1
|
Akande O, Chen Q, Cholyway R, Toldo S, Lesnefsky EJ, Quader M. Modulation of Mitochondrial Respiration During Early Reperfusion Reduces Cardiac Injury in Donation After Circulatory Death Hearts. J Cardiovasc Pharmacol 2022; 80:148-157. [PMID: 35579563 PMCID: PMC10441174 DOI: 10.1097/fjc.0000000000001290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Donation after circulatory death (DCD) donors are a potential source for heart transplantation. The DCD process has unavoidable ischemia and reperfusion (I/R) injury, primarily mediated through mitochondria, which limits routine utilization of hearts for transplantation. Amobarbital (AMO), a transient inhibitor of the electron transport chain, is known to decrease cardiac injury following ex vivo I/R. We studied whether AMO treatment during reperfusion can decrease injury in DCD hearts. Sprague Dawley rat hearts subjected to 25 minutes of in vivo ischemia (DCD hearts), or control beating donor hearts, were treated with AMO or vehicle for the first 5 minutes of reperfusion, followed by Krebs-Henseleit buffer reperfusion for 55 minutes (for mitochondrial isolation) or 85 minutes (for infarct size determination). Compared with vehicle, AMO treatment led to decreased infarct size (25.2% ± 1.5% vs. 31.5% ± 1.5%; P ≤ 0.05) and troponin I release (4.5 ± 0.05 ng/mL vs. 9.3 ± 0.24 ng/mL, P ≤ 0.05). AMO treatment decreased H 2 O 2 generation with glutamate as complex I substrate in both subsarcolemmal mitochondria (SSM) (37 ± 3.7 pmol·mg -1 ·min -1 vs. 56.9 ± 4.1 pmol·mg -1 ·min -1 ; P ≤ 0.05), and interfibrillar mitochondria (IFM) (31.8 ± 2.8 pmol·mg -1 ·min -1 vs. 46 ± 4.8 pmol·mg -1 ·min -1 ; P ≤ 0.05) and improved calcium retention capacity in SSM (360 ±17.2 nmol/mg vs. 277 ± 13 nmol/mg; P ≤ 0.05), and IFM (483 ± 20 nmol/mg vs. 377± 19 nmol/mg; P ≤ 0.05) compared with vehicle treatment. SSM and IFM retained more cytochrome c with AMO treatment compared with vehicle. In conclusion, brief inhibition of mitochondrial respiration during reperfusion using amobarbital is a promising approach to decrease injury in DCD hearts.
Collapse
Affiliation(s)
- Oluwatoyin Akande
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
| | - Renee Cholyway
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
| | - Stefano Toldo
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
| | - Edward J. Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
- McGuire Veterans Administration Medical Center, Richmond VA
| | - Mohammed Quader
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
- McGuire Veterans Administration Medical Center, Richmond VA
| |
Collapse
|
2
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun 2022; 613:127-132. [PMID: 35550199 DOI: 10.1016/j.bbrc.2022.04.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| |
Collapse
|
3
|
Yang Y, Li Y, Wang J, Hong L, Qiao S, Wang C, An J. Cholinergic receptors play a role in the cardioprotective effects of anesthetic preconditioning: Roles of nitric oxide and the CaMKKβ/AMPK pathway. Exp Ther Med 2021; 21:137. [PMID: 33456504 PMCID: PMC7791965 DOI: 10.3892/etm.2020.9569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Vagus nerve activation may have important therapeutic significance for myocardial ischemia-reperfusion (IR) injury. Nitric oxide (NO) plays a vital role in the cardioprotective effects of anesthetic preconditioning (APC). Moreover, acetylcholine (ACh) prevents cardiomyocyte damage by activating AMP-activated protein kinase (AMPK) and increasing the phosphorylation of Ca2+/calmodulin-dependent protein kinase β (CaMKKβ). The aim of the present study was to determine whether APC could protect heart function by antagonizing IR damage via the cholinergic system. It was hypothesized that the NO synthase (NOS)/CaMKKβ/AMPK pathway might be involved in the cardioprotective effects induced by cholinergic receptor activation. Isolated rat hearts were subjected to ischemia for 30 min followed by 120 min of reperfusion. Volatile anesthetic sevoflurane (3.5%) was administered for 15 min before ischemia, then rinsed for 15 min. The muscarinic acetylcholine receptor (mAChR) antagonist atropine (ATR; 100 nM) and the nicotinic acetylcholine receptor (nAChR) antagonist hexamethonium (HEM; 50 µM) were administered 10 min before APC. Both mAChR and nAChR were involved in APC-induced cardioprotection. ATR and HEM treatment both abolished the protective effects of APC on IR damage in isolated hearts, demonstrating the importance of cholinergic receptors in the protection mechanism of APC. The present study thus suggests that APC plays a cardioprotective role, in part, by regulating neurohumoral pathways. In addition, there may be functional coupling between the two cholinergic receptors, and the NOS and CaMKKβ/AMPK pathways may play roles in shared pathways that mediate the cardioprotective effects of APC. These findings may provide insight into potential new mechanisms of APC-induced cardioprotection against IR injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Ying Li
- Department of Cardiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jie Wang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
4
|
Mohsin AA, Thompson J, Hu Y, Hollander J, Lesnefsky EJ, Chen Q. Endoplasmic reticulum stress-induced complex I defect: Central role of calcium overload. Arch Biochem Biophys 2020; 683:108299. [PMID: 32061585 DOI: 10.1016/j.abb.2020.108299] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND ER (endoplasmic reticulum) stress leads to decreased complex I activity in cardiac mitochondria. The aim of the current study is to explore the potential mechanisms by which ER stress leads to the complex I defect. ER stress contributes to intracellular calcium overload and oxidative stress that are two key factors to induce mitochondrial dysfunction. Since oxidative stress is often accompanied by intracellular calcium overload during ER stress in vivo, the role of oxidative stress and calcium overload in mitochondrial dysfunction was studied using in vitro models. ER stress results in intracellular calcium overload that favors activation of calcium-dependent calpains. The contribution of mitochondrial calpain activation in ER stress-mediated complex I damage was studied. METHODS Thapsigargin (THAP) was used to induce acute ER stress in H9c2 cells and C57BL/6 mice. Exogenous calcium (25 μM) and H2O2 (100 μM) were used to induce modest calcium overload and oxidative stress in isolated mitochondria. Calpain small subunit 1 (CAPNS1) is essential to maintain calpain 1 and calpain 2 (CPN1/2) activities. Deletion of CAPNS1 eliminates the activities of CPN1/2. Wild type and cardiac-specific CAPNS1 deletion mice were used to explore the role of CPN1/2 activation in calcium-induced mitochondrial damage. RESULTS In isolated mitochondria, exogenous calcium but not H2O2 treatment led to decreased oxidative phosphorylation, supporting that calcium overload contributes a key role in the mitochondrial damage. THAP treatment of H9c2 cells decreased respiration selectively with complex I substrates. THAP treatment activated cytosolic and mitochondrial CPN1/2 in C57BL/6 mice and led to degradation of complex I subunits including NDUFS7. Calcium treatment decreased NDUFS7 content in wild type but not in CAPNS1 knockout mice. CONCLUSION ER stress-mediated activation of mitochondria-localized CPN1/2 contributes to complex I damage by cleaving component subunits.
Collapse
Affiliation(s)
- Ahmed A Mohsin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Radiological Techniques Department, Health and Medical Technology College-Baghdad, Middle Technical University (MTU), Iraq
| | - Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - John Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 25606, USA; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 25606, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
5
|
Xu F, Qiao S, Li H, Deng Y, Wang C, An J. The Effect of Mitochondrial Complex I-Linked Respiration by Isoflurane Is Independent of Mitochondrial Nitric Oxide Production. Cardiorenal Med 2018; 8:113-122. [PMID: 29617003 DOI: 10.1159/000485936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anesthetic preconditioning (APC) of the myocardium is mediated in part by reversible alteration of mitochondrial function. Nitric oxide (NO) inhibits mitochondrial respiration and may mediate APC-induced cardioprotection. In this study, the effects of isoflurane on different states of mitochondrial respiration during the oxidation of complex I-linked substrates and the role of NO were investigated. METHODS Mitochondria were isolated from Sprague-Dawley rat hearts. Respiration rates were measured polarographically at 28ºC with a computer-controlled Clark-type O2 electrode in the mitochondria (0.5 mg/mL) with complex I substrates glutamate/malate (5 mM). Isoflurane (0.25 mM) was administered before or after adenosine diphosphate (ADP)-initiated state 3 respiration. The NO synthase (NOS) inhibitor L-N5-(1-iminoethyl)-ornithine (L-NIO, 10 μM) and the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 1 μM) were added before or after the addition of ADP. RESULTS Isoflurane administered in state 2 increased state 2 respiration and decreased state 3 respiration. This attenuation of state 3 respiration by isoflurane was similar when it was given during state 3. L-NIO did not alter mitochondrial respiration or the effect of isoflurane. SNAP only, added in state 3, decreased state 3 respiration and enhanced the isoflurane-induced attenuation of state 3 respiration. CONCLUSION Isoflurane has clearly distinguishable effects on different states of mitochondrial respiration during the oxidation of complex I substrates. The uncoupling effect during state 2 respiration and the attenuation of state 3 respiration may contribute to the mechanism of APC-induced cardioprotection. These effects of isoflurane do not depend on endogenous mitochondrial NO, as the NOS inhibitor L-NIO did not alter the effects of isoflurane on mitochondrial respiration.
Collapse
Affiliation(s)
- Fuqi Xu
- Department of Anesthesiology and Perioperative Medicine, Suzhou, China
| | - Shigang Qiao
- Department of Anesthesiology and Perioperative Medicine, Suzhou, China.,Institute of Clinical Medicine Research, Suzhou Hospital (West District) Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Hua Li
- Department of Anesthesiology and Perioperative Medicine, Suzhou, China
| | - Yanjun Deng
- Department of Anesthesiology and Perioperative Medicine, Suzhou, China
| | - Chen Wang
- Department of Anesthesiology and Perioperative Medicine, Suzhou, China.,Institute of Clinical Medicine Research, Suzhou Hospital (West District) Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital (West District) Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, China
| |
Collapse
|
6
|
Lu Y, Wang L, Liu N, Dong T, Li R. Sevoflurane preconditioning in on-pump coronary artery bypass grafting: a meta-analysis of randomized controlled trials. J Anesth 2016; 30:977-986. [PMID: 27531076 DOI: 10.1007/s00540-016-2226-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Sevoflurane preconditioning (SevoPreC) has been proved to prevent organ ischemia/reperfusion (I/R) injury in various animal models and preclinical studies. Clinical trials on cardioprotection by SevoPreC for adult patients undergoing coronary artery bypass graft (CABG) revealed mixed results. The aim of this meta-analysis was to evaluate the cardiac effect of SevoPreC in on-pump CABG. METHODS Randomized controlled trials (RCT) comparing the cardiac effect of SevoPreC (compared with control) in adult patients undergoing CABG were searched from PubMed, Embase, and the Cochrane Library (up to November 2015). The primary endpoints were postoperative troponin levels. Additional endpoints were CK-MB levels, mechanic ventilation (MV) duration, intensive care unit (ICU) stay, and hospital length of stay (LOS). RESULTS Six trials with eight comparisons enrolling a total of 384 study patients reporting postoperative troponin levels were identified. Compared with controls, SevoPreC decreased postoperative myocardial troponin levels [standardized mean difference (SMD) = -0.38; 95 % CI, -0.74 to -0.03; P = 0.04; I 2 = 63.9 %]. However, no significant differences were observed in postoperative CK-MB levels [weighted mean difference (WMD) = -1.71; P = 0.37; I 2 = 37.7 %], MV duration (WMD = -0.53; P = 0.47; I 2 = 0.0 %), ICU stay (WMD = -0.91; P = 0.39; I 2 = 0.9 %), and hospital LOS (WMD = 0.08; P = 0.86; I 2 = 8.0 %). CONCLUSION Available evidence from the present systematic review and meta-analysis suggests that sevoflurane preconditioning may reduce troponin levels in on-pump CABG. Future high-quality, large-scale clinical trials should focus on the early and long-term clinical effect of SevoPreC in on-pump CABG.
Collapse
Affiliation(s)
- Yan Lu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Liwei Wang
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Na Liu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Tianxin Dong
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Ruhong Li
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China.
| |
Collapse
|
7
|
Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AKS. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration. J Bioenerg Biomembr 2016; 48:175-88. [PMID: 26815005 DOI: 10.1007/s10863-016-9644-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
8
|
Rhodes SS, Camara AKS, Aldakkak M, Heisner JS, Stowe DF. Stretch-induced increase in cardiac contractility is independent of myocyte Ca2+ while block of stretch channels by streptomycin improves contractility after ischemic stunning. Physiol Rep 2015; 3:3/8/e12486. [PMID: 26290532 PMCID: PMC4562572 DOI: 10.14814/phy2.12486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca2+] is controversial. We measured LV pressure (LVP) and [Ca2+] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch-activated channel blocker. LV wall [Ca2+] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathematical model to interpret cross-bridge dynamics and myofilament Ca2+ responsiveness from the instantaneous relationship between [Ca2+] and LVP ± stretching. We found that: (1) stretch enhanced LVP but not [Ca2+] before and after stunning in either control (CON) and STM groups, (2) after stunning [Ca2+] increased in both groups although higher in STM versus CON (56% vs. 39%), (3) STM-enhanced LVP after stunning compared to CON (98% vs. 76% of prestunning values), and (4) stretch-induced effects on LVP were independent of [Ca2+] before or after stunning in both groups. Mathematical modeling suggested: (1) cooperativity in cross-bridge kinetics and myofilament Ca2+ handling is reduced after stunning in the unstretched heart, (2) stunning results in depressed myofilament Ca2+ sensitivity in the presence of attached cross-bridges regardless of stretch, and (3) the initial mechanism responsible for increased contractility during stretch may be enhanced formation of cross-bridges. Thus stretch-induced enhancement of contractility is not due to increased [Ca2+], whereas enhanced contractility after stunning in STM versus CON hearts results from improved Ca2+ handling and/or enhanced actinomyosin cross-bridge cycling.
Collapse
Affiliation(s)
- Samhita S Rhodes
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA School of Engineering, Grand Valley State University, Grand Rapids, Michigan, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mohammed Aldakkak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Yang KC, Kyle JW, Makielski JC, Dudley SC. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res 2015; 116:1937-55. [PMID: 26044249 PMCID: PMC4458707 DOI: 10.1161/circresaha.116.304691] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Ventricular arrhythmia is the leading cause of sudden cardiac death (SCD). Deranged cardiac metabolism and abnormal redox state during cardiac diseases foment arrhythmogenic substrates through direct or indirect modulation of cardiac ion channel/transporter function. This review presents current evidence on the mechanisms linking metabolic derangement and excessive oxidative stress to ion channel/transporter dysfunction that predisposes to ventricular arrhythmias and SCD. Because conventional antiarrhythmic agents aiming at ion channels have proven challenging to use, targeting arrhythmogenic metabolic changes and redox imbalance may provide novel therapeutics to treat or prevent life-threatening arrhythmias and SCD.
Collapse
Affiliation(s)
- Kai-Chien Yang
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.)
| | - John W Kyle
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.)
| | - Jonathan C Makielski
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.).
| | - Samuel C Dudley
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.).
| |
Collapse
|
10
|
Chen Q, Xu H, Xu A, Ross T, Bowler E, Hu Y, Lesnefsky EJ. Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. PLoS One 2015; 10:e0118834. [PMID: 25756500 PMCID: PMC4354902 DOI: 10.1371/journal.pone.0118834] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/15/2015] [Indexed: 11/21/2022] Open
Abstract
Background Mitochondria are critical to cardiac injury during reperfusion as a result of damage sustained during ischemia, including the loss of bcl-2. We asked if bcl-2 depletion not only leads to selective permeation of the outer mitochondrial membrane (MOMP) favoring cytochrome c release and programmed cell death, but also favors opening of the mitochondrial permeability transition pore (MPTP). An increase in MPTP susceptibility would support a role for bcl-2 depletion mediated cell death in the calcium overload setting of early reperfusion via MPTP as well as later in reperfusion via MOMP as myocardial calcium content normalizes. Methods Calcium retention capacity (CRC) was used to reflect the sensitivity of the MPTP opening in isolated cardiac mitochondria. To study the relationship between bcl-2 inhibition and MPTP opening, mitochondria were incubated with a bcl-2 inhibitor (HA14-1) and CRC measured. The contribution of preserved bcl-2 content to MPTP opening following ischemia-reperfusion was explored using transgenic bcl-2 overexpressed mice. Results CRC was decreased in mitochondria following reperfusion compared to ischemia alone, indicating that reperfusion further sensitizes to MPTP opening. Incubation of ischemia-damaged mitochondria with increasing HA14-1concentrations increased calcium-stimulated MPTP opening, supporting that functional inhibition of bcl-2 during simulated reperfusion favors MPTP opening. Moreover, HA14-1 sensitivity was increased by ischemia compared to non-ischemic controls. Overexpression of bcl-2 attenuated MPTP opening in following ischemia-reperfusion. HA14-1 inhibition also increased the permeability of the outer membrane in the absence of exogenous calcium, indicating that bcl-2 inhibition favors MOMP when calcium is low. Conclusions The depletion and functional inhibition of bcl-2 contributes to cardiac injury by increasing susceptibility to MPTP opening in high calcium environments and MOMP in the absence of calcium overload. Thus, ischemia-damaged mitochondria with decreased bcl-2 content are susceptible to MPTP opening in early reperfusion and MOMP later in reperfusion when cytosolic calcium has normalized.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Haishan Xu
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Aijun Xu
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Thomas Ross
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Elizabeth Bowler
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- University of the West of England, Bristol, United Kingdom
| | - Ying Hu
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Edward J. Lesnefsky
- Department of Medicine, Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Medicine, Pauley Heart Center, Division of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341. [PMID: 25278902 PMCID: PMC4165278 DOI: 10.3389/fphys.2014.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - David F. Stowe
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
- Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
| | - Ranjan K. Dash
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
12
|
Yang KC, Bonini MG, Dudley SC. Mitochondria and arrhythmias. Free Radic Biol Med 2014; 71:351-361. [PMID: 24713422 PMCID: PMC4096785 DOI: 10.1016/j.freeradbiomed.2014.03.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential to providing ATP, thereby satisfying the energy demand of the incessant electrical activity and contractile action of cardiac muscle. Emerging evidence indicates that mitochondrial dysfunction can adversely affect cardiac electrical functioning by impairing the intracellular ion homeostasis and membrane excitability through reduced ATP production and excessive reactive oxygen species (ROS) generation, resulting in increased propensity to cardiac arrhythmias. In this review, the molecular mechanisms linking mitochondrial dysfunction to cardiac arrhythmias are discussed with an emphasis on the impact of increased mitochondrial ROS on the cardiac ion channels and transporters that are critical to maintaining normal electromechanical functioning of the cardiomyocytes. The potential of using mitochondria-targeted antioxidants as a novel antiarrhythmia therapy is highlighted.
Collapse
Affiliation(s)
- Kai-Chien Yang
- Lifespan Cardiovascular Institute, Providence VA Medical Center, and Brown University, Providence, RI 02903, USA
| | - Marcelo G Bonini
- Department of Medicine/Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pathology, and University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Samuel C Dudley
- Lifespan Cardiovascular Institute, Providence VA Medical Center, and Brown University, Providence, RI 02903, USA.
| |
Collapse
|
13
|
Xu A, Szczepanek K, Maceyka MW, Ross T, Bowler E, Hu Y, Kenny B, Mehfoud C, Desai PN, Baumgarten CM, Chen Q, Lesnefsky EJ. Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. Am J Physiol Cell Physiol 2014; 306:C1142-53. [PMID: 24696146 DOI: 10.1152/ajpcell.00241.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A reversible inhibition of mitochondrial respiration by complex I inhibition at the onset of reperfusion decreases injury in buffer-perfused hearts. Administration of acidic reperfusate for a brief period at reperfusion decreases cardiac injury. We asked if acidification treatment decreased cardiac injury during reperfusion by inhibiting complex I. Exposure of isolated mouse heart mitochondria to acidic buffer decreased the complex I substrate-stimulated respiration, whereas respiration with complex II substrates was unaltered. Evidence of the rapid and reversible inhibition of complex I by an acidic environment was obtained at the level of isolated complex, intact mitochondria and in situ mitochondria in digitonin-permeabilized cardiac myocytes. Moreover, ischemia-damaged complex I was also reversibly inhibited by an acidic environment. In the buffer-perfused mouse heart, reperfusion with pH 6.6 buffer for the initial 5 min decreased infarction. Compared with untreated hearts, acidification treatment markedly decreased the mitochondrial generation of reactive oxygen species and improved mitochondrial calcium retention capacity and inner mitochondrial membrane integrity. The decrease in infarct size achieved by acidic reperfusion approximates the reduction obtained by a reversible, partial blockade of complex I at reperfusion. Extracellular acidification decreases cardiac injury during reperfusion in part via the transient and reversible inhibition of complex I, leading to a reduction of oxyradical generation accompanied by a decreased susceptibility to mitochondrial permeability transition during early reperfusion.
Collapse
Affiliation(s)
- Aijun Xu
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; and
| | - Karol Szczepanek
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Michael W Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Thomas Ross
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Elizabeth Bowler
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia; University of the West of England, Bristol, United Kingdom
| | - Ying Hu
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Barrett Kenny
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chris Mehfoud
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pooja N Desai
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Clive M Baumgarten
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia; McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| |
Collapse
|
14
|
Nabbi R, Gadicherla AK, Kersten JR, Stowe DF, Lazar J, Riess ML. Genetically determined mitochondrial preservation and cardioprotection against myocardial ischemia-reperfusion injury in a consomic rat model. Physiol Genomics 2013; 46:169-76. [PMID: 24380873 DOI: 10.1152/physiolgenomics.00118.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardioprotection may be genome dependent. One example is the increased tolerance to cardiac ischemia-reperfusion (IR) in Brown Norway (BN) compared with Dahl salt-sensitive (SS) rats. By narrowing the genetic difference to chromosome 6 only, we found the consomic SS(6BN) to be similarly IR tolerant as BN. We hypothesized that better preserved mitochondrial structure and function are genetically determined and therefore critically linked to myocardial IR tolerance associated with BN chromosome 6. Langendorff-prepared BN, SS, and SS(6BN) rat hearts were subjected to IR, while corresponding controls were continuously perfused. Though largely equal in nonischemic controls, assessment of functional data and ventricular infarct size in IR experiments confirmed that BN and SS(6BN) have an equally higher tolerance to IR than SS hearts. This was complemented by equally better preserved mitochondrial structure, oxidative phosphorylation, and calcium retention capacity in BN and SS(6BN) vs. SS hearts. For the first time, our data indicate that SS(6BN) are as resistant to IR injury as BN hearts in mitochondrial and myocardial function and viability compared with SS hearts. These findings not only link myocardial and mitochondrial protection in a genetic model but also suggest that genetic information on rat chromosome 6 is critical for mitochondrial preservation and IR tolerance.
Collapse
Affiliation(s)
- Raha Nabbi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | | | |
Collapse
|
15
|
Rhodes SS, Camara AKS, Heisner JS, Riess ML, Aldakkak M, Stowe DF. Reduced mitochondrial Ca2+ loading and improved functional recovery after ischemia-reperfusion injury in old vs. young guinea pig hearts. Am J Physiol Heart Circ Physiol 2011; 302:H855-63. [PMID: 22140052 DOI: 10.1152/ajpheart.00533.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative damage and impaired cytosolic Ca(2+) concentration ([Ca(2+)](cyto)) handling are associated with mitochondrial [Ca(2+)] ([Ca(2+)](mito)) overload and depressed functional recovery after cardiac ischemia-reperfusion (I/R) injury. We hypothesized that hearts from old guinea pigs would demonstrate impaired [Ca(2+)](mito) handling, poor functional recovery, and a more oxidized state after I/R injury compared with hearts from young guinea pigs. Hearts from young (∼4 wk) and old (>52 wk) guinea pigs were isolated and perfused with Krebs-Ringer solution (2.1 mM Ca(2+) concentration at 37°C). Left ventricular pressure (LVP, mmHg) was measured with a balloon, and NADH, [Ca(2+)](mito) (nM), and [Ca(2+)](cyto) (nM) were measured by fluorescence with a fiber optic probe placed against the left ventricular free wall. After baseline (BL) measurements, hearts were subjected to 30 min global ischemia and 120 min reperfusion (REP). In old vs. young hearts we found: 1) percent infarct size was lower (27 ± 9 vs. 57 ± 2); 2) developed LVP (systolic-diastolic) was higher at 10 min (57 ± 11 vs. 29 ± 2) and 60 min (55 ± 10 vs. 32 ± 2) REP; 3) diastolic LVP was lower at 10 and 60 min REP (6 ± 3 vs. 29 ± 4 and 3 ± 3 vs. 21 ± 4 mmHg); 4) mean [Ca(2+)](cyto) was higher during ischemia (837 ± 39 vs. 541 ± 39), but [Ca(2+)](mito) was lower (545 ± 62 vs. 975 ± 38); 5) [Ca(2+)](mito) was lower at 10 and 60 min REP (129 ± 2 vs. 293 ± 23 and 122 ± 2 vs. 234 ± 15); 6) reduced inotropic responses to dopamine and digoxin; and 7) NADH was elevated during ischemia in both groups and lower than BL during REP. Contrary to our stated hypotheses, old hearts showed reduced [Ca(2+)](mito), decreased infarction, and improved basal mechanical function after I/R injury compared with young hearts; no differences were noted in redox state due to age. In this model, aging-associated protection may be linked to limited [Ca(2+)](mito) loading after I/R injury despite higher [Ca(2+)](cyto) load during ischemia in old vs. young hearts.
Collapse
Affiliation(s)
- Samhita S Rhodes
- School of Engineering, Padnos College of Engineering and Computing, Grand Valley State University, Grand Rapids, MI 49504, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zu L, Zheng X, Wang B, Parajuli N, Steenbergen C, Becker LC, Cai ZP. Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2011; 300:H2177-86. [PMID: 21421815 DOI: 10.1152/ajpheart.01138.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H(2)O(2) to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H(2)O(2). PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability.
Collapse
Affiliation(s)
- Lingyun Zu
- 720 Rutland Ave., Ross 333, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
KATP channel blocker does not abolish the protective effect of Na+/H+ exchange 1 inhibition against ischaemia/reperfusion in aged myocardium. Eur J Anaesthesiol 2011; 27:740-6. [PMID: 20216068 DOI: 10.1097/eja.0b013e328337bb56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Ageing is associated with an increase in myocardial susceptibility to ischaemia/reperfusion (I/R) injury. Na+/H+ exchange (NHE) inhibition and anaesthetic preconditioning (APC) are shown to protect myocardium from I/R injury. We set out to investigate whether NHE inhibition can induce protection against I/R injury and whether KATP channel inhibition can enhance this effect in aged rat myocardium. METHODS Hearts from 24-month-old rats were assigned to four groups: control group; APC group perfused with 2.5% sevoflurane before ischaemia; HOE group perfused with (3-methylsulfonyl-4-piperidinobenzoyl) guanidine methanesulfonate (HOE-694) prior to ischaemia; and HOE+5HD group perfused with both HOE and 5-hydroxydecanoic acid before ischaemia. We measured intracellular Na+ and Ca++ to quantitate the severity of myocardial injury. RESULTS Both intracellular Na+ and Ca++ were significantly increased at the end of ischaemia and both were attenuated by NHE inhibition. Intracellular Na+ was 134 +/- 12 mEq kg(-1) dry weight in control group and 55 +/- 7 in HOE group (P < 0.05). Intracellular Ca++ was 1764 +/- 142 nmol l(-1) in control group and 694 +/- 213 in HOE group (P < 0.05). Infarct size was measured at 28 +/- 4% in control group vs. 17 +/- 2% in HOE group (P < 0.05). High-energy phosphates and myocardial function were better preserved in HOE group compared with control (P < 0.05). The beneficial effect of HOE on myocardial preservation was not blocked by 5HD nor were there any differences between APC and control groups. CONCLUSION NHE inhibition was effective in protecting myocardium from I/R injury in aged rats, whereas APC was not. 5HD failed to block the protective effect of NHE inhibition.
Collapse
|
18
|
A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 2010; 38:841-60. [DOI: 10.1042/bst0380841] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In addition to their normal physiological role in ATP production and metabolism, mitochondria exhibit a dark side mediated by the opening of a non-specific pore in the inner mitochondrial membrane. This mitochondrial permeability transition pore (MPTP) causes the mitochondria to breakdown rather than synthesize ATP and, if unrestrained, leads to necrotic cell death. The MPTP is opened in response to Ca2+ overload, especially when accompanied by oxidative stress, elevated phosphate concentration and adenine nucleotide depletion. These conditions are experienced by the heart and brain subjected to reperfusion after a period of ischaemia as may occur during treatment of a myocardial infarction or stroke and during heart surgery. In the present article, I review the properties, regulation and molecular composition of the MPTP. The evidence for the roles of CyP-D (cyclophilin D), the adenine nucleotide translocase and the phosphate carrier are summarized and other potential interactions with outer mitochondrial membrane proteins are discussed. I then review the evidence that MPTP opening mediates cardiac reperfusion injury and that MPTP inhibition is cardioprotective. Inhibition may involve direct pharmacological targeting of the MPTP, such as with cyclosporin A that binds to CyP-D, or indirect inhibition of MPTP opening such as with preconditioning protocols. These invoke complex signalling pathways to reduce oxidative stress and Ca2+ load. MPTP inhibition also protects against congestive heart failure in hypertensive animal models. Thus the MPTP is a very promising pharmacological target for clinical practice, especially once more specific drugs are developed.
Collapse
|
19
|
Zhang J, Bian HJ, Li XX, Liu XB, Sun JP, Li N, Zhang Y, Ji XP. ERK-MAPK signaling opposes rho-kinase to reduce cardiomyocyte apoptosis in heart ischemic preconditioning. Mol Med 2010; 16:307-15. [PMID: 20383434 DOI: 10.2119/molmed.2009.00121] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/16/2010] [Indexed: 01/09/2023] Open
Abstract
We and others have reported that Rho-kinase plays an important role in the pathogenesis of heart ischemia/reperfusion (I/R) injury. Studies have also demonstrated that the activation of Rho-kinase is reversed in ischemic preconditioning (IPC). However, the mechanisms by which Rho-kinase is increased in I/R and reversed in IPC are not thoroughly understood. In female Wistar rats, we created I/R by ligating the left anterior-descending branch of the coronary artery (LAD) for 30 min and releasing the ligature for 180 min. IPC rats underwent IPC (two cycles of 5-min ligation of the LAD and 5-min reflow) before I/R. IPC caused a significant increase in extracellular signal-regulated kinase (ERK)1/2 activity and reduced Rho-kinase activity and cardiomyocyte apoptosis (P<0.05 versus I/R). Administration of PD98059, an inhibitor of ERK-mitogen-activated protein kinase (MAPK), increased cardiomyocyte apoptosis, Caspase-3 activity and myocardial infarction size (P<0.05 versus IPC). Western-blot analysis showed that administration of PD98059 increased Rho-kinase activity. Treatment with fasudil, an inhibitor of Rho-kinase, reversed cell apoptosis caused by treatment with PD98059 in IPC. In addition, ROCK1 (Rho-kinase 1) may be the major Rho-kinase isoform that is opposed by ERK-MAPK signaling in IPC. These results indicate that ERK-MAPK signaling is required in IPC to oppose Rho-kinase activity in cardiomyocyte apoptosis in vivo.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research of the Chinese Ministry of Education and Public Health, Shandong University Qilu Hospital, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
In recent years, there has been increased interest in the mechanisms involved in anaesthetic-induced cardioprotection. It is not thoroughly understood how volatile anaesthetics protect the myocardium from ischaemia or reperfusion injury, but the overall mechanism is likely to be multifactorial. This review examines the recent experimental and clinical research underlying the cellular and molecular mechanisms involved in anaesthetic-induced preconditioning. A variety of intracellular signalling pathways have been implicated in the protective phenomenon. Ischaemic preconditioning and anaesthetic-induced preconditioning share similar molecular mechanisms, including activation of guanine nucleotide-binding proteins, triggering of second messenger pathways, activation of multiple kinases, mediation of nitric oxide formation and reactive oxygen species release, maintenance of intracellular and/or mitochondrial Ca2+ homeostasis and moderation of the opening of adenosine-triphosphate-sensitive potassium channels. A more thorough understanding of the multiple signalling steps and the ultimate cytoprotective mechanisms underlying anaesthetic-induced preconditioning may lead to improvements in the management of ischaemia and/or reperfusion injury.
Collapse
Affiliation(s)
- Z-Y Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, PR China
| | | |
Collapse
|
21
|
Nuclear factor-κB inhibition provides additional protection against ischaemia/reperfusion injury in delayed sevoflurane preconditioning. Eur J Anaesthesiol 2009; 26:496-503. [DOI: 10.1097/eja.0b013e328324ed2e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Stewart S, Lesnefsky EJ, Chen Q. Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res 2009; 153:224-31. [PMID: 19375683 DOI: 10.1016/j.trsl.2009.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/27/2022]
Abstract
Mitochondrial dysfunction contributes to myocardial injury during ischemia and reperfusion. Ischemia damages the mitochondrial electron transport chain. Therapeutic intervention during early reperfusion decreases cardiac injury, which suggests that myocardial injury can be attenuated even though mitochondria were already damaged during the preceding ischemia. Our previous study shows that amobarbital given only before ischemia prevents ischemic damage to the electron transport chain and decreases infarct size measured during reperfusion in Langendorff-perfused Fischer 344 rat hearts. In the current study, amobarbital was given at the onset of reperfusion to test whether the blockade of proximal electron transport only during early reperfusion can decrease myocardial injury. Amobarbital administrated during early reperfusion decreased infarct size compared with untreated hearts, which suggests that the modulation of electron transport during early reperfusion attenuates myocardial injury. The increased generation of reactive oxygen species (ROS) contributes to injury. We tested whether the blockade of proximal electron transport prevents ROS release from the mitochondria that sustained ischemic damage. The blockade of the proximal electron transport chain at complex I attenuates maximal ROS generation from ischemia-damaged mitochondria. Thus, the modulation of oxidative function during reperfusion provides a translationally relevant opportunity to prevent a portion of the mitochondrial-dependent injury. The cardiac protection by amobarbital given during reperfusion may result from decreased ROS generation from the electron transport chain.
Collapse
Affiliation(s)
- Sarah Stewart
- Department of Medicine, Division of Cardiology, Case Western Reserve University and Medical Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | | |
Collapse
|
23
|
Lu X, Liu H, Wang L, Schaefer S. Activation of NF-kappaB is a critical element in the antiapoptotic effect of anesthetic preconditioning. Am J Physiol Heart Circ Physiol 2009; 296:H1296-304. [PMID: 19304943 DOI: 10.1152/ajpheart.01282.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anesthetic preconditioning (APC), defined as brief exposure to inhalational anesthetics before cardiac ischemia-reperfusion (I/R), limits injury in both animal models and in humans. APC can result in the production of reactive oxygen species (ROS), and prior work has shown that APC can modify activation of NF-kappaB during I/R, with consequent reduction in the expression of inflammatory mediators. However, the role of NF-kappaB activation before I/R is unknown. Therefore, these experiments tested the hypothesis that APC-induced ROS results in activation of NF-kappaB before I/R, with consequent increased expression of antiapoptotic proteins such as Bcl-2 and decreased apoptosis. Experiments utilized an established perfused heart rat model of sevoflurane APC and I/R. The role of NF-kappaB was defined by a novel method of transient inhibition of the regulatory kinase IKK using the reversible inhibitor SC-514. In addition to functional measures of left ventricular developed and end-diastolic pressure, phosphorylation of IkappaBalpha and activation of NF-kappaB were measured along with cytosolic protein content of Bcl-2, release of cytochrome c, and degradation of caspase-3. APC resulted in ROS-dependent phosphorylation of IkappaBalpha and activation of NF-kappaB before I/R. APC also increased the expression of Bcl-2 before I/R. In addition to functional protection following I/R, APC resulted in lower release of cytochrome c and caspase-3 degradation. These protective effects of APC were abolished by transient inhibition of IkappaBalpha phosphorylation and NF-kappaB activation by SC-514 followed by washout. ROS-dependent activation of NF-kappaB by APC before I/R is a critical element in the protective effect of APC. APC reduces apoptosis and functional impairment by increasing Bcl-2 expression before I/R. Interventions that increase NF-kappaB activation before I/R should protect hearts from I/R injury.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, Univ. of California, One Shields Ave., TB 172, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
24
|
Tampo A, Hogan CS, Sedlic F, Bosnjak ZJ, Kwok WM. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol 2009; 156:432-43. [PMID: 19154423 DOI: 10.1111/j.1476-5381.2008.00026.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotection against ischaemia by anaesthetic-induced preconditioning (APC) is well established. However, the mechanism underlying Ca(2+) overload attenuation by APC is unknown. The effects of APC by isoflurane on the cardiac L-type Ca channel were investigated. EXPERIMENTAL APPROACH In a model of in vivo APC, Wistar rats were exposed to isoflurane (1.4%), delivered via a vaporizer in an enclosure, prior to thoracotomy. The Dahl S rats were similarly preconditioned to determine strain-dependent effects. Whole-cell patch clamp using cardiac ventricular myocytes was used to determine the L-type Ca(2+) current (I(Ca,L)) characteristics and calmodulin (CaM) levels were determined by Western blot analysis. Cytosolic Ca(2+) levels were monitored using fluo-4-AM. Action potential (AP) simulations examined the effects of APC. KEY RESULTS In Wistar rats, APC significantly accelerated I(Ca,L) inactivation kinetics. This was abolished when external Ca(2+) was replaced with Ba(2+), suggesting that Ca(2+)-dependent inactivation of I(Ca,L) was modulated by APC. Expression levels of CaM, a determinant of I(Ca,L) inactivation, were not affected. Attenuation of cytosolic Ca(2+) accumulation following oxidative stress was observed in the APC group. Simulations showed that the accelerated inactivation of I(Ca,L) resulted in a shortening of the AP duration. The Dahl S rat strain was resistant to APC and changes in I(Ca,L) inactivation were not observed in cardiomyocytes prepared from these rats. CONCLUSIONS AND IMPLICATIONS APC triggered persistent changes in the inactivation of cardiac L-type Ca channels. This can potentially lead to a reduction in Ca(2+) influx and attenuation of Ca(2+) overload during ischaemia/reperfusion.
Collapse
Affiliation(s)
- A Tampo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | |
Collapse
|
25
|
Argaud L, Gateau-Roesch O, Augeul L, Couture-Lepetit E, Loufouat J, Gomez L, Robert D, Ovize M. Increased mitochondrial calcium coexists with decreased reperfusion injury in postconditioned (but not preconditioned) hearts. Am J Physiol Heart Circ Physiol 2008; 294:H386-91. [PMID: 17951363 DOI: 10.1152/ajpheart.01035.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) is the main trigger for mitochondrial permeability transition pore opening, which plays a key role in cardiomyocyte death after ischemia-reperfusion. We investigated whether a reduced accumulation of mitochondrial Ca(2+) might explain the attenuation of lethal reperfusion injury by postconditioning. Anesthetized New Zealand White rabbits underwent 30 min of ischemia, followed by either 240 (infarct size protocol) or 60 (mitochondria protocol) min of reperfusion. They received either no intervention (control), preconditioning by 5-min ischemia and 5-min reperfusion, postconditioning by four cycles of 1-min reperfusion and 1-min ischemia at the onset of reflow, or pharmacological inhibition of the transition pore opening by N-methyl-4-isoleucine-cyclosporin (NIM811; 5 mg/kg iv) given at reperfusion. Area at risk and infarct size were assessed by blue dye injection and triphenyltetrazolium chloride staining. Mitochondria were isolated from the risk region for measurement of 1) Ca(2+) retention capacity (CRC), and 2) mitochondrial content of total (atomic absorption spectrometry) and ionized (potentiometric technique) calcium concentration. CRC averaged 0.73 +/- 0.16 in control vs. 4.23 +/- 0.17 mug Ca(2+)/mg proteins in shams (P < 0.05). Postconditioning, preconditioning, or NIM811 significantly increased CRC (P < 0.05 vs. control). In the control group, total and free mitochondrial calcium significantly increased to 2.39 +/- 0.43 and 0.61 +/- 0.10, respectively, vs. 1.42 +/- 0.09 and 0.16 +/- 0.01 mug Ca(2+)/mg in sham (P < 0.05). Surprisingly, whereas total and ionized mitochondrial Ca(2+) decreased in preconditioning, it significantly increased in postconditioning and NIM811 groups. These data suggest that retention of calcium within mitochondria may explain the decreased reperfusion injury in postconditioned (but not preconditioned) hearts.
Collapse
Affiliation(s)
- Laurent Argaud
- INSERM U866-Laboratoire de Physiologie Lyon-Nord, 8 Avenue Rockefeller, Lyon Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodrigo GC, Samani NJ. Ischemic preconditioning of the whole heart confers protection on subsequently isolated ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 294:H524-31. [DOI: 10.1152/ajpheart.00980.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current cellular models of ischemic preconditioning (IPC) rely on inducing preconditioning in vitro and may not accurately represent complex pathways triggered by IPC in the intact heart. Here, we show that it is possible to precondition the intact heart and to subsequently isolate individual ventricular myocytes that retain the protection triggered by IPC. Myocytes isolated from Langendorff-perfused hearts preconditioned with three cycles of ischemia-reperfusion were exposed to metabolic inhibition and reenergization. Injury was assessed from induction of hypercontracture and loss of Ca2+ homeostasis and contractile function. IPC induced an immediate window of protection in isolated myocytes, with 64.3 ± 7.6% of IPC myocytes recovering Ca2+ homeostasis compared with 16.9 ± 2.4% of control myocytes ( P < 0.01). Similarly, 64.1 ± 5.9% of IPC myocytes recovered contractile function compared with 15.3 ± 2.2% of control myocytes ( P < 0.01). Protection was prevented by the presence of 0.5 mM 5-hydroxydecanoate during the preconditioning stimulus. This early protection disappeared after 6 h, but a second window of protection developed 24 h after preconditioning, with 54.9 ± 4.7% of preconditioned myocytes recovering Ca2+ homeostasis compared with 12.6 ± 2.9% of control myocytes ( P < 0.01). These data show that “true” IPC of the heart confers both windows of protection in the isolated myocytes, with a similar temporal relationship to in vivo preconditioning of the whole heart. The model should allow future studies in isolated cells of the protective mechanisms induced by true ischemia.
Collapse
|
27
|
An J, Bosnjak ZJ, Jiang MT. Myocardial Protection by Isoflurane Preconditioning Preserves Ca2+ Cycling Proteins Independent of Sarcolemmal and Mitochondrial KATP Channels. Anesth Analg 2007; 105:1207-13, table of contents. [DOI: 10.1213/01.ane.0000281053.13929.d0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Zaugg M. Is protection by inhalation agents volatile? Controversies in cardioprotection. Br J Anaesth 2007; 99:603-6. [DOI: 10.1093/bja/aem276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Li YZ, Liu XH, Zhu XM, Cai LR. ARC contributes to the inhibitory effect of preconditioning on cardiomyocyte apoptosis. Apoptosis 2007; 12:1589-95. [PMID: 17594520 DOI: 10.1007/s10495-007-0094-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Inhibition of cardiomyocyte apoptosis plays a key role in preconditioning-triggered cardioprotection. However, the molecular mechanism(s) by which preconditioning inhibits apoptosis is not fully understood. Apoptosis repressor with caspase recruitment domain (ARC) possesses the ability to block hypoxia-induced cardiomyocyte apoptosis. We tested whether ARC contributes to the inhibitory effect of preconditioning on cardiomyocyte apoptosis. Cardiomyocytes from 1-day-old male Sprague-Dawley rats were preconditioned by exposing to 10 min of hypoxia, followed by 30 min of reoxygenation. Then, the preconditioned and non-preconditioned cardiomyocytes were exposed to 90 min of hypoxia followed by 120 min of reoxygenation. The results showed that preconditioning inhibited cell death induced by hypoxia and reoxygenation. Hypoxia and reoxygenation could induce a decrease of ARC protein levels. Intriguingly, preconditioning could maintain ARC protein levels. Inhibition of endogenous ARC expression by ARC antisense oligonucleotides reduced the inhibitory effect of preconditioning on apoptosis. Furthermore, preconditioning-induced suppression of the release of mitochondrial cytochrome c to cytosol and caspase-3 activation could be abolished by the inhibition of endogenous ARC expression using ARC antisense oligonucleotides. CONCLUSION These data indicate that ARC participates in preconditioning-triggered cardioprotection by interfering with cytochrome c release and caspase-3 activation.
Collapse
Affiliation(s)
- Yu Zhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, PLA General Hospital, 100853 Beijing, China
| | | | | | | |
Collapse
|
30
|
Suleiman MS, Zacharowski K, Angelini GD. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. Br J Pharmacol 2007; 153:21-33. [PMID: 17952108 DOI: 10.1038/sj.bjp.0707526] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.
Collapse
Affiliation(s)
- M-S Suleiman
- Bristol Heart Institute and Department of Anaesthesia, Faculty of Medicine and Dentistry, Bristol Royal Infirmary, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
31
|
Jiang MT, Nakae Y, Ljubkovic M, Kwok WM, Stowe DF, Bosnjak ZJ. Isoflurane Activates Human Cardiac Mitochondrial Adenosine Triphosphate-Sensitive K+ Channels Reconstituted in Lipid Bilayers. Anesth Analg 2007; 105:926-32, table of contents. [PMID: 17898367 DOI: 10.1213/01.ane.0000278640.81206.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Activation of the mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) has been proposed as a critical step in myocardial protection by isoflurane-induced preconditioning in humans and animals. Recent evidence suggests that reactive oxygen species (ROS) may mediate isoflurane-mediated myocardial protection. In this study, we examined the direct effect of isoflurane and ROS on human cardiac mitoK(ATP) channels reconstituted into the lipid bilayers. METHODS Inner mitochondrial membranes were isolated from explanted human left ventricles not suitable for heart transplantation and fused into lipid bilayers in symmetrical potassium glutamate solution (150 mM). ATP-sensitive K+ currents were recorded before and after exposure to isoflurane and H2O2 under voltage clamp. RESULTS The human mitoK(ATP) was identified by its sensitivity to inhibition by ATP and 5-hydroxydecanoate. Addition of isoflurane (0.8 mM) increased the open probability of the mitoK(ATP) channels, either in the presence or absence of ATP inhibition (0.5 mM). The isoflurane-mediated increase in K+ currents was completely inhibited by 5-hydroxydecanoate. Similarly, H2O2 (200 microM) was able to activate the mitoK(ATP) previously inhibited by ATP. CONCLUSIONS These data confirm that isoflurane, as well as ROS, directly activates reconstituted human cardiac mitoK(ATP) channel in vitro, without apparent involvement of cytosolic protein kinases, as commonly proposed. Activation of the mitoK(ATP) channel may contribute to the myocardial protective effect of isoflurane in the human heart.
Collapse
Affiliation(s)
- Ming T Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
32
|
An J, Camara AKS, Riess ML, Rhodes SS, Varadarajan SG, Stowe DF. Improved mitochondrial bioenergetics by anesthetic preconditioning during and after 2 hours of 27 degrees C ischemia in isolated hearts. J Cardiovasc Pharmacol 2006; 46:280-7. [PMID: 16116332 DOI: 10.1097/01.fjc.0000175238.18702.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined if sevoflurane given before cold ischemia of intact hearts (anesthetic preconditioning, APC) affords additional protection by further improving mitochondrial energy balance and if this is abolished by a mitochondrial KATP blocker. NADH and FAD fluorescence was measured within the left ventricular wall of 5 groups of isolated guinea pig hearts: (1) hypothermia alone; (2) hypothermia+ischemia; (3) APC (4.1% sevoflurane)+cold ischemia; (4) 5-HD+cold ischemia, and (5) APC+5-HD+cold ischemia. Hearts were exposed to sevoflurane for 15 minutes followed by 15 minutes of washout at 37 degrees C before cooling, 2 hours of 27 degrees C ischemia, and 2 hours of 37 degrees C reperfusion. The KATP channel inhibitor 5-HD was perfused before and after sevoflurane. Ischemia caused a rapid increase in NADH and a decrease in FAD that waned over 2 hours. Warm reperfusion led to a decrease in NADH and an increase in FAD. APC attenuated the changes in NADH and FAD and further improved postischemic function and reduced infarct size. 5-HD blocked the cardioprotective effects of APC but not APC-induced alterations of NADH and FAD. Thus, APC improves redox balance and has additive cardioprotective effects with mild hypothermic ischemia. 5-HD blocks APC-induced cardioprotective effects but not improvements in mitochondrial bioenergetics. This suggests that mediation of protection by KATP channel opening during cold ischemia and reperfusion is downstream from the APC-induced improvement in redox state or that these changes in redox state are not attenuated by KATP channel antagonism.
Collapse
Affiliation(s)
- Jianzhong An
- Anesthesiology Research Laboratory, Department of Anesthesiology, Medical College of Wisconsin, and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
33
|
Riess ML, Camara AKS, Rhodes SS, McCormick J, Jiang MT, Stowe DF. Increasing Heart Size and Age Attenuate Anesthetic Preconditioning in Guinea Pig Isolated Hearts. Anesth Analg 2005; 101:1572-1576. [PMID: 16301221 DOI: 10.1213/01.ane.0000181834.39483.0b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anesthetic preconditioning (APC) reduces myocardial ischemia/reperfusion injury. Recent investigations have reported that older hearts are not susceptible to APC. We investigated if increasing heart size with age determines the susceptibility to APC in young guinea pigs. Langendorff-prepared guinea pig hearts of different weights (1.1-2.2 g) and ages (2-7 wks) were exposed to 1.3 mM sevoflurane for 15 min followed by 30 min washout (APC; n = 20) before 30 min global ischemia and 120 min reperfusion. Control hearts (n = 20) were not subject to APC. Left ventricular pressure was measured isovolumetrically and infarct size was determined by triphenyltetrazolium staining. Functional data were not different between groups at the beginning of the experiments nor did they correlate with heart weight or age. At 120 min reperfusion, left ventricular pressure, coronary flow, and tissue viability showed significant negative correlations with increasing heart weight and age in APC but not in control hearts; i.e., APC improved function and attenuated infarct size better in smaller/younger hearts than in larger/older hearts. Thus, increasing age and heart size attenuate the susceptibility for APC even in younger guinea pigs. This may have important implications for further basic science research and the possible clinical applicability of APC in humans.
Collapse
Affiliation(s)
- Matthias L Riess
- Departments of Anesthesiology and Physiology, Cardiovascular Research Center, Medical College of Wisconsin, and the VA Medical Center Research Service, Milwaukee, Wisconsin
| | | | | | | | | | | |
Collapse
|
34
|
Obal D, Dettwiler S, Favoccia C, Scharbatke H, Preckel B, Schlack W. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg 2005; 101:1252-1260. [PMID: 16243977 DOI: 10.1213/01.ane.0000181336.96511.32] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Volatile anesthetics induce myocardial preconditioning and can also protect the heart when given at the onset of reperfusion-a practice recently termed "postconditioning." We investigated the role of mitochondrial KATP (mKATP)-channels in sevoflurane-induced cardioprotection for both preconditioning and postconditioning alone and whether there is a synergistic effect of both. Rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Infarct size was determined by triphenyltetrazolium staining. The following protocols were used: 1) preconditioning (S-Pre, n = 10, achieved by 2 periods of 5 min sevoflurane administration (1 MAC) followed by 10 min of washout); 2) sevoflurane postconditioning (1 MAC of sevoflurane given for 2 min at the beginning of reperfusion; S-Post, n = 10); 3) administration before and after ischemia (S-Pre + S-Post, n = 10). Protocols 1-3 were repeated in the presence of 5-hydroxydecanoate (5HD), a specific mKATP-channel-blocker (S-Pre + S-Post + 5HD, S-Pre + 5HD: n = 10; S-Post + 5HD: n = 9). Nine rats served as untreated controls (CON) or received 5HD alone (5HD, n = 10). Both S-Pre (23% +/- 13% of the area at risk, mean +/- sd) and S-Post (18% +/- 5%) reduced infarct size compared with CON (49% +/- 11%, both P < 0.05). S-Pre + S-Post resulted in a larger reduction of infarct size (12% +/- 5%, P = 0.054 versus S-Pre) compared with administration before or after ischemia alone. 5HD diminished the protection in all three sevoflurane treated groups (S-Pre + 5HD, 35% +/- 12%; S-Post + 5HD, 44% +/- 12%; S-Pre + S-Post + 5HD, 46% +/- 14%;) but given alone had no effect on infarct size (41% +/- 13%). Sevoflurane preconditioning and postconditioning protects against myocardial ischemia-reperfusion injury. The combination of preconditioning and postconditioning provides additive cardioprotection and is mediated, at least in part, by mKATP-channels.
Collapse
Affiliation(s)
- Detlef Obal
- Klinik für Anaesthesiologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Hidalgo C, Donoso P, Carrasco MA. The ryanodine receptors Ca2+ release channels: cellular redox sensors? IUBMB Life 2005; 57:315-22. [PMID: 16036616 DOI: 10.1080/15216540500092328] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The release of Ca2+ from intracellular stores mediated by ryanodine receptors (RyR) Ca2+ release channels is essential for striated muscle contraction and contributes to diverse neuronal functions including synaptic plasticity. Through Ca2+-induced Ca2+-release, RyR can amplify and propagate Ca2+ signals initially generated by Ca2+ entry into cardiac muscle cells or neurons. In contrast, RyR activation in skeletal muscle is under membrane potential control and does not require Ca2+ entry. Non-physiological or endogenous redox molecules can change RyR function via modification of a few RyR cysteine residues. This critical review will address the functional effects of RyR redox modification on Ca2+ release in skeletal muscle and cardiac muscle as well as in the activation of signaling cascades and transcriptional regulators required for synaptic plasticity in neurons. Specifically, the effects of endogenous redox-active agents, which induce S-nitrosylation or S-glutathionylation of particular channel cysteine residues, on the properties of muscle RyRs will be discussed. The effects of endogenous redox RyR modifications on cardiac preconditioning will be analyzed as well. In the hippocampus, sequential activation of ERKs and CREB is a requisite for Ca2+-dependent gene expression associated with long lasting synaptic plasticity. Results showing that reactive oxygen/nitrogen species modify RyR channels from neurons and the RyR-mediated sequential activation of neuronal ERKs and CREB produced by hydrogen peroxide and other stimuli will be also discussed.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- FONDAP Center of Molecular Studies of the Cell, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
36
|
Liu H, Wang L, Eaton M, Schaefer S. Sevoflurane preconditioning limits intracellular/mitochondrial Ca2+ in ischemic newborn myocardium. Anesth Analg 2005; 101:349-355. [PMID: 16037142 DOI: 10.1213/01.ane.0000154197.24763.ec] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Sevoflurane preconditioning (SPC) in adult hearts reduces myocardial ischemia/reperfusion (I/R) injury, an effect that may be mediated by reductions in intracellular Ca(2+) ([Ca(2+)](i)) and/or mitochondrial Ca(2+) ([Ca(2+)](m)) accumulation during ischemia and reperfusion. Because the physiology, pharmacology, and metabolic responses of the newborn differ from adults, we tested the hypothesis that SPC protects newborn myocardium by limiting [Ca(2+)](i) and [Ca(2+)](m) by a K(ATP) channel-dependent mechanism. Fluorescence spectrofluorometry and nuclear magnetic resonance spectroscopy were used to measure [Ca(2+)](i), [Ca(2+)](m), and adenosine triphosphate (ATP) in 4- to 7-day-old Langendorff-perfused rabbit hearts. Three experimental groups were used to study the effect of SPC on [Ca(2+)](m)/[Ca(2+)](i), ATP, as well as hemodynamics and ischemic injury. The role of mitochondrial K(ATP) channels was assessed by exposing the SPC hearts to the mitochondrial K(ATP) channel blocker 5-hydroxydecanoic acid. Our results show that SPC significantly decreased [Ca(2+)](i) and [Ca(2+)](m) during I/R, as well as decreased creatine kinase release during reperfusion and resulted in higher ATP. 5-Hydroxydecanoic acid abolished the effect of SPC on [Ca(2+)], hemodynamics, ATP, and creatine kinase release. In conclusion, decreased [Ca(2+)](i) and [Ca(2+)](m) observed with SPC is associated with greater ATP recovery as well as diminished cell injury. Mitochondrial K(ATP) channel blockade attenuates the SPC effect during I/R, suggesting that these channels are involved in the protective effects of SPC in the newborn. IMPLICATIONS The results of this study support the hypothesis that sevoflurane preconditioning protects newborn hearts from calcium overload and ischemic injury via a mechanism dependent on mitochondrial KATP channels.
Collapse
Affiliation(s)
- Hong Liu
- *Department of Anesthesiology and Pain Medicine; and †Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis Medical Center, Sacramento, California
| | | | | | | |
Collapse
|
37
|
Qian LP, Zhu SS, Cao JL, Zeng YM. Isoflurane preconditioning protects against ischemia-reperfusion injury partly by attenuating cytochrome c release from subsarcolemmal mitochondria in isolated rat hearts. Acta Pharmacol Sin 2005; 26:813-20. [PMID: 15960887 DOI: 10.1111/j.1745-7254.2005.00117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM To examine if isoflurane preconditioning can attenuate ischemia/reperfusion injury by reducing cytochrome c release from inner mitochondrial membrane. METHODS Isolated hearts of Sprague-Dawley rats were perfused on Langendorff apparatus. Hearts were randomly assigned to a non-treated group (CON group, n=12) or three isoflurane preconditioning groups (0.5% ISC group, 1.0% ISC group, and 2.0% ISC group; n=12). In the latter three groups, isoflurane was given at concentrations of 0.5%, 1.0%, and 2.0% for 15 min with 15-min washout before 30-min ischemia. Subsarcolemmal mitochondria of the myocardium were isolated after 60-min reperfusion. Hemodynamics of the each heart was recorded, infarct size of the hearts and contents of cytosolic cytochrome or mitochondrial cytochrome c were measured at the end of reperfusion. Morphology of isolated mitochondria in the four groups was evaluated, respectively. RESULTS Compared with the CON group, cytosolic cytochrome c in 0.5% ISC group, 1.0% ISC group, and 2.0% ISC group were significantly decreased along with a significant increase of mitochondrial cytochrome c. Infarct size of the hearts in the four groups were 56%+/-12%, 41%+/-12%, 32%+/-7% and 33%+/-11%, respectively. The values of the three isoflurane preconditioning groups were significantly lower than that of the CON group (P<0.05). Isoflurane exposure before ischemia can attenuate the change of morphology of mitochondria after reperfusion. The effects of 2.0% isoflurane on reducing cytochrome c release were more remarkable than 0.5% and 1.0% concentrations of isoflurane. CONCLUSION Myocardioprotective effects of isoflurane preconditioning were associated with attenuation of cytochrome c loss from the inner membrane of subsarcolemmal mitochondria.
Collapse
Affiliation(s)
- Li-Ping Qian
- Jiangsu Provincial Key Lab of Anesthesiology, Jiangsu Institute of Anesthesiology, Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | |
Collapse
|
38
|
De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg 2005; 100:1584-1593. [PMID: 15920178 DOI: 10.1213/01.ane.0000153483.61170.0c] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiac surgery and some noncardiac procedures are associated with a significant risk of perioperative cardiac morbid events. Experimental data indicate that clinical concentrations of volatile general anesthetics protect the myocardium from ischemia and reperfusion injury, as shown by decreased infarct size and a more rapid recovery of contractile function on reperfusion. These anesthetics may also mediate protective effects in other organs, such as the brain and kidney. Recently, a number of reports have indicated that these experimentally observed protective effects may also have clinical implications in cardiac surgery. However, the impact of the use of volatile anesthetics on outcome measures, such as postoperative mortality and recovery in cardiac and noncardiac surgery, is yet to be determined.
Collapse
Affiliation(s)
- Stefan G De Hert
- *Department of Anesthesiology, University Hospital Antwerp, Edegem, Belgium; †Department of Anesthesia and Intensive Care, European Hospital, University of Rome Tor Vergata, Rome, Italy; ‡Department of Anesthesia and Critical Care, Sudbury Regional Hospital, Sudbury, Ontario, Canada; §Departments of Anesthesiology and Physiology, The Medical College of Wisconsin, Department of Biomedical Engineering, Marquette University; Research Service, Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
39
|
Penna C, Alloatti G, Cappello S, Gattullo D, Berta G, Mognetti B, Losano G, Pagliaro P. Platelet-activating factor induces cardioprotection in isolated rat heart akin to ischemic preconditioning: role of phosphoinositide 3-kinase and protein kinase C activation. Am J Physiol Heart Circ Physiol 2005; 288:H2512-20. [PMID: 15637120 DOI: 10.1152/ajpheart.00599.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic preconditioning (IP) is a cardioprotective mechanism against myocellular death and cardiac dysfunction resulting from reperfusion of the ischemic heart. At present, the precise list of mediators involved in IP and the pathways of their mechanisms of action are not completely known. The aim of the present study was to investigate the role of platelet-activating factor (PAF), a phospholipid mediator that is known to be released by the ischemic-reperfused heart, as a possible endogenous agent involved in IP. Experiments were performed on Langendorff-perfused rat hearts undergoing 30 min of ischemia followed by 2 h of reperfusion. Treatment with a low concentration of PAF (2 × 10−11 M) before ischemia reduced the extension of infarct size and improved the recovery of left ventricular developed pressure during reperfusion. The cardioprotective effect of PAF was comparable to that observed in hearts in which IP was induced by three brief (3 min) periods of ischemia separated by 5-min reperfusion intervals. The PAF receptor antagonist WEB-2170 (1 × 10−9 M) abrogated the cardioprotective effect induced by both PAF and IP. The protein kinase C (PKC) inhibitor chelerythrine (5 × 10−6 M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (5 × 10−5 M) also reduced the cardioprotective effect of PAF. Western blot analysis revealed that following IP treatment or PAF infusion, the phosphorylation of PKC-ε and Akt (the downstream target of PI3K) was higher than that in control hearts. The present data indicate that exogenous applications of low quantities of PAF induce a cardioprotective effect through PI3K and PKC activation, similar to that afforded by IP. Moreover, the study suggests that endogenous release of PAF, induced by brief periods of ischemia and reperfusion, may participate to the triggering of the IP of the heart.
Collapse
Affiliation(s)
- Claudia Penna
- Dipartimento di Scienze Cliniche e Biologiche, ASO S. Luigi, Orbassano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Saini HK, Dhalla NS. Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 288:H2260-70. [PMID: 15653754 DOI: 10.1152/ajpheart.01153.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although ischemia-reperfusion (I/R) has been shown to affect subcellular organelles that regulate the intracellular Ca2+concentration ([Ca2+]i), very little information regarding the Ca2+handling ability of cardiomyocytes obtained from I/R hearts is available. To investigate changes in [Ca2+]idue to I/R, rat hearts in vitro were subjected to 10–30 min of ischemia followed by 5–30 min of reperfusion. Cardiomyocytes from these hearts were isolated and purified; [Ca2+]iwas measured by employing fura-2 microfluorometry. Reperfusion for 30 min of the 20-min ischemic hearts showed attenuated cardiac performance, whereas basal [Ca2+]ias well as the KCl-induced increase in [Ca2+]iand isoproterenol (Iso)-induced increase in [Ca2+]iin cardiomyocytes remained unaltered. On the other hand, reperfusion of the 30-min ischemic hearts for different periods revealed marked changes in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]iwithout any alterations in the KCl-induced increase in [Ca2+]ior S(−)-BAY K 8644-induced increase in [Ca2+]i. The I/R-induced alterations in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]iin cardiomyocytes were attenuated by an antioxidant mixture containing superoxide dismutase and catalase as well as by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2for 30 min. These results suggest that abnormalities in basal [Ca2+]ias well as mobilization of [Ca2+]iupon β-adrenoceptor stimulation in cardiomyocytes are dependent on the duration of ischemic injury to the myocardium. Furthermore, Ca2+handling defects in cardiomyocytes appear to be mediated through oxidative stress in I/R hearts.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Catalase/pharmacology
- Cell Survival/physiology
- Hydrogen Peroxide/pharmacology
- In Vitro Techniques
- Ischemic Preconditioning, Myocardial
- Isoproterenol/pharmacology
- Male
- Myocardial Reperfusion Injury/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxidants/pharmacology
- Oxidative Stress/physiology
- Potassium Chloride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/metabolism
- Superoxide Dismutase/pharmacology
- Ventricular Pressure/physiology
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
41
|
Saini HK, Elimban V, Dhalla NS. Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 289:H614-23. [PMID: 15821038 DOI: 10.1152/ajpheart.00101.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10-30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5'-[gamma-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, MB, Canada R2H 2A6
| | | | | |
Collapse
|
42
|
Chiari P, Bouvet F, Piriou V. Préconditionnement myocardique induit par les agents anesthésiques halogénés : bases fondamentales et implications cliniques. ACTA ACUST UNITED AC 2005; 24:383-96. [PMID: 15826789 DOI: 10.1016/j.annfar.2005.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/27/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Volatile halogenated anaesthetics offer a myocardial protection when they are administrated before a myocardial ischaemia. Cellular mechanisms involved in anaesthetic preconditioning are now better understood. The objectives of this review are to understand the anaesthetic-induced preconditioning underlying mechanisms and to know the clinical implications. DATA SOURCES References were obtained from PubMed data bank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the following keywords: volatile anaesthetic, isoflurane, halothane, sevoflurane, desflurane, preconditioning, protection, myocardium. DATA SYNTHESIS Ischaemic preconditioning (PC) is a myocardial endogenous protection against ischaemia. It has been described as one or several short ischaemia before a sustained ischemia. These short ischaemia trigger a protective signal against this longer ischaemia. An ischemic organ is able to precondition a remote organ. It is possible to replace the short ischaemia by a preadministration of halogenated volatile anaesthetic with the same protective effect, this is called anaesthetic PC (APC). APC and ischaemic PC share similar underlying biochemical mechanisms including protein kinase C, tyrosine kinase activation and mitochondrial and sarcolemnal K(ATP) channels opening. All halogenated anaesthetics can produce an anaesthetic PC effect. Myocardial protection during reperfusion, after the long ischaemia, has been shown by successive short ischaemia or volatile anaesthetic administration, this is called postconditioning. Ischaemic PC has been described in humans in 1993. Clinical studies in human cardiac surgery have shown the possibility of anaesthetic PC with volatile anaesthetics. These studies have shown a decrease of postoperative troponin in patient receiving halogenated anaesthetics.
Collapse
Affiliation(s)
- P Chiari
- Inserm E 0226, département d'anesthésie-réanimation, hôpital cardiovasculaire Louis-Pradel, 28, avenue Doyen-Lépine, 69500 Lyon Bron, France
| | | | | |
Collapse
|
43
|
Obal D, Weber NC, Zacharowski K, Toma O, Dettwiler S, Wolter JI, Kratz M, Müllenheim J, Preckel B, Schlack W. Role of protein kinase C-ε (PKCε) in isoflurane-induced cardioprotection. Br J Anaesth 2005; 94:166-73. [PMID: 15542537 DOI: 10.1093/bja/aei022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Volatile anaesthetics precondition the heart against infarction, an effect partly mediated by activation of the epsilon isoform of protein kinase C (PKCepsilon). We investigated whether cardioprotection by activation of PKCepsilon depends on the isoflurane concentration. METHODS Anaesthetized rats underwent 25 min of coronary artery occlusion followed by 120 min of reperfusion and were randomly assigned to the following groups (n=10 in each group): isoflurane preconditioning induced by 15 min administration of 0.4 minimal alveolar concentration (MAC) (0.4MAC), 1 MAC (1MAC) or 1.75 MAC (1.75MAC) followed by 10 min washout before ischaemia. Each protocol was repeated in the presence of the PKC inhibitor staurosporine (10 microg kg(-1)): 0.4MAC+S, 1MAC+S and 1.75MAC+S. Controls were untreated (CON) and additional hearts received staurosporine without isoflurane (S). In a second set of experiments (n=6 in each group) hearts were excised before the infarct inducing ischaemia, and phosphorylation and translocation of PKCepsilon were determined by western blot analysis. RESULTS Isoflurane reduced infarct size from a mean of 61(SEM 2)% of the area at risk in controls to 20(1)% (0.4MAC), 26(3)% (1MAC) and 30(1)% (1.75MAC) (all P<0.01 vs CON or S). This protection was partially reversed by administration of staurosporine in the 0.4MAC+S group (30[2]%; P<0.05 vs 0.4MAC) group, but not after administration of 1 MAC or 1.75 MAC isoflurane (26[2]% and 31[2]%, respectively). Thus 0.4MAC increased PKCepsilon phosphorylation, and this effect was blocked by staurosporine. Higher concentrations of isoflurane did not change PKCepsilon phosphorylation. PKCepsilon was translocated to the membrane fraction after administration of 0.4 MAC isoflurane, but not after 1.0 or 1.75 MAC. CONCLUSIONS Although isoflurane preconditioning resulted in a reduction in infarct size at all concentrations used, the protection was mediated by phosphorylation and translocation of PKCepsilon only at 0.4 MAC.
Collapse
Affiliation(s)
- D Obal
- Department of Anesthesiology, University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
An J, Camara AKS, Rhodes SS, Riess ML, Stowe DF. Warm ischemic preconditioning improves mitochondrial redox balance during and after mild hypothermic ischemia in guinea pig isolated hearts. Am J Physiol Heart Circ Physiol 2005; 288:H2620-7. [PMID: 15653757 DOI: 10.1152/ajpheart.01124.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.
Collapse
Affiliation(s)
- Jianzhong An
- Medical College of Wisconsin, M4280, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
45
|
Camara AKS, Chen Q, Rhodes SS, Riess ML, Stowe DF. Negative inotropic drugs alter indexes of cytosolic [Ca2+]-left ventricular pressure relationships after ischemia. Am J Physiol Heart Circ Physiol 2004; 287:H667-80. [PMID: 15059780 DOI: 10.1152/ajpheart.01142.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Negative inotropic agents may differentially modulate indexes of cytosolic [Ca(2+)]-left ventricular (LV) pressure (LVP) relationships when given before and after ischemia. We measured and calculated [Ca(2+)], LVP, velocity ratios [[(d[Ca(2+)]/dt(max))/(dLVP/dt(max)); VR(max)] and [(d[Ca(2+)]/dt(min))/(dLVP/dt(min)); VR(min)]], and area ratio (AR; area [Ca(2+)]/area LVP per beat) before and after global ischemia in guinea pig isolated hearts. Ca(2+) transients were recorded by indo 1-AM fluorescence via a fiberoptic probe placed at the LV free wall. [Ca(2+)]-LVP loops were acquired by plotting LVP as a function of [Ca(2+)] at multiple time points during the cardiac cycle. Hearts were perfused with bimakalim, 2,3-butanedione monoxime (BDM), nifedipine, or lidocaine before and after 30 min of ischemia. Before ischemia, each drug depressed LVP, but only nifedipine decreased both LVP and [Ca(2+)] with a downward and leftward shift of the [Ca(2+)]-LVP loop. After ischemia, each drug depressed LVP and [Ca(2+)] with a downward and leftward shift of the [Ca(2+)]-LVP loop. Each drug except BDM decreased d[Ca(2+)]/dt(max); nifedipine decreased d[Ca(2+)]/dt(min), whereas lidocaine increased it, and bimakalim and BDM had no effect on d[Ca(2+)]/dt(min). Each drug except bimakalim increased VR(max) and VR(min) before ischemia; after ischemia, only BDM and nifedipine increased VR(max) and VR(min). Before and after ischemia, BDM and nifedipine increased AR, whereas lidocaine and bimakalim had no effect. At 30 min of reperfusion, control hearts exhibited marked Ca(2+) overload and depressed LVP. In each drug-pretreated group Ca(2+) overload was reduced on reperfusion, but only the group pretreated with nifedipine exhibited both higher LVP and lower [Ca(2+)]. These results show that negative inotropic drugs are less capable of reducing [Ca(2+)] after ischemia so that there is a relatively larger Ca(2+) expenditure for contraction/relaxation after ischemia than before ischemia. Moreover, the differential effects of pretreatment with negative inotropic drugs on [Ca(2+)]-LVP relationships after ischemia suggest that these drugs, especially nifedipine, can elicit cardiac preconditioning.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Physiology, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
46
|
Stowe DF, Kevin LG. Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics. Antioxid Redox Signal 2004; 6:439-48. [PMID: 15025946 DOI: 10.1089/152308604322899512] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Volatile anesthetic agents, such as halothane, isoflurane, and sevoflurane, are the drugs most commonly used to maintain the state of general anesthesia. They have long been known to provide some protection against the effects of cardiac ischemia and reperfusion. Several mechanisms likely contribute to this cardioprotection, including coronary vasodilation, reduced contractility with corresponding decreased metabolic demand, and a direct effect to decrease myocardial Ca(2+) entry through L-type Ca(2+) channels. Recently, a memory phase to cardioprotection has been observed by these agents, which is inhibited by ATP-sensitive potassium channel inhibition. These features suggest a pathway that shares components with those required for ischemic preconditioning, despite the remarkable differences between these two stimuli, and the term anesthetic preconditioning (APC) has been adopted. Scavengers of reactive oxygen species (ROS) abrogate APC, suggesting an effect of anesthetic agents to cause ROS formation. Such an effect has recently been directly demonstrated. The mechanism by which these drugs induce ROS formation is unclear. However, direct inhibition of mitochondrial electron transport system enzymes, and altered mitochondrial bioeneregtics in hearts preconditioned by volatile anesthetics, strongly implicate the mitochondria as the target for these effects. Furthermore, decreased mitochondrial ROS formation during ischemia and reperfusion in hearts preconditioned by volatile anesthetics might underlie the improved postischemic structure and function. APC presents a safe mode to apply preconditioning to human hearts. This review summarizes the major developments in a field that is exciting to clinicians and basic scientists alike.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratories, Department of Anesthesiology, and Cardiovascular Research Center, The Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
47
|
Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC. Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 2003; 91:551-65. [PMID: 14504159 DOI: 10.1093/bja/aeg205] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischaemic damage. Major milestones regarding the elucidation of this phenomenon have been passed in the last two decades. The signalling and amplification cascades from the preconditioning stimulus, be it ischaemic or pharmacological, to the putative end-effectors, including the mechanisms involved in cellular protection, are discussed in this review. Volatile anaesthetics and opioids effectively elicit pharmacological preconditioning. Anaesthetic-induced preconditioning and ischaemic preconditioning share many fundamental steps, including activation of G-protein-coupled receptors, multiple protein kinases and ATP-sensitive potassium channels (K(ATP) channels). Volatile anaesthetics prime the activation of the sarcolemmal and mitochondrial K(ATP) channels, the putative end-effectors of preconditioning, by stimulation of adenosine receptors and subsequent activation of protein kinase C (PKC) and by increased formation of nitric oxide and free oxygen radicals. In the case of desflurane, stimulation of alpha- and beta-adrenergic receptors may also be of importance. Similarly, opioids activate delta- and kappa-opioid receptors, and this also leads to PKC activation. Activated PKC acts as an amplifier of the preconditioning stimulus and stabilizes, by phosphorylation, the open state of the mitochondrial K(ATP) channel (the main end-effector in anaesthetic preconditioning) and the sarcolemmal K(ATP) channel. The opening of K(ATP) channels ultimately elicits cytoprotection by decreasing cytosolic and mitochondrial Ca(2+) overload.
Collapse
Affiliation(s)
- M Zaugg
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Rhodes SS, Ropella KM, Camara AKS, Chen Q, Riess ML, Stowe DF. How Inotropic Drugs Alter Dynamic and Static Indices of Cyclic Myoplasmic [Ca2+] to Contractility Relationships in Intact Hearts. J Cardiovasc Pharmacol 2003; 42:539-53. [PMID: 14508241 DOI: 10.1097/00005344-200310000-00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors examined effects of positive (dopamine and digoxin) and negative (nifedipine and lidocaine) inotropic interventions on the instantaneous cyclic relationship between myoplasmic [Ca2+] and simultaneously developed left ventricular pressure (LVP) in intact guinea pig hearts. Novel indices were developed to quantify this relationship based on (1) transient [Ca2+] and LVP signal morphology, ie, maxima and minima, peak derivatives, beat areas, durations, and ratios of indices of LVP to [Ca2+]; (2) temporal delay; and (3) LVP versus [Ca2+] loop morphology, ie, orientation, size, hysteresis, position, shape, and duration. These analyses were used to assess the cost of phasic [Ca2+] for contraction and relaxation over one beat after inotropic intervention. It was found that dopamine and digoxin increased contractile and relaxation responsiveness to phasic [Ca2+], cumulative Ca2+, and net Ca2+ flux. Unlike dopamine, digoxin did not decrease relaxation response time. Nifedipine and lidocaine decreased contractile and relaxation responsiveness to phasic [Ca2+], cumulative Ca2+, and net Ca2+ flux. Unlike lidocaine, nifedipine decreased net available Ca2+ and Ca2+ influx. Positive inotropic agents increased [Ca2+]-LVP loop area and hysteresis and resulted in a more vertically oriented loop. Nifedipine and lidocaine decreased these loop indices and lidocaine exhibited greater loop hysteresis than did nifedipine. These novel indices provide a quantitative assessment of myoplasmic [Ca2+] handling for cardiac contractile function.
Collapse
Affiliation(s)
- Samhita S Rhodes
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
49
|
Camara AKS, An J, Chen Q, Novalija E, Varadarajan SG, Schelling P, Stowe DF. Na+/H+ exchange inhibition with cardioplegia reduces cytosolic [Ca2+] and myocardial damage after cold ischemia. J Cardiovasc Pharmacol 2003; 41:686-98. [PMID: 12717098 DOI: 10.1097/00005344-200305000-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cold cardioplegia protects against reperfusion damage. Blocking Na+/H+ exchange may be as protective as cardioplegia by improving the left ventricular pressure (LVP)-[Ca2+] relationship after cold ischemia. In guinea pig isolated hearts subjected to cold ischemia (4 h, 17 degrees C) and reperfusion, the cardioprotective effects of a Krebs-Ringer (KR) solution, a cardioplegia solution, a KR solution containing the Na+/H+ exchange inhibitor eniporide (1 microM), and a cardioplegia solution containing eniporide were compared. Treatments were given before and initially after cold ischemia. Systolic and diastolic [Ca2+] were calculated from indo-1 fluorescence transients recorded at the LV free wall. During ischemia, diastolic [Ca2+] increased in each group but more so in the KR group. Peak systolic and diastolic [Ca2+] on initial reperfusion were highest after KR and smallest after cardioplegia + eniporide. After reperfusion, systolic-diastolic LVP (% of baseline) and infarct size (%), respectively, were KR, 47 +/- 3%, 37 +/- 4%; cardioplegia, 71 +/- 5%*, 20 +/- 2.2%*; KR + eniporide, 73 +/- 5%*, 11 +/- 3%* dagger; and cardioplegia + eniporide 77 +/- 3%*, 10 +/- 1.4%* dagger (*P </= 0.05 vs KR; dagger P </= 0.05 vs cardioplegia). Ca2+ overload was reduced in each treated group, and most in the cardioplegia + eniporide group, and was associated with the improved function. Inhibition of Na+/H+ exchange was as effective as cardioplegia in restoring function and better than cardioplegia in reducing infarct size after hypothermic ischemia. The combination of cardioplegia and Na+/H+ exchange inhibition did not produce additive protective effects but caused a larger decrease in Ca2+ loading.
Collapse
Affiliation(s)
- Amadou K S Camara
- Anesthesiology Research Laboratories, Department of Anesthesiology, Cardiovascular Research Center, The Medical College of Wisconsin, Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Rhodes SS, Ropella KM, Audi SH, Camara AKS, Kevin LG, Pagel PS, Stowe DF. Cross-bridge kinetics modeled from myoplasmic [Ca2+] and LV pressure at 17 degrees C and after 37 degrees C and 17 degrees C ischemia. Am J Physiol Heart Circ Physiol 2003; 284:H1217-29. [PMID: 12531735 DOI: 10.1152/ajpheart.00816.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We modeled changes in contractile element kinetics derived from the cyclic relationship between myoplasmic [Ca(2+)], measured by indo 1 fluorescence, and left ventricular pressure (LVP). We estimated model rate constants of the Ca(2+) affinity for troponin C (TnC) on actin (A) filament (TnCA) and actin and myosin (M) cross-bridge (A x M) cycling in intact guinea pig hearts during baseline 37 degrees C perfusion and evaluated changes at 1) 20 min 17 degrees C pressure, 2) 30-min reperfusion (RP) after 30-min 37 degrees C global ischemia during 37 degrees C RP, and 3) 30-min RP after 240-min 17 degrees C global ischemia during 37 degrees C RP. At 17 degrees C perfusion versus 37 degrees C perfusion, the model predicted: A x M binding was less sensitive; A x M dissociation was slower; Ca(2+) was less likely to bind to TnCA with A x M present; and Ca(2+) and TnCA binding was less sensitive in the absence of A x M. Model results were consistent with a cold-induced fall in heart rate from 260 beats/min (37 degrees C) to 33 beats/min (17 degrees C), increased diastolic LVP, and increased phasic Ca(2+). On RP after 37 degrees C ischemia vs. 37 degrees C perfusion, the model predicted the following: A x M binding was less sensitive; A x M dissociation was slower; and Ca(2+) was less likely to bind to TnCA in the absence of A. M. Model results were consistent with reduced myofilament responsiveness to [Ca(2+)] and diastolic contracture on 37 degrees C RP. In contrast, after cold ischemia versus 37 degrees C perfusion, A x M association and dissociation rates, and Ca(2+) and TnCA association rates, returned to preischemic values, whereas the dissociation rate of Ca(2+) from A x M was ninefold faster. This cardiac muscle kinetic model predicted a better-restored relationship between Ca(2+) and cross-bridge function on RP after an eightfold longer period of 17 degrees C than 37 degrees C ischemia.
Collapse
Affiliation(s)
- Samhita S Rhodes
- Department of Biomedical Engineering, Marquette University, Milwaukee 53233, USA
| | | | | | | | | | | | | |
Collapse
|