1
|
Khazaal S, Harb J, Rima M, Annweiler C, Wu Y, Cao Z, Abi Khattar Z, Legros C, Kovacic H, Fajloun Z, Sabatier JM. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules 2022; 27:2903. [PMID: 35566253 PMCID: PMC9101946 DOI: 10.3390/molecules27092903] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has expanded across the world since its discovery in Wuhan (China) and has had a significant impact on people's lives and health. Long COVID is a term coined by the World Health Organization (WHO) to describe a variety of persistent symptoms after acute SARS-CoV-2 infection. Long COVID has been demonstrated to affect various SARS-CoV-2-infected persons, independently of the acute disease severity. The symptoms of long COVID, like acute COVID-19, consist in the set of damage to various organs and systems such as the respiratory, cardiovascular, neurological, endocrine, urinary, and immune systems. Fatigue, dyspnea, cardiac abnormalities, cognitive and attention impairments, sleep disturbances, post-traumatic stress disorder, muscle pain, concentration problems, and headache were all reported as symptoms of long COVID. At the molecular level, the renin-angiotensin system (RAS) is heavily involved in the pathogenesis of this illness, much as it is in the acute phase of the viral infection. In this review, we summarize the impact of long COVID on several organs and tissues, with a special focus on the significance of the RAS in the disease pathogenesis. Long COVID risk factors and potential therapy approaches are also explored.
Collapse
Affiliation(s)
- Shaymaa Khazaal
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouene Campus, Sin El Fil P.O. Box 55251, Lebanon;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital & Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638, SFR Confluences, University of Angers, 44312 Angers, France;
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeidet El-Matn, Beirut P.O. Box 90656, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, University of Angers, 49000, France;
| | - Hervé Kovacic
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| |
Collapse
|
2
|
Khattab AR, Teleb M. In silico discovery of non-psychoactive scaffolds in Cannabis halting SARS-CoV-2 host entry and replication machinery. Future Virol 2022; 0:10.2217/fvl-2021-0309. [PMID: 35399958 PMCID: PMC8982993 DOI: 10.2217/fvl-2021-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Aim: Coronavirus disease still poses a global health threat which advocates continuous research efforts to develop effective therapeutics. Materials & methods: We screened out an array of 29 cannabis phytoligands for their viral spike-ACE2 complex and main protease (Mpro) inhibitory actions by in silico modeling to explore their possible dual viral entry and replication machinery inhibition. Physicochemical and pharmacokinetic parameters (ADMET) formulating drug-likeness were computed. Results: Among the studied phytoligands, cannabigerolic acid (2), cannabigerol (8), and its acid methyl ether (3) possessed the highest binding affinities to SARS-CoV-hACE2 complex essential for viral entry. Canniprene (24), cannabigerolic methyl ether (3) and cannabichromene (9) were the most promising Mpro inhibitors. Conclusion: These non-psychoactive cannabinoids could represent plausible therapeutics with added-prophylactic value as they halt both viral entry and replication machinery.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport, Alexandria, 1029, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
3
|
Alizadehmohajer N, Behmardi A, Najafgholian S, Moradi S, Mohammadi F, Nedaeinia R, Haghjooy Javanmard S, Sohrabi E, Salehi R, Ferns GA, Emami Nejad A, Manian M. Screening of potential inhibitors of COVID-19 with repurposing approach via molecular docking. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 11:11. [PMID: 35136710 PMCID: PMC8814570 DOI: 10.1007/s13721-021-00341-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/14/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2 (COVID-19) is the causative organism for a pandemic disease with a high rate of infectivity and mortality. In this study, we aimed to assess the affinity between several available small molecule and proteins, including Abl kinase inhibitors, Janus kinase inhibitor, dipeptidyl peptidase 4 inhibitors, RNA-dependent RNA polymerase inhibitors, and Papain-like protease inhibitors, using binding simulation, to test whether they may be effective in inhibiting COVID-19 infection through several mechanisms. The efficiency of inhibitors was evaluated based on docking scores using AutoDock Vina software. Strong ligand-protein interactions were predicted among some of these drugs, that included: Imatinib, Remdesivir, and Telaprevir, and this may render these compounds promising candidates. Some candidate drugs might be efficient in disease control as potential inhibitors or lead compounds against the SARS-CoV-2. It is also worth highlighting the powerful immunomodulatory role of other drugs, such as Abivertinib that inhibits pro-inflammatory cytokine production associated with cytokine release syndrome (CRS) and the progression of COVID-19 infection. The potential role of other Abl kinase inhibitors, including Imatinib in reducing SARS-CoV and MERS-CoV viral titers, immune regulatory function and the development of acute respiratory distress syndrome (ARDS), indicate that this drug may be useful for COVID-19, as the SARS-CoV-2 genome is similar to SARS-CoV.
Collapse
Affiliation(s)
- Negin Alizadehmohajer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milano, Italy
| | - Abtin Behmardi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A. Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH Sussex UK
| | - Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Mostafa Manian
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Gilani SJ, Bin-Jumah MN, Nadeem MS, Kazmi I. Vitamin D attenuates COVID-19 complications via modulation of proinflammatory cytokines, antiviral proteins, and autophagy. Expert Rev Anti Infect Ther 2022; 20:231-241. [PMID: 34112047 PMCID: PMC8477590 DOI: 10.1080/14787210.2021.1941871] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Global emergence of coronavirus disease-19 (COVID-19) has clearly shown variable severity, mortality, and frequency between and within populations worldwide. These striking differences have made many biological variables attractive for future investigations. One of these variables, vitamin D, has been implicated in COVID-19 with rapidly growing scientific evidence. AREAS COVERED The review intended to systematically explore the sources, and immunomodulatory role of vitamin D in COVID-19. Search engines and data sources including Google Scholar, PubMed, NCBI, Scopus, and Web of Science were used for data collection. The search terms used were Vitamin D, COVID-19, immune system, and antiviral mechanism. Overall, 232 sources of information were collected and 188 were included in this review. EXPERT OPINION Interaction of vitamin D and vitamin D receptor (VDR) triggers the cellular events to modulate the immune system by regulation of many genes. Vitamin D operates as a double-edged sword against COVID-19. First, in macrophages, it promotes the production of antimicrobial and antiviral proteins like β-defensin 2 and cathelicidin, and these proteins inhibit the replication of viral particles and promote the clearance of virus from the cells by autophagy. Second, it suppresses cytokine storm and inflammatory processes in COVID-19.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
6
|
Beddingfield BJ, Maness NJ, Fears AC, Rappaport J, Aye PP, Russell-Lodrigue K, Doyle-Meyers LA, Blair RV, Carias AM, Madden PJ, Redondo RL, Gao H, Montefiori D, Hope TJ, Roy CJ. Effective Prophylaxis of COVID-19 in Rhesus Macaques Using a Combination of Two Parenterally-Administered SARS-CoV-2 Neutralizing Antibodies. Front Cell Infect Microbiol 2021; 11:753444. [PMID: 34869063 PMCID: PMC8637877 DOI: 10.3389/fcimb.2021.753444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.
Collapse
Affiliation(s)
- Brandon J. Beddingfield
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Nicholas J. Maness
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| | - Alyssa C. Fears
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jay Rappaport
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
- Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Pyone Pyone Aye
- Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Kasi Russell-Lodrigue
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Lara A. Doyle-Meyers
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Robert V. Blair
- Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Ann M. Carias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick J. Madden
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ramon Lorenzo Redondo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hongmei Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chad J. Roy
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| |
Collapse
|
7
|
Banerjee A, Ganguly U, Saha S, Chakrabarti S, Saini RV, Rawal RK, Saso L, Chakrabarti S. Vitamin D and immuno-pathology of COVID-19: many interactions but uncertain therapeutic benefits. Expert Rev Anti Infect Ther 2021; 19:1245-1258. [PMID: 33739215 PMCID: PMC8022339 DOI: 10.1080/14787210.2021.1905519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Introduction: COVID-19 pandemic has caused huge loss of human lives and extensive socio-economic damages. The immuno-pathology of this disease is neither clearly understood nor there are effective drugs for severe cases of COVID-19. Repurposing of available drugs for the treatment of COVID-19 is imperative.Areas Covered: This review has gathered the evidence from PubMed, Google Scholar, WHO, and other reliable websites on COVID-19 and summarized the existing knowledge of the immuno-pathology of COVID-19. We elucidated how vitamin D through its diverse actions on immune effector cells, epithelial cells, or renin-angiotensin-aldosterone system could have a modulatory role on the pathogenic mechanisms of COVID-19. The epidemiological evidence associating vitamin D deficiency with the severity and incidence of COVID-19 is also presented. However, the evidence of clinical benefit to patients of COVID-19 from randomized controlled trials with vitamin D has not come as yet.Expert opinion: It is now established that fatality of COVID-19 is primarily determined by hyperactivation of the host's innate immune system in response to SARS-CoV-2 invasion, and thus the research on the immuno-modulatory and other roles of vitamin D against viral infections should be pursued vigorously. This would be also useful for future pandemics caused by other novel viruses.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Upasana Ganguly
- Department of Biochemistry & Central Research Cell, M.M. Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | | | - Reena V Saini
- Department of Biotechnology, M.M Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Ravindra K Rawal
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Sasanka Chakrabarti
- Department of Biochemistry & Central Research Cell, M.M. Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| |
Collapse
|
8
|
Khattab AR, Teleb M, Kamel MS. In silico study of potential anti-SARS cell entry phytoligands from Phlomis aurea: a promising avenue for prophylaxis. Future Virol 2021; 0:10.2217/fvl-2021-0031. [PMID: 34745316 PMCID: PMC8559586 DOI: 10.2217/fvl-2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023]
Abstract
Aim: The severity of COVID-19 has raised a great public health concern evoking an urgency for developing multitargeted therapeutics. Phlomis species was ethno-pharmacologically practiced for respiratory ailments. Materials & methods: An array of 15 phytoligands previously isolated from Phlomis aurea were subjected to molecular docking to explore their potential SARS-CoV-Spike-angiotensin-converting enzyme 2 complex inhibition, that is essential for virus entry to host cell. Results: Acteoside (11) showed the most potent in silico inhibition with an additional merit, over hesperidin (16), of not binding to angiotensin-converting enzyme 2 with well proven in vivo pulmonary protective role in acute lung injury, followed by chrysoeriol-7-O-β-glucopyranoside (12) and luteolin-7-O-β-glucopyranoside (14). Conclusion: Phytoligands (11, 12 and 14) were posed as promising candidates with potential prophylactic action against COVID-19. These phytoligands were prioritized for further biological experimentation because of their acceptable predicted ADME and drug-likeness parameters. Moreover, they could aid in developing multitargeted strategy for better management of COVID-19 using phytomedicines.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport, Alexandria, 1029, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohamed S Kamel
- Pharmacognosy Department, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
9
|
Nadalin S, Jakovac H, Peitl V, Karlović D, Buretić-Tomljanović A. Dysregulated inflammation may predispose patients with serious mental illnesses to severe COVID‑19 (Review). Mol Med Rep 2021; 24:611. [PMID: 34184073 PMCID: PMC8258463 DOI: 10.3892/mmr.2021.12250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic and nongenetic factors associated with an increased inflammatory response may mediate a link between severe coronavirus disease 2019 (COVID‑19) and serious mental illness (SMI). However, systematic assessment of inflammatory response‑related factors associated with SMI that could influence COVID‑19 outcomes is lacking. In the present review, dietary patterns, smoking and the use of psychotropic medications are discussed as potential extrinsic risk factors and angiotensin‑converting enzyme (ACE) insertion/deletion (I/D) gene polymorphisms are considered as potential intrinsic risk factors. A genetics‑based prediction model for SMI using ACE‑I/D genotyping is also proposed for use in patients experiencing severe COVID‑19. Furthermore, the literature suggests that ACE inhibitors may have protective effects against SMI or severe COVID‑19, which is often linked to hypertension and other cardiovascular comorbidities. For this reason, we hypothesize that using these medications to treat patients with severe COVID‑19 might yield improved outcomes, including in the context of SMI associated with COVID‑19.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vjekoslav Peitl
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center and Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center and Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
10
|
Issa H, Eid AH, Berry B, Takhviji V, Khosravi A, Mantash S, Nehme R, Hallal R, Karaki H, Dhayni K, Faour WH, Kobeissy F, Nehme A, Zibara K. Combination of Angiotensin (1-7) Agonists and Convalescent Plasma as a New Strategy to Overcome Angiotensin Converting Enzyme 2 (ACE2) Inhibition for the Treatment of COVID-19. Front Med (Lausanne) 2021; 8:620990. [PMID: 33816521 PMCID: PMC8012486 DOI: 10.3389/fmed.2021.620990] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Downregulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovasculature, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and convalescent plasma conjugated therapy for the treatment of COVID-19 patients. This therapeutic regimen is expected to be a safer choice since it possesses the proven ability to neutralize the virus while ensuring lung and cardiovascular protection through modulation of the inflammatory response.
Collapse
Affiliation(s)
- Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
- College of Public Health, Phoenicia University, Zahrani, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Bassam Berry
- Institut Pasteur, Paris 6 University, Paris, France
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Sarah Mantash
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Rawan Nehme
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Rawan Hallal
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Hussein Karaki
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Kawthar Dhayni
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
- EA7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
| | - Wissam H. Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Nehme
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
11
|
Zarrilli G, Angerilli V, Businello G, Sbaraglia M, Traverso G, Fortarezza F, Rizzo S, Gaspari MD, Basso C, Calabrese F, Dei Tos AP, Fassan M. The Immunopathological and Histological Landscape of COVID-19-Mediated Lung Injury. Int J Mol Sci 2021; 22:974. [PMID: 33478107 PMCID: PMC7835817 DOI: 10.3390/ijms22020974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
A complete understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) physiopathology and related histopathologic lesions is necessary to improve treatment and outcome of coronavirus disease 2019 (COVID-19) patients. Many studies have focused on autopsy findings in COVID-19-related deaths to try and define any possible specific pattern. Histopathologic alterations are principally found within lungs and blood vessels, and these abnormalities also seem to have the highest clinical impact. Nevertheless, many of the morphological data collected so far are non-specific, fickle, and possibly associated with other co-existing factors. The aim of this minireview is to describe the main histopathological features related to COVID-19 and the mechanism known as "cytokine storm".
Collapse
Affiliation(s)
- Giovanni Zarrilli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (V.A.); (G.B.); (M.S.)
| | - Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (V.A.); (G.B.); (M.S.)
| | - Gianluca Businello
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (V.A.); (G.B.); (M.S.)
| | - Marta Sbaraglia
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (V.A.); (G.B.); (M.S.)
| | | | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (F.F.); (S.R.); (M.D.G.); (C.B.); (F.C.)
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (F.F.); (S.R.); (M.D.G.); (C.B.); (F.C.)
| | - Monica De Gaspari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (F.F.); (S.R.); (M.D.G.); (C.B.); (F.C.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (F.F.); (S.R.); (M.D.G.); (C.B.); (F.C.)
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (F.F.); (S.R.); (M.D.G.); (C.B.); (F.C.)
| | - Angelo Paolo Dei Tos
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (V.A.); (G.B.); (M.S.)
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (V.A.); (G.B.); (M.S.)
| |
Collapse
|
12
|
Ye CH, Hsu WL, Peng GR, Yu WC, Lin WC, Hu S, Yu SH. Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplant 2021; 30:9636897211010632. [PMID: 33949207 PMCID: PMC8114753 DOI: 10.1177/09636897211010632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) first emerged in December 2019 in Wuhan, China, and has since spread rapidly worldwide. As researchers seek to learn more about COVID-19, the disease it causes, this novel virus continues to infect and kill. Despite the socioeconomic impacts of SARS-CoV-2 infections and likelihood of future outbreaks of other pathogenic coronaviruses, options to prevent or treat coronavirus infections remain limited. In current clinical trials, potential coronavirus treatments focusing on killing the virus or on preventing infection using vaccines largely ignore the host immune response. The relatively small body of current research on the virus indicates pathological responses by the immune system as the leading cause for much of the morbidity and mortality caused by COVID-19. In this review, we investigated the host innate and adaptive immune responses against COVID-19, collated information on recent COVID-19 experimental data, and summarized the systemic immune responses to and histopathology of SARS-CoV-2 infection. Finally, we summarized the immune-related biomarkers to define patients with high-risk and worst-case outcomes, and identified the possible usefulness of inflammatory markers as potential immunotherapeutic targets. This review provides an overview of current knowledge on COVID-19 and the symptomatological differences between healthy, convalescent, and severe cohorts, while offering research directions for alternative immunoregulation therapeutic targets.
Collapse
Affiliation(s)
- Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Lin Hsu
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Cancer Center, Hualien, Taiwan
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Department of Radiation Oncology, Hualien, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
The Two-Way Switch Role of ACE2 in the Treatment of Novel Coronavirus Pneumonia and Underlying Comorbidities. Molecules 2020; 26:molecules26010142. [PMID: 33396184 PMCID: PMC7794970 DOI: 10.3390/molecules26010142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/11/2023] Open
Abstract
December 2019 saw the emergence of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has spread across the globe. The high infectivity and ongoing mortality of SARS-CoV-2 emphasize the demand of drug discovery. Angiotensin-converting enzyme II (ACE2) is the functional receptor for SARS-CoV-2 entry into host cells. ACE2 exists as a membrane-bound protein on major viral target pulmonary epithelial cells, and its peptidase domain (PD) interacts SARS-CoV-2 spike protein with higher affinity. Therefore, targeting ACE2 is an important pharmacological intervention for a SARS-CoV-2 infection. In this review, we described the two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities, and discussed the potential effect of the ACE inhibitor and angiotensin receptor blocker on a hypertension patient with the SARS-CoV-2 infection. In addition, we analyzed the S-protein-binding site on ACE2 and suggested that blocking hot spot-31 and hot spot-353 on ACE2 could be a therapeutic strategy for preventing the spread of SARS-CoV-2. Besides, the recombinant ACE2 protein could be another potential treatment option for SARS-CoV-2 induced acute severe lung failure. This review could provide beneficial information for the development of anti-SARS-CoV-2 agents via targeting ACE2 and the clinical usage of renin-angiotensin system (RAS) drugs for novel coronavirus pneumonia treatment.
Collapse
|
14
|
Seth G, Sethi S, Bhattarai S, Saini G, Singh CB, Aneja R. SARS-CoV-2 Infection in Cancer Patients: Effects on Disease Outcomes and Patient Prognosis. Cancers (Basel) 2020; 12:E3266. [PMID: 33167313 PMCID: PMC7694326 DOI: 10.3390/cancers12113266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) symptoms and outcomes vary immensely among patients. Predicting disease progression and managing disease symptoms is even more challenging in cancer patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cancer therapies, including chemotherapy, radiotherapy, and immunotherapy, often suppress the immune system, rendering cancer patients more susceptible to SARS-CoV-2 infection and the development of severe complications. However, data on the effects of immunosuppression on COVID-19 outcomes in cancer patients remain limited. Further investigations are warranted to better understand the implications of SARS-CoV-2 infection in cancer patients, particularly those that are immunocompromised. In this review, we outline the current knowledge of the effects of SARS-CoV-2 infection in cancer patients.
Collapse
Affiliation(s)
- Gaurav Seth
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (G.S.); (S.B.); (G.S.)
| | - Saira Sethi
- Maulana Azad Medical College and Associated Lok Nayak Hospital, New Delhi 110002, India;
| | - Shristi Bhattarai
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (G.S.); (S.B.); (G.S.)
| | - Geetanjali Saini
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (G.S.); (S.B.); (G.S.)
| | - Chandra Bhushan Singh
- Department of Surgery, Maulana Azad Medical College and Associated Lok Nayak Hospital, New Delhi 110002, India;
| | - Ritu Aneja
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (G.S.); (S.B.); (G.S.)
| |
Collapse
|
15
|
Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells 2020; 9:E2046. [PMID: 32911691 PMCID: PMC7564940 DOI: 10.3390/cells9092046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
The ongoing pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has so far infected about 2.42 × 107 (as at 27 August 2020) subjects with more than 820,000 deaths. It is the third zoonotic coronavirus-dependent outbreak in the last twenty years and represents a major infective threat for public health worldwide. A main aspect of the infection, in analogy to other viral infections, is the so-called "cytokine storm", an inappropriate molecular response to virus spread which plays major roles in tissue and organ damage. Immunological therapies, including vaccines and humanized monoclonal antibodies, have been proposed as major strategies for prevention and treatment of the disease. Accordingly, a detailed mechanistic knowledge of the molecular events with which the virus infects cells and induces an immunological response appears necessary. In this review, we will report details of the initial process of SARS-CoV-2 cellular entry with major emphasis on the maturation of the spike protein. Then, a particular focus will be devoted to describe the possible mechanisms by which dendritic cells, a major cellular component of innate and adaptive immune responses, may play a role in the spread of the virus in the human body and in the clinical evolution of the disease.
Collapse
Affiliation(s)
- Pasquale Campana
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| |
Collapse
|
16
|
Jakovac H. COVID-19 and hypertension: is the HSP60 culprit for the severe course and worse outcome? Am J Physiol Heart Circ Physiol 2020; 319:H793-H796. [PMID: 32886002 PMCID: PMC7516379 DOI: 10.1152/ajpheart.00506.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 60-kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis ensuring thus sufficient aerobic energy production. In pathological conditions, HSP60 can be translocated from the mitochondria and excreted from the cell. In turn, the extracellular HSP60 has a strong ability to trigger and enhance inflammatory response with marked proinflammatory cytokine induction, which is mainly mediated by Toll-like receptor binding. Previous studies have found increased circulating levels of HSP60 in hypertensive patients, as well as enhanced HSP60 expression and membrane translocation in the hypertrophic myocardium. These observations are of particular interest, since they could provide a possible pathophysiological explanation of the severe course and worse outcome of severe acute respiratory syndrome coronavirus 2 infection in hypertensive patients, repeatedly reported during the recent coronavirus disease 2019 (COVID-19) pandemic and related to hyperinflammatory response and cytokine storm development during the third phase of the disease. In this regard, pharmacological inhibition of HSP60 could attract attention to potentially ameliorate inappropriate inflammatory reaction in severe COVID-19 patients. Among HSP60 antagonizing drugs, mizoribine is the most intriguing, since it is clinically approved and exerts antiviral activity. However, this topic requires to be further scrutinized.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Medical Faculty, Department of Physiology and Immunology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
17
|
Battistoni A, Volpe M. Might renin-angiotensin system blockers play a role in the COVID-19 pandemic? EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 6:248-251. [PMID: 32286607 PMCID: PMC7184353 DOI: 10.1093/ehjcvp/pvaa030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Since December 2019, a new coronavirus, named SARS-CoV-2, has spread globally, affecting >200 000 people worldwide with the so-called COVID-19 disease. The scientific community is actively and constantly working to identify the mechanisms involved in the diffusion of this virus and the pathogenesis of the infection, with its most frequent and severe complication, namely interstitial pneumonia. To date, SARS-CoV-2 is known to enter the host cells via the angiotensin-converting enzyme 2 protein. For this reason, the hypothesis that drugs capable of increasing the expression of this protein may have a role in the spread of the virus and in the symptomatology of affected patients has taken hold. The purpose of this Editorial is to briefly show the evidence currently available in this regard and to provide ideas for future research.
Collapse
Affiliation(s)
- Allegra Battistoni
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol 2020; 215:108448. [PMID: 32353634 PMCID: PMC7185015 DOI: 10.1016/j.clim.2020.108448] [Citation(s) in RCA: 398] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
The novel coronavirus SARS-CoV2 causes COVID-19, a pandemic threatening millions. As protective immunity does not exist in humans and the virus is capable of escaping innate immune responses, it can proliferate, unhindered, in primarily infected tissues. Subsequent cell death results in the release of virus particles and intracellular components to the extracellular space, which result in immune cell recruitment, the generation of immune complexes and associated damage. Infection of monocytes/macrophages and/or recruitment of uninfected immune cells can result in massive inflammatory responses later in the disease. Uncontrolled production of pro-inflammatory mediators contributes to ARDS and cytokine storm syndrome. Antiviral agents and immune modulating treatments are currently being trialled. Understanding immune evasion strategies of SARS-CoV2 and the resulting delayed massive immune response will result in the identification of biomarkers that predict outcomes as well as phenotype and disease stage specific treatments that will likely include both antiviral and immune modulating agents.
Collapse
Affiliation(s)
- Susanna Felsenstein
- Department of Infectious Diseases and Immunology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Jenny A Herbert
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paul S McNamara
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
19
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 352] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
20
|
Abassi ZA, Skorecki K, Heyman SN, Kinaneh S, Armaly Z. Reply to Letter to the Editor: "COVID-19: is the ACE2 just a foe?". Am J Physiol Lung Cell Mol Physiol 2020; 318:L1031. [PMID: 32364443 PMCID: PMC7203571 DOI: 10.1152/ajplung.00134.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zaid A Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Laboratory Medicine, Rambam Medical Center, Haifa, Israel
| | - Karl Skorecki
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zaher Armaly
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Department of Nephrology, Nazareth Hospital, Edinburgh Medical Missionary Society, Nazareth, Israel
| |
Collapse
|
21
|
Morty RE, Ziebuhr J. Call for Papers: The Pathophysiology of COVID-19 and SARS-CoV-2 Infection. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1016-L1019. [PMID: 32266822 PMCID: PMC7200871 DOI: 10.1152/ajplung.00136.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, Justus Liebig University Giessen, member of the German Center for Lung Research, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, member of the German Center for Infection Research, Giessen, Germany
| |
Collapse
|