1
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Tanabe I, Ishimori K, Ishikawa S. Development of an in vitro human alveolar epithelial air-liquid interface model using a small molecule inhibitor cocktail. BMC Mol Cell Biol 2024; 25:9. [PMID: 38500038 PMCID: PMC10946194 DOI: 10.1186/s12860-024-00507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The alveolar epithelium is exposed to numerous stimuli, such as chemicals, viruses, and bacteria that cause a variety of pulmonary diseases through inhalation. Alveolar epithelial cells (AECs) cultured in vitro are a valuable tool for studying the impacts of these stimuli and developing therapies for associated diseases. However, maintaining the proliferative capacity of AECs in vitro is challenging. In this study, we used a cocktail of three small molecule inhibitors to cultivate AECs: Y-27632, A-83-01, and CHIR99021 (YAC). These inhibitors reportedly maintain the proliferative capacity of several types of stem/progenitor cells. RESULTS Primary human AECs cultured in medium containing YAC proliferated for more than 50 days (over nine passages) under submerged conditions. YAC-treated AECs were subsequently cultured at the air-liquid interface (ALI) to promote differentiation. YAC-treated AECs on ALI day 7 formed a monolayer of epithelial tissue with strong expression of the surfactant protein-encoding genes SFTPA1, SFTPB, SFTPC, and SFTPD, which are markers for type II AECs (AECIIs). Immunohistochemical analysis revealed that paraffin sections of YAC-treated AECs on ALI day 7 were mainly composed of cells expressing surfactant protein B and prosurfactant protein C. CONCLUSIONS Our results indicate that YAC-containing medium could be useful for expansion of AECIIs, which are recognized as local stem/progenitor cells, in the alveoli.
Collapse
Affiliation(s)
- Ikuya Tanabe
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| |
Collapse
|
3
|
Nrf2 Lowers the Risk of Lung Injury via Modulating the Airway Innate Immune Response Induced by Diesel Exhaust in Mice. Biomedicines 2020; 8:biomedicines8100443. [PMID: 33096811 PMCID: PMC7589508 DOI: 10.3390/biomedicines8100443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the present study, we investigated the role of Nrf2 in airway immune responses induced by diesel exhaust (DE) inhalation in mice. C57BL/6J Nrf2+/+ and Nrf2−/− mice were exposed to DE or clean air for 8 h/day and 6 days/week for 4 weeks. After DE exposure, the number of neutrophils and macrophage inflammatory protein (MIP)-2 level in bronchoalveolar lavage fluid (BALF) and interleukin (IL)-17 level in the lung tissue increased in Nrf2−/− mice compared with Nrf2+/+ mice; however, the lack of an increase in the level of tumor necrosis factor (TNF)-α in the lung tissue in Nrf2+/+ mice and mild suppression of the level of TNF-α in Nrf2−/− mice were observed; the level of granulocyte macrophage colony-stimulating factor (GM-CSF) in the lung tissue decreased in Nrf2−/− mice than in Nrf2+/+ mice; the number of DE particle-laden alveolar macrophages in BALF were larger in Nrf2−/− mice than in Nrf2+/+ mice. The results of electron microscope observations showed alveolar type II cell injury and degeneration of the lamellar body after DE exposure in Nrf2−/− mice. Antioxidant enzyme NAD(P)H quinone dehydrogenase (NQO)1 mRNA expression level was higher in Nrf2+/+ mice than in Nrf2−/− mice after DE exposure. Our results suggested that Nrf2 reduces the risk of pulmonary disease via modulating the airway innate immune response caused by DE in mice.
Collapse
|
4
|
Sucre JMS, Jetter CS, Loomans H, Williams J, Plosa EJ, Benjamin JT, Young LR, Kropski JA, Calvi CL, Kook S, Wang P, Gleaves L, Eskaros A, Goetzl L, Blackwell TS, Guttentag SH, Zijlstra A. Successful Establishment of Primary Type II Alveolar Epithelium with 3D Organotypic Coculture. Am J Respir Cell Mol Biol 2018; 59:158-166. [PMID: 29625013 PMCID: PMC6096337 DOI: 10.1165/rcmb.2017-0442ma] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.
Collapse
Affiliation(s)
| | | | | | | | - Erin J. Plosa
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - John T. Benjamin
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Lisa R. Young
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Seunghyi Kook
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Ping Wang
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Linda Gleaves
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Adel Eskaros
- Program in Cancer Biology
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura Goetzl
- Department of Obstetrics and Gynecology, Temple University, Philadelphia, Pennsylvania; and
| | - Timothy S. Blackwell
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | | | - Andries Zijlstra
- Program in Cancer Biology
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc Natl Acad Sci U S A 2017; 114:10178-10183. [PMID: 28878025 DOI: 10.1073/pnas.1712837114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The commensal microbiota within the gastrointestinal tract is essential in maintaining homeostasis. Indeed, dysregulation in the repertoire of microbiota can result in the development of intestinal immune-inflammatory diseases. Further, this immune regulation by gut microbiota is important systemically, impacting health and disease of organ systems beyond the local environment of the gut. What has not been explored is how distant organs might in turn shape the microbiota via microbe-targeted molecules. Here, we provide evidence that surfactant protein D (SP-D) synthesized in the gallbladder and delivered into intestinal lumen binds selectively to species of gut commensal bacteria. SP-D-deficient mice manifest intestinal dysbiosis and show a susceptibility to dextran sulfate sodium-induced colitis. Further, fecal transfer from SP-D-deficient mice to wild-type, germ-free mice conveyed colitis susceptibility. Interestingly, colitis caused a notable increase in Sftpd gene expression in the gallbladder, but not in the lung, via the activity of glucocorticoids produced in the liver. These findings describe a unique mechanism of interorgan regulation of intestinal immune homeostasis by SP-D with potential clinical implications such as cholecystectomy.
Collapse
|
6
|
de Aguiar Vallim TQ, Lee E, Merriott DJ, Goulbourne CN, Cheng J, Cheng A, Gonen A, Allen RM, Palladino END, Ford DA, Wang T, Baldán Á, Tarling EJ. ABCG1 regulates pulmonary surfactant metabolism in mice and men. J Lipid Res 2017; 58:941-954. [PMID: 28264879 DOI: 10.1194/jlr.m075101] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of surfactant. Surfactant synthesis and secretion are restricted to epithelial type 2 (T2) pneumocytes (also called T2 cells). Clearance of surfactant is dependent upon T2 cells and macrophages. ABCG1 is highly expressed in both T2 cells and macrophages. ABCG1-deficient mice accumulate surfactant, lamellar body-loaded T2 cells, lipid-loaded macrophages, B-1 lymphocytes, and immunoglobulins, clearly demonstrating that ABCG1 has a critical role in pulmonary homeostasis. We identify a variant in the ABCG1 promoter in patients with PAP that results in impaired activation of ABCG1 by the liver X receptor α, suggesting that ABCG1 basal expression and/or induction in response to sterol/lipid loading is essential for normal lung function. We generated mice lacking ABCG1 specifically in either T2 cells or macrophages to determine the relative contribution of these cell types on surfactant lipid homeostasis. These results establish a critical role for T2 cell ABCG1 in controlling surfactant and overall lipid homeostasis in the lung and in the pathogenesis of human lung disease.
Collapse
Affiliation(s)
- Thomas Q de Aguiar Vallim
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095.,Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095.,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095.,Johnson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095
| | - Elinor Lee
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095.,Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - David J Merriott
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | | | - Joan Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Angela Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Ryan M Allen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104
| | - Elisa N D Palladino
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104.,Center for Cardiovascular Research, School of Medicine, Saint Louis University, St. Louis, MO 63104
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104.,Center for Cardiovascular Research, School of Medicine, Saint Louis University, St. Louis, MO 63104
| | - Tisha Wang
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095.,Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104
| | - Elizabeth J Tarling
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095.,Johnson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
7
|
Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res 2016; 367:721-735. [PMID: 27783217 DOI: 10.1007/s00441-016-2520-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Lung surfactant is a complex mixture of lipids and proteins lining the alveolar epithelium. At the air-liquid interface, surfactant lowers surface tension, avoiding alveolar collapse and reducing the work of breathing. The essential role of lung surfactant in breathing and therefore in life, is highlighted by surfactant deficiency in premature neonates, which causes neonatal respiratory distress syndrome and results in early death after birth. In addition, defects in surfactant metabolism alter lung homeostasis and lead to disease. Special attention should be paid to two important key cells responsible for surfactant metabolism: alveolar epithelial type II cells (AE2C) and alveolar macrophages (AM). On the one hand, surfactant deficiency coming from abnormal AE2C function results in high surface tension, promoting alveolar collapse and mechanical stress in the epithelium. This epithelial injury contributes to tissue remodeling and lung fibrosis. On the other hand, impaired surfactant catabolism by AM leads to accumulation of surfactant in air spaces and the associated altered lung function in pulmonary alveolar proteinosis (PAP). We review here two recent cell therapies that aim to recover the activity of AE2C or AM, respectively, therefore targeting the restoring of surfactant metabolism and lung homeostasis. Applied therapies successfully show either transplantation of healthy AE2C in fibrotic lungs, to replace injured AE2C cells and surfactant, or transplantation of bone marrow-derived macrophages to counteract accumulation of surfactant lipid and proteinaceous material in the alveolar spaces leading to PAP. These therapies introduce an alternative treatment with great potential for patients suffering from lung diseases.
Collapse
|
8
|
Bove PF, Dang H, Cheluvaraju C, Jones LC, Liu X, O'Neal WK, Randell SH, Schlegel R, Boucher RC. Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 2014; 50:767-76. [PMID: 24191670 DOI: 10.1165/rcmb.2013-0071oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alveolar type (AT)I and ATII cells are central to maintaining normal alveolar fluid homeostasis. When disrupted, they contribute to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome. Research on ATII cells has been limited by the inability to propagate primary cells in vitro to study their specific functional properties. Moreover, primary ATII cells in vitro quickly transdifferentiate into nonproliferative "ATI-like" cells under traditional culture conditions. Recent studies have demonstrated that normal and tumor cells grown in culture with a combination of fibroblast (feeder cells) and a pharmacological Rho kinase inhibitor (Y-27632) exhibit indefinite cell proliferation that resembled a "conditionally reprogrammed cell" phenotype. Using this coculture system, we found that primary human ATII cells (1) proliferated at an exponential rate, (2) established epithelial colonies expressing ATII-specific and "ATI-like" mRNA and proteins after serial passage, (3) up-regulated genes important in cell proliferation and migration, and (4) on removal of feeder cells and Rho kinase inhibitor under air-liquid interface conditions, exhibited bioelectric and volume transport characteristics similar to freshly cultured ATII cells. Collectively, our results demonstrate that this novel coculture technique breaks the in vitro ATII cell proliferation barrier while retaining cell-specific functional properties. This work will allow for a significant increase in studies designed to elucidate ATII cell function with the goal of accelerating the development of novel therapies for alveolar diseases.
Collapse
Affiliation(s)
- Peter F Bove
- 1 Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center and
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li W, Lin CY, Shang C, Han P, Xiong Y, Lin CJ, Yang J, Selleri L, Chang CP. Pbx1 activates Fgf10 in the mesenchyme of developing lungs. Genesis 2014; 52:399-407. [PMID: 24591256 DOI: 10.1002/dvg.22764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/19/2023]
Abstract
Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung.
Collapse
Affiliation(s)
- Wei Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cerrada A, de la Torre P, Grande J, Haller T, Flores AI, Pérez-Gil J. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes. PLoS One 2014; 9:e110195. [PMID: 25333871 PMCID: PMC4198213 DOI: 10.1371/journal.pone.0110195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/18/2014] [Indexed: 02/05/2023] Open
Abstract
Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.
Collapse
Affiliation(s)
- Alejandro Cerrada
- Departmento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Paz de la Torre
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Jesús Grande
- Departmento de Obstetricia y Ginecología, Hospital 12 de Octubre, Madrid, Spain
| | - Thomas Haller
- Department of Physiology, Innsbruck Medical University, Innsbruck, Austria
| | - Ana I. Flores
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- * E-mail: (AIF); (JPG)
| | - Jesús Pérez-Gil
- Departmento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail: (AIF); (JPG)
| |
Collapse
|
11
|
Mao Q, Chu S, Ghanta S, Padbury JF, De Paepe ME. Ex vivo expanded human cord blood-derived hematopoietic progenitor cells induce lung growth and alveolarization in injured newborn lungs. Respir Res 2013; 14:37. [PMID: 23522153 PMCID: PMC3610254 DOI: 10.1186/1465-9921-14-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/19/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We investigated the capacity of expanded cord blood-derived CD34+ hematopoietic progenitor cells to undergo respiratory epithelial differentiation ex vivo, and to engraft and attenuate alveolar disruption in injured newborn murine lungs in vivo. METHODS Respiratory epithelial differentiation was studied in CD34+ cells expanded in the presence of growth factors and cytokines ("basic" medium), in one group supplemented with dexamethasone ("DEX"). Expanded or freshly isolated CD34+ cells were inoculated intranasally in newborn mice with apoptosis-induced lung injury. Pulmonary engraftment, lung growth and alveolarization were studied at 8 weeks post-inoculation. RESULTS SP-C mRNA expression was seen in 2/7 CD34+ cell isolates expanded in basic media and in 6/7 isolates expanded in DEX, associated with cytoplasmic SP-C immunoreactivity and ultrastructural features suggestive of type II cell-like differentiation. Administration of expanding CD34+ cells was associated with increased lung growth and, in animals treated with DEX-exposed cells, enhanced alveolar septation. Freshly isolated CD34+ cells had no effect of lung growth or remodeling. Lungs of animals treated with expanded CD34+ cells contained intraalveolar aggregates of replicating alu-FISH-positive mononuclear cells, whereas epithelial engraftment was extremely rare. CONCLUSION Expanded cord blood CD34+ cells can induce lung growth and alveolarization in injured newborn lungs. These growth-promoting effects may be linked to paracrine or immunomodulatory effects of persistent cord blood-derived mononuclear cells, as expanded cells showed limited respiratory epithelial transdifferentiation.
Collapse
Affiliation(s)
- Quanfu Mao
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA
| | | | | | | | | |
Collapse
|
12
|
Thompson KE, Korbmacher JP, Hecht E, Hobi N, Wittekindt OH, Dietl P, Kranz C, Frick M. Fusion-activated cation entry (FACE) via P2X₄ couples surfactant secretion and alveolar fluid transport. FASEB J 2013; 27:1772-83. [PMID: 23307836 DOI: 10.1096/fj.12-220533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two fundamental mechanisms within alveoli are essential for lung function: regulated fluid transport and secretion of surfactant. Surfactant is secreted via exocytosis of lamellar bodies (LBs) in alveolar type II (ATII) cells. We recently reported that LB exocytosis results in fusion-activated cation entry (FACE) via P2X₄ receptors on LBs. We propose that FACE, in addition to facilitating surfactant secretion, modulates alveolar fluid transport. Correlative fluorescence and atomic force microscopy revealed that FACE-dependent water influx correlated with individual fusion events in rat primary ATII cells. Moreover, ATII cell monolayers grown at air-liquid interface exhibited increases in short-circuit current (Isc) on stimulation with ATP or UTP. Both are potent agonists for LB exocytosis, but only ATP activates FACE. ATP, not UTP, elicited additional fusion-dependent increases in Isc. Overexpressing dominant-negative P2X₄ abrogated this effect by ∼50%, whereas potentiating P2X4 lead to ∼80% increase in Isc. Finally, we monitored changes in alveolar surface liquid (ASL) on ATII monolayers by confocal microscopy. Only stimulation with ATP, not UTP, led to a significant, fusion-dependent, 20% decrease in ASL, indicating apical-to-basolateral fluid transport across ATII monolayers. Our data support the first direct link between LB exocytosis, regulation of surfactant secretion, and transalveolar fluid resorption via FACE.
Collapse
|
13
|
Abstract
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.
Collapse
|
14
|
Ito Y, Ahmad A, Kewley E, Mason RJ. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro. Am J Respir Cell Mol Biol 2011; 45:938-45. [PMID: 21454802 DOI: 10.1165/rcmb.2011-0052oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alveolar type II (ATII) cells cultured at an air-liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley rats and cultured on inserts coated with a mixture of rat-tail collagen and Matrigel, in medium including 5% rat serum and 10 ng/ml keratinocyte growth factor, with their apical surfaces either exposed to air or submerged. The A/L interface condition maintained the expression of surfactant proteins, whereas that expression was down-regulated under the submerged condition, and the effect was rapid and reversible. Under submerged conditions, there was an increase in HIF1α and HIF2α in nuclear extracts, mRNA levels of HIF inducible genes, vascular endothelial growth factor, glucose transporter-1 (GLUT1), and the protein level of pyruvate dehydrogenase kinase isozyme-1. The expression of surfactant proteins was suppressed and GLUT1 mRNA levels were induced when cells were cultured with 1 mM dimethyloxalyl glycine. The expression of surfactant proteins was restored under submerged conditions with supplemented 60% oxygen. HIF signaling and oxygen tension at the surface of cells appears to be important in regulating the phenotype of rat ATII cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | |
Collapse
|
15
|
Johnson C, Jahid S, Voelker DR, Fan H. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein. Virology 2011; 412:349-56. [PMID: 21316726 DOI: 10.1016/j.virol.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
16
|
Koval M. Keratinocyte growth factor improves alveolar barrier function: keeping claudins in line. Am J Physiol Lung Cell Mol Physiol 2010; 299:L721-3. [PMID: 20952495 DOI: 10.1152/ajplung.00365.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Métrailler-Ruchonnet I, Pagano A, Carnesecchi S, Khatib K, Herrera P, Donati Y, Bron C, Barazzone C. Bcl-2 overexpression in type II epithelial cells does not prevent hyperoxia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2010; 299:L312-22. [DOI: 10.1152/ajplung.00212.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bcl-2 is an anti-apoptotic molecule preventing oxidative stress damage and cell death. We have previously shown that Bcl-2 is able to prevent hyperoxia-induced cell death when overexpressed in a murine fibrosarcoma cell line L929. We hypothesized that its specific overexpression in pulmonary epithelial type II cells could prevent hyperoxia-induced lung injury by protecting the epithelial side of the alveolo-capillary barrier. In the present work, we first showed that in vitro Bcl-2 can rescue murine pulmonary epithelial cells (MLE12) from oxygen-induced cell apoptosis, as shown by analysis of LDH release, annexin V/propidium staining, and caspase-3 activity. We then generated transgenic mice overexpressing specifically Bcl-2 in lung epithelial type II cells under surfactant protein C (SP-C) promoter (Tg-Bcl-2) and exposed them to hyperoxia. Bcl-2 did not hinder hyperoxia-induced mitochondria and DNA oxidative damage of type II cell in vivo. Accordingly, lung damage was identical in both Tg-Bcl-2 and littermate mice strains, as measured by lung weight, bronchoalveolar lavage, and protein content. Nevertheless, we observed a significant lower number of TUNEL-positive cells in type II cells isolated from Tg-Bcl-2 mice exposed to hyperoxia compared with cells isolated from littermate mice. In summary, these results show that although Bcl-2 overexpression is able to prevent hyperoxia-induced cell death at single cell level in vitro and ex vivo, it is not sufficient to prevent cell death of parenchymal cells and to protect the lung from acute damage in mice.
Collapse
Affiliation(s)
| | - Alessandra Pagano
- Institut National de la Santé et de la Recherche Médicale UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Université Aix-Marseille, France; and
| | - Stéphanie Carnesecchi
- Departments of 1Pediatrics and
- Pathology-Immunology, Medical School, University of Geneva, Switzerland
| | - Karim Khatib
- Pathology-Immunology, Medical School, University of Geneva, Switzerland
| | - Pedro Herrera
- Department of Genetic Medicine and Development, Medical School, University of Geneva, Switzerland
| | - Yves Donati
- Departments of 1Pediatrics and
- Pathology-Immunology, Medical School, University of Geneva, Switzerland
| | - Camille Bron
- Departments of 1Pediatrics and
- Pathology-Immunology, Medical School, University of Geneva, Switzerland
| | - Constance Barazzone
- Departments of 1Pediatrics and
- Pathology-Immunology, Medical School, University of Geneva, Switzerland
| |
Collapse
|
18
|
Saada J, Oudrhiri N, Bonnard A, de Lagausie P, Aissaoui A, Hauchecorne M, Oury JF, Aigrain Y, Peuchmaur M, Lehn JM, Lehn P, Luton D. Combining keratinocyte growth factor transfection into the airways and tracheal occlusion in a fetal sheep model of congenital diaphragmatic hernia. J Gene Med 2010; 12:413-22. [DOI: 10.1002/jgm.1451] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Chintagari NR, Mishra A, Su L, Wang Y, Ayalew S, Hartson SD, Liu L. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium. PLoS One 2010; 5:e9228. [PMID: 20169059 PMCID: PMC2821907 DOI: 10.1371/journal.pone.0009228] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/26/2009] [Indexed: 12/31/2022] Open
Abstract
Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of American
| | - Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of American
| | - Lijing Su
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of American
| | - Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of American
| | - Sahlu Ayalew
- Department of Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Steven D. Hartson
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of American
- * E-mail:
| |
Collapse
|
20
|
Funk CJ, Manzer R, Miura TA, Groshong SD, Ito Y, Travanty EA, Leete J, Holmes KV, Mason RJ. Rat respiratory coronavirus infection: replication in airway and alveolar epithelial cells and the innate immune response. J Gen Virol 2009; 90:2956-2964. [PMID: 19741068 DOI: 10.1099/vir.0.014282-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The rat coronavirus sialodacryoadenitis virus (SDAV) causes respiratory infection and provides a system for investigating respiratory coronaviruses in a natural host. A viral suspension in the form of a microspray aerosol was delivered by intratracheal instillation into the distal lung of 6-8-week-old Fischer 344 rats. SDAV inoculation produced a 7 % body weight loss over a 5 day period that was followed by recovery over the next 7 days. SDAV caused focal lesions in the lung, which were most severe on day 4 post-inoculation (p.i.). Immunofluorescent staining showed that four cell types supported SDAV virus replication in the lower respiratory tract, namely Clara cells, ciliated cells in the bronchial airway and alveolar type I and type II cells in the lung parenchyma. In bronchial alveolar lavage fluid (BALF) a neutrophil influx increased the population of neutrophils to 45 % compared with 6 % of the cells in control samples on day 2 after mock inoculation. Virus infection induced an increase in surfactant protein SP-D levels in BALF of infected rats on days 4 and 8 p.i. that subsided by day 12. The concentrations of chemokines MCP-1, LIX and CINC-1 in BALF increased on day 4 p.i., but returned to control levels by day 8. Intratracheal instillation of rats with SDAV coronavirus caused an acute, self-limited infection that is a useful model for studying the early events of the innate immune response to respiratory coronavirus infections in lungs of the natural virus host.
Collapse
Affiliation(s)
- C Joel Funk
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rizwan Manzer
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Tanya A Miura
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA
| | - Steve D Groshong
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Yoko Ito
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Emily A Travanty
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jennifer Leete
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kathryn V Holmes
- Department of Microbiology, University of Colorado Denver, Aurora, CO 80110, USA
| | - Robert J Mason
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
21
|
Miura TA, Holmes KV. Host-pathogen interactions during coronavirus infection of primary alveolar epithelial cells. J Leukoc Biol 2009; 86:1145-51. [PMID: 19638499 PMCID: PMC2774885 DOI: 10.1189/jlb.0209078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Innate immune responses in coronavirus infections of the respiratory tract are analyzed in primary differentiated airway and alveolar epithelial cells. Viruses that infect the lung are a significant cause of morbidity and mortality in animals and humans worldwide. Coronaviruses are being associated increasingly with severe diseases in the lower respiratory tract. Alveolar epithelial cells are an important target for coronavirus infection in the lung, and infected cells can initiate innate immune responses to viral infection. In this overview, we describe in vitro models of highly differentiated alveolar epithelial cells that are currently being used to study the innate immune response to coronavirus infection. We have shown that rat coronavirus infection of rat alveolar type I epithelial cells in vitro induces expression of CXC chemokines, which may recruit and activate neutrophils. Although neutrophils are recruited early in infection in several coronavirus models including rat coronavirus. However, their role in viral clearance and/or immune‐mediated tissue damage is not understood. Primary cultures of differentiated alveolar epithelial cells will be useful for identifying the interactions between coronaviruses and alveolar epithelial cells that influence the innate immune responses to infection in the lung. Understanding the molecular details of these interactions will be critical for the design of effective strategies to prevent and treat coronavirus infections in the lung.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
22
|
Yang C, Su L, Wang Y, Liu L. UTP regulation of ion transport in alveolar epithelial cells involves distinct mechanisms. Am J Physiol Lung Cell Mol Physiol 2009; 297:L439-54. [PMID: 19542245 DOI: 10.1152/ajplung.90268.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UTP is known to regulate alveolar fluid clearance. However, the relative contribution of alveolar type I cells and type II cells to this process is unknown. In this study, we investigated the effects of UTP on ion transport in type I-like cell (AEC I) and type II-like cell (AEC II) monolayers. Luminal treatment of cell monolayers with UTP increased short-circuit current (I(sc)) of AEC II but decreased I(sc) of AEC I. The Cl(-) channel blockers NPPB and DIDS inhibited the UTP-induced changes in I(sc) (DeltaIsc) in both types of cells. Amiloride, an inhibitor of epithelial Na(+) channels (ENaC), abolished the UTP-induced DeltaI(sc) in AEC I, but not in AEC II. The general blocker of K(+) channels, BaCl(2), eliminated the UTP-induced DeltaI(sc) in AEC II, but not in AEC I. The intermediate conductance (IK(Ca)) blocker, clofilium, also blocked the UTP effect in AEC II. The signal transduction pathways mediated by UTP were the same in AEC I and AEC II. Furthermore, UTP increased Cl(-) secretion in AEC II and Cl(-) absorption in AEC I. Our results suggest that UTP induces opposite changes in I(sc) in AEC I and AEC II, likely due to the reversed Cl(-) flux and different contributions of ENaC and IK(Ca). Our results further imply a new concept that type II cells contribute to UTP-induced fluid secretion and type I cells contribute to UTP-induced fluid absorption in alveoli.
Collapse
Affiliation(s)
- Chuanxiu Yang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | |
Collapse
|
23
|
Grek CL, Newton DA, Qiu Y, Wen X, Spyropoulos DD, Baatz JE. Characterization of alveolar epithelial cells cultured in semipermeable hollow fibers. Exp Lung Res 2009; 35:155-74. [PMID: 19263283 DOI: 10.1080/01902140802495870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cell culture methods commonly used to represent alveolar epithelial cells in vivo have lacked airflow, a 3-dimensional air-liquid interface, and dynamic stretching characteristics of native lung tissue--physiological parameters critical for normal phenotypic gene expression and cellular function. Here the authors report the development of a selectively semipermeable hollow fiber culture system that more accurately mimics the in vivo microenvironment experienced by mammalian distal airway cells than in conventional or standard air-liquid interface culture. Murine lung epithelial cells (MLE-15) were cultured within semipermeable polyurethane hollow fibers and introduced to controlled airflow through the microfiber interior. Under these conditions, MLE-15 cells formed confluent monolayers, demonstrated a cuboidal morphology, formed tight junctions, and produced and secreted surfactant proteins. Numerous lamellar bodies and microvilli were present in MLE-15 cells grown in hollow fiber culture. Conversely, these alveolar type II cell characteristics were reduced in MLE-15 cells cultured in conventional 2D static culture systems. These data support the hypothesis that MLE-15 cells grown within our microfiber culture system in the presence of airflow maintain the phenotypic characteristics of type II cells to a higher degree than those grown in standard in vitro cell culture models. Application of our novel model system may prove advantageous for future studies of specific gene and protein expression involving alveolar epithelial or bronchiolar epithelial cells.
Collapse
Affiliation(s)
- Christina L Grek
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
24
|
An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices 2009; 11:1081-9. [PMID: 19484389 DOI: 10.1007/s10544-009-9325-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.
Collapse
|
25
|
Berndt-Weis ML, Kauri LM, Williams A, White P, Douglas G, Yauk C. Global transcriptional characterization of a mouse pulmonary epithelial cell line for use in genetic toxicology. Toxicol In Vitro 2009; 23:816-33. [PMID: 19406224 DOI: 10.1016/j.tiv.2009.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 02/02/2023]
Abstract
Prior to its application for in vitro toxicological assays, thorough characterization of a cell line is essential. The present study uses global transcriptional profiling to characterize a lung epithelial cell line (FE1) derived from MutaMouse [White, P.A., Douglas, G.R., Gingerich, J., Parfett, C., Shwed, P., Seligy, V., Soper, L., Berndt, L., Bayley, J., Wagner, S., Pound, K., Blakey, D., 2003. Development and characterization of a stable epithelial cell line from Muta Mouse lung. Environmental and Molecular Mutagenesis 42, 166-184]. Results presented here demonstrate the origin of the FE1 lung cell line as epithelial, presenting both type I and type II alveolar phenotype. An assessment of toxicologically-relevant genes, including those involved in the response to stress and stimuli, DNA repair, cellular metabolism, and programmed cell death, revealed changes in expression of 22-27% of genes in one or more culture type (proliferating and static FE1 cultures, primary epithelial cultures) compared with whole lung isolates. Gene expression analysis at 4 and 24h following benzo(a)pyrene exposure revealed the induction of cyp1a1, cyp1a2, and cyp1b1 in FE1 cells and lung isolates. The use of DNA microarrays for gene expression profiling allows an improved understanding of global, coordinated cellular events arising in cells under different physiological conditions. Taken together, these data indicate that the FE1 cell line is derived from a cell type relevant to toxic responses in vivo, and shows some similarity in response to chemical insult as the original tissue.
Collapse
Affiliation(s)
- M Lynn Berndt-Weis
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Johnson LN, Koval M. Cross-talk between pulmonary injury, oxidant stress, and gap junctional communication. Antioxid Redox Signal 2009; 11:355-67. [PMID: 18816185 PMCID: PMC2933150 DOI: 10.1089/ars.2008.2183] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gap junction channels interconnect several different types of cells in the lung, ranging from the alveolar epithelium to the pulmonary vasculature, each of which expresses a unique subset of gap junction proteins (connexins). Major lung functions regulated by gap junctional communication include coordination of ciliary beat frequency and inflammation. Gap junctions help enable the alveolus to regulate surfactant secretion as an integrated system, in which type I cells act as mechanical sensors that transmit calcium transients to type II cells. Thus, disruption of epithelial gap junctional communication, particularly during acute lung injury, can interfere with these processes and increase the severity of injury. Consistent with this, connexin expression is altered during lung injury, and connexin-deficiency has a negative impact on the injury response and lung-growth control. It has recently been shown that alcohol abuse is a significant risk factor associated with acute respiratory distress syndrome. Oxidant stress and hormone-signaling cascades in the lung induced by prolonged alcohol ingestion are discussed, as well as the effects of these pathways on connexin expression and function.
Collapse
Affiliation(s)
- Latoya N Johnson
- Division of Pulmonary, Allergy and Critical Care Medicine, and Emory Alcohol and Lung Biology Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
27
|
Gou D, Mishra A, Weng T, Su L, Chintagari NR, Wang Z, Zhang H, Gao L, Wang P, Stricker HM, Liu L. Annexin A2 interactions with Rab14 in alveolar type II cells. J Biol Chem 2008; 283:13156-64. [PMID: 18332131 DOI: 10.1074/jbc.m801532200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin A2, a calcium-dependent phospholipid-binding protein, is abundantly expressed in alveolar type II cells where it plays a role in lung surfactant secretion. Nevertheless, little is known about the details of its cellular pathways. To identify annexin A2-regulated or associated proteins, we silenced endogenous annexin A2 expression in rat alveolar type II cells by RNA interference and assessed the change of the cellular transcriptome by DNA microarray analysis. The loss of annexin A2 resulted in the change of 61 genes. Thirteen of the selected genes (11 down-regulated and 2 up-regulated genes) were validated by real time quantitative PCR. When the loss of rat annexin A2 was rescued by overexpressing EGFP-tagged human annexin A2, six of seven selected targets returned to their normal expression level, indicating that these genes are indeed annexin A2-associated targets. One of the targets, Rab14, co-immunoprecipitated with annexin A2. Rab14 also co-localized in part with annexin A2 and lamellar bodies in alveolar type II cells. The silencing of Rab14 resulted in a decrease in surfactant secretion, suggesting that Rab14 may play a role in surfactant secretion.
Collapse
Affiliation(s)
- Deming Gou
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shi X, Zhang H, Xiong S. Primary culture of alveolar epithelial type II cells and its bionomic study. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2007; 27:653-656. [PMID: 18231734 DOI: 10.1007/s11596-007-0608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Indexed: 05/25/2023]
Abstract
To establish a better method of primary culture for alveolar epithelial type II cells (AEC II) and to study its bionomics, alveolar epithelial type II cells were isolated by digestion with trypsin and collagenase, which were then purified by plated into culture flask coated with rat immunoglobulin G. The purified AEC II were identified by alkaline phosphatase staining, electron microscopy, immunocytochemical staining of pulmonary surfactant protein A (SPA). The SPA expression and transfection characteristics were compared with those of A549 cell line. The results showed that AEC II could be isolated by digestion with trysin and collagenase and purified by adhesive purification by using IgG, with a yield of about 2-3 x 10(7), and a purity of about 75%-84%. Cells could be quickly identified with AKP staining. AEC II were different from A549 cell line in terms of SPA expression and transfection characteristics. It is concluded that adhesive purification with IgG can improve the purity of AEC II, and AKP staining is simple in cell identification. AEC II can not be completely replaced by A549 cells in some studies because the differences between them, such as SPA expression.
Collapse
Affiliation(s)
- Xuemei Shi
- Research Institute of Respiratory Diseases, Department of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | |
Collapse
|
29
|
Surfactant-associated protein A provides critical immunoprotection in neonatal mice. Infect Immun 2007; 76:380-90. [PMID: 17967856 DOI: 10.1128/iai.01043-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The collectins surfactant-associated protein A (SP-A) and SP-D are components of innate immunity that are present before birth. Both proteins bind pathogens and assist in clearing infection. The significance of SP-A and SP-D as components of the neonatal immune system has not been investigated. To determine the role of SP-A and SP-D in neonatal immunity, wild-type, SP-A null, and SP-D null mice were bred in a bacterium-laden environment (corn dust bedding) or in a semisterile environment (cellulose fiber bedding). When reared in the corn dust bedding, SP-A null pups had significant mortality (P < 0.001) compared to both wild-type and SP-D null pups exposed to the same environment. The mortality of the SP-A null pups was associated with significant gastrointestinal tract pathology but little lung pathology. Moribund SP-A null newborn mice exhibited Bacillus sp. and Enterococcus sp. peritonitis. When the mother or newborn produced SP-A, newborn survival was significantly improved (P < 0.05) compared to the results when there was a complete absence of SP-A in both the mother and the pup. Significant sources of SP-A likely to protect a newborn include the neonatal lung and gastrointestinal tract but not the lactating mammary tissue of the mother. Furthermore, exogenous SP-A delivered by mouth to newborn SP-A null pups with SP-A null mothers improved newborn survival in the corn dust environment. Therefore, a lack of SP-D did not affect newborn survival, while SP-A produced by either the mother or the pup or oral exogenous SP-A significantly reduced newborn mortality associated with environmentally induced infection in SP-A null newborns.
Collapse
|
30
|
Miura TA, Wang J, Holmes KV, Mason RJ. Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines. Virology 2007; 369:288-98. [PMID: 17804032 PMCID: PMC2170429 DOI: 10.1016/j.virol.2007.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/14/2007] [Accepted: 07/25/2007] [Indexed: 12/22/2022]
Abstract
We analyzed the ability of two rat coronavirus (RCoV) strains, sialodacryoadenitis virus (SDAV) and Parker's RCoV (RCoV-P), to infect rat alveolar type I cells and induce chemokine expression. Primary rat alveolar type II cells were transdifferentiated into the type I cell phenotype. Type I cells were productively infected with SDAV and RCoV-P, and both live virus and UV-inactivated virus induced mRNA and protein expression of three CXC chemokines: CINC-2, CINC-3, and LIX, which are neutrophil chemoattractants. Dual immunolabeling of type I cells for viral antigen and CXC chemokines showed that chemokines were expressed primarily by uninfected cells. Virus-induced chemokine expression was reduced by the IL-1 receptor antagonist, suggesting that IL-1 produced by infected cells induces uninfected cells to express chemokines. Primary cultures of alveolar epithelial cells are an important model for the early events in viral infection that lead to pulmonary inflammation.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Microbiology, University of Colorado Health Sciences Center, MS 8333, PO Box 6511, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
31
|
Digeronimo RJ, Mustafa SB, Ryan RM, Sternberg ZZ, Ashton DJ, Seidner SR. Mechanical ventilation down-regulates surfactant protein A and keratinocyte growth factor expression in premature rabbits. Pediatr Res 2007; 62:277-82. [PMID: 17622950 DOI: 10.1203/pdr.0b013e3181256aeb] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Surfactant-associated proteins (SP-A, SP-B, and SP-C) are critical for the endogenous function of surfactant. Keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF) are key regulators of lung development. The objective of this study was to evaluate the effects of early mechanical ventilation on the expression of these important regulatory proteins in a preterm rabbit model. Premature fetuses were delivered at 29 d of gestation and randomized to necropsy at birth, i.e. no ventilation (NV), spontaneous breathing (SB), or mechanical ventilation (MV) for 16 h. MV animals were further randomized to treatment with dexamethasone (dex). Our findings showed that SB rabbits increased their expression of SP-A mRNA and protein after birth compared with NV controls. MV significantly attenuated this response in the absence of dex. Exposure to dex elevated SP-B mRNA expression in both SB and MV rabbits. KGF protein levels were markedly increased in SB animals compared with MV counterparts. VEGF levels were similar in SB and MV animals, but were significantly increased compared with NV controls. These data suggest that MV alters surfactant-associated protein and growth factor expression, which may contribute to injury in the developing lung.
Collapse
Affiliation(s)
- Robert J Digeronimo
- Department of Pediatrics, Wilford USAF Hall Medical Center, Lackland AFB, Texas 78236-5300, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Dobbs LG, Johnson MD. Alveolar epithelial transport in the adult lung. Respir Physiol Neurobiol 2007; 159:283-300. [PMID: 17689299 DOI: 10.1016/j.resp.2007.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 01/11/2023]
Abstract
The alveolar surface comprises >99% of the internal surface area of the lungs. At birth, the fetal lung rapidly converts from a state of net fluid secretion, which is necessary for normal fetal lung development, to a state in which there is a minimal amount of alveolar liquid. The alveolar surface epithelium facing the air compartment is composed of TI and TII cells. The morphometric characteristics of both cell types are fairly constant over a range of mammalian species varying in body weight by a factor of approximately 50,000. From the conservation of size and shape across species, one may infer that both TI and TII cells also have important conserved functions. The regulation of alveolar ion and liquid transport has been extensively investigated using a variety of experimental models, including whole animal, isolated lung, isolated cell, and cultured cell model systems, each with their inherent strengths and weaknesses. The results obtained with different model systems and a variety of different species point to both interesting parallels and some surprising differences. Sometimes it has been difficult to reconcile results obtained with different model systems. In this section, the primary focus will be on aspects of alveolar ion and liquid transport under normal physiologic conditions, emphasizing newer data and describing evolving paradigms of lung ion and fluid transport. We will highlight some of the unanswered questions, outline the similarities and differences in results obtained with different model systems, and describe some of the complex and interweaving regulatory networks.
Collapse
Affiliation(s)
- Leland G Dobbs
- Department of Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| | | |
Collapse
|
33
|
Wang J, Edeen K, Manzer R, Chang Y, Wang S, Chen X, Funk CJ, Cosgrove GP, Fang X, Mason RJ. Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro. Am J Respir Cell Mol Biol 2007; 36:661-8. [PMID: 17255555 PMCID: PMC1899340 DOI: 10.1165/rcmb.2006-0410oc] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cultures of differentiating fetal human type II cells have been available for many years. However, studies with differentiated adult human type II cells are limited. We used a published method for type II cell isolation and developed primary culture systems for maintenance of differentiated adult human alveolar epithelial cells for in vitro studies. Human type II cells cultured on Matrigel (basolateral access) or a mixture of Matrigel and rat tail collagen (apical access) in the presence of keratinocyte growth factor, isobutylmethylxanthine, 8-bromo-cyclicAMP, and dexamethasone (KIAD) expressed the differentiated type II cell phenotype as measured by the expression of surfactant protein (SP)-A, SP-B, SP-C, and fatty acid synthase and their morphologic appearance. These cells contain lamellar inclusion bodies and have apical microvilli. In both systems the cells appear well differentiated. In the apical access system, type II cell differentiation markers initially decreased and then recovered over 6 d in culture. Lipid synthesis was also increased by the addition of KIAD. In contrast, type II cells cultured on rat tail collagen (or tissue culture plastic) slowly lose their lamellar inclusions and expression of the surfactant proteins and increase the expression of type I cell markers. The expression of the phenotypes is regulated by the culture conditions and is, in part, reversible in vitro.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish and Medical Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Maquerlot F, Galiacy S, Malo M, Guignabert C, Lawrence DA, d'Ortho MP, Barlovatz-Meimon G. Dual role for plasminogen activator inhibitor type 1 as soluble and as matricellular regulator of epithelial alveolar cell wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1624-32. [PMID: 17071586 PMCID: PMC1780203 DOI: 10.2353/ajpath.2006.051053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelium repair, crucial for restoration of alveolo-capillary barrier integrity, is orchestrated by various cytokines and growth factors. Among them keratinocyte growth factor plays a pivotal role in both cell proliferation and migration. The urokinase plasminogen activator (uPA) system also influences cell migration through proteolysis during epithelial repair. In addition, the complex formed by uPAR-uPA and matrix-bound plasminogen activator inhibitor type-1 (PAI-1) exerts nonproteolytic roles in various cell types. Here we present new evidence about the dual role of PAI-1 under keratinocyte growth factor stimulation using an in vitro repair model of rat alveolar epithelial cells. Besides proteolytic involvement of the uPA system, the availability of matrix-bound-PAI-1 is also required for an efficient healing. An unexpected decrease of healing was shown when PAI-1 activity was blocked. However, the proteolytic action of uPA and plasmin were still required. Moreover, immediately after wounding, PAI-1 was dramatically increased in the newly deposited matrix at the leading edge of wounds. We thus propose a dual role for PAI-1 in epithelial cell wound healing, both as a soluble inhibitor of proteolysis and also as a matrix-bound regulator of cell migration. Matrix-bound PAI-1 could thus be considered as a new member of the matricellular protein family.
Collapse
Affiliation(s)
- François Maquerlot
- Informatique, Biologie Intégrative et Systèmes Complexes, FRE 2873 Centre National de la Recherche Scientifique, Université d'Evry, Génopole, Evry, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Perlman S, Holmes KV. Rat coronavirus infection of primary rat alveolar epithelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:351-6. [PMID: 17037558 PMCID: PMC7123676 DOI: 10.1007/978-0-387-33012-9_62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
36
|
Wang J, Wang S, Manzer R, McConville G, Mason RJ. Ozone induces oxidative stress in rat alveolar type II and type I-like cells. Free Radic Biol Med 2006; 40:1914-28. [PMID: 16716893 DOI: 10.1016/j.freeradbiomed.2006.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 12/16/2022]
Abstract
Ozone is a highly reactive gas present in urban air, which penetrates deep into the lung and causes lung injury. The alveolar epithelial cells are among the first cell barriers encountered by ozone. To define the molecular basis of the cellular response to ozone, primary cultures of rat alveolar type II and type I-like cells were exposed to 100 ppb ozone or air for 1 h. The mRNA from both phenotypes was collected at 4 and 24 h after exposure for gene expression profiling. Ozone produced extensive alterations in gene expression involved in stress and inflammatory responses, transcription factors, antioxidant defenses, extracellular matrix, fluid transport, and enzymes of lipid metabolism and cell differentiation. Real-time reverse transcription-polymerase chain reaction and Western blot analysis verified changes in mRNA and protein levels of selected genes. Besides the increased stress response, ozone exposure downregulated genes of cellular differentiation. The changes were more prominent at 4 h in the type I-like phenotype and at 24 h in the type II phenotype. The type I-like cells were more sensitive to ozone than type II cells. The genome-wide changes observed provide insight into signal pathways activated by ozone and how cellular protection mechanisms are initiated.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish and Medical Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
37
|
Rippon HJ, Polak JM, Qin M, Bishop AE. Derivation of Distal Lung Epithelial Progenitors from Murine Embryonic Stem Cells Using a Novel Three-Step Differentiation Protocol. Stem Cells 2006; 24:1389-98. [PMID: 16456134 DOI: 10.1634/stemcells.2005-0465] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) are a potential source for the cell-based therapy of a wide variety of lung diseases for which the only current treatment is transplantation. However, distal lung epithelium, like many other endodermally derived somatic cell lineages, is proving difficult to obtain from both murine and human ESCs. We have previously obtained alveolar epithelium from ESCs, although final cell yield remained extremely low. Here, we present an optimized three-step protocol for the derivation of distal lung epithelial cells from murine ESCs. This protocol incorporates (a) treatment of early differentiating embryoid bodies with activin A to enhance the specification of the endodermal germ layer, followed by (b) adherent culture in serum-free medium and (c) the final application of a commercial, lung-specific medium. As well as enhancing the specification of distal lung epithelium, this protocol was found to yield cells with a phenotype most closely resembling that of lung-committed progenitor cells present in the foregut endoderm and the early lung buds during embryonic development. This is in contrast to our previous differentiation method, which drives differentiation through to mature type II alveolar epithelial cells. The derivation of a committed lung progenitor cell type from ESCs is particularly significant for regenerative medicine because the therapeutic implantation of progenitor cells has several clear advantages over the transplantation of mature, terminally differentiated somatic cells.
Collapse
Affiliation(s)
- Helen J Rippon
- Tissue Engineering & Regenerative Medicine Centre, Imperial College London, Chelsea & Westminster Campus, London SW10 9NH, UK
| | | | | | | |
Collapse
|
38
|
Chang Y, Edeen K, Lu X, De Leon M, Mason RJ. Keratinocyte growth factor induces lipogenesis in alveolar type II cells through a sterol regulatory element binding protein-1c-dependent pathway. Am J Respir Cell Mol Biol 2006; 35:268-74. [PMID: 16601238 PMCID: PMC2643261 DOI: 10.1165/rcmb.2006-0037oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Keratinocyte growth factor (KGF) stimulates fatty acid and phospholipid synthesis in alveolar type II cells in vitro. KGF stimulates lipogenic enzymes, including fatty acid synthase and stearyl-CoA desaturase-1, and transcription factors involved in lipogenesis, such as sterol regulatory element binding protein (SREBP)-1c and CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPdelta. To define the role of SREBP-1c on the induction of lipogenic genes and lipogenesis by KGF in primary cultures of rat type II cells, we used adenoviral vectors to alter levels of SREBP-1c. Overexpression of a dominant-negative form of SREBP-1 decreased lipogenesis and decreased the induction of fatty acid synthase and stearyl coenzyme A desaturase-1 by KGF. Conversely, adenovirus-mediated overexpression of a constitutively active form of SREBP-1c mimicked the effect of KGF on lipogenic enzymes and lipogenesis. These data indicate that SREBP-1c is required for the stimulation of lipogenesis by KGF in the alveolar type II cells and is a key regulator of lung lipid metabolism and that expression of SREBP-1c is sufficient to induce lipogenesis in rat type II cells.
Collapse
Affiliation(s)
- Yongsheng Chang
- National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
39
|
Postle AD, Gonzales LW, Bernhard W, Clark GT, Godinez MH, Godinez RI, Ballard PL. Lipidomics of cellular and secreted phospholipids from differentiated human fetal type II alveolar epithelial cells. J Lipid Res 2006; 47:1322-31. [PMID: 16513897 DOI: 10.1194/jlr.m600054-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length.
Collapse
Affiliation(s)
- Anthony D Postle
- Division of Infection, Inflammation, and Repair, School of Medicine, University of Southampton, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Manzer R, Wang J, Nishina K, McConville G, Mason RJ. Alveolar epithelial cells secrete chemokines in response to IL-1beta and lipopolysaccharide but not to ozone. Am J Respir Cell Mol Biol 2005; 34:158-66. [PMID: 16239643 PMCID: PMC2644180 DOI: 10.1165/rcmb.2005-0205oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ozone exposure produces acute inflammation and neutrophil influx in the distal lung. Alveolar epithelial cells cover a large surface area, secrete chemokines, and may initiate or modify the inflammatory response. The effect of ozone on chemokine production by these cells has not been defined. Isolated rat type II cells were cultured in different conditions to express the morphologic appearance and biochemical markers for the type I and the type II cell phenotypes. These cells were exposed to ozone at an air/liquid interface. The type I-like cells were more susceptible to injury than the type II cells and showed signs of injury at exposure levels of 100 ppb ozone for 60 min. Both phenotypes showed evidence of lipid peroxidation after ozone exposure as measured by 8-isoprostane production, but neither phenotype secreted increased amounts of MIP-2 (CXCL3), CINC-1 (CXCL1), or MCP-1 (CCL2) in response to ozone. Both cell phenotypes secreted MIP-2 and MCP-1 in response to IL-1beta or lipopolysaccharide, but there was no priming or synergy with ozone. It is likely that the inflammatory response to ozone in the alveolar compartment is not due to the direct effect of ozone on epithelial cells.
Collapse
Affiliation(s)
- Rizwan Manzer
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
41
|
Nishina K, Zhang F, Nielsen LD, Edeen K, Wang J, Mason RJ. Expression of CINC-2beta is related to the state of differentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 2005; 33:505-12. [PMID: 16055671 PMCID: PMC2715358 DOI: 10.1165/rcmb.2005-0113oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar epithelial cells are among the first cells to encounter inhaled particles or organisms. These cells likely participate in the initiation and modulation of the inflammatory response by production of chemokines. However, there is little information on the extent or regulation of chemokine production by these cells. Rat type II cells were studied under differentiated and dedifferentiated conditions to determine their ability to express and secrete CXC chemokines. Both differentiated and dedifferentiated type II cells secreted MIP-2, MCP-1, and CINC-2 in response to a cytokine mixture of IL-1beta, TNF-alpha, and IFN-gamma or to IL-1beta alone. The cytokine mixture also induced iNOS expression and nitrite secretion. Both differentiated and dedifferentiated type II cells expressed CINC-1 (GRO), CINC-2alpha, CINC-3 (MIP-2), and MCP-1 mRNA, and their expression was increased by the cytokine mixture or by IL-1beta alone. However, CINC-2beta, a splice variant of CINC-2, was only expressed under differentiated conditions stimulated by KGF and was not increased by the cytokine mixture or by IL-1beta. In situ hybridization of normal lung and lung instilled with Ad-KGF demonstrated that CINC-2beta was expressed by alveolar and bronchiolar epithelial cells in vivo. We conclude that CINC-2beta is regulated differently from most other chemokines and that its expression is related to the state of alveolar type II cell differentiation.
Collapse
Affiliation(s)
- Kahoru Nishina
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jin N, Narasaraju T, Kolliputi N, Chen J, Liu L. Differential expression of GABAA receptor π subunit in cultured rat alveolar epithelial cells. Cell Tissue Res 2005; 321:173-83. [PMID: 15912403 DOI: 10.1007/s00441-005-1130-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 03/30/2005] [Indexed: 10/25/2022]
Abstract
Although type A gamma-aminobutyric acid (GABA) receptors (ligand-gated Cl(-) channels) have been extensively studied in the central nervous system, no information is available on this receptor in lung cells. We have examined the expression of GABA(A) receptor pi-subunit (GABRP) during the trans-differentiation between rat alveolar epithelial type II cells and type I cells. Rat alveolar type II cells, when cultured on plastic plates, gradually trans-differentiated into type-I-like cells and lost their GABRP mRNA expression. However, the GABRP mRNA was partially retained in the type II cells cultured on Matrigel. Keratinocyte growth factor (a mitogen of type II cells) increased GABRP expression. A detached collagen gel maintained the GABRP mRNA to a level close to that of the freshly isolated type II cells. An air-liquid interface culture system, mimicking in vivo conditions in the lung, significantly up-regulated the expression of GABRP mRNA and protein. mRNAs of the GABA(A) receptor alpha1-, alpha3-, beta2-, gamma2-, and gamma3-subunits were also detected in rat type II cells. These results suggest that GABRP expression is differentially regulated by culture substrata, growth factor, detached gel, and an air-apical surface.
Collapse
Affiliation(s)
- Nili Jin
- Department of Physiological Sciences, Oklahoma State University, Stillwater, 74078, USA
| | | | | | | | | |
Collapse
|
43
|
Jeyaseelan S, Manzer R, Young SK, Yamamoto M, Akira S, Mason RJ, Worthen GS. Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am J Respir Cell Mol Biol 2005; 32:531-9. [PMID: 15778492 PMCID: PMC2715322 DOI: 10.1165/rcmb.2005-0063oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lung is continuously exposed to bacteria and their products, and has developed a complex defense mechanism, including neutrophil recruitment. In mice, keratinocyte cell-derived chemokine and macrophage inflammatory protein-2 are the major chemokines for neutrophil recruitment into the lung. We have previously described a role for C-X-C chemokine (CXCL5) in neutrophil trafficking during lipopolysaccharide (LPS)-induced lung inflammation in mice. The aims of the present study were to identify the cellular origin of CXCL5 and to determine the signaling cascades that regulate its expression in the lung during LPS-induced inflammation and in isolated LPS-stimulated CXCL5-expressing cells. Our immunohistochemical analysis indicates that alveolar epithelial type II (AEII) cells are the primary source of CXCL5 in the rodent lung. These in vivo observations were confirmed with primary AEII cells. In addition, our data indicate that the Toll-like receptor 4 (TLR4) signaling cascade involving TLR4, myeloid differentiation factor 88, and Toll-IL-1R domain-containing adapter protein is required to induce CXCL5 expression in the lung. Furthermore, p38 and c-Jun N-terminal kinases are involved in lung CXCL5 expression. Similarly, TLR4, and p38 and c-Jun N-terminal kinases, are associated with LPS-induced CXCL5 expression in AEII cells. These novel observations demonstrate that activation of AEII cells via TLR4-dependent signaling is important for the production of CXCL5 in the lung exposed to LPS.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chemokine CXCL5
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Gene Expression/immunology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Neutrophils/immunology
- Pneumonia/immunology
- Pneumonia/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic/metabolism
- Respiratory Mucosa/cytology
- Respiratory Mucosa/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 4
Collapse
Affiliation(s)
- Samithamby Jeyaseelan
- Division of Respiratory Infections, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street Neustadt D-403, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Krick S, Eul BG, Hänze J, Savai R, Grimminger F, Seeger W, Rose F. Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol 2005; 32:395-403. [PMID: 15695738 DOI: 10.1165/rcmb.2004-0314oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypoxia affects alveolar homeostasis and may induce epithelial injury, which has been implicated in lung diseases such as fibrosis. The underlying cellular and molecular mechanisms are, however, largely unknown. Primary rat alveolar epithelial type II cells (ATII) exposed to graded hypoxia for 24 and 48 h caused a dose-dependent induction of cell cycle arrest and suppression of proliferation, which were comparable to the effects of angiotensin II, a potent inducer of ATII cell death. Hypoxia-induced changes in ATII homeostasis are thought to proceed primarily via activation of hypoxia inducible-factor (HIF)-1alpha, because hypoxia increased HIF-1alpha protein expression, nuclear translocation, and transactivation of its specific DNA binding domain, the hypoxia responsive element (HRE). Under hypoxic conditions, expression of the proapoptotic protein Bnip3L, which belongs to the Bcl 2 family and is known to be one of the HIF-1-dependent target genes, was upregulated. Suppression of HIF-1alpha or Bnip-3L with small interfering RNA (siRNA) fully blocked the hypoxia-induced apoptosis and Bnip3L expression. In line with these data, overexpression of HIF-1alpha by transient transfection enhanced the hypoxia-induced apoptosis. Thus, we conclude that hypoxia suppresses alveolar epithelial cell proliferation and enhances ATII apoptosis through activation of the HIF-1alpha/HRE axis and a mechanism that involves Bnip3L. Targeting HIF-1alpha may represent a new strategy that could impede the alveolar denudation that is observed in several lung diseases.
Collapse
Affiliation(s)
- Stefanie Krick
- Department of Internal Medicine II, Klinikstrasse 36, D-35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lee JW, Gonzalez RF, Chapin CJ, Busch J, Fineman JR, Gutierrez JA. Nitric oxide decreases surfactant protein gene expression in primary cultures of type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 2005; 288:L950-7. [PMID: 15640287 DOI: 10.1152/ajplung.00210.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaled nitric oxide (NO) is a selective pulmonary vasodilator effective in treating persistent pulmonary hypertension in newborns and in infants following congenital heart disease surgery. Recently, multiple in vivo and in vitro studies have shown a negative effect of NO on surfactant activity as well as surfactant protein gene expression. Although the relationship between NO and surfactant has been studied previously, the data has been hard to interpret due to the model systems used. The objective of the current study was to characterize the effect of NO on surfactant protein gene expression in primary rat type II pneumocytes cultured on a substratum that promoted the maintenance of type II cell phenotype. Exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), decreased surfactant protein (SP)-A, (SP)-B, and (SP)-C mRNA levels in type II pneumocytes in a time- and dose-dependent manner. The effect was mediated in part by an increase in endothelin-1 secretion and a decrease in the intracellular messenger, phosphorylated ERK1/2 mitogen-activated protein kinases (MAPK). Exposing type II pneumocytes to endothelin-1 receptor antagonists PD-156707 or bosentan before exposure to SNAP partially prevented the decrease in surfactant protein gene expression. The results showed that NO mediated the decrease in surfactant protein gene expression at least in part through an increase in endothelin-1 secretion and a decrease in phosphorylated ERK1/2 MAPKs.
Collapse
Affiliation(s)
- Jae W Lee
- Dept. of Anesthesiology, University of California San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Zhang F, Nielsen LD, Lucas JJ, Mason RJ. Transforming Growth Factor–β Antagonizes Alveolar Type II Cell Proliferation Induced by Keratinocyte Growth Factor. Am J Respir Cell Mol Biol 2004; 31:679-86. [PMID: 15333329 DOI: 10.1165/rcmb.2004-0182oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Keratinocyte growth factor (KGF) is a mitogen for rat type II cells and also stimulates differentiation in vitro. Administration of KGF also protects the lung from a variety of injuries and subsequent development of fibrosis. Because transforming growth factor (TGF)-beta has been shown to inhibit epithelial cell proliferation and surfactant protein gene expression in other systems and is thought to be a major effector in pulmonary fibrosis, we sought to determine if TGF-beta would antagonize the effects of KGF in primary cultures of alveolar type II cells. Type II cells were cultured on a matrix of type I collagen and Matrigel in the presence or absence of KGF and/or TGF-beta. KGF alone greatly stimulated proliferation and increased cyclin-dependent kinase (cdk) 2 kinase activity and Retinoblastoma susceptibility gene product (Rb) phosphorylation. Cyclin D1, cdk2, and cdc25A protein levels were increased, and p15(Ink4b) and p27(Kip1) protein levels were decreased. TGF-beta markedly inhibited alveolar epithelial cell proliferation induced by KGF. TGF-beta inhibited cdk2 enzyme activity and Rb phosphorylation and increased p15(Ink4b) protein levels. TGF-beta also inhibited differentiation induced by KGF as measured by secretion of surfactant protein-A into the apical media. In summary, TGF-beta inhibits the proliferative effect of KGF in vitro and may be a biologic antagonist of KGF.
Collapse
Affiliation(s)
- Feijie Zhang
- National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
47
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
48
|
Gou D, Narasaraju T, Chintagari NR, Jin N, Wang P, Liu L. Gene silencing in alveolar type II cells using cell-specific promoter in vitro and in vivo. Nucleic Acids Res 2004; 32:e134. [PMID: 15452203 PMCID: PMC521678 DOI: 10.1093/nar/gnh129] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing process. Although it is widely used in the loss-of-function studies, none of the current RNAi technologies can achieve cell-specific gene silencing. The lack of cell specificity limits its usage in vivo. Here, we report a cell-specific RNAi system using an alveolar epithelial type II cell-specific promoter--the surfactant protein C (SP-C) promoter. We show that the SP-C-driven small hairpin RNAs specifically depress the expression of the exogenous reporter (enhanced green fluorescent protein) and endogenous genes (lamin A/C and annexin A2) in alveolar type II cells, but not other lung cells, using cell and organ culture in vitro as well as in vivo. The present study provides an efficient strategy in silencing a gene in one type of cell without interfering with other cell systems, and may have a significant impact on RNAi therapy.
Collapse
Affiliation(s)
- Deming Gou
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater OK 74078, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. J Transl Med 2004; 84:736-52. [PMID: 15077120 DOI: 10.1038/labinvest.3700081] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have established a coculture system of human distal lung epithelial cells and human microvascular endothelial cells in order to study the cellular interactions of epithelium and endothelium at the alveolocapillary barrier in both pathogenesis and recovery from acute lung injury. The aim was to determine conditions for the development of functional cellular junctions and the formation of a tight epithelial barrier similar to that observed in vivo. The in vitro coculture system consisted of monolayers of human lung epithelial cell lines (A549 or NCI H441) and primary human pulmonary microvascular endothelial cells (HPMEC) on opposite sides of a permeable filter membrane. A549 failed to show sufficient differentiation with respect to formation of a tight epithelial barrier with intact cell-cell junctions. Stimulated with dexamethasone, the cocultures of NCI H441 and HPMEC established contact-inhibited differentiated monolayers, with NCI H441 showing a continuous, circumferential immunostaining of the tight junctional protein, ZO-1 and the adherens junction protein, E-cadherin. The generation of a polarized epithelial cell monolayer with typical junctional structures was confirmed by transmission electron microscopy. Dexamethasone treatment resulted in average transbilayer electrical resistance (TER) values of 500 Omega cm(2) after 10-12 days of cocultivation and correlated with a reduced flux of the hydrophilic permeability marker, sodium-fluorescein. In addition, basolateral distribution of the proinflammatory cytokine tumour necrosis factor-alpha caused a significant reduction of TER-values after 24 h exposure. This decrease in TER could be re-established to control level by removal of the cytokine within 24 h. Thus, the coculture system of the NCI H441 with HPMEC should be a suitable in vitro model system to examine epithelial and endothelial interactions in the pathogenesis of acute lung injury, infectious lung diseases and toxic lung injury. In addition, it could be used to improve techniques of lung drug delivery that also requires a functional barrier.
Collapse
|
50
|
Gobran LI, Rooney SA. Pulmonary surfactant secretion in briefly cultured mouse type II cells. Am J Physiol Lung Cell Mol Physiol 2003; 286:L331-6. [PMID: 14565945 DOI: 10.1152/ajplung.00334.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is little information on the regulation of surfactant secretion in mouse type II cells. We isolated type II cells from C57BL/6 and FVB mice, cultured them overnight, and then examined their response to known surfactant secretagogues. Secretion of phosphatidylcholine, surfactant protein (SP)-B and SP-C was stimulated by terbutaline, 5'-N-ethylcarboxyamidoadenosine (NECA), ATP, UTP, TPA, and ionomycin. Phosphatidylcholine secretion was increased approximately twofold by all agonists in both strains of mice. The response to terbutaline and NECA is the same as in rat type II cells, whereas the response to ATP, UTP, TPA, and ionomycin is considerably less. Secretion of SP-B and SP-C was increased sevenfold by terbutaline and threefold by ATP, effects similar to those in rat type II cells. The response to terbutaline was significantly decreased in type II cells from beta(2)-adrenergic receptor null mice. These data establish that briefly cultured type II cells provide a suitable model for investigation of surfactant secretion in normal and genetically altered mice.
Collapse
Affiliation(s)
- Laurice I Gobran
- Department of Pediatrics, Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| | | |
Collapse
|