-15-06362.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca2+ currents, especially those activated at low voltages (LVA), influence burst generation in thalamocortical circuitry and enhance the abnormal rhythmicity associated with absence epilepsy. Mutations in several genes for high-voltage-activated (HVA) Ca2+ channel subunits are linked to spike-wave seizure phenotypes in mice; however, none of these mutations are predicted to increase intrinsic membrane excitability or directly enhance LVA currents. We examined biophysical properties of both LVA and HVA Ca2+ currents in thalamic cells of tottering (tg; Cav2.1/alpha1A subunit), lethargic (lh; beta4 subunit), and stargazer (stg; gamma2 subunit) brain slices. We observed 46, 51, and 45% increases in peak current densities of LVA Ca2+ currents evoked at -50 mV from -110 mV in tg, lh, and stg mice, respectively, compared with wild type. The half-maximal voltages for steady-state inactivation of LVA currents were shifted in a depolarized direction by 7.5-13.5 mV in all three mutants, although no alterations in the time-constant for recovery from inactivation of LVA currents were found. HVA peak current densities in tg and stg were increased by 22 and 45%, respectively, and a 5 mV depolarizing shift of the activation curve was observed in lh. Despite elevated LVA amplitudes, no alterations in mRNA expression of the genes mediating T-type subunits, Cav3.1/alpha1G, Cav3.2/alpha1H, or Cav3.3/alpha1I, were detected in the three mutants. Our data demonstrate that mutation of Cav2.1 or regulatory subunit genes increases intrinsic membrane excitability in thalamic neurons by potentiating LVA Ca2+ currents. These alterations increase the probability for abnormal thalamocortical synchronization and absence epilepsy in tg, lh, and stg mice.
Collapse
|
43
|
Abstract
Cytochrome P450s metabolize arachidonic acid to hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. These eicosanoids are formed in a tissue and cell-specific manner and have numerous biological functions. Of major interest are the opposing actions of hydroxyeicosatetraenoic and epoxyeicosatrienoic acids within the vasculature. Regio- and stereoisomeric epoxyeicosatrienoic acids have potent vasodilatory properties while 20-hydroxyeicosatetraenoic acid is a potent vasoconstrictor. Both effects are mediated through actions on large-conductance Ca2+-activated K+ channels. Cytochrome P450-derived eicosanoids are also important in the regulation of ion transport, and have recently been shown to influence a number of fundamental biological processes including cellular proliferation, apoptosis, inflammation, and hemostasis. The formation of these functionally relevant eicosanoids is tightly controlled by the expression and activity of the cytochrome P450 epoxygenases and hydroxylases. In addition, soluble epoxide hydrolase catalyzes the hydrolysis of epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids, and the activity of this enzyme is a critical determinant of tissue epoxyeicosatrienoic and dihydroxyeicosatrienoic acid levels. The intracellular balance between epoxyeicosatrienoic, dihydroxyeicosatrienoic and hydroxyeicosatetraenoic acids influences the biological response to these eicosanoids and alterations in their levels have recently been associated with certain pathological conditions. The involvement of the cytochrome P450-derived eicosanoids in a wide array of biological functions and the observation that levels are altered in pathological conditions suggest that the enzymes involved in the formation and degradation of these fatty acids may be novel therapeutic targets.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, USA
| | | |
Collapse
|
44
|
Burgess DE, Crawford O, Delisle BP, Satin J. Mechanism of inactivation gating of human T-type (low-voltage activated) calcium channels. Biophys J 2002; 82:1894-906. [PMID: 11916848 PMCID: PMC1301986 DOI: 10.1016/s0006-3495(02)75539-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recovery from inactivation of T-type Ca channels is slow and saturates at moderate hyperpolarizing voltage steps compared with Na channels. To explore this unique kinetic pattern we measured gating and ionic currents in two closely related isoforms of T-type Ca channels. Gating current recovers from inactivation much faster than ionic current, and recovery from inactivation is much more voltage dependent for gating current than for ionic current. There is a lag in the onset of gating current recovery at -80 mV, but no lag is discernible at -120 mV. The delay in recovery from inactivation of ionic current is much more evident at all voltages. The time constant for the decay of off gating current is very similar to the time constant of deactivation of open channels (ionic tail current), and both are strongly voltage dependent over a wide voltage range. Apparently, the development of inactivation has little influence on the initial deactivation step. These results suggest that movement of gating charge occurs for inactivated states very quickly. In contrast, the transitions from inactivated to available states are orders of magnitude slower, not voltage dependent, and are rate limiting for ionic recovery. These findings support a deactivation-first path for T-type Ca channel recovery from inactivation. We have integrated these concepts into an eight-state kinetic model, which can account for the major characteristics of T-type Ca channel inactivation.
Collapse
Affiliation(s)
- Don E Burgess
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
45
|
Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 2001; 20:7033-40. [PMID: 11742980 PMCID: PMC125779 DOI: 10.1093/emboj/20.24.7033] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-voltage-activated or T-type Ca(2+) channels (T-channels) are widely expressed, especially in the central nervous system where they contribute to pacemaker activities and are involved in the pathogenesis of epilepsy. Proper elucidation of their cellular functions has been hampered by the lack of selective pharmacology as well as the absence of generic endogenous regulations. We report here that both cloned (alpha(1G), alpha(1H) and alpha(1I) subunits) and native T-channels are blocked by the endogenous cannabinoid, anandamide. Anandamide, known to exert its physiological effects through cannabinoid receptors, inhibits T-currents independently from the activation of CB1/CB2 receptors, G-proteins, phospholipases and protein kinase pathways. Anandamide appears to be the first endogenous ligand acting directly on T-channels at submicromolar concentrations. Block of anandamide membrane transport by AM404 prevents T-current inhibition, suggesting that anandamide acts intracellularly. Anandamide preferentially binds and stabilizes T-channels in the inactivated state and is responsible for a significant decrease of T-currents associated with neuronal firing activities. Our data demonstrate that anandamide inhibition of T-channels can regulate neuronal excitability and account for CB receptor-independent effects of this signaling molecule.
Collapse
Affiliation(s)
| | | | - Edward Perez-Reyes
- IGH-CNRS UPR, 1142–141 rue de la Cardonille, F-34396 Montpellier cedex 05, France and
Department of Pharmacology, University of Virgina, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA Corresponding author e-mail:
| | | | - Philippe Lory
- IGH-CNRS UPR, 1142–141 rue de la Cardonille, F-34396 Montpellier cedex 05, France and
Department of Pharmacology, University of Virgina, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA Corresponding author e-mail:
| |
Collapse
|
46
|
Gomora JC, Daud AN, Weiergräber M, Perez-Reyes E. Block of Cloned Human T-Type Calcium Channels by Succinimide Antiepileptic Drugs. Mol Pharmacol 2001. [DOI: 10.1124/mol.60.5.1121] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Liu L, Barrett CF, Rittenhouse AR. Arachidonic acid both inhibits and enhances whole cell calcium currents in rat sympathetic neurons. Am J Physiol Cell Physiol 2001; 280:C1293-305. [PMID: 11287343 DOI: 10.1152/ajpcell.2001.280.5.c1293] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that arachidonic acid (AA) inhibits L- and N-type Ca(2+) currents at positive test potentials in the presence of the dihydropyridine L-type Ca(2+) channel agonist (+)-202-791 in dissociated neonatal rat superior cervical ganglion neurons [Liu L and Rittenhouse AR. J Physiol (Lond) 525: 291-404, 2000]. In this first of two companion papers, we characterized the mechanism of inhibition by AA at the whole cell level. In the presence of either omega-conotoxin GVIA or nimodipine, AA decreased current amplitude, confirming that L- and N-type currents, respectively, were inhibited. AA-induced inhibition was concentration dependent and reversible with an albumin-containing wash solution, but appears independent of AA metabolism and G protein activity. In characterizing inhibition, an AA-induced enhancement of current amplitude was revealed that occurred primarily at negative test potentials. Cell dialysis with albumin minimized inhibition but had little effect on enhancement, suggesting that AA has distinct sites of action. We examined AA's actions on current kinetics and found that AA increased holding potential-dependent inactivation. AA also enhanced the rate of N-type current activation. These findings indicate that AA causes multiple changes in sympathetic Ca(2+) currents.
Collapse
Affiliation(s)
- L Liu
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
48
|
Cribbs LL, Martin BL, Schroder EA, Keller BB, Delisle BP, Satin J. Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res 2001; 88:403-7. [PMID: 11230107 DOI: 10.1161/01.res.88.4.403] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During cardiac development, there is a reciprocal relationship between cardiac morphogenesis and force production (contractility). In the early embryonic myocardium, the sarcoplasmic reticulum is poorly developed, and plasma membrane calcium (Ca(2+)) channels are critical for maintaining both contractility and excitability. In the present study, we identified the Ca(V)3.1d mRNA expressed in embryonic day 14 (E14) mouse heart. Ca(V)3.1d is a splice variant of the alpha1G, T-type Ca(2+) channel. Immunohistochemical localization showed expression of alpha1G Ca(2+) channels in E14 myocardium, and staining of isolated ventricular myocytes revealed membrane localization of the alpha1G channels. Dihydropyridine-resistant inward Ba(2+) or Ca(2+) currents were present in all fetal ventricular myocytes tested. Regardless of charge carrier, inward current inactivated with sustained depolarization and mirrored steady-state inactivation voltage dependence of the alpha1G channel expressed in human embryonic kidney-293 cells. Ni(2+) blockade discriminates among T-type Ca(2+) channel isoforms and is a relatively selective blocker of T-type channels over other cardiac plasma membrane Ca(2+) handling proteins. We demonstrate that 100 micromol/L Ni(2+) partially blocked alpha1G currents under physiological external Ca(2+). We conclude that alpha1G T-type Ca(2+) channels are functional in midgestational fetal myocardium.
Collapse
Affiliation(s)
- L L Cribbs
- Cardiovascular Institute, Loyola University Medical Center, Maywood, Ill, USA
| | | | | | | | | | | |
Collapse
|