1
|
Yang X, Zhao C, Mahdy SA, Xu P, Yu M, Wu J, Wang L, Jacob TJ, Zhu L, Peng S, Deng Z, Chen L, Wang L. A chloride channel in rat pancreatic acinar AR42J cells is sensitive to extracellular acidification and dependent on ROS. Biochem Biophys Res Commun 2020; 526:592-598. [PMID: 32247607 DOI: 10.1016/j.bbrc.2020.03.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Extracellular acidification, playing a promoting role in the process of acute pancreatitis, has been reported to activate Cl- channels in several types of cells. However, whether extracellular acidification aggravates acute pancreatitis via activating Cl- channels remains unclear. Here, we investigated the effects of extracellular acidification on Cl- channels in rat pancreatic acinar AR42J cells using whole-cell patch-clamp recordings. We found that extracellular acidification induced a moderately outward-rectified Cl- current, with a selectivity sequence of I- > Br- ≥ Cl- > gluconate-, while intracellular acidification failed to induce the currents. The acid-sensitive currents were inhibited by Cl- channel blockers, 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate and 5-Nitro-2-(3-phenylpropylamino) benzoic acid. After ClC-3 was silenced by ClC-3 shRNA, the acid-sensitive Cl- currents were attenuated significantly, indicating that ClC-3 plays a vital role in the induction of acid-sensitive Cl- currents. Extracellular acid elevated the intracellular level of reactive oxygen species (ROS) significantly, prior to inducing Cl- currents. When ROS production was scavenged, the acid-sensitive Cl- currents were abolished. Whereas, the level of acid-induced ROS was unaffected with silence of ClC-3. Our findings above demonstrate that extracellular acidification induces a Cl- current in pancreatic acinar cells via promoting ROS generation, implying an underlying mechanism that extracellular acidification might aggravate acute pancreatitis through Cl- channels.
Collapse
Affiliation(s)
- Xiaoya Yang
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China; Department of Pathophysiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chan Zhao
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Sana'a A Mahdy
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Peisheng Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Meisheng Yu
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, 510600, China
| | - Liang Wang
- Division of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tim J Jacob
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shuang Peng
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, 518000, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Cooperative electrogenic proton transport pathways in the plasma membrane of the proton-secreting osteoclast. Pflugers Arch 2018; 470:851-866. [PMID: 29550927 DOI: 10.1007/s00424-018-2137-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
A proton is a ubiquitous signaling ion. Many transmembrane H+ transport pathways either maintain pH homeostasis or generate acidic compartments. The osteoclast is a bone-resorbing cell, which degrades bone tissues by secreting protons and lysosomal enzymes into the resorption pit. The plasma membrane facing bone tissue (ruffled border), generated partly by fusion of lysosomes, may mimic H+ flux mechanisms regulating acidic vesicles. We identified three electrogenic H+-fluxes in osteoclast plasma membranes-a vacuolar H+-ATPase (V-ATPase), a voltage-gated proton channel (Hv channel) and an acid-inducible H+-leak-whose electrophysiological profiles and regulation mechanisms differed. V-ATPase and Hv channel, both may have intracellular reservoirs, but the recruitment/internalization is regulated independently. V-ATPase mediates active H+ efflux, acidifying the resorption pit, while acid-inducible H+ leak, activated at an extracellular pH < 5.5, diminishes pit acidification, possibly to protect bone from excess degradation. The two-way H+ flux mechanisms in opposite directions may have advantages in fine regulation of pit pH. Hv channel mediates passive H+ efflux. Although its working ranges are limited, the amount of H+ extrusion is 100 times larger than those of the V-ATPase and may support reactive oxygen species production during osteoclastogenesis. Extracellular Ca2+, H+ and inorganic phosphate, which accumulate in the resorption pit, will either stimulate or inhibit these H+ fluxes. Skeletal integration is disrupted by too much or too less of bone resorption. Diversities in plasma membrane H+ flux pathways, which may co-operate or compete, are essential to adjust osteoclast functions in variable conditions.
Collapse
|
3
|
Hulikova A, Swietach P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. FASEB J 2014; 28:2762-74. [PMID: 24652949 DOI: 10.1096/fj.13-241752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The degree to which cell membranes are barriers to CO2 transport remains controversial. Proteins, such as aquaporins and Rh complex, have been proposed to facilitate CO2 transport, implying that the nonchannel component of membranes must have greatly reduced CO2 permeability. To determine whether membrane CO2 permeation is rate limiting for gas transport, the spread of CO2 across multicellular tissue growths (spheroids) was measured using intracellular pH as a spatial readout. Colorectal HCT116 cells have basal water and NH3 permeability, indicating the functional absence of aquaporins and gas channels. However, CO2 diffusivity in HCT116 spheroids was only 24 ± 4% lower than in pure water, which can be accounted for fully by volume exclusion due to proteins. Diffusivity was unaffected by blockers of aquaporins and Rh complex (Hg(2+), p-chloromercuribenzoic acid, and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) but decreased under hypertonic conditions (by addition of 300 mOsm mannitol), which increases intracellular protein crowding. Similar CO2 diffusivity was measured in spheroids of T47D breast cells (basal water permeability) and NHDF-Ad fibroblasts (aquaporin-facilitated water permeability). In contrast, diffusivity of NH3, a smaller but less lipophilic gas, was considerably slower than in pure water, as expected from rate-limiting membrane permeation. In conclusion, membranes, even in the functional absence of proposed gas channels, do not restrict CO2 venting from tissue growths.-Hulikova, A., Swietach, P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Yang J, Zhao JX, Wang Y, Chen G, Cheng WN, Luo X, Pei XT, Zhao L, Su Q, Zhou H. Effects of sodium pyruvate on ameliorating metabolic acidosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:48-55. [PMID: 24697727 DOI: 10.3109/21691401.2014.901335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To examine the effects of sodium pyruvate (SP) on metabolic acidosis. METHODS For the in vivo experiments, we evaluated effects of SP on an ammonium chloride (NH4Cl)-induced hyperchloremic acidosis rat model. SP was infused at overall doses of 2, 4, and 6 mmol·kg(- 1) for the SP1, SP2, and SP3 groups, respectively. Treatment with sodium bicarbonate (SB) was used as a positive control (2 mmol·kg(- 1)), and treatment with normal saline (NS) was used as a volume control (2 mL·kg(- 1)). Blood was sampled from the ophthalmic venous plexus for pH, blood gases, electrolytes, glucose, creatinine (Cr), and urea analysis after injection. For the in vitro experiment, propionate was applied to induce intracellular acidosis in human endothelial cells. Intracellular pH (pHi) was fluorimetrically measured after the addition of SP. RESULTS In the in vivo study, the pH of SP1 group showed no significant difference compared with that of the NS group. The SP2 and SP3 groups had a higher pH than the NS group (P < 0.01). The SP3 group had a higher pH than the SB group (P < 0.05) and SP1 group (P < 0.05). Moreover, SP treatment ameliorated the abnormality of calcium and decreased the blood potassium levels. The SP3 group had higher glucose levels than SP1 group (P < 0.05). No significant differences were observed between all the groups in the plasma Cr and urea levels. In the in vitro study, the pHi increased immediately after the addition of SP. CONCLUSION The data suggest that intravascular treatment with SP represents a novel therapeutic strategy to ameliorate metabolic acidosis.
Collapse
Affiliation(s)
- Jing Yang
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Jing-Xiang Zhao
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Ying Wang
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Gan Chen
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Wei-Na Cheng
- b Department of Biological Engineering , College of Environment and Chemical Engineering, Yanshan University , Qinhuangdao , P. R. China
| | - Xin Luo
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Xue-Tao Pei
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Lian Zhao
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Qin Su
- c The First Affiliated Hospital of General Hospital of PLA , Beijing , P. R. China
| | - Hong Zhou
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| |
Collapse
|
5
|
Swietach P, Leem CH, Spitzer KW, Vaughan-Jones RD. Pumping Ca2+ up H+ gradients: a Ca2(+)-H+ exchanger without a membrane. J Physiol 2014; 592:3179-88. [PMID: 24514908 DOI: 10.1113/jphysiol.2013.265959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular processes are exquisitely sensitive to H+ and Ca2+ ions because of powerful ionic interactions with proteins. By regulating the spatial and temporal distribution of intracellular [Ca2+] and [H+], cells such as cardiac myocytes can exercise control over their biological function. A well-established paradigm in cellular physiology is that ion concentrations are regulated by specialized, membrane-embedded transporter proteins. Many of these couple the movement of two or more ionic species per transport cycle, thereby linking ion concentrations among neighbouring compartments. Here, we compare and contrast canonical membrane transport with a novel type of Ca(2+)-H+ coupling within cytoplasm, which produces uphill Ca2+ transport energized by spatial H+ ion gradients, and can result in the cytoplasmic compartmentalization of Ca2+ without requiring a partitioning membrane. The mechanism, demonstrated in mammalian myocytes, relies on diffusible cytoplasmic buffers, such as carnosine, homocarnosine and ATP, to which Ca2+ and H+ ions bind in an apparently competitive manner. These buffer molecules can actively recruit Ca2+ to acidic microdomains, in exchange for the movement of H+ ions. The resulting Ca2+ microdomains thus have the potential to regulate function locally. Spatial cytoplasmic Ca(2+)-H+ exchange (cCHX) acts like a 'pump' without a membrane and may be operational in many cell types.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - Chae-Hun Leem
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, USA
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, UK
| |
Collapse
|
6
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
7
|
Zeng WZ, Xu TL. Proton production, regulation and pathophysiological roles in the mammalian brain. Neurosci Bull 2012; 28:1-13. [PMID: 22233885 DOI: 10.1007/s12264-012-1068-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The recent demonstration of proton signaling in C. elegans muscle contraction suggests a novel mechanism for proton-based intercellular communication and has stimulated enthusiasm for exploring proton signaling in higher organisms. Emerging evidence indicates that protons are produced and regulated in localized space and time. Furthermore, identification of proton regulators and sensors in the brain leads to the speculation that proton production and regulation may be of major importance for both physiological and pathological functions ranging from nociception to learning and memory. Extracellular protons may play a role in signal transmission by not only acting on adjacent cells but also affecting the cell from which they were released. In this review, we summarize the upstream and downstream pathways of proton production and regulation in the mammalian brain, with special emphasis on the proton extruders and sensors that are critical in the homeostatic regulation of pH, and discuss their potential roles in proton signaling under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Wei-Zheng Zeng
- Neuroscience Division, Department of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
8
|
Johnson DE, Casey JR. Cytosolic H+ microdomain developed around AE1 during AE1-mediated Cl-/HCO3- exchange. J Physiol 2011; 589:1551-69. [PMID: 21300752 DOI: 10.1113/jphysiol.2010.201483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Microdomains, regions of discontinuous cytosolic solute concentration enhanced by rapid solute transport and slow diffusion rates, have many cellular roles. pH-regulatory membrane transporters, like the Cl−/HCO3− exchanger AE1, could develop H+ microdomains since AE1 has a rapid transport rate and cytosolic H+ diffusion is slow. We examined whether the pH environment surrounding AE1 differs from other cellular locations. As AE1 drives Cl−/HCO3− exchange, differences in pH, near and remote from AE1, were monitored by confocal microscopy using two pH-sensitive fluorescent proteins: deGFP4 (GFP) and mNectarine (mNect). Plasma membrane (PM) pH (defined as ∼1 μm region around the cell periphery) was monitored by GFP fused to AE1 (GFP.AE1), and mNect fused to an inactive mutant of the Na+-coupled nucleoside co-transporter, hCNT3 (mNect.hCNT3). GFP.AE1 to mNect.hCNT3 distance was varied by co-expression of different amounts of the two proteins in HEK293 cells. As the GFP.AE1–mNect.hCNT3 distance increased, mNect.hCNT3 detected the Cl−/HCO3− exchange-associated cytosolic pH change with a time delay and reduced rate of pH change compared to GFP.AE1. We found that a H+ microdomain 0.3 μm in diameter forms around GFP.AE1 during physiological HCO3− transport. Carbonic anhydrase isoform II inhibition prevented H+ microdomain formation. We also measured the rate of H+ movement from PM GFP.AE1 to endoplasmic reticulum (ER), using mNect fused to the cytosolic face of ER-resident calnexin (CNX.mNect). The rate of H+ diffusion through cytosol was 60-fold faster than along the cytosolic surface of the plasma membrane. The pH environment surrounding pH regulatory transport proteins may differ as a result of H+ microdomain formation, which will affect nearby pH-sensitive processes.
Collapse
Affiliation(s)
- Danielle E Johnson
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
9
|
Yamada A, Katanosaka Y, Mohri S, Naruse K. A rapid microfluidic switching system for analysis at the single cellular level. IEEE Trans Nanobioscience 2010; 8:306-11. [PMID: 20142146 DOI: 10.1109/tnb.2009.2035253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analysis of cellular responses to chemicals at high spatiotemporal resolution is required for precise understanding of intracellular signal transduction. Here, we demonstrated a novel method for applying different solutions to a part of or all of a cell at high spatiotemporal resolution. We fabricated a microfluidic device using polydimethylsiloxane, and the sharp interface between the two solution streams flowing in the channel was used for the application of different solutions. We constructed a computer-controlled system to control the interface movement precisely, rapidly, and reproducibly during positioning, and spatial and temporal resolutions attained were 1.6 mum and 189 ms, respectively. We then applied the present system to the analysis of intracellular responses to chemicals. We were able to measure [Ca (2+)] (i) increases within 500 ms, when one laminar stream covered a part of the cell. This method can be used as a generic platform to investigate responses against drugs at the single cell level.
Collapse
Affiliation(s)
- Akira Yamada
- Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | | | | | | |
Collapse
|
10
|
Vaughan-Jones RD, Spitzer KW, Swietach P. Intracellular pH regulation in heart. J Mol Cell Cardiol 2008; 46:318-31. [PMID: 19041875 DOI: 10.1016/j.yjmcc.2008.10.024] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/11/2008] [Indexed: 12/14/2022]
Abstract
Intracellular pH (pHi) is an important modulator of cardiac excitation and contraction, and a potent trigger of electrical arrhythmia. This review outlines the intracellular and membrane mechanisms that control pHi in the cardiac myocyte. We consider the kinetic regulation of sarcolemmal H+, OH- and HCO3- transporters by pH, and by receptor-coupled intracellular signalling systems. We also consider how activity of these pHi effector proteins is coordinated spatially in the myocardium by intracellular mobile buffer shuttles, gap junctional channels and carbonic anhydrase enzymes. Finally, we review the impact of pHi regulatory proteins on intracellular Ca2+ signalling, and their participation in clinical disorders such as myocardial ischaemia, maladaptive hypertrophy and heart failure. Such multiple effects emphasise the fundamental role that pHi regulation plays in the heart.
Collapse
Affiliation(s)
- Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, Parks Road, OX1 3PT, UK.
| | | | | |
Collapse
|
11
|
Abstract
The sarcoplasmic reticulum (SR) in ventricular myocytes contains releasable Ca(2+) for activating cellular contraction. Recent measurements of intra-SR (luminal) Ca(2+) suggest a high diffusive Ca(2+)-mobility constant (D(CaSR)). This could help spatially to unify SR Ca(2+)-content ([Ca(2+)](SRT)) and standardize Ca(2+)-release throughout the cell. But measurements of localized depletions of luminal Ca(2+) (Ca(2+)-blinks), associated with local Ca(2+)-release (Ca(2+)-sparks), suggest D(CaSR) may actually be low. Here we describe a novel method for measuring D(CaSR). Using a cytoplasmic Ca(2+)-fluorophore, we estimate regional [Ca(2+)](SRT) from localized, caffeine-induced SR Ca(2+)-release. Caffeine microperfusion of one end of a guinea pig or rat myocyte diffusively empties the whole SR at a rate indicating D(CaSR) is 8-9 microm(2)/s, up to tenfold lower than previous estimates. Ignoring background SR Ca(2+)-leakage in our measurement protocol produces an artifactually high D(CaSR) (>40 microm(2)/s), which may also explain the previous high values. Diffusion-reaction modeling suggests that a low D(CaSR) would be sufficient to support local SR Ca(2+)-signaling within sarcomeres during excitation-contraction coupling. Low D(CaSR) also implies that [Ca(2+)](SRT) may readily become spatially nonuniform, particularly under pathological conditions of spatially nonuniform Ca(2+)-release. Local control of luminal Ca(2+), imposed by low D(CaSR), may complement the well-established local control of SR Ca(2+)-release by Ca(2+)-channel/ryanodine receptor couplons.
Collapse
|
12
|
Ninio DM, Saint DA. The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:401-16. [PMID: 18367236 DOI: 10.1016/j.pbiomolbio.2008.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incidence of atrial fibrillation correlates with increasing atrial size. The electrical consequences of atrial stretch contribute to both the initiation and maintenance of atrial fibrillation. It is suggested that altered calcium handling and stretch-activated channel activity could explain the experimental findings of stretch-induced depolarisation, shortened refractoriness, slowed conduction and increased heterogeneity of refractoriness and conduction. Stretch-activated channel blocking agents protect against these pro-arrhythmic effects. Gadolinium, GsMTx-4 toxin and streptomycin prevent the stretch-related vulnerability to atrial fibrillation without altering the drop in refractory period associated with stretch. Changes the activity of two-pore K+ channels, which are sensitive to stretch and pH but not gadolinium, could underlie the drop in refractoriness. Intracellular acidosis induced with propionate amplified the change in refractoriness with stretch in the isolated rabbit heart model in keeping with the clinical observation of increased propensity to atrial fibrillation with acidosis. We propose that activation of non-specific cation stretch-activated channels provides the triggers for acute atrial fibrillation with high atrial pressure while activation of atrial two-pore K+ channels shortens atrial refractory period and increases heterogeneity of refractoriness, providing the substrate for atrial fibrillation to be sustained. Stretch-activated channel blockade represents an exciting target for future antiarrhythmic drugs.
Collapse
Affiliation(s)
- Daniel M Ninio
- Discipline of Physiology, School of Molecular & Biomedical Science, University of Adelaide, SA 5005, Australia
| | | |
Collapse
|
13
|
Swietach P, Spitzer KW, Vaughan-Jones RD. pH-Dependence of extrinsic and intrinsic H(+)-ion mobility in the rat ventricular myocyte, investigated using flash photolysis of a caged-H(+) compound. Biophys J 2006; 92:641-53. [PMID: 17056723 PMCID: PMC1751406 DOI: 10.1529/biophysj.106.096560] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Passive H(+)-ion mobility within eukaryotic cells is low, due to H(+)-ion binding to cytoplasmic buffers. A localized intracellular acidosis can therefore persist for seconds or even minutes. Because H(+)-ions modulate so many biological processes, spatial intracellular pH (pH(i))-regulation becomes important for coordinating cellular activity. We have investigated spatial pH(i)-regulation in single and paired ventricular myocytes from rat heart by inducing a localized intracellular acid-load, while confocally imaging pH(i) using the pH-fluorophore, carboxy-SNARF-1. We present a novel method for localizing the acid-load. This involves the intracellular photolytic uncaging of H(+)-ions from a membrane-permeant acid-donor, 2-nitrobenzaldehyde. The subsequent spatial pH(i)-changes are consistent with intracellular H(+)-mobility and cell-to-cell H(+)-permeability constants measured using more conventional acid-loading techniques. We use the method to investigate the effect of reducing pH(i) on intrinsic (non-CO(2)/HCO(3)(-) buffer-dependent) and extrinsic (CO(2)/HCO(3)(-) buffer-dependent) components of H(i)(+)-mobility. We find that although both components mediate spatial regulation of pH within the cell, their ability to do so declines sharply at low pH(i). Thus acidosis severely slows intracellular H(+)-ion movement. This can result in spatial pH(i) nonuniformity, particularly during the stimulation of sarcolemmal Na(+)-H(+) exchange. Intracellular acidosis thus presents a window of vulnerability in the spatial coordination of cellular function.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | | | | |
Collapse
|
14
|
Seguchi H, Ritter M, Shizukuishi M, Ishida H, Chokoh G, Nakazawa H, Spitzer KW, Barry WH. Propagation of Ca2+ release in cardiac myocytes: role of mitochondria. Cell Calcium 2005; 38:1-9. [PMID: 15993240 DOI: 10.1016/j.ceca.2005.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 03/04/2005] [Accepted: 03/10/2005] [Indexed: 11/25/2022]
Abstract
Factors contributing to "local control" of Ca2+ release in cardiac myocytes are incompletely understood. We induced local release of Ca2+ by regional exposure of mouse atrial and ventricular myocytes to 10mM caffeine for 500 ms using a rapid solution switcher. Propagation of Ca2+ release was imaged by means of a Nipkow confocal microscope, and fluo-3. Under physiologic conditions, a local release of Ca2+ propagated in atrial myocytes, not in ventricular myocytes. Inhibition of SR Ca2+ uptake (500 nM thapsigargin), and of Ca2+ extrusion via Na/Ca exchange (5mM Ni2+), did not result in propagation in ventricular myocytes. The density of mitochondria was greater in ventricular than in atrial myocytes, although the abundance of ryanodine receptors and myofilaments was similar. Partial inhibition of Ca2+ uptake via the mitochondrial Ca2+ uniporter (5 microM Ru360) caused an increase in the [Ca2+]i transient in paced ventricular myocytes, and consistently resulted in propagation of Ca2+ release. This effect of Ru360 did not appear to be due to altered SR Ca2+ content. These data indicate that Ca2+ uptake via the mitochondrial uniporter occurs on a beat-to-beat basis, and may contribute to local control of Ca2+ release. Propagation of Ca2+ release in atrial myocytes may result in part from the relatively low density of mitochondria present.
Collapse
Affiliation(s)
- Hidetaka Seguchi
- Division of Cardiology, University of Utah Health Science Center, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Swietach P, Vaughan-Jones RD. Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes. J Physiol 2005; 566:793-806. [PMID: 15919716 PMCID: PMC1464772 DOI: 10.1113/jphysiol.2005.086165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular H+ ion mobility in eukaryotic cells is low because of intracellular buffering. We have investigated whether Hi+ mobility varies with pHi. A dual microperfusion apparatus was used to expose guinea-pig or rat myocytes to small localized doses (3-5 mm) of ammonium chloride (applied in Hepes-buffered solution). Intracellular pH (pHi) was monitored confocally using the fluorescent dye, carboxy-SNARF-1. Local ammonium exposure produced a stable, longitudinal pHi gradient. Its size was fed into a look-up table (LUT) to give an estimate of the apparent intracellular proton diffusion coefficient (D(app)H). LUTs were generated using a diffusion-reaction model of Hi+ mobility based on intracellular buffer diffusion. To examine the pHi sensitivity of D(app)H, whole-cell pHi was initially displaced using a whole-cell ammonium or acetate prepulse, before locally applying the low dose of ammonium. In both rat and guinea-pig, D(app)H decreased with pHi over the range 7.5-6.5. In separate pipette-loading experiments, the intracellular diffusion coefficient for carboxy-SNARF-1 (a mobile-buffer analogue) exhibited no significant pHi dependence. The pHi sensitivity of D(app)H is thus likely to be governed by the mobile fraction of intrinsic buffering capacity. These results reinforce the buffer hypothesis of Hi+ mobility. The pHi dependence of D(app)H was used to characterize the mobile and fixed buffer components, and to estimate D(mob) (the average diffusion coefficient for intracellular mobile buffer). One consequence of a decline in Hi+ mobility at low pHi is that it will predispose the myocardium to pHi nonuniformity. The physiological relevance of this is discussed.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, Oxford OX1 3PT, UK
| | | |
Collapse
|
16
|
Klauke N, Smith GL, Cooper JM. Stimulation of Isolated Ventricular Myocytes Within an Open Architecture Microarray. IEEE Trans Biomed Eng 2005; 52:531-8. [PMID: 15759583 DOI: 10.1109/tbme.2004.842971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper is concerned with the physiological responses of single heart cells within microfluidic chambers, in response to stimulation by integrated microelectrodes. To enable these investigations, which included the measurement of action potential duration, intracellular Ca2+ and cell shortening, a series of microfluidic chambers (50 microm wide, 180 microm long, 400 microm high, 500 microm pitch) and connecting channels (200 microm wide, 5000 microm long, 50 microm high, 500 microm pitch) were replica-moulded into the silicone elastomer, polydimethylsiloxane (PDMS). The structures were formed against a master of posts and lines, photolithograhically patterned into the high aspect ratio photoresist SU-8. The chambers within the slab of PDMS were aligned against pairs of stimulating gold microelectrodes (50 microm long, 20 microm wide, 0.1-10 microm thick, 180 microm apart) patterned on a microscope coverslip base, thus defining cavities of approximately 4 nL volume. The assembly was filled with physiological saline and single isolated rabbit ventricular myocytes were introduced by micropipetting, thus creating limited volumes of saline above individual myocytes that could be varied between 4 nL and > or = 4 microL. The application of transient current pulses to the cells via the electrodes caused transient contractions with constant amplitude (recorded as changes in sarcomere length), confirming that excitation contraction coupling (EC coupling) remained functional in these limited volumes. Continuous monitoring of the intracellular Ca2+ (using calcium sensitive dyes) showed, that in the absence of bath perfusion, the amplitude of the transients remained constant for approximately 3 min in the 4-nL volume and approximately 20 min for the 4 microL volume. Beyond this time, the cells became unexcitable until the bath was renewed. The action potential duration (APD) was recorded at stimulation frequencies of 1 Hz and 0.5 Hz using potential sensitive dyes and was prolonged at the higher pacing rate. These studies show the prolonged electrical stimulation of isolated adult cardiac myocytes in microchambers with unimpaired EC coupling as verified on optical records of the action potential, Ca2+ transients and cell shortening. The open architecture provided free (pipetting) access for drug dispensation without cross talk between neighboring microwells, and multiplexed optical detection can be realized to study EC coupling on arrays of cells under both control and experimental conditions.
Collapse
Affiliation(s)
- Norbert Klauke
- Department of Elecronics and Electrical Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, UK.
| | | | | |
Collapse
|
17
|
Swietach P, Leem CH, Spitzer KW, Vaughan-Jones RD. Experimental generation and computational modeling of intracellular pH gradients in cardiac myocytes. Biophys J 2005; 88:3018-37. [PMID: 15653720 PMCID: PMC1305395 DOI: 10.1529/biophysj.104.051391] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, Oxford OX1 3PT, UK
| | | | | | | |
Collapse
|
18
|
Swietach P, Vaughan-Jones RD. Novel method for measuring junctional proton permeation in isolated ventricular myocyte cell pairs. Am J Physiol Heart Circ Physiol 2004; 287:H2352-63. [PMID: 15242838 DOI: 10.1152/ajpheart.00528.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial exposure of single ventricular myocytes to membrane-permeant weak acids or bases, using a dual-microperfusion technique, generates large and stable intracellular pH (pHi) gradients. In this study, we have investigated the feasibility of using the technique to estimate junctional proton permeability. This was done by recording the pHi gradient developed across the junctional region of a pair of conjoined ventricular myocytes, isolated enzymically from a guinea pig heart when one of the cells was partially exposed to acetate or ammonium. We show that under HEPES-buffered conditions, the junctional discontinuity in the pHi profile can be used to derive an apparent proton permeability coefficient (PHapp). The mean PHapp obtained was 4.45 +/- 0.21.10(-4) cm/s (n=43) at an average junctional pHi of 7.04 +/- 0.02. In the presence of the junctional inhibitor alpha-glycyrrhetinic acid, exposure of the proximal cell to weak acid or base produced no pHi change in the distal cell, confirming that distal changes were normally caused by acid-base flux through connexons assembled into junctional channels. The validity of the dual-microperfusion method was tested further by using a diffusion-permeation-reaction model for intracellular protons, designed to highlight possible errors in the estimates of PHapp. Our technique for measuring PHapp provides a useful alternative to the previous, more invasive technique of locally loading acid through a cell-attached patch pipette. The technique may provide a simple method for investigating the factors regulating cell-to-cell proton transmission.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Univ. Laboratory of Physiology, Oxford OX1 3PT, UK
| | | |
Collapse
|
19
|
Swietach P, Zaniboni M, Stewart AK, Rossini A, Spitzer KW, Vaughan-Jones RD. Modelling intracellular H(+) ion diffusion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:69-100. [PMID: 12865074 DOI: 10.1016/s0079-6107(03)00027-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular pH, an important modulator of cell function, is regulated by plasmalemmal proteins that transport H(+), or its equivalent, into or out of the cell. The pH(i) is also stabilised by high-capacity, intrinsic buffering on cytoplasmic proteins, oligopeptides and other solutes, and by the extrinsic CO(2)/HCO(3)(-) (carbonic) buffer. As mobility of these buffers is lower than for the H(+) ion, they restrict proton diffusion. In this paper we use computational approaches, based on the finite difference and finite element methods (FDM and FEM, respectively), for analysing the spatio-temporal behaviour of [H(+)] when it is locally perturbed. We analyse experimental data obtained for various cell-types (cardiac myocytes, duodenal enterocytes, molluscan neurons) where pH(i) has been imaged confocally using intracellular pH-sensitive dyes. We design mathematical algorithms to generate solutions for two-dimensional diffusion that fit data in terms of an apparent intracellular H(+) diffusion coefficient, D(H)(app). The models are used to explore how the spatial distribution of [H(+)](i) is affected by membrane H(+)-equivalent transport and by cell geometry. We then develop a mechanistic model, describing spatio-temporal changes of [H(+)](i) in a cardiac ventricular myocyte in terms of H(+)-shuttling on mobile buffers and H(+)-anchoring on fixed buffers. We also discuss how modelling may include the effects of extrinsic carbonic-buffering. Overall, our computational approach provides a framework for future analyses of the physiological consequences of pH(i) non-uniformity.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, OX1 3PT, Oxford, UK
| | | | | | | | | | | |
Collapse
|
20
|
Zaniboni M, Swietach P, Rossini A, Yamamoto T, Spitzer KW, Vaughan-Jones RD. Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am J Physiol Heart Circ Physiol 2003; 285:H1236-46. [PMID: 12750065 DOI: 10.1152/ajpheart.00277.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intracellular pH (pHi) is an important modulator of cardiac function. The spatial regulation of pH within the cytoplasm depends, in part, on intracellular H+ (Hi+) mobility. The apparent diffusion coefficient for Hi+, DHapp, was estimated in single ventricular myocytes isolated from the rat, guinea pig, and rabbit. DHapp was derived by best-fitting predictions of a two-dimensional model of H+ diffusion to the local rise of intracellular [H+], recorded confocally (ratiometric seminaphthorhodafluor fluorescence) downstream from an acid-filled, whole cell patch pipette. Under CO2/HCO3--free conditions, DHapp was similar in all three species (mean values: 8-12.5 x 10-7 cm2/s) and was over 200-fold lower than that for H+ in water. In guinea pig myocytes, DHapp was increased 2.5-fold in the presence of CO2/HCO3- buffer, in agreement with previous observations in rabbit myocytes. Hi+ mobility is therefore low in cardiac cells, a feature that may predispose them to the generation of pHi gradients in response to sarcolemmal acid/base transport or local cytoplasmic acid production. Low Hi+ mobility most likely results from H+ shuttling among cytoplasmic mobile and fixed buffers. This hypothesis was explored by comparing the pHi dependence of intrinsic, intracellular buffering capacity, measured for all three species, and subdividing buffering into mobile and fixed fractions. The proportion of buffer that is mobile will be the main determinant of DHapp. At a given pHi, this proportion appeared to be similar in all three species, consistent with a common value for DHapp. Over the pHi range of 6.0-8.0, the proportion is expected to change, predicting that DHapp may display some pHi sensitivity.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
21
|
Heller LJ, Mohrman DE, Smith JA, Wallace KB. Multitrack system for superfusing isolated cardiac myocytes. Am J Physiol Heart Circ Physiol 2003; 284:H1872-8. [PMID: 12531725 DOI: 10.1152/ajpheart.00914.2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new system for studying mechanical activity of freshly isolated cardiac myocytes from up to four experimental groups simultaneously is described. Suspensions of cardiac myocytes isolated from adult rat hearts were drawn into microhematocrit capillary tubes, which were then mounted in parallel fashion between two four-channel tubing manifolds placed on the movable stage of an inverted microscope. Within a few minutes, cells settled and attached to the bottom of the tubes and then could be superfused with various test solutions. The system allowed for electrical field stimulation, rapid changes in bathing solutions, control of temperature, and simulation of ischemia and reperfusion with measurements of the effects of such interventions on both populations of cells (low power survey) and individual myocytes (high power). Myocyte responses to these various interventions are described. The primary advantage of this system is the ability to conduct experiments on cardiac myocytes isolated concurrently from multiple experimental groups at the same time and under identical conditions.
Collapse
Affiliation(s)
- Lois Jane Heller
- Department of Physiology, School of Medicine, University of Minnesota-Duluth, 1035 University Drive, Duluth, MN 55812, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
23
|
Vaughan-Jones RD, Peercy BE, Keener JP, Spitzer KW. Intrinsic H(+) ion mobility in the rabbit ventricular myocyte. J Physiol 2002; 541:139-58. [PMID: 12015426 PMCID: PMC2290307 DOI: 10.1113/jphysiol.2001.013267] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 02/08/2002] [Indexed: 11/08/2022] Open
Abstract
The intrinsic mobility of intracellular H(+) ions was investigated by confocally imaging the longitudinal movement of acid inside rabbit ventricular myocytes loaded with the acetoxymethyl ester (AM) form of carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1). Acid was diffused into one end of the cell through a patch pipette filled with an isotonic KCl solution of pH 3.0. Intracellular H(+) mobility was low, acid taking 20-30 s to move 40 microm down the cell. Inhibiting sarcolemmal Na(+)-H(+) exchange with 1 mM amiloride had no effect on this time delay. Net H(+)(i) movement was associated with a longitudinal intracellular pH (pH(i)) gradient of up to 0.4 pH units. H(+)(i) movement could be modelled using the equations for diffusion, assuming an apparent diffusion coefficient for H(+) ions (D(H)(app)) of 3.78 x 10(-7) cm(2) s(-1), a value more than 300-fold lower than the H(+) diffusion coefficient in a dilute, unbuffered solution. Measurement of the intracellular concentration of SNARF (approximately 400 microM) and its intracellular diffusion coefficient (0.9 x 10(-7) cm(2) s(-1)) indicated that the fluorophore itself exerted an insignificant effect (between 0.6 and 3.3 %) on the longitudinal movement of H(+) equivalents inside the cell. The longitudinal movement of intracellular H(+) is discussed in terms of a diffusive shuttling of H(+) equivalents on high capacity mobile buffers which comprise about half (approximately 11 mM) of the total intrinsic buffering capacity within the myocyte (the other half being fixed buffer sites on low mobility, intracellular proteins). Intrinsic H(+)(i) mobility is consistent with an average diffusion coefficient for the intracellular mobile buffers (D(mob)) of ~9 x 10(-7) cm(2) s(-1).
Collapse
Affiliation(s)
- R D Vaughan-Jones
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| | | | | | | |
Collapse
|
24
|
Schwiening CJ, Willoughby D. Depolarization-induced pH microdomains and their relationship to calcium transients in isolated snail neurones. J Physiol 2002; 538:371-82. [PMID: 11790806 PMCID: PMC2290061 DOI: 10.1113/jphysiol.2001.013055] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuronal electrical activity causes only modest changes in global intracellular pH (pH(i)). We have measured regional pH(i) differences in isolated patch-clamped neurones during depolarization, using confocal imaging of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) fluorescence. The pH(i) shifts in the soma were as expected; however, substantially larger shifts occurred in other regions. These regional differences were still observed in the presence of CO(2)-HCO(3)(-), they decayed over many seconds and were associated with changes in calcium concentration. Lamellipodial HPTS fluorescence fell by 8.7 +/- 1.3 % (n = 9; approximately 0.1 pH unit acidification) following a 1 s depolarization to 0 mV; this was more than 4-fold greater than the relative shift seen in the soma. Depolarization to +40 mV for 1 s caused a 46.7 +/- 7.0 % increase (n = 11; approximately 0.4 pH unit alkalinization) in HPTS fluorescence in the lamellipodia, more than 6-fold that seen in the soma. Application of 5 % CO(2)-20 mM HCO(3)(-) did not significantly reduce the size of the +40 mV-evoked local pH shifts despite carbonic anhydrase activity. The pH(i) gradient between regions approximately 50 microm apart, resulting from acid shifts, took 10.3 +/- 3.1 s (n = 6) to decay by 50 %, whereas the pH(i) gradient resulting from alkaline shifts took only 3.7 +/- 1.4 s (n = 12) to decay by 50 %. The regional rates of acidification and calcium recovery were closely related, suggesting that the acidic pH microdomains resulted from Ca(2+)-H(+) pump activity. The alkaline pH microdomains were blocked by zinc and resulted from proton channel opening. It is likely that the microdomains result from transmembrane acid fluxes in areas with different surface area to volume ratios. Such neuronal pH microdomains are likely to have consequences for local receptor, channel and enzyme function in restricted regions.
Collapse
|
25
|
Khabbaz KR, Zankoul F, Warner KG. Intraoperative metabolic monitoring of the heart: II. Online measurement of myocardial tissue pH. Ann Thorac Surg 2001; 72:S2227-33; discussion S2233-4, S2267-70. [PMID: 11789846 DOI: 10.1016/s0003-4975(01)03284-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under conditions of ischemia, the hydrogen ion [H+] accumulates in the myocardial tissue in proportion to the magnitude of the ischemic insult. The accumulation of [H+] is the result of both increased anaerobic production of [H+] secondary to decreased substrate and decreased washout of [H+] secondary to decreased coronary perfusion. The Khuri tissue pH electrode/monitoring system has been developed and validated over the past two decades. Its scientific basis and correlates have been established, and it is the only system that has been approved for use in humans. Myocardial tissue pH has been monitored in the anterior and posterior walls of the left ventricle in more than 700 patients undergoing major cardiac surgery. An understanding of the relationship between pH and temperature and between the pH and [H+] in tissues is important for the proper interpretation of the myocardial pH data generated in the course of an operation. Intraoperative monitoring of myocardial pH is the only modality available to the cardiac surgeon for online assessment and improvement of the adequacy of myocardial protection. By defining myocardial protection in terms of protection from myocardial tissue acidosis, this technology provides a new tool with which the comparative efficacy of the various myocardial protection techniques can be assessed. It also provides an online tool for assessing the adequacy of coronary revascularization, and has the potential of improving procedures and outcomes for off-pump coronary artery bypass grafting.
Collapse
Affiliation(s)
- K R Khabbaz
- Department of Cardiothoracic Surgery, New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
26
|
Abstract
Microglia, macrophages that reside in the brain, can express at least 12 different ion channels, including voltage-gated proton channels. The properties of H+ currents in microglia are similar to those in other phagocytes. Proton currents are elicited by depolarizing the membrane potential, but activation also depends strongly on both intracellular pH (pH(i)) and extracellular pH (pH(o)). Increasing pH(o) or lowering pH(i) promotes H+ channel opening by shifting the activation threshold to more negative potentials. H+ channels in microglia open only when the pH gradient is outward, so they carry only outward current in the steady state. Time-dependent activation of H+ currents is slow, with a time constant roughly 1 s at room temperature. Microglial H+ currents are inhibited by inorganic polyvalent cations, which reduce H+ current amplitude and shift the voltage dependence of activation to more positive potentials. Cytoskeletal disruptive agents modulate H+ currents in microglia. Cytochalasin D and colchicine decrease the current density and slow the activation of H+ currents. Similar changes of H+ currents, possibly due to cytoskeletal reorganization, occur in microglia during the transformation from ameboid to ramified morphology. Phagocytes, including microglia, undergo a respiratory burst, in which NADPH oxidase releases bactericidal superoxide anions into the phagosome and stoichiometrically releases protons into the cell, tending to depolarize and acidify the cell. H+ currents may help regulate both the membrane potential and pH(i) during the respiratory burst. By compensating for the efflux of electrons and counteracting intracellular acidification, H+ channels help maintain superoxide anion production.
Collapse
Affiliation(s)
- C Eder
- Institut für Physiologie der Charité, Humboldt Universität, Tucholskystr. 2, D 10117 Berlin, Germany.
| | | |
Collapse
|