1
|
Li Y, Han Z, Zhao X, Liu Y, Wu Z, Wang J, Li X, Guo X, Tao L. Association between joint exposure to ambient air pollutants and carotid plaque: The mediating role of cardiometabolic risk factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117755. [PMID: 39854868 DOI: 10.1016/j.ecoenv.2025.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Research has shown that exposure to joint air pollution is related to atherosclerosis, but little evidence has been found for carotid plaques. Our objective is to assess the association between exposure to joint air pollutants and carotid plaque and explore the mediating role of cardiometabolic factors in this relationship. METHODS The Beijing Health Management Cohort (BMHC) study followed participants recruited from 2013 to 2014 until December 31, 2020. All participants underwent carotid ultrasound and were free of carotid plaque at baseline. A satellite-based land-use regression (LUR) model was applied to estimate air pollution exposure. The joint exposure to air pollutants was assessed by incorporating a weighted air pollution score. A modified Poisson regression model was conducted to investigate the relationship between exposure to air pollution and carotid plaque occurrence. Mediation analysis explored how cardiometabolic factors mediate the relationships between exposure to joint air pollution and carotid plaque risk. RESULTS During an average follow-up period 4 years, 1240 cases of carotid plaque were identified among 7358 participants. Each interquartile range (IQR) increase in air pollutants was associated with the following relative risk (RR) and 95 % confidence intervals (95 % CIs) for carotid plaque: 2.5-micrometer particulate matter (PM2.5), 1,04 (1.01, 1.07), 10-micrometer particulate matter (PM10), 1.10 (1.01, 1.20), sulfur dioxide (SO2), 1.28 (1.15, 1.42), ozone (O3), 1.18 (1.01, 1.37), and carbon monoxide (CO), 1.32 (1.15, 1.50). Joint exposure to air pollution was positively and linearly associated with the occurrence of carotid plaque, with low-density cholesterol (LDL-C) and mean arterial pressure (MAP) mediating 2.24 % and 4.28 % of the association, respectively. CONCLUSIONS Long-term joint exposure to ambient air pollutants elevates the risk of developing carotid plaque. LDL-C and MAP suggest partial mediating effects of joint air pollution on carotid plaques. Our results emphasize the need to thoroughly evaluate various air pollutants concerning carotid plaque.
Collapse
Affiliation(s)
- Yunfei Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Ze Han
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Xiaoyu Zhao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Yueruijing Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Zhiyuan Wu
- Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia.
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Wang Y, Qu S, Li T, Chen L, Yang L. Association between ambient air pollution and outpatient visits of cardiovascular diseases in Zibo, China: a time series analysis. Front Public Health 2025; 12:1492056. [PMID: 39845652 PMCID: PMC11750768 DOI: 10.3389/fpubh.2024.1492056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Facing Mount Tai in the south and the Yellow River in the north, Zibo District is an important petrochemical base in China. The effect of air pollution on cardiovascular diseases (CVDs) in Zibo was unclear. Methods Daily outpatient visits of common CVDs including coronary heart disease (CHD), stroke, and arrhythmia were obtained from 2019 to 2022 in Zibo. Air pollutants contained fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO). Distributed lag non-linear models (DLNM) including single-pollutant model in single-day (lag0-lag7) and cumulative-days (lag01-lag07), concentration-response curve, subgroup analysis, and double-pollutant model were utilized to examine the relationships of daily air pollutants on CHD, stroke, and arrhythmia. Meteorological factors were incorporated to control confounding. Results In single-pollutant model, NO2 was positively associated with CHD, stroke and arrhythmia, with the strongest excess risks (ERs) of 4.97% (lag07), 4.71% (lag07) and 2.16% (lag02), respectively. The highest ERs of PM2.5 on CHD, stroke and arrhythmia were 0.85% (lag01), 0.59% (lag0) and 0.84% (lag01), and for PM10, the ERs were 0.37% (lag01), 0.35% (lag0) and 0.39% (lag01). SO2 on CHD was 0.92% (lag6), O3 on stroke was 0.16% (lag6), and CO on CHD, stroke, and arrhythmia were 8.77% (lag07), 5.38% (lag01), 4.30% (lag0). No threshold was found between air pollutants and CVDs. The effects of ambient pollutants on CVDs (NO2&CVDs, PM2.5&stroke, PM10&stroke, CO&stroke, CO&arrhythmia) were greater in cold season than warm season. In double-pollutant model, NO2 was positively associated with CHD and stroke, and CO was also positively related with CHD. Conclusion Ambient pollutants, especially NO2 and CO were associated with CVDs in Zibo, China. And there were strong relationships between NO2, PM2.5, PM10, CO and CVDs in cold season.
Collapse
Affiliation(s)
- Yamei Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoning Qu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Chen
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Liping Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Razzaghi S, Mousavi S, Jaberinezhad M, Farshbaf Khalili A, Banan Khojasteh SM. Time-Series analysis of short-term exposure to air pollutants and daily hospital admissions for stroke in Tabriz, Iran. PLoS One 2024; 19:e0309414. [PMID: 39565774 PMCID: PMC11578479 DOI: 10.1371/journal.pone.0309414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Air pollution is considered one of the risk factors for stroke prevalence in the long term and incidence in the short term. Tabriz is one of the most important industrial cities in Iran. Hence, air pollution has always been one of the main concerns in environmental health in the region. METHOD The patient data were retrieved from electronic health records of the primary tertiary hospital of the city (Imam Reza Hospital). Air pollution data was obtained from the Environmental Protection Agency and is generated by 8 sensor stations spread across the city. Average daily values were calculated for CO, NO, NO, NOx, O3, SO2, PM2.5, and PM10 from hourly measurement data. Autoregressive integrated moving average (ARIMA-X) model with 3 lag days was developed to assess the correlation. RESULTS Air pollutants and hospital admission data were collected for 1821 day and includes 4865 stroke cases. our analysis showed no statistically significant association between the daily concentrations of CO (p = 0.41), NOx (p = 0.96), O3 (p = 0.65), SO2 (p = 0.91), PM2.5 (p = 0.44), and PM10 (p = 0.36). Only the binary COVID variable which was used to distinguish between COVID-19 era and other days, was significant (p value = 0.042). The goodness of fit measures, Root Mean Squared Error (RMSE), and Median Absolute Error (MAE) were 1.81 and 1.19, respectively. CONCLUSION In contrast to previous reports on the subject, we did not find any pollutant significantly associated with an increased number of stroke patients.
Collapse
Affiliation(s)
- Shahryar Razzaghi
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Mousavi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Jaberinezhad
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Farshbaf Khalili
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
Su JG, Shahriary E, Sage E, Jacobsen J, Park K, Mohegh A. Development of over 30-years of high spatiotemporal resolution air pollution models and surfaces for California. ENVIRONMENT INTERNATIONAL 2024; 193:109100. [PMID: 39520932 DOI: 10.1016/j.envint.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
California's diverse geography and meteorological conditions necessitate models capturing fine-grained patterns of air pollution distribution. This study presents the development of high-resolution (100 m) daily land use regression (LUR) models spanning 1989-2021 for nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3) across California. These machine learning LUR algorithms integrated comprehensive data sources, including traffic, land use, land cover, meteorological conditions, vegetation dynamics, and satellite data. The modeling process incorporated historical air quality observations utilizing continuous regulatory, fixed site saturation, and Google Streetcar mobile monitoring data. The model performance (adjusted R2) for NO2, PM2.5, and O3 was 84 %, 65 %, and 92 %, respectively. Over the years, NO2 concentrations showed a consistent decline, attributed to regulatory efforts and reduced human activities on weekends. Traffic density and weather conditions significantly influenced NO2 levels. PM2.5 concentrations also decreased over time, influenced by aerosol optical depth (AOD), traffic density, weather, and land use patterns, such as developed open spaces and vegetation. Industrial activities and residential areas contributed to higher PM2.5 concentrations. O3 concentrations exhibited no significant annual trend, with higher levels observed on weekends and lower levels associated with traffic density due to the scavenger effect. Weather conditions and land use, such as commercial areas and water bodies, influenced O3 concentrations. To extend the prediction of daily NO2, PM2.5, and O3 to 1989, models were developed for predictors such as daily road traffic, normalized difference vegetation index (NDVI), Ozone Monitoring Instrument (OMI)-NO2, monthly AOD, and OMI-O3. These models enabled effective estimation for any period with known daily weather conditions. Longitudinal analysis revealed a consistent NO2 decline, regulatory-driven PM2.5 decreases countered by wildfire impacts, and spatially variable O3 concentrations with no long-term trend. This study enhances understanding of air pollution trends, aiding in identifying lifetime exposure for statewide populations and supporting informed policy decisions and environmental justice advocacy.
Collapse
Affiliation(s)
- Jason G Su
- School of Public Health, University of California, Berkeley Berkeley, CA 94720 the United States of America.
| | - Eahsan Shahriary
- School of Public Health, University of California, Berkeley Berkeley, CA 94720 the United States of America
| | - Emma Sage
- School of Public Health, University of California, Berkeley Berkeley, CA 94720 the United States of America
| | - John Jacobsen
- School of Public Health, University of California, Berkeley Berkeley, CA 94720 the United States of America
| | - Katherine Park
- School of Public Health, University of California, Berkeley Berkeley, CA 94720 the United States of America
| | - Arash Mohegh
- Research Division, California Air Resources Board, Sacramento, CA 95812, the United States of America
| |
Collapse
|
5
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
6
|
Oliveira MM, Correia S, Peirone C, Magalhães M, Oliveira P, Peixoto F. Impact of ozone therapy on mouse liver mitochondrial function and antioxidant system. Biochimie 2024; 223:116-124. [PMID: 38548043 DOI: 10.1016/j.biochi.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 06/03/2024]
Abstract
Ozone therapy's efficacy might stem from the regulated and mild oxidative stress resulting from ozone's interactions with various biological elements. The present work aimed to characterize the hepatic mitochondrial response to ozone treatment and its relationship with the antioxidant system response. Two groups of mice were used: one control group and another injected intraperitoneally with an O3/O2 mixture (80 ml/kg) for 5 days. Mitochondrial respiration supported by different substrates was significantly inhibited, as well as complexes I and II/III, but not complex IV. The analysis of the electron transport chain complex activity showed significant inhibitions in complexes I and II/III but not in complex IV. These inhibitions can prevent mitochondrial reactive oxygen species (ROS) production. Additionally, there was a decline in glutathione content, unaccompanied by a rise in its oxidized form. The ozone-treated groups showed a significant increase in the activity of superoxide dismutase and glutathione peroxidase, while catalase and glutathione reductase experienced no significant alterations. Adenine nucleotides increased in the ozone group, but only the increase in adenosine diphosphate is significant, so the cell's energy charge is unaffected. This study shows that mitochondria may play a crucial role in ozone treatment. However, it also highlights the need for further studies to understand the molecular mechanism.
Collapse
Affiliation(s)
- Maria M Oliveira
- Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Sofia Correia
- Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Cecilia Peirone
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Serviços Farmacêuticos Do CHTMAD, Vila Real, Portugal.
| | - Marques Magalhães
- Critical Care Department, University Hospital of Braga, Braga, Portugal.
| | - Paula Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Francisco Peixoto
- Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
7
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
8
|
Yu J, Zhu A, Liu M, Dong J, Chen R, Tian T, Liu T, Ma L, Ruan Y. Association Between Air Pollution and Cardiovascular Disease Hospitalizations in Lanzhou City, 2013-2020: A Time Series Analysis. GEOHEALTH 2024; 8:e2022GH000780. [PMID: 38173697 PMCID: PMC10762694 DOI: 10.1029/2022gh000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.
Collapse
Affiliation(s)
- Jingze Yu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Anning Zhu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Miaoxin Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Jiyuan Dong
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Rentong Chen
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tian Tian
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tong Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Li Ma
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Ye Ruan
- School of Public HealthLanzhou UniversityLanzhouPR China
| |
Collapse
|
9
|
Guo X, Su W, Wang H, Li N, Song Q, Liang Q, Sun C, Liang M, Zhou Z, Song EJ, Sun Y. Short-term exposure to ambient ozone and cardiovascular mortality in China: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:958-975. [PMID: 35438585 DOI: 10.1080/09603123.2022.2066070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a major public health concern in China. Notwithstanding this, there is limited evidence regarding the impact of short-term exposure to ambient ozone on cardiovascular mortality in the Chinese population. Therefore, we conducted this meta-analysis to address this important question. The random-effects model was applied to pool the results from individual studies. Finally, 32 effect estimates extracted from 19 studies were pooled in this meta-analysis. The pooled relative risk for cardiovascular mortality for each 10 µg/m3 increment in ozone concentration was 1.0068 (95% CI: 1.0049, 1.0086). Ths significant positive association between ozone exposure and cardiovascular mortality was also observed in different two-pollutant models. This meta-analysis revealed that exposure to ozone was associated with an increased risk of cardiovascular mortality in China, and more efforts on controlling the population from ozone are needed to improve cardiovascular health of Chinese population.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
- Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
10
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
Bayo Jimenez MT, Hahad O, Kuntic M, Daiber A, Münzel T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur Cardiol 2023; 18:e09. [PMID: 37377448 PMCID: PMC10291605 DOI: 10.15420/ecr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/29/2023] Open
Abstract
During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
- Leibniz Institute for Resilience Research (LIR)Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| |
Collapse
|
12
|
Montes JOA, Villarreal AB, Piña BGB, Martínez KC, Lugo MC, Romieu I, Cadena LH. Short-Term Ambient Air Ozone Exposure and Components of Metabolic Syndrome in a Cohort of Mexican Obese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4495. [PMID: 36901504 PMCID: PMC10001840 DOI: 10.3390/ijerph20054495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Ambient air pollution is a major global public health concern; little evidence exists about the effects of short-term exposure to ozone on components of metabolic syndrome in young obese adolescents. The inhalation of air pollutants, such as ozone, can participate in the development of oxidative stress, systemic inflammation, insulin resistance, endothelium dysfunction, and epigenetic modification. Metabolic alterations in blood in components of metabolic syndrome (MS) and short-term ambient air ozone exposure were determined and evaluated longitudinally in a cohort of 372 adolescents aged between 9 to 19 years old. We used longitudinal mixed-effects models to evaluate the association between ozone exposure and the risk of components of metabolic syndrome and its parameters separately, adjusted using important variables. We observed statistically significant associations between exposure to ozone in tertiles in different lag days and the parameters associated with MS, especially for triglycerides (20.20 mg/dL, 95% CI: 9.5, 30.9), HDL cholesterol (-2.56 mg/dL (95% CI: -5.06, -0.05), and systolic blood pressure (1.10 mmHg, 95% CI: 0.08, 2.2). This study supports the hypothesis that short-term ambient air exposure to ozone may increase the risk of some components of MS such as triglycerides, cholesterol, and blood pressure in the obese adolescent population.
Collapse
Affiliation(s)
- Jorge Octavio Acosta Montes
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Albino Barraza Villarreal
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Blanca Gladiana Beltrán Piña
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Karla Cervantes Martínez
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Marlene Cortez Lugo
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Leticia Hernández Cadena
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| |
Collapse
|
13
|
Franzini M, Valdenassi L, Pandolfi S, Ricevuti G, Tirelli U, Vaiano F, Chirumbolo S. Comments on the optimal use of medical ozone in clinics versus the Ozone High Dose Therapy (OHT) approach. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:26. [PMID: 36533116 PMCID: PMC9734312 DOI: 10.1186/s41231-022-00132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Marianno Franzini
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Luigi Valdenassi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Sergio Pandolfi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | | | - Umberto Tirelli
- Department of Drug Science, University of Pavia, Pavia, Italy
- Tirelli Clinical Group, Pordenone, Italy
| | - Francesco Vaiano
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
14
|
Rodríguez-Sánchez S, Valiente N, Seseña S, Cabrera-Pinto M, Rodríguez A, Aranda A, Palop L, Fernández-Martos CM. Ozone modified hypothalamic signaling enhancing thermogenesis in the TDP-43 A315T transgenic model of Amyotrophic Lateral Sclerosis. Sci Rep 2022; 12:20814. [PMID: 36460700 PMCID: PMC9718766 DOI: 10.1038/s41598-022-25033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating progressive neurodegenerative disease, has no effective treatment. Recent evidence supports a strong metabolic component in ALS pathogenesis. Indeed, metabolic abnormalities in ALS correlate to disease susceptibility and progression, raising additional therapeutic targets against ALS. Ozone (O3), a natural bioactive molecule, has been shown to elicit beneficial effects to reduce metabolic disturbances and improved motor behavior in TDP-43A315T mice. However, it is fundamental to determine the mechanism through which O3 acts in ALS. To characterize the association between O3 exposure and disease-associated weight loss in ALS, we assessed the mRNA and protein expression profile of molecular pathways with a main role in the regulation of the metabolic homeostasis on the hypothalamus and the brown adipose tissue (BAT) at the disease end-stage, in TDP-43A315T mice compared to age-matched WT littermates. In addition, the impact of O3 exposure on the faecal bacterial community diversity, by Illumina sequencing, and on the neuromuscular junctions (NMJs), by confocal imaging, were analysed. Our findings suggest the effectiveness of O3 exposure to induce metabolic effects in the hypothalamus and BAT of TDP-43A315T mice and could be a new complementary non-pharmacological approach for ALS therapy.
Collapse
Affiliation(s)
- Sara Rodríguez-Sánchez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Nicolas Valiente
- grid.10420.370000 0001 2286 1424Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Susana Seseña
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Marta Cabrera-Pinto
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Rodríguez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Alfonso Aranda
- grid.8048.40000 0001 2194 2329Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Llanos Palop
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Carmen M. Fernández-Martos
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain ,grid.1009.80000 0004 1936 826XWicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania Australia
| |
Collapse
|
15
|
Li R, Chen G, Pan M, Hou X, Kang N, Chen R, Yuchi Y, Liao W, Liu X, Mao Z, Huo W, Guo Y, Li S, Wang C, Hou J. Adverse associations of long-term exposure to ambient ozone with molecular biomarkers of aging alleviated by residential greenness in rural Chinese adults. ENVIRONMENT INTERNATIONAL 2022; 169:107496. [PMID: 36084404 DOI: 10.1016/j.envint.2022.107496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Both ambient ozone exposure and residential greenness are linked to the aging process. However, their interactive effect on molecular biomarkers of aging (telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN)) remains unclear. METHODS This study was conducted among 6418 rural Chinese adults. The concentration of ambient ozone was assessed using a random forest model. Residential greenness was represented by the normalized difference vegetation index (NDVI). Molecular biomarkers of aging (relative TL and relative mtDNA-CN) were determined by quantitative real-time polymerase chain reaction. Generalized linear regression models were applied to investigate the independent and combined effects of ambient ozone and residential greenness on relative TL and relative mtDNA-CN. RESULTS The estimated percent changes and 95 % confidence intervals (CIs) of relative TL in response to per-unit increase in ambient ozone were -22.43 % (-23.74 %, -21.18 %), -14.19 % (-15.63 %, -12.72 %) and -4.50 % (-6.57 %, -2.27 %) for participants with low (NDVI ≤ 0.53), moderate (0.54-0.55) and high (≥0.56) residential greenness exposure, respectively, while the corresponding figures of relative mtDNA-CN were -12.63 % (-13.84 %, -11.31 %), -9.52 % (-10.60 %, -8.33 %) and 2.12 % (0.20 %, 4.19 %). Furthermore, negative interactive effects between ambient ozone and residential greenness exposure on molecular biomarkers of aging were observed (Pfor interaction < 0.001 for relative TL, and 0.098 for relative mtDNA-CN). CONCLUSIONS Long-term exposure to high concentrations of ambient ozone and low residential greenness was associated with decreased mtDNA-CN and shortened TL. The adverse effect of ambient ozone exposure on molecular biomarkers of aging may be attenuated by increased residential greenness.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
16
|
Liu Z, Gong F, Tian L, Yan J, Li K, Tan Y, Han J, Zhao Y, Li D, Xi Z, Liu X. Acute exercise in ozone-polluted air induces apoptosis in rat quadriceps femoris muscle cells via mitochondrial pathway. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:190-197. [PMID: 36090921 PMCID: PMC9453690 DOI: 10.1016/j.smhs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Ozone (O3) pollution can decrease sport performance and induce respiratory toxicity, but relatively few studies have investigated its effects on skeletal muscles. We randomly assigned rats to the following groups based on a 2 × 4 two-factor factorial design: Air+0, Air+10, Air+15, and Air+20, O3+0, O3+10, O3+15, and O3+20. The rats in the +0 groups rested, whereas those in the +10, +15, and +20 groups ran on a treadmill (in clean air for Air groups and in air polluted with 0.14 parts per million [ppm] O3 for O3 groups) at speeds of 10, 15, and 20 m/min, respectively, for 1 h. Thereafter, key enzyme activities involving the tricarboxylic acid cycle, oxidative phosphorylation, adenosine triphosphate (ATP) content, histopathological changes, oxidative stress, inflammation factors, and apoptosis were assessed in the rat quadriceps femoris samples. Ozone reduced key enzyme activities and ATP contents in the quadriceps femoris regardless of whether the rats exercised. Pathological changes, inflammatory factors, oxidative stress, and mitochondria-dependent apoptosis were only evident under conditions of exercise combined with ozone and increasingly worsened as exercise intensity increased. These findings suggested that acute exercise under ozone exposure could induce damage to the quadriceps femoris, which would negatively affect sport performance. Ozone-induced disrupted energy metabolism might be an early event that becomes more critical as exercise intensity increases. Therefore, care should be taken when exercising in polluted air, even when ozone pollution is mild. O3 itself inhibited key enzyme activities in TCA and oxidative phosphorylation. O3 decreased ATP production regardless of whether it was coupled with exercise. Acute exercise in O3 polluted air induced oxidative stress, inflammatory reaction. Acute exercise in O3 polluted air caused mitochondria-mediated apoptosis. O3 and exercise synergistically regulated levels of IL-2, IL-6 and 8-OHdG in muscles.
Collapse
Affiliation(s)
- Ziyi Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Fuxu Gong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yue Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Da Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Corresponding author.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
- Corresponding author. Tianjin Institute of Environmental and Operational Medicine, No.1 Dali Road, Heping District, Tianjin, China.
| |
Collapse
|
17
|
Li R, Chen G, Liu X, Pan M, Kang N, Hou X, Liao W, Dong X, Yuchi Y, Mao Z, Huo W, Wang X, Guo Y, Li S, Hou J, Wang C. Aging biomarkers: Potential mediators of association between long-term ozone exposure and risk of atherosclerosis. J Intern Med 2022; 292:512-522. [PMID: 35417071 DOI: 10.1111/joim.13500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Long-term exposure to ambient ozone links to aging biomarkers and increased risk for atherosclerotic cardiovascular diseases (ASCVD). However, the roles of aging biomarkers in the association of long-term exposure to ambient ozone with ASCVD are unclear. METHODS A total of 5298 participants completed the questionnaire and physical examination and provided biological specimens. Aging biomarkers (telomere length [TL] and mitochondrial copy number [mtDNA-CN]) were measured by using a real-time polymerase chain reaction method. The concentration of ambient ozone was assessed using a random forest model. Associations of ambient ozone or aging biomarkers with 10-year ASCVD risk were analyzed using logistic regression models. The roles of aging biomarkers in the association of ambient ozone exposure with 10-year ASCVD risk were explored by mediation analysis. RESULTS The adjusted odds ratios and 95% confidence interval of high 10-year ASCVD risk were 1.16 (1.08, 1.25), 0.71 (0.60, 0.85), and 0.78 (0.64, 0.96) in association with each 1-unit increment in ambient ozone (1 μg/m3 ) concentration, relative TL, and mtDNA-CN, respectively. The mediated proportion of the association between ambient ozone exposure and high 10-year ASCVD risk by TL or mtDNA-CN was 21.13% or 7.75%, respectively. The total proportion of association between ambient ozone exposure and high 10-year ASCVD risk mediated by TL plus mtDNA-CN was 21.02%. CONCLUSIONS Long-term exposure to ambient ozone was associated with increased 10-year ASCVD risk, and the association was partially mediated by aging biomarkers (shortened TL and decreased mtDNA-CN). This study indicated that ambient ozone pollution-related ASCVD risk might be partially explained by the telomere-mitochondrial axis of aging.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
18
|
Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, Hizaddin HF. Towards Integrated Air Pollution Monitoring and Health Impact Assessment Using Federated Learning: A Systematic Review. Front Public Health 2022; 10:851553. [PMID: 35664109 PMCID: PMC9160600 DOI: 10.3389/fpubh.2022.851553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
Collapse
Affiliation(s)
- En Xin Neo
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center of Image and Signal Processing (CISIP), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Istajib Mokhtar
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Mokhzaini Azizan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanee Farzana Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Hathaway QA, Majumder N, Goldsmith WT, Kunovac A, Pinti MV, Harkema JR, Castranova V, Hollander JM, Hussain S. Transcriptomics of single dose and repeated carbon black and ozone inhalation co-exposure highlight progressive pulmonary mitochondrial dysfunction. Part Fibre Toxicol 2021; 18:44. [PMID: 34911549 PMCID: PMC8672524 DOI: 10.1186/s12989-021-00437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nairrita Majumder
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA
| | - William T Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V Pinti
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Vince Castranova
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Salik Hussain
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
20
|
Rahman W, Beig G, Barman N, Hopke PK, Hoque RR. Ambient ozone over mid-Brahmaputra Valley, India: effects of local emissions and atmospheric transport on the photostationary state. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:790. [PMID: 34762170 PMCID: PMC8580808 DOI: 10.1007/s10661-021-09572-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This study presents the characteristics of ground level atmospheric ozone (O3) over the rural mid-Brahmaputra Valley region of the northeastern India. Ozone and oxides of nitrogen (NOx = NO + NO2) concentration data were obtained from continuous measurement of O3 and NOx housed at the MAPAN-AQM station at Tezpur University. The meteorological parameters were obtained from the same station. The diel, monthly, and seasonal variations of O3 were studied. The O3-NOx photostationary state (PS) was carefully examined and it was found that the net O3 concertation deviated substantially from the PS during the winter season. The deviation could be attributed to local biomass burning, biogenic VOC emission from forest and agriculture, and long-range transport of peroxyacyl nitrate (PAN). The long-range transport has been ascertained by examining the ventilation coefficients (VC), which correlated with the steep growth of net O3 concentrations in the morning hours. The HYSPLIT air mass back trajectories were used in concentration-weighted trajectory (CWT) analyses of O3 to assess the long-range regional transport of O3 precursors, which positively influenced local O3 concentrations.
Collapse
Affiliation(s)
- Warisha Rahman
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Gufran Beig
- Indian Institute of Tropical Meteorology, 411004, Pune, India
| | - Nivedita Barman
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Raza R Hoque
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
21
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
22
|
Garcia M, Salazar R, Wilson T, Lucas S, Herbert G, Young T, Begay J, Denson JL, Zychowski K, Ashley R, Byrum S, Mackintosh S, Bleske BE, Ottens AK, Campen MJ. Early Gestational Exposure to Inhaled Ozone Impairs Maternal Uterine Artery and Cardiac Function. Toxicol Sci 2021; 179:121-134. [PMID: 33146391 DOI: 10.1093/toxsci/kfaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to air pollutants such as ozone (O3) is associated with adverse pregnancy outcomes, including higher incidence of gestational hypertension, preeclampsia, and peripartum cardiomyopathy; however, the underlying mechanisms of this association remain unclear. We hypothesized that O3 exposures during early placental formation would lead to more adverse cardiovascular effects at term for exposed dams, as compared with late-term exposures. Pregnant Sprague Dawley rats were exposed (4 h) to either filtered air (FA) or O3 (0.3 or 1.0 ppm) at either gestational day (GD)10 or GD20, with longitudinal functional assessments and molecular endpoints conducted at term. Exposure at GD10 led to placental transcriptional changes at term that were consistent with markers in human preeclampsia, including reduced mmp10 and increased cd36, fzd1, and col1a1. O3 exposure, at both early and late gestation, induced a significant increase in maternal circulating soluble FMS-like tyrosine kinase-1 (sFlt-1), a known driver of preeclampsia. Otherwise, exposure to 0.3 ppm O3 at GD10 led to several late-stage cardiovascular outcomes in dams that were not evident in GD20-exposed dams, including elevated uterine artery resistance index and reduced cardiac output and stroke volume. GD10 O3 exposure proteomic profile in maternal hearts characterized by a reduction in proteins with essential roles in metabolism and mitochondrial function, whereas phosphoproteomic changes were consistent with pathways involved in cardiomyopathic responses. Thus, the developing placenta is an indirect target of inhaled O3 and systemic maternal cardiovascular abnormalities may be induced by O3 exposure at a specific window of gestation.
Collapse
Affiliation(s)
- Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Raul Salazar
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Thomas Wilson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Selita Lucas
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Tamara Young
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Jessica Begay
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Jesse L Denson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Katherine Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Ryan Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, New Mexico 88003
| | - Stephanie Byrum
- Arkansas Children's Research Institute, Little Rock, Arkansas 72202
| | - Samuel Mackintosh
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Barry E Bleske
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298-0709
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
23
|
Rouschop SH, Snow SJ, Kodavanti UP, Drittij MJ, Maas LM, Opperhuizen A, van Schooten FJ, Remels AH, Godschalk RW. Perinatal High-Fat Diet Influences Ozone-Induced Responses on Pulmonary Oxidant Status and the Molecular Control of Mitophagy in Female Rat Offspring. Int J Mol Sci 2021; 22:ijms22147551. [PMID: 34299170 PMCID: PMC8304403 DOI: 10.3390/ijms22147551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
Previous research has shown that a perinatal obesogenic, high-fat diet (HFD) is able to exacerbate ozone-induced adverse effects on lung function, injury, and inflammation in offspring, and it has been suggested that mitochondrial dysfunction is implicated herein. The aim of this study was to investigate whether a perinatal obesogenic HFD affects ozone-induced changes in offspring pulmonary oxidant status and the molecular control of mitochondrial function. For this purpose, female Long-Evans rats were fed a control diet or HFD before and during gestation, and during lactation, after which the offspring were acutely exposed to filtered air or ozone at a young-adult age (forty days). Directly following this exposure, the offspring lungs were examined for markers related to oxidative stress; oxidative phosphorylation; and mitochondrial fusion, fission, biogenesis, and mitophagy. Acute ozone exposure significantly increased pulmonary oxidant status and upregulated the molecular machinery that controls receptor-mediated mitophagy. In female offspring, a perinatal HFD exacerbated these responses, whereas in male offspring, responses were similar for both diet groups. The expression of the genes and proteins involved in oxidative phosphorylation and mitochondrial biogenesis, fusion, and fission was not affected by ozone exposure or perinatal HFD. These findings suggest that a perinatal HFD influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring.
Collapse
Affiliation(s)
- Sven H. Rouschop
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27711, USA; (S.J.S.); (U.P.K.)
- ICF International Inc., Durham, NC 27711, USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27711, USA; (S.J.S.); (U.P.K.)
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Lou M. Maas
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
- Netherlands Food and Consumer Product Safety Authority (NVWA), 3511 Utrecht, The Netherlands
| | - Frederik J. van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Roger W. Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
- Correspondence:
| |
Collapse
|
24
|
Tian L, Chu N, Yang H, Yan J, Lin B, Zhang W, Li K, Lai W, Bian L, Liu H, Xi Z, Liu X. Acute ozone exposure can cause cardiotoxicity: Mitochondria play an important role in mediating myocardial apoptosis. CHEMOSPHERE 2021; 268:128838. [PMID: 33162165 DOI: 10.1016/j.chemosphere.2020.128838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To clarify the cardiotoxicity induced by acute exposure to different concentrations of ozone in both gender rats and explore the underlying mechanisms. METHODS A total of 240 rats were randomly sorted into 6 groups with equal numbers of male and female rats in each group. The rats were subjected to ozone inhalation at concentrations of 0, 0.12, 0.5, 1.0, 2.0 and 4.0 ppm, respectively, for 6 h. After ozone exposure, function indicators, myocardial injury indexes and risk factors of cardiovascular disease in blood were assayed. RESULTS High ozone exposure resulted in sustained ventricular tachycardia in male and female rats. Myocardial apoptosis in male rats started from 1.0 ppm ozone, and that in female rats started from 2.0 ppm ozone (p < 0.05). Caspase-9 increased significantly from 0.12 ppm ozone (p < 0.01) in both gender rats, while caspase-3 was initially activated at 0.5 ppm ozone. From 1.0 ppm ozone, mitochondrial cristae and myofilaments dissolved. The ratio of Bcl-2/Bax decreased significantly from 0.12 ppm and MRCC-IV decreased significantly from 2.0 ppm by ozone. CONCLUSION Acute ozone exposure can cause paroxysmal ventricular tachycardia in rats. Moreover, the changes of inflammatory factors in the heart tissues of female and male rats after ozone exposure were greater than those of oxidative stress. This study reported for the first time that 6 h ozone exposure does not cause acute cardiomyocyte necrosis, but promotes cardiomyocyte apoptosis in a mitochondrial-dependent manner. Ozone could regulate caspases-3 dependent cardiomyocyte apoptosis by affecting the balance between caspase-9 and XIAP.
Collapse
Affiliation(s)
- Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Nan Chu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Hu Yang
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Wei Zhang
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|
25
|
Ambient air pollution exposure and radiographic pulmonary vascular volumes. Environ Epidemiol 2021; 5:e143. [PMID: 33870015 PMCID: PMC8043731 DOI: 10.1097/ee9.0000000000000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Supplemental Digital Content is available in the text. Exposure to higher levels of ambient air pollution is a known risk factor for cardiovascular disease but long-term effects of pollution exposure on the pulmonary vessels are unknown.
Collapse
|
26
|
Tong H, Snow SJ, Chen H, Schladweiler MC, Carswell G, Chorley B, Kodavanti UP. Fish oil and olive oil-enriched diets alleviate acute ozone-induced cardiovascular effects in rats. Toxicol Appl Pharmacol 2020; 409:115296. [PMID: 33091443 DOI: 10.1016/j.taap.2020.115296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
Fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles in human volunteers. This study was designed to examine the cardiovascular effects of ozone (O3) exposure and the efficacy of FO and OO-enriched diets in attenuating the cardiovascular effects from O3 exposure in rats. Rats were fed either a normal diet (ND), a diet enriched with 6% FO or OO starting at 4 weeks of age. Eight weeks following the start of these diet, animals were exposed to filtered air (FA) or 0.8 ppm O3, 4 h/day for 2 consecutive days. Immediately after exposure, cardiac function was measured as the indices of left-ventricular developed pressure (LVDP) and contractility (dP/dtmax and dP/dtmin) before ischemia. In addition, selective microRNAs (miRNAs) of inflammation, endothelial function, and cardiac function were assessed in cardiac tissues to examine the molecular alterations of diets and O3 exposure. Pre-ischemic LVDP and dP/dtmax were lower after O3 exposure in rats fed ND but not FO and OO. Cardiac miRNAs expressions were altered by both diet and O3 exposure. Specifically, O3-induced up-regulation of miR-150-5p and miR-208a-5p were attenuated by FO and/or OO. miR-21 was up-regulated by both FO and OO after O3 exposure. This study demonstrated that O3-induced cardiovascular responses appear to be blunted by FO and OO diets. O3-induced alterations in miRNAs linked to inflammation, cardiac function, and endothelial dysfunction support these pathways are involved, and dietary supplementation with FO or OO may alleviate these adverse cardiovascular effects in rats.
Collapse
Affiliation(s)
- Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27514, United States.
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Hao Chen
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37830, United States.
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Gleta Carswell
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Brian Chorley
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
27
|
Effect of air pollution, air pressure and air temperature on new onset pulmonary thromboembolism: A case-control study. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.822731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Xu HN, Lin Z, Gandhi CK, Amatya S, Wang Y, Li LZ, Floros J. Sex and SP-A2 Dependent NAD(H) Redox Alterations in Mouse Alveolar Macrophages in Response to Ozone Exposure: Potential Implications for COVID-19. Antioxidants (Basel) 2020; 9:antiox9100915. [PMID: 32992843 PMCID: PMC7601279 DOI: 10.3390/antiox9100915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022] Open
Abstract
Co-enzyme nicotinamide adenine dinucleotide (NAD(H)) redox plays a key role in macrophage function. Surfactant protein (SP-) A modulates the functions of alveolar macrophages (AM) and ozone (O3) exposure in the presence or absence of SP-A and reduces mouse survival in a sex-dependent manner. It is unclear whether and how NAD(H) redox status plays a role in the innate immune response in a sex-dependent manner. We investigated the NAD(H) redox status of AM from SP-A2 and SP-A knockout (KO) mice in response to O3 or filtered air (control) exposure using optical redox imaging technique. We found: (i) In SP-A2 mice, the redox alteration of AM in response to O3 showed sex-dependence with AM from males being significantly more oxidized and having a higher level of mitochondrial reactive oxygen species than females; (ii) AM from KO mice were more oxidized after O3 exposure and showed no sex differences; (iii) AM from female KO mice were more oxidized than female SP-A2 mice; and (iv) Two distinct subpopulations characterized by size and redox status were observed in a mouse AM sample. In conclusions, the NAD(H) redox balance in AM responds to O3 in a sex-dependent manner and the innate immune molecule, SP-A2, contributes to this observed sex-specific redox response.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.N.X.); (Z.L.)
| | - Zhenwu Lin
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.N.X.); (Z.L.)
| | - Chintan K. Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (C.K.G.); (S.A.); (Y.W.)
| | - Shaili Amatya
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (C.K.G.); (S.A.); (Y.W.)
| | - Yunhua Wang
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (C.K.G.); (S.A.); (Y.W.)
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.N.X.); (Z.L.)
- Correspondence: (L.Z.L.); (J.F.)
| | - Joanna Floros
- Departments of Pediatric and Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence: (L.Z.L.); (J.F.)
| |
Collapse
|
29
|
Münzel T, Steven S, Frenis K, Lelieveld J, Hahad O, Daiber A. Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxid Redox Signal 2020; 33:581-601. [PMID: 32245334 DOI: 10.1089/ars.2020.8090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: According to the World Health Organization, noncommunicable diseases are the globally leading cause of mortality. Recent Advances: About 71% of 56 million deaths that occurred worldwide are due to noncommunicable cardiovascular risk factors, including tobacco smoking, unhealthy diets, lack of physical activity, overweight, arterial hypertension, diabetes, and hypercholesterolemia, which can be either avoided or substantially reduced. Critical Issues: Thus, it is estimated that 80% of premature heart disease, stroke, and diabetes can be prevented. More recent evidence indicates that environmental stressors such as noise and air pollution contribute significantly to the global burden of cardiovascular disease. In the present review, we focus primarily on important environmental stressors such as transportation noise and air pollution. We discuss the pathophysiology of vascular damage caused by these environmental stressors, with emphasis on early subclinical damage of the vasculature such as endothelial dysfunction and the role of oxidative stress. Future Directions: Lower legal thresholds and mitigation measures should be implemented and may help to prevent vascular damage.
Collapse
Affiliation(s)
- Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Sebastian Steven
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katie Frenis
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Omar Hahad
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| |
Collapse
|
30
|
The Impact of Chronic Ambient Exposure to PM 2.5 and Ozone on Asthma Prevalence and COPD Mortality Rates in the Southeastern United States. ANNUAL REVIEW OF NURSING RESEARCH 2020; 38:15-34. [PMID: 32102953 DOI: 10.1891/0739-6686.38.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Respiratory diseases affect millions of people across the United States annually. Two of the most common respiratory diseases are chronic obstructive pulmonary disease (COPD) and asthma. Mortality rates due to COPD have increased by an estimated 30% between 1980 and 2014, with significant variances among geographic regions. Both acute and chronic ambient exposures to fine particulate matter (PM2.5) and ozone have been associated with exacerbations of respiratory diseases in numerous studies, and exposure to air pollutants are considered as the largest health risk factor globally. This study adds to the current literature by reporting the results of a time series analysis of the impact of PM2.5 and ozone on prevalence rates of asthma and mortality rates for COPD at regional and county levels across the southeastern United States for the years 2005-2014. While general reductions in levels of PM2.5 and ozone were demonstrated across all years, a distributed lag model showed continued strong associations between PM2.5 and prevalence of asthma and mortality due to COPD, even at relatively small increases in ambient exposure (<1 μg/m3) across the southeastern United States. The results of the study support the need for additional research that considers factors such as patient demographics, medical histories, and health disparities in combination with ambient exposures to known pollutants.
Collapse
|
31
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
32
|
Zhang JJ, Wei Y, Fang Z. Ozone Pollution: A Major Health Hazard Worldwide. Front Immunol 2019; 10:2518. [PMID: 31736954 PMCID: PMC6834528 DOI: 10.3389/fimmu.2019.02518] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Oxides of nitrogen (NOx) and volatile organic compounds (VOCs) released into the atmosphere can react in the presence of solar irradiation, leading to ozone formation in the troposphere. Historically, before clean air regulations were implemented to control NOx and VOCs, ozone concentrations were high enough to exert acute effects such as eye and nose irritation, respiratory disease emergencies, and lung function impairment. At or above current regulatory standards, day-to-day variations in ozone concentrations have been positively associated with asthma incidence and daily non-accidental mortality rate. Emerging evidence has shown that both short-term and long-term exposures to ozone, at concentrations below the current regulatory standards, were associated with increased mortality due to respiratory and cardiovascular diseases. The pathophysiology to support the epidemiologic associations between mortality and morbidity and ozone centers at the chemical and toxicological property of ozone as a strong oxidant, being able to induce oxidative damages to cells and the lining fluids of the airways, and immune-inflammatory responses within and beyond the lung. These new findings add substantially to the existing challenges in controlling ozone pollution. For example, in the United States in 2016, 90% of non-compliance to the national ambient air quality standards was due to ozone whereas only 10% was due to particulate matter and other regulated pollutants. Climate change, through creating atmospheric conditions favoring ozone formation, has been and will continue to increase ozone concentrations in many parts of world. Worldwide, ozone is responsible for several hundreds of thousands of premature deaths and tens of millions of asthma-related emergency room visits annually. To combat ozone pollution globally, more aggressive reductions in fossil fuel consumption are needed to cut NOx and VOCs as well as greenhouse gas emissions. Meanwhile, preventive and therapeutic strategies are needed to alleviate the detrimental effects of ozone especially in more susceptible individuals. Interventional trials in humans are needed to evaluate the efficacy of antioxidants and ozone-scavenging compounds that have shown promising results in animal studies.
Collapse
Affiliation(s)
- Junfeng Jim Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, United States.,Global Health Research Center, Duke Kunshan University, Kunshan, China.,Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhangfu Fang
- Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Nyssanbayeva AS, Cherednichenko AV, Cherednichenko AV, Cherednichenko VS, Pablo FA. Temporal dynamics of ground-level ozone and its impact on morbidity in Almaty city in comparison with Astana city, Kazakhstan. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1381-1392. [PMID: 31286222 DOI: 10.1007/s00484-019-01754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 04/24/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Respiratory diseases are nowadays much related to environmental factors such as air pollution. In this sense, it is considered that the annual and the daily courses of ground-level ozone concentrations affect the respiratory systems. A study of ground-level ozone concentration (GO) in the city of Almaty is developed attending to the general content of ozone in the atmosphere as one of sources of ground ozone. The study analyzed the annual and daily course of total ground-level ozone in Almaty. It is shown that the dynamics of its concentrations depends on many factors such as large-scale circulation in the Central Asian region, solar radiation, local mountain valley circulation, and the time of year. Geographic location, motor vehicles traffic intensity, and some specific synoptic conditions can also dramatically affect the daily course of ground-level ozone, promoting formation of two maximum concentration peaks, and one deep minimum concentration between them. The main maximum was fixated at 1:0 p.m., the secondary one at 1:0 a.m. The main minimum was not stable throughout the year. It was fixated at 7:0 p.m. in cold seasons and at 7:0 a.m. in warm seasons. The mean concentration of ground-level ozone from February to November was higher than average permitted concentrations. During 1-2 months, this measurement was higher than MAC (Maximum Allowable Concentrations). High concentration of GO is related to an increase on the number of cases with respiratory problems mainly in the city of Almaty in Kazakhstan.
Collapse
Affiliation(s)
| | | | | | | | - Fdez-Arroyabe Pablo
- Geography Department, Geobiomet, University of Cantabria, 39005, Santander, Spain
| |
Collapse
|
34
|
Xu M, Wang L, Wang M, Wang H, Zhang H, Chen Y, Wang X, Gong J, Zhang JJ, Adcock IM, Chung KF, Li F. Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness. Free Radic Res 2019; 53:780-790. [PMID: 31185753 DOI: 10.1080/10715762.2019.1630735] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n = 8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20 mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100 mg/kg) 1 h before the ozone exposure (2.5 ppm, 3 h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24 h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.
Collapse
Affiliation(s)
- Mengmeng Xu
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Lei Wang
- b Department of Otorhinolaryngology and Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Muyun Wang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Hanying Wang
- b Department of Otorhinolaryngology and Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Hai Zhang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Yuqing Chen
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Xiaohui Wang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Jicheng Gong
- c Duke Global Health Institute and Nicholas School of the Environment, Duke University , Durham , NC , USA.,d College of Environmental Sciences and Engineering and BIC-ESAT, Peking University , Beijing , PR China
| | - Junfeng Jim Zhang
- d College of Environmental Sciences and Engineering and BIC-ESAT, Peking University , Beijing , PR China.,e Global Health Research Center, Duke Kun Shan University , Kunshan , PR China
| | - Ian M Adcock
- f Airway Disease Section, National Heart and Lung Institute, Imperial College London , London , UK.,g Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle , Newcastle , Australia
| | - Kian Fan Chung
- f Airway Disease Section, National Heart and Lung Institute, Imperial College London , London , UK
| | - Feng Li
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
35
|
Wang M, Sampson PD, Sheppard LE, Stein JH, Vedal S, Kaufman JD. Long-Term Exposure to Ambient Ozone and Progression of Subclinical Arterial Disease: The Multi-Ethnic Study of Atherosclerosis and Air Pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57001. [PMID: 31063398 PMCID: PMC6791411 DOI: 10.1289/ehp3325] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Long-term ozone ([Formula: see text]) exposure is associated with cardiovascular mortality, but little is known about the associations between [Formula: see text] and subclinical arterial disease. OBJECTIVES We studied the longitudinal association of exposure to [Formula: see text] and progression of key subclinical arterial markers in adults: intima-media thickness of common carotid artery ([Formula: see text]), carotid plaque (CP) burden, and coronary artery calcification (CAC). METHODS CAC was measured one to four times at baseline and at follow-up exams (1999–2012) by computed tomography (CT) in 6,619 healthy adults, recruited at age 45-84 y without cardiovascular disease (CVD), over a mean of 6.5 y (standard deviation: 3.5 y). [Formula: see text] and CP burden were quantified in 3,392 participants using carotid artery ultrasound imaging acquired over a mean of 9 y (1.7 y). Over 91% and 89% participants had at least one follow-up [Formula: see text] and CAC measurement, respectively. Residence-specific [Formula: see text] concentrations were estimated by a validated spatiotemporal model spanning from 1999 to 2012. This model relied on comprehensive monitoring data and geographical variables to predict individualized long-term average concentrations since baseline. Linear mixed models and logistic regression model were used to evaluate relationships of long-term average exposure to [Formula: see text] with longitudinal change in [Formula: see text], CAC, and CP formation, respectively. RESULTS Mean progression rates of [Formula: see text] and CAC were [Formula: see text] and [Formula: see text]. CP formation was identified in 55% of the subjects. A [Formula: see text] increase in long-term average [Formula: see text] exposure was associated with a [Formula: see text] [95% confidence interval (CI): 1.4, 9.7] greater increase in [Formula: see text] over 10 y. A [Formula: see text] increase in [Formula: see text] was also associated with new CP formation [odds ratio (OR): 1.2 (95% CI: 1.1, 1.4)] but not CAC progression [[Formula: see text] (95% CI: [Formula: see text], 2)]. Associations were robust in the analysis with extended covariate adjustment, including copollutants, i.e., nitrogen oxides ([Formula: see text]) and particulate matter with diameter [Formula: see text] ([Formula: see text]). CONCLUSION Over almost a decade of follow-up, outdoor [Formula: see text] concentrations were associated with increased rate of carotid wall thickness progression and risk of new plaque formation, suggesting arterial injury in this cohort. https://doi.org/10.1289/EHP3325.
Collapse
Affiliation(s)
- Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
- RENEW Institute, University at Buffalo, Buffalo, New York, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Paul D. Sampson
- Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Lianne E. Sheppard
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - James H. Stein
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, Wisconsin, USA
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
36
|
Day DB, Clyde MA, Xiang J, Li F, Cui X, Mo J, Gong J, Weschler CJ, Zhang Y, Zhang JJ. Age modification of ozone associations with cardiovascular disease risk in adults: a potential role for soluble P-selectin and blood pressure. J Thorac Dis 2018; 10:4643-4652. [PMID: 30174917 DOI: 10.21037/jtd.2018.06.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Studies have suggested that age increases susceptibility to ozone-associated mortality, but the underlying mechanisms are unclear. In a previous study, personal exposure to ozone was significantly associated with a platelet activation biomarker, plasma soluble P-selectin (sCD62P), and blood pressure in 89 healthy adults, aged 22-52 years. The present study examines whether age modifies these associations in the same adults and in additional adults. Methods Interaction terms of age and exposure were analyzed using hierarchical Bayesian mixed effects ridge regressions. Data from a similar additional study involving 71 healthy participants, aged 19-26 years, were pooled with the data from the first study to evaluate age effect modification when more young adults were added to the analysis. Results In the 89 adults, significant age interactions were observed for past 24-hour and 2-week ozone exposures and sCD62P. Based on the pooled data (89 plus 71 adults), a 10 ppb increase in 24-hour ozone exposure was associated with increases in sCD62P and systolic blood pressure (SBP) by 22.3% (95% CI: 14.3%, 31.2%) and 1.35 (-0.18, 2.84) mmHg, respectively, at age 25; these values increased to 48.6% (32.7%, 65.1%) and 4.98 (2.56, 7.35) mmHg, respectively, at age 40. Conclusions These results mechanistically suggest that increasing age enhances cardiovascular effects of ozone.
Collapse
Affiliation(s)
- Drew B Day
- Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Merlise A Clyde
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Jianbang Xiang
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxing Cui
- Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jicheng Gong
- College of Environmental Sciences and Engineering and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Charles J Weschler
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China.,Environmental and Occupational Health Sciences Institute, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Junfeng Jim Zhang
- Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, USA.,College of Environmental Sciences and Engineering and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.,Duke Kunshan University, Kunshan 215347, China
| |
Collapse
|
37
|
Nuvolone D, Petri D, Voller F. The effects of ozone on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8074-8088. [PMID: 28547375 DOI: 10.1007/s11356-017-9239-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 04/16/2023]
Abstract
Ozone is a highly reactive, oxidative gas associated with adverse health outcome, including mortality and morbidity. Data from monitoring sites worldwide show levels of ozone often exceeding EU legislation threshold and the more restrictive WHO guidelines for the protection of human health. Well-established evidence has been produced for short-term effects, especially on respiratory and cardiovascular systems, associated to ozone exposure. Less conclusive is the evidence for long-term effects, reporting suggestive associations with respiratory mortality, new-onset asthma in children and increased respiratory symptom effects in asthmatics. The growing epidemiological evidence and the increasing availability of routinely collected data on air pollutant concentrations and health statistics allow to produce robust estimates in health impact assessment routine. Most recent estimates indicate that in 2013 in EU-28, 16,000 premature deaths, equivalent to 192,000 years of life lost, are attributable to ozone exposure. Italy shows very high health impact estimates among EU countries, reporting 3380 premature deaths and 61 years of life lost (per 100,000 inhabitants) attributable to ozone exposure.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy.
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy
| |
Collapse
|
38
|
Miller CN, Dye JA, Schladweiler MC, Richards JH, Ledbetter AD, Stewart E, Kodavanti UP. Acute inhalation of ozone induces DNA methylation of apelin in lungs of Long-Evans rats. Inhal Toxicol 2018; 30:178-186. [PMID: 29947284 PMCID: PMC6681647 DOI: 10.1080/08958378.2018.1483984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
Apelin has cardiopulmonary protective properties that promote vasodilation and maintenance of the endothelial barrier. While reductions in apelin have been identified as a contributor to various lung diseases, including pulmonary edema, its role in the effect of air pollutants has not been examined. Thus, in the current study, we sought to investigate if apelin is a downstream target of inhaled ozone and if such change in expression is related to altered DNA methylation in the lung. Male, Long-Evans rats were exposed to filtered air or 1.0 ppm ozone for 4 h. Ventilation changes were assessed using whole-body plethysmography immediately following exposure, and markers of pulmonary edema and inflammation were assessed in the bronchoaveolar lavage (BAL) fluid. The enzymatic regulators of DNA methylation were measured in the lung, along with methylation and hydroxymethylation of the apelin promoter. Data showed that ozone exposure was associated with increased enhanced pause and protein leakage in the BAL fluid. Ozone exposure reduced DNA cytosine-5-methyltransferase (DNMT) activity and Dnmt3a/b gene expression. Exposure-induced upregulation of proliferating cell nuclear antigen, indicative of DNA damage, repair, and maintenance methylation. Increased methylation and reduced hydroxymethylation were measured on the apelin promoter. These epigenetic modifications accompanied ozone-induced reduction of apelin expression and development of pulmonary edema. In conclusion, epigenetic regulation, specifically increased methylation of the apelin promoter downstream of DNA damage, may lead to reductions in protective signaling of the apelinergic system, contributing to the pulmonary edema observed following the exposure to oxidant air pollution.
Collapse
Affiliation(s)
- Colette N. Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A. Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C. Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy H. Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Allen D. Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Erica Stewart
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Urmila P. Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
39
|
Li H, Wu S, Pan L, Xu J, Shan J, Yang X, Dong W, Deng F, Chen Y, Shima M, Guo X. Short-term effects of various ozone metrics on cardiopulmonary function in chronic obstructive pulmonary disease patients: Results from a panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:358-366. [PMID: 28987568 DOI: 10.1016/j.envpol.2017.09.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Short-term exposure to ambient air pollution has been associated with lower pulmonary function and higher blood pressure (BP). However, controversy remains regarding the relationship between ambient multiple daily ozone (O3) metrics and cardiopulmonary health outcomes, especially in the developing countries. OBJECTIVES To investigate and compare the short-term effects of various O3 metrics on pulmonary function, fractional exhaled nitric oxide (FeNO) and BP in a panel study of COPD patients. METHODS We measured pulmonary function, FeNO and BP repeatedly in a total of 43 patients with COPD for 215 home visits. Daily hourly ambient O3 concentrations were obtained from central-monitoring stations close to subject residences. We calculated various O3 metrics [daily 1-h maximum (O3-1 h max), maximum 8-h average (O3-8 h max) and 24-h average (O3-24 h avg)] based on the hourly data. Daily indoor O3 concentrations were estimated based on estimated indoor/outdoor O3 ratios. Linear mixed-effects models were used to estimate associations of various O3 metrics with cardiopulmonary function variables. RESULTS An interquartile range (IQR) increase in ambient O3-8 h max (80.5 μg/m3, 5-d) was associated with a 5.9% (95%CI: -11.0%, -0.7%) reduction in forced expiratory volume in 1 s (FEV1) and a 6.2% (95%CI: -10.9%, -1.5%) reduction in peak expiratory flow (PEF). However, there were no significant negative associations between ambient O3-1 h max, O3-24 h avg and FEV1, PEF. An IQR increase in ambient O3-1 h max (85.3 μg/m3, 6-d) was associated with a 6.7 mmHg (95%CI: 0.7, 12.7) increase in systolic BP. The estimated indoor O3 were still significantly associated with reduction of FEV1 and PEF. No significant associations were found between various O3 metrics and FeNO. CONCLUSIONS Our results provide clues for the adverse cardiopulmonary effects associated with various O3 metrics in COPD patients and highlight that O3-8 h max was more closely associated with respiratory health variables.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lu Pan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jiao Shan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Yahong Chen
- Respiratory Department, Peking University Third Hospital, Beijing, China
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Hyogo, Japan
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
40
|
Miller CN, Dye JA, Ledbetter AD, Schladweiler MC, Richards JH, Snow SJ, Wood CE, Henriquez AR, Thompson LC, Farraj AK, Hazari MS, Kodavanti UP. Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:127005. [PMID: 29269335 PMCID: PMC5963593 DOI: 10.1289/ehp2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Epidemiological studies suggest that increased ozone exposure during gestation may compromise fetal growth. In particular, the implantation stage of pregnancy is considered a key window of susceptibility for this outcome. OBJECTIVES The main goals of this study were to investigate the effects of short-term ozone inhalation during implantation on fetal growth outcomes and to explore the potential for alterations in uterine arterial flow as a contributing mechanism. METHODS Pregnant Long-Evans rats were exposed to filtered air, 0.4 ppm ozone, or 0.8 ppm ozone for 4 h/d during implantation, on gestation days (GD) 5 and 6. Tail cuff blood pressure and uterine artery Doppler ultrasound were measured on GD 15, 19, and 21. To assess whether peri-implantation ozone exposure resulted in sustained pulmonary or systemic health effects, bronchoalveolar lavage fluid, serum metabolic and inflammatory end points, and kidney histopathology were evaluated in dams at GD 21. Growth parameters assessed in GD 21 offspring included fetal weight, length, and body composition. RESULTS Measures of maternal uterine arterial flow, including resistance index and mean velocity, indicated that resistance increased between GD 15 and GD 21 in 0.8 ppm dams but decreased in controls, although absolute values were similar in both groups on GD 21. Ozone-exposed dams also had lower serum glucose and higher free fatty acid concentrations than controls on GD 21. On GD 21, both male and female offspring had lower body weight than controls, and pooled subsets of 3 male and 3 female fetuses from litters exposed to 0.8 ppm ozone had lower lean mass and fat mass than pooled control offspring. CONCLUSIONS Findings from our experimental model suggest that the offspring of dams exposed to ozone during implantation had reduced growth compared with controls, possibly as a consequence of ozone-induced vascular dysfunction. https://doi.org/10.1289/EHP2019.
Collapse
Affiliation(s)
- Colette N Miller
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Janice A Dye
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Judy H Richards
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Samantha J Snow
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Charles E Wood
- Integrated Systems Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Andres R Henriquez
- Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie C Thompson
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Aimen K Farraj
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
França CMP, Sallum AME, Braga ALF, Strufaldi FL, Silva CAA, Farhat SCL. Risk Factors Associated with Juvenile Idiopathic Arthritis: Exposure to Cigarette Smoke and Air Pollution from Pregnancy to Disease Diagnosis. J Rheumatol 2017; 45:248-256. [DOI: 10.3899/jrheum.161500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/22/2022]
Abstract
Objective.To evaluate exposure to environmental factors inhaled during pregnancy and after birth until juvenile idiopathic arthritis (JIA) diagnosis among residents of a large city.Methods.This is an exploratory case-control study that consists of 66 patients with JIA and 124 healthy controls matched by age and sex, living in the São Paulo, Brazil, metropolitan area until JIA diagnosis, and whose mothers had resided in this region during pregnancy. A structured and reliable questionnaire (κ index for test-retest was 0.80) assessed demographic data, gestational and perinatal-related factors, and exposure to inhalable environmental elements during pregnancy and after birth (occupational exposure to inhalable particles and/or volatile vapor, exposure to cigarette smoke, and the presence of industrial activities or gas stations near the home, work, daycare, or school). Tropospheric pollutants included particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO).Results.During pregnancy, intrauterine cigarette smoke exposure (OR 3.43, 95% CI 1.45–8.12, p = 0.005) and maternal occupational exposure (OR 13.69, 95% CI 4.4–42.3, p < 0.001) were significant independent risk factors for JIA diagnosis. In contrast, maternal employment (OR 0.06, 95% CI 0.02–0.2, p < 0.001) and ideal maternal weight gain (OR 0.36, 95% CI 0.2–0.8, p = 0.017) presented negative associations. Secondhand smoke exposure from birth to JIA diagnosis (OR 3.6, 95% CI 1.8–7.3, p < 0.001) and exposure to O3during the second year of life (OR 2.76, 95% CI 1.20–6.37, p = 0.017) were independent and significant risk factors for the pathogenesis of JIA.Conclusion.In our study, cigarette smoke exposure (intrauterine and after birth), exposure to O3in the second year of life, and maternal occupational exposure were identified as potential risk factors for JIA, warranting further study.
Collapse
|
42
|
Fetterman JL, Sammy MJ, Ballinger SW. Mitochondrial toxicity of tobacco smoke and air pollution. Toxicology 2017; 391:18-33. [PMID: 28838641 PMCID: PMC5681398 DOI: 10.1016/j.tox.2017.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Melissa J Sammy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States.
| |
Collapse
|
43
|
Dugas TR. Unraveling mechanisms of toxicant-induced oxidative stress in cardiovascular disease. CURRENT OPINION IN TOXICOLOGY 2017; 7:1-8. [PMID: 29423456 DOI: 10.1016/j.cotox.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To date, numerous clinical studies examining correlations between oxidative stress biomarkers and cardiovascular diseases (CVD) have repeatedly suggested a role for oxidant injury in the pathogenesis of diseases such as atherosclerosis. Despite this, antioxidant supplementation trials have not demonstrated a reduction in disease progression. Nevertheless, small animal and epidemiological studies have linked exposures to certain toxicants with increased CVD risk involving putative oxidative stress mechanisms. A few prototypical vascular toxicants will be discussed as examples of toxicants that likely act via oxidative stress mechanisms. For discussion, we will classify these toxicants as those that induce direct (e.g., arsenic, nucleoside reverse transcriptase inhibitors) versus indirect (particulate matter, ozone) oxidative stress mechanisms, and those that likely induce CVD through both direct and indirect mechanisms (cigarette smoke). Finally, new findings in oxidative stress research, including the emerging importance of reactive sulfur species, hydrogen peroxide as a presumed endothelium-derived hyperpolarizing factors, etc., will be discussed, as well as the need to determine the role of toxicants in modulating these newly identified pathways. Moreover, given the lack of success in conclusively demonstrating the roles of oxidative stress in CVD risk stratification, research probing the roles of toxicant exposures in propagating CVD pathogenesis may be a novel approach for more conclusively delineating the causal role of oxidative stress in CVD initiation and progression.
Collapse
Affiliation(s)
- Tammy R Dugas
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803
| |
Collapse
|
44
|
Poma A, Colafarina S, Aruffo E, Zarivi O, Bonfigli A, Di Bucchianico S, Di Carlo P. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells. PLoS One 2017; 12:e0184519. [PMID: 28886142 PMCID: PMC5590931 DOI: 10.1371/journal.pone.0184519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/27/2017] [Indexed: 12/03/2022] Open
Abstract
Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.
Collapse
Affiliation(s)
- Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- * E-mail:
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Aruffo
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Centre of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Bonfigli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Piero Di Carlo
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Centre of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
45
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
46
|
Frampton MW, Balmes JR, Bromberg PA, Stark P, Arjomandi M, Hazucha MJ, Rich DQ, Hollenbeck-Pringle D, Dagincourt N, Alexis N, Ganz P, Zareba W, Costantini MG. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 1. Effects of Exposure to Low Concentrations of Ozone on Respiratory and Cardiovascular Outcomes. Res Rep Health Eff Inst 2017; 2017:1-107. [PMID: 31898880 PMCID: PMC7266375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Exposure to air pollution is a well-established risk factor for cardiovascular morbidity and mortality. Most of the evidence supporting an association between air pollution and adverse cardiovascular effects involves exposure to particulate matter (PM). To date, little attention has been paid to acute cardiovascular responses to ozone, in part due to the notion that ozone causes primarily local effects on lung function, which are the basis for the current ozone National Ambient Air Quality Standards (NAAQS). There is evidence from a few epidemiological studies of adverse health effects of chronic exposure to ambient ozone, including increased risk of mortality from cardiovascular disease. However, in contrast to the well-established association between ambient ozone and various nonfatal adverse respiratory effects, the observational evidence for impacts of acute (previous few days) increases in ambient ozone levels on total cardiovascular mortality and morbidity is mixed. Ozone is a prototypic oxidant gas that reacts with constituents of the respiratory tract lining fluid to generate reactive oxygen species (ROS) that can overwhelm antioxidant defenses and cause local oxidative stress. Pathways by which ozone could cause cardiovascular dysfunction include alterations in autonomic balance, systemic inflammation, and oxidative stress. These initial responses could lead ultimately to arrhythmias, endothelial dysfunction, acute arterial vasoconstriction, and procoagulant activity. Individuals with impaired antioxidant defenses, such as those with the null variant of glutathione S-transferase mu 1 (GSTM1), may be at increased risk for acute health effects. The Multicenter Ozone Study in oldEr Subjects (MOSES) was a controlled human exposure study designed to evaluate whether short-term exposure of older, healthy individuals to ambient levels of ozone induces acute cardiovascular responses. The study was designed to test the a priori hypothesis that short-term exposure to ambient levels of ozone would induce acute cardiovascular responses through the following mechanisms: autonomic imbalance, systemic inflammation, and development of a prothrombotic vascular state. We also postulated a priori the confirmatory hypothesis that exposure to ozone would induce airway inflammation, lung injury, and lung function decrements. Finally, we postulated the secondary hypotheses that ozone-induced acute cardiovascular responses would be associated with: (a) increased systemic oxidative stress and lung effects, and (b) the GSTM1-null genotype. METHODS The study was conducted at three clinical centers with a separate Data Coordinating and Analysis Center (DCAC) using a common protocol. All procedures were approved by the institutional review boards (IRBs) of the participating centers. Healthy volunteers 55 to 70 years of age were recruited. Consented participants who successfully completed the screening and training sessions were enrolled in the study. All three clinical centers adhered to common standard operating procedures (SOPs) and used common tracking and data forms. Each subject was scheduled to participate in a total of 11 visits: screening visit, training visit, and three sets of exposure visits, each consisting of the pre-exposure day, the exposure day, and the post-exposure day. The subjects spent the night in a nearby hotel the night of the pre-exposure day. On exposure days, the subjects were exposed for three hours in random order to 0 ppb ozone (clean air), 70 ppb ozone, and 120 ppm ozone, alternating 15 minutes of moderate exercise with 15 minutes of rest. A suite of cardiovascular and pulmonary endpoints was measured on the day before, the day of, and up to 22 hours after, each exposure. The endpoints included: (1) electrocardiographic changes (continuous Holter monitoring: heart rate variability [HRV], repolarization, and arrhythmia); (2) markers of inflammation and oxidative stress (C-reactive protein [CRP], interleukin-6 [IL-6], 8-isoprostane, nitrotyrosine, and P-selectin); (3) vascular function measures (blood pressure [BP], flow-mediated dilatation [FMD] of the brachial artery, and endothelin-1 [ET-1]; (4) venous blood markers of platelet activation, thrombosis, and microparticle-associated tissue factor activity (MP-TFA); (5) pulmonary function (spirometry); (6) markers of airway epithelial cell injury (increases in plasma club cell protein 16 [CC16] and sputum total protein); and (7) markers of lung inflammation in sputum (polymorphonuclear leukocytes [PMN], IL-6, interleukin-8 [IL-8], and tumor necrosis factor-alpha [TNF-α]). Sputum was collected only at 22 hours after exposure. The analyses of the continuous electrocardiographic monitoring, the brachial artery ultrasound (BAU) images, and the blood and sputum samples were carried out by core laboratories. The results of all analyses were submitted directly to the DCAC. The variables analyzed in the statistical models were represented as changes from pre-exposure to post-exposure (post-exposure minus pre-exposure). Mixed-effect linear models were used to evaluate the impact of exposure to ozone on the prespecified primary and secondary continuous outcomes. Site and time (when multiple measurements were taken) were controlled for in the models. Three separate interaction models were constructed for each outcome: ozone concentration by subject sex; ozone concentration by subject age; and ozone concentration by subject GSTM1 status (null or sufficient). Because of the issue of multiple comparisons, the statistical significance threshold was set a priori at P < 0.01. RESULTS Subject recruitment started in June 2012, and the first subject was randomized on July 25, 2012. Subject recruitment ended on December 31, 2014, and testing of all subjects was completed by April 30, 2015. A total of 87 subjects completed all three exposures. The mean age was 59.9 ± 4.5 years, 60% of the subjects were female, 88% were white, and 57% were GSTM1 null. Mean baseline body mass index (BMI), BP, cholesterol (total and low-density lipoprotein), and lung function were all within the normal range. We found no significant effects of ozone exposure on any of the primary or secondary endpoints for autonomic function, repolarization, ST segment change, or arrhythmia. Ozone exposure also did not cause significant changes in the primary endpoints for systemic inflammation (CRP) and vascular function (systolic blood pressure [SBP] and FMD) or secondary endpoints for systemic inflammation and oxidative stress (IL-6, P-selectin, and 8-isoprostane). Ozone did cause changes in two secondary endpoints: a significant increase in plasma ET-1 (P = 0.008) and a marginally significant decrease in nitrotyrosine (P = 0.017). Lastly, ozone exposure did not affect the primary prothrombotic endpoints (MP-TFA and monocyte-platelet conjugate count) or any secondary markers of prothrombotic vascular status (platelet activation, circulating microparticles [MPs], von Willebrand factor [vWF], or fibrinogen.). Although our hypothesis focused on possible acute cardiovascular effects of exposure to low levels of ozone, we recognized that the initial effects of inhaled ozone involve the lower airways. Therefore, we looked for: (a) changes in lung function, which are known to occur during exposure to ozone and are maximal at the end of exposure; and (b) markers of airway injury and inflammation. We found an increase in forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV₁) after exposure to 0 ppb ozone, likely due to the effects of exercise. The FEV₁ increased significantly 15 minutes after 0 ppb exposure (85 mL; 95% confidence interval [CI], 64 to 106; P < 0.001), and remained significantly increased from pre-exposure at 22 hours (45 mL; 95% CI, 26 to 64; P < 0.001). The increase in FVC followed a similar pattern. The increase in FEV₁ and FVC were attenuated in a dose-response manner by exposure to 70 and 120 ppb ozone. We also observed a significant ozone-induced increase in the percentage of sputum PMN 22 hours after exposure at 120 ppb compared to 0 ppb exposure (P = 0.003). Plasma CC16 also increased significantly after exposure to 120 ppb (P < 0.001). Sputum IL-6, IL-8, and TNF-α concentrations were not significantly different after ozone exposure. We found no significant interactions with sex, age, or GSTM1 status regarding the effect of ozone on lung function, percentage of sputum PMN, or plasma CC16. CONCLUSIONS In this multicenter clinical study of older healthy subjects, ozone exposure caused concentration-related reductions in lung function and presented evidence for airway inflammation and injury. However, there was no convincing evidence for effects on cardiovascular function. Blood levels of the potent vasoconstrictor, ET-1, increased with ozone exposure (with marginal statistical significance), but there were no effects on BP, FMD, or other markers of vascular function. Blood levels of nitrotyrosine decreased with ozone exposure, the opposite of our hypothesis. Our study does not support acute cardiovascular effects of low-level ozone exposure in healthy older subjects. Inclusion of only healthy older individuals is a major limitation, which may affect the generalizability of our findings. We cannot exclude the possibility of effects with higher ozone exposure concentrations or more prolonged exposure, or the possibility that subjects with underlying vascular disease, such as hypertension or diabetes, would show effects under these conditions.
Collapse
Affiliation(s)
- M W Frampton
- University of Rochester Medical Center, Rochester, New York
| | | | | | - P Stark
- New England Research Institute, Watertown, Massachusetts
| | | | | | - D Q Rich
- University of Rochester Medical Center, Rochester, New York
| | | | - N Dagincourt
- New England Research Institute, Watertown, Massachusetts
| | - N Alexis
- University of North Carolina, Chapel Hill
| | - P Ganz
- University of California, San Francisco
| | - W Zareba
- University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
47
|
Zeng XW, Qian ZM, Vaughn MG, Nelson EJ, Dharmage SC, Bowatte G, Perret J, Chen DH, Ma H, Lin S, de Foy B, Hu LW, Yang BY, Xu SL, Zhang C, Tian YP, Nian M, Wang J, Xiao X, Bao WW, Zhang YZ, Dong GH. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:698-705. [PMID: 28259583 DOI: 10.1016/j.envpol.2017.02.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/21/2017] [Accepted: 02/21/2017] [Indexed: 05/20/2023]
Abstract
The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM10 (50.0 μg/m3) and O3 (53.0 μg/m3) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM10 and 2.77 (95% CI, 1.94-3.95) for O3. Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM10 and O3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China.
Collapse
Affiliation(s)
- Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Erik J Nelson
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic 3052, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic 3052, Australia
| | - Jennifer Perret
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic 3052, Australia
| | - Duo-Hong Chen
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou 510308, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shao Lin
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, Albany, NY 12144-3445, USA
| | - Benjamin de Foy
- Department of Earth and Atmospheric Sciences, Saint Louis University, Saint Louis 63108, USA
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Peng Tian
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Nian
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Wen Bao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya-Zhi Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
48
|
Jung CR, Chen WT, Lin YT, Hwang BF. Ambient Air Pollutant Exposures and Hospitalization for Kawasaki Disease in Taiwan: A Case-Crossover Study (2000-2010). ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:670-676. [PMID: 27458717 PMCID: PMC5381970 DOI: 10.1289/ehp137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/25/2016] [Accepted: 06/21/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is an acute and multi-systemic vasculitis that occurs predominantly in infants and young children. Although the etiological agent of KD remains unclear, limited studies have reported that windborne environmental factors may trigger KD. OBJECTIVES We conducted a time-stratified case-crossover study to assess the associations between air pollutants and KD in Taiwan. METHODS We identified children < 5 years old with a diagnosis of KD from the Longitudinal Health Insurance Database 2000 (LHID2000) between 2000 and 2010. We obtained data regarding carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter with aerodynamic diameter < 10 μm (PM10), and sulfate dioxide (SO2) from 70 monitoring stations and used inverse distance weighting to calculate average daily exposures for the residential postal code of each case. We performed conditional logistic regression to estimate associations between KD and each air pollutant according to interquartile range (IQR) increases and quartiles of exposure on the day of hospitalization versus 3-4 reference days during the same month for each case. Additionally, we estimated associations with single-day exposures lagged 1-2 days. RESULTS We identified 695 KD hospital admissions during the study period. An IQR increase (28.73 ppb) of O3 was positively associated with KD after adjusting for temperature, humidity, northward wind, and eastward wind [adjusted odds ratio = 1.21; 95% confidence interval (CI): 1.01, 1.44]. There were no significant associations between KD and CO, NO2, PM10, or SO2. The association with O3 was limited to exposure on the day of hospitalization and to exposure during the summer months (June-August). CONCLUSIONS Our results provide new evidence that exposure to O3 may increase the risk of KD in children. However, further investigation is needed to confirm the association and identify a potential biological mechanism.
Collapse
Affiliation(s)
- Chau-Ren Jung
- Department of Occupational Safety and Health, and
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Department of Occupational Safety and Health, and
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, and
- Address correspondence to B.-F. Hwang, Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan, 40402 R.O.C. Telephone: 886-4-22053366, ext. 6208.
| |
Collapse
|
49
|
Tham A, Lullo D, Dalton S, Zeng S, van Koeverden I, Arjomandi M. Modeling vascular inflammation and atherogenicity after inhalation of ambient levels of ozone: exploratory lessons from transcriptomics. Inhal Toxicol 2017; 29:96-105. [PMID: 28412860 PMCID: PMC7456636 DOI: 10.1080/08958378.2017.1310333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone. METHODS To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure. RESULTS A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum. CONCLUSIONS Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.
Collapse
Affiliation(s)
- Andrea Tham
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dominic Lullo
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, USA
| | - Sarah Dalton
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, University of California, San Francisco, California, USA
| | - Siyang Zeng
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, University of California, San Francisco, California, USA
| | - Ian van Koeverden
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mehrdad Arjomandi
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, University of California, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Immunology, and Sleep Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
50
|
Ward WO, Kodavanti UP. Pulmonary transcriptional response to ozone in healthy and cardiovascular compromised rat models. Inhal Toxicol 2016; 27 Suppl 1:93-104. [PMID: 26667334 DOI: 10.3109/08958378.2014.954173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic insights into susceptibility differences to ozone. The lung expression profiles of healthy Wistar Kyoto (WKY) and CVD-compromised spontaneously hypertensive (SH), stroke-prone SH (SHSP), obese SH heart failure (SHHF) and obese, atherosclerosis-prone JCR rats were analyzed using Affymetrix platform immediately after 4-h air or 1 ppm ozone exposure. At baseline, the JCR exhibited the largest difference in the number of genes among all strains when compared with WKY. Interestingly, the number of genes affected by ozone was inversely correlated with genes different at baseline relative to WKY. A cluster of NFkB target genes involved in cell-adhesion, antioxidant response, inflammation and apoptosis was induced in all strains, albeit at different levels (JCR < WKY < SHHF < SH < SHSP). The lung metabolic syndrome gene cluster indicated expressions in opposite directions for SHHF and JCR suggesting different mechanisms for common disease phenotype and perhaps obesity-independent contribution to exacerbated lung disease. The differences in expression of adrenergic receptors and ion-channel genes suggested distinct mechanisms by which ozone might induce protein leakage in CVD models, especially SHHF and JCR. Thus, the pulmonary response to ozone in CVD strains was likely linked to the defining gene expression profiles. Differential transcriptional patterns between healthy and CVD rat strains at baseline, and after ozone suggests that lung inflammation and injury might be influenced by multiple biological pathways affecting inflammation gene signatures.
Collapse
Affiliation(s)
- William O Ward
- a Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Urmila P Kodavanti
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|