1
|
Ji XY, Lei CJ, Kong S, Li HF, Pan SY, Chen YJ, Zhao FR, Zhu TT. Hydroxy-Safflower Yellow A Mitigates Vascular Remodeling in Rat Pulmonary Arterial Hypertension. Drug Des Devel Ther 2024; 18:475-491. [PMID: 38405578 PMCID: PMC10893878 DOI: 10.2147/dddt.s439686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Cheng-Jing Lei
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Tian-Tian Zhu
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
2
|
Almazroue H, Jin Y, Nelin LD, Barba JC, Milton AD, Trittmann JK. Human pulmonary microvascular endothelial cell DDAH1-mediated nitric oxide production promotes pulmonary smooth muscle cell apoptosis in co-culture. Am J Physiol Lung Cell Mol Physiol 2023; 325:L360-L367. [PMID: 37431589 PMCID: PMC10639007 DOI: 10.1152/ajplung.00433.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in preterm infants, and pulmonary hypertension (PH) develops in 25%-40% of patients with BPD, increasing morbidity and mortality. BPD-PH is characterized by vasoconstriction and vascular remodeling. Nitric oxide (NO) is a pulmonary vasodilator and apoptotic mediator made in the pulmonary endothelium by NO synthase (eNOS). Asymmetric dimethylarginine (ADMA) is an endogenous eNOS inhibitor, primarily metabolized by dimethylarginine dimethylaminohydrolase-1 (DDAH1). Our hypothesis is that DDAH1 knockdown in human pulmonary microvascular endothelial cells (hPMVEC) will result in lower NO production, decreased apoptosis, and greater proliferation of human pulmonary arterial smooth muscle cells (hPASMC), whereas DDAH1 overexpression will have the opposite effect. hPMVECs were transfected with small interfering RNA targeting DDAH1 (siDDAH1)/scramble or adenoviral vector containing DDAH1 (AdDDAH1)/AdGFP for 24 h and co-cultured for 24 h with hPASMC. Analyses included Western blot for cleaved and total caspase-3, caspase-8, caspase-9, β-actin; trypan blue exclusion for viable cell numbers; terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL); and BrdU incorporation. Small interfering RNA targeting DDAH1 (siDDAH1) transfected into hPMVEC resulted in lower media nitrites, cleaved caspase-3 and caspase-8 protein expression, and TUNEL staining; and greater viable cell numbers and BrdU incorporation in co-cultured hPASMC. Adenoviral-mediated transfection of the DDAH1 gene (AdDDAH1) into hPMVEC resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured hPASMC. Partial recovery of hPASMC viable cell numbers after AdDDAH1-hPMVEC transfection was observed when media were treated with hemoglobin to sequester NO. In conclusion, hPMVEC-DDAH1-mediated NO production positively regulates hPASMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.NEW & NOTEWORTHY BPD-PH is characterized by vascular remodeling. NO is an apoptotic mediator made in the pulmonary endothelium by eNOS. ADMA is an endogenous eNOS inhibitor metabolized by DDAH1. EC-DDAH1 overexpression resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured SMC. After NO sequestration, SMC viable cell numbers partially recovered despite EC-DDAH1 overexpression. EC-DDAH1-mediated NO production positively regulates SMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.
Collapse
Affiliation(s)
- Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - John C Barba
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Avante D Milton
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
3
|
Hu H, Cai J, Qi D, Li B, Yu L, Wang C, Bajpai AK, Huang X, Zhang X, Lu L, Liu J, Zheng F. Identification of Potential Biomarkers for Group I Pulmonary Hypertension Based on Machine Learning and Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24098050. [PMID: 37175757 PMCID: PMC10178909 DOI: 10.3390/ijms24098050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
Collapse
Affiliation(s)
- Hui Hu
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jie Cai
- Department of Cardial Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Daoxi Qi
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li Yu
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Wang
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Akhilesh K Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Xiaoqin Huang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Jinping Liu
- Department of Cardial Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
5
|
Florentin J, Zhao J, Tai YY, Sun W, Ohayon LL, O'Neil SP, Arunkumar A, Zhang X, Zhu J, Al Aaraj Y, Watson A, Sembrat J, Rojas M, Chan SY, Dutta P. Loss of Amphiregulin drives inflammation and endothelial apoptosis in pulmonary hypertension. Life Sci Alliance 2022; 5:5/11/e202101264. [PMID: 35732465 PMCID: PMC9218345 DOI: 10.26508/lsa.202101264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is a vascular disease characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and death. Pathogenic features of PH include endothelial apoptosis and vascular inflammation, which drive vascular remodeling and increased pulmonary arterial pressure. Re-analysis of the whole transcriptome sequencing comparing human pulmonary arterial endothelial cells (PAECs) isolated from PH and control patients identified AREG, which encodes Amphiregulin, as a key endothelial survival factor. PAECs from PH patients and mice exhibited down-regulation of AREG and its receptor epidermal growth factor receptor (EGFR). Moreover, the deficiency of AREG and EGFR in ECs in vivo and in vitro heightened inflammatory leukocyte recruitment, cytokine production, and endothelial apoptosis, as well as diminished angiogenesis. Correspondingly, hypoxic mice lacking Egfr in ECs (cdh5 cre/+ Egfr fl/fl) displayed elevated RVSP and pulmonary remodeling. Computational analysis identified NCOA6, PHB2, and RRP1B as putative genes regulating AREG in endothelial cells. The master transcription factor of hypoxia HIF-1⍺ binds to the promoter regions of these genes and up-regulates their expression in hypoxia. Silencing of these genes in cultured PAECs decreased inflammation and apoptosis, and increased angiogenesis in hypoxic conditions. Our pathway analysis and gene silencing experiments revealed that BCL2-associated agonist of cell death (BAD) is a downstream mediator of AREG BAD silencing in ECs lacking AREG mitigated inflammation and apoptosis, and suppressed tube formation. In conclusion, loss of Amphiregulin and its receptor EGFR in PH is a crucial step in the pathogenesis of PH, promoting pulmonary endothelial cell death, influx of inflammatory myeloid cells, and vascular remodeling.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Sun
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xinyi Zhang
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianhui Zhu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Annie Watson
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Dis 2022; 8:413. [PMID: 36209203 PMCID: PMC9547100 DOI: 10.1038/s41420-022-01200-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Arginase, a binuclear manganese metalloenzyme in the urea, catalyzes the hydrolysis of L-arginine to urea and L-ornithine. Both isoforms, arginase 1 and arginase 2 perform significant roles in the regulation of cellular functions in cardiovascular system, such as senescence, apoptosis, proliferation, inflammation, and autophagy, via a variety of mechanisms, including regulating L-arginine metabolism and activating multiple signal pathways. Furthermore, abnormal arginase activity contributes to the initiation and progression of a variety of CVDs. Therefore, targeting arginase may be a novel and promising approach for CVDs treatment. In this review, we give a comprehensive overview of the physiological and biological roles of arginase in a variety of CVDs, revealing the underlying mechanisms of arginase mediating vascular and cardiac function, as well as shedding light on the novel and promising therapeutic approaches for CVDs therapy in individuals.
Collapse
Affiliation(s)
- Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China.
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Chen B, Jin Y, Pool CM, Liu Y, Nelin LD. Hypoxic pulmonary endothelial cells release epidermal growth factor leading to vascular smooth muscle cell arginase-2 expression and proliferation. Physiol Rep 2022; 10:e15342. [PMID: 35674115 PMCID: PMC9175134 DOI: 10.14814/phy2.15342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/01/2023] Open
Abstract
The hallmark of pulmonary hypertension (PH) is vascular remodeling. We have previously shown that human pulmonary microvascular endothelial cells (hPMVEC) respond to hypoxia with epidermal growth factor (EGF) mediated activation of the receptor tyrosine kinase, EGF receptor (EGFR), resulting in arginase-2 (Arg2)-dependent proliferation. We hypothesized that the release of EGF by hPMVEC could result in the proliferation of human pulmonary arterial smooth muscle cells (hPASMC) via activation of EGFR on the hPASMC leading to Arg2 up-regulation. To test this hypothesis, we used conditioned media (CM) from hPMVEC grown either in normoxia (NCM) or hypoxia (HCM). Human PASMC were incubated in normoxia with either HCM or NCM, and HCM caused significant induction of Arg2 and viable cell numbers. When HCM was generated with either an EGF-neutralizing antibody or an EGFR blocking antibody the resulting HCM did not induce Arg2 or increase viable cell numbers in hPASMC. Adding an EGFR blocking antibody to HCM, prevented the HCM-induced increase in Arg2 and viable cell numbers. HCM induced robust phosphorylation of hPASMC EGFR. When hPASMC were transfected with siRNA against EGFR the HCM-induced increase in viable cell numbers was prevented. When hPASMC were treated with the arginase antagonist nor-NOHA, the HCM-induced increase in viable cell numbers was prevented. These data suggest that hypoxic hPMVEC releases EGF, which activates hPASMC EGFR leading to Arg2 protein expression and an increase in viable cell numbers. We speculate that EGF neutralizing antibodies or EGFR blocking antibodies represent potential therapeutics to prevent and/or attenuate vascular remodeling in PH associated with hypoxia.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Yi Jin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Caitlyn M. Pool
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Yusen Liu
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Leif D. Nelin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
8
|
Wang CH, Lo CY, Huang HY, Wang TY, Weng CM, Chen CJ, Huang YC, Chung FT, Lin CW, Chung KF, Kuo HP. Oxygen Desaturation Is Associated With Fibrocyte Activation via Epidermal Growth Factor Receptor/Hypoxia-Inducible Factor-1α Axis in Chronic Obstructive Pulmonary Disease. Front Immunol 2022; 13:852713. [PMID: 35634326 PMCID: PMC9134242 DOI: 10.3389/fimmu.2022.852713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrocytes are bloodborne mesenchymal progenitors which accumulate and differentiate at the disease site. We investigated whether hypoxemia activates fibrocytes, accelerating airflow limitation and exercise intolerance in chronic obstructive pulmonary disease (COPD) patients. Flow cytometry was used to determine collagen I+/CD45+ fibrocytes and α-smooth muscle actin+ differentiating fibrocytes within peripheral blood and cultured cells, as well as the expression of CXC chemokine receptor 4 (CXCR4), epidermal growth factor receptor (EGFR), connective tissue growth factor (CTGF) and hypoxia-inducible factor (HIF)-1α. Fibrocytes in lung specimens were identified by confocal microscopy. Compared to non-desaturators, COPD desaturators (peripheral blood oxygen saturation ≤88% during exercise) had greater number of fibrocytes in peripheral blood and lung specimens, paralleled with faster yearly lung function decline and a 6-minute walk distance. Fibrocytes from desaturators expressed more EGFR, CXCR4, CTGF, and HIF-1α, with a higher capacity of proliferation and myofibroblastic differentiation. Hypoxia (5% oxygen) increased the expression of EGFR, CXCR4, CTGF, and HIF-1α, the number and differentiation in fibrocytes. These effects were attenuated by EGFR inhibitor gefitinib, HIF-1α gene silencing, and anti-CTGF antibody. These data elucidate that hypoxemia triggers fibrocyte activation through the EGFR/HIF-1α axis, aggravating airflow obstruction in COPD.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ming Weng
- School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jung Chen
- Department of Pathology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Chang-Wei Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Sahoo S, Li Y, de Jesus D, Sembrat JC, Rojas MM, Goncharova E, Cifuentes-Pagano E, Straub AC, Pagano PJ. Notch2 Suppression Mimicking Changes in Human Pulmonary Hypertension Modulates Notch1 and Promotes Endothelial Cell Proliferation. Am J Physiol Heart Circ Physiol 2021; 321:H542-H557. [PMID: 34296965 DOI: 10.1152/ajpheart.00125.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with resistance to apoptosis and occlusive remodeling of the small pulmonary arteries in humans. The Notch family of proteins are proximal signaling mediators of an evolutionarily conserved pathway that effect cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) has been shown to promote endothelial apoptosis. However, a pro- or anti-proliferative role for Notch2 in pulmonary endothelial proliferation and ensuing PAH is unknown. Herein, we postulated that suppressed Notch2 signaling drives pulmonary endothelial proliferation in the setting of PAH. We observed that levels of Notch2 are ablated in lung and PA tissue samples from PAH patients compared to non-PAH controls. Interestingly, Notch2 expression was attenuated in human pulmonary artery endothelial cells (hPAECs) exposed to vasoactive factors including hypoxia, TGFβ, ET-1, and IGF-1. Gene silencing of Notch2 increased EC proliferation and reduced apoptosis. At the molecular level, Notch2-deficient hPAECs activated Akt, Erk1/2 and anti-apoptotic protein Bcl-2, and reduced levels of p21cip and Bax. Intriguingly, loss of Notch2 elicits a paradoxical activation of Notch1 and transcriptional upregulation of canonical Notch target genes Hes1, Hey1 and Hey2. Further, reduction in Rb and increased E2F1 binding to the Notch1 promoter appear to explain the upregulation of Notch1. In aggregate, our results demonstrate that loss of Notch2 derepresses Notch1 and elicits aberrant EC hallmarks of PAH. The data underscore a novel role for Notch in the maintenance of endothelial cell homeostasis.
Collapse
Affiliation(s)
- Sanghamitra Sahoo
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yao Li
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel de Jesus
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Charles Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mauricio M Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elena Goncharova
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eugenia Cifuentes-Pagano
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam C Straub
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patrick J Pagano
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Shimoda LA. Cellular Pathways Promoting Pulmonary Vascular Remodeling by Hypoxia. Physiology (Bethesda) 2021; 35:222-233. [PMID: 32490752 DOI: 10.1152/physiol.00039.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to hypoxia increases pulmonary vascular resistance, leading to elevated pulmonary arterial pressure and, potentially, right heart failure. Vascular remodeling is an important contributor to the increased pulmonary vascular resistance. Hyperproliferation of smooth muscle, endothelial cells, and fibroblasts, and deposition of extracellular matrix lead to increased wall thickness, extension of muscle into normally non-muscular arterioles, and vascular stiffening. This review highlights intrinsic and extrinsic modulators contributing to the remodeling process.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Moretto J, Pudlo M, Demougeot C. Human-based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discov Today 2020; 26:138-147. [PMID: 33197620 DOI: 10.1016/j.drudis.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Johnny Moretto
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France.
| | - Marc Pudlo
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
12
|
Peng LY, Yu M, Yang MX, Liu P, Zhou H, Huang W, Kong H, Xie WP. Icotinib Attenuates Monocrotaline-Induced Pulmonary Hypertension by Preventing Pulmonary Arterial Smooth Muscle Cell Dysfunction. Am J Hypertens 2020; 33:775-783. [PMID: 32301965 DOI: 10.1093/ajh/hpaa066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/01/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aberrant activation of epidermal growth factor receptor (EGFR) signaling pathway is associated with the pathogenesis of pulmonary hypertension (PH). However, the effect of icotinib, a first generation of EGFR tyrosine kinase inhibitor (EGFR-TKI), on PH remains to be elucidated. METHODS PH rat model was established by a single intraperitoneal injection of monocrotaline (MCT, 60 mg/kg). Icotinib (15, 30, and 60 mg/kg/day) was administered by oral gavage from the day of MCT injection. After 4 weeks, hemodynamic parameters and histological changes of the pulmonary arterial vessels were assessed, and the phenotypic switching of pulmonary arterial smooth muscle cells (PASMCs) was determined in vivo. Moreover, the effects of icotinib (10 µM) on epidermal growth factor (EGF, 50 ng/ml)-stimulated proliferation, migration, and phenotypic switching of human PASMCs were explored in vitro. RESULTS Icotinib significantly reduced the right ventricular systolic pressure and right ventricle hypertrophy index in rats with MCT-induced PH. Moreover, icotinib improved MCT-induced pulmonary vascular remodeling. The expression of contractile marker (smooth muscle 22 alpha (SM22α)) and synthetic markers (osteopontin (OPN) and vimentin) in pulmonary artery was restored by icotinib treatment. In vitro, icotinib suppressed EGF-induced PASMCs proliferation and migration. Meanwhile, icotinib inhibited EGF-induced downregulation of α-smooth muscle actin and SM22α and upregulation of OPN and Collagen I in PASMCs, suggesting that icotinib could inhibit EGF-induced phenotypic switching of PASMCs. Mechanistically, these effects of icotinib were associated with the inhibition of EGFR-Akt/ERK signaling pathway. CONCLUSIONS Icotinib can attenuate MCT-induced pulmonary vascular remodeling and improve PH. This effect of icotinib might be attributed to preventing PASMC dysfunction by inhibiting EGFR-Akt/ERK signaling pathway.
Collapse
Affiliation(s)
- Li-Yao Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Min Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ming-Xia Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, P.R. China
| | - Ping Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hong Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
13
|
Trittmann JK, Almazroue H, Jin Y, Nelin LD. DDAH1 regulates apoptosis and angiogenesis in human fetal pulmonary microvascular endothelial cells. Physiol Rep 2020; 7:e14150. [PMID: 31209995 PMCID: PMC6579941 DOI: 10.14814/phy2.14150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/17/2023] Open
Abstract
Nitric Oxide (NO) is an endogenous pulmonary vasodilator produced by endothelial NO synthase (eNOS). Asymmetric dimethyl L‐arginine (ADMA) is an endogenous inhibitor of eNOS activity. In endothelial cells, ADMA is hydrolyzed to L‐citrulline primarily by dimethylarginine dimethyl‐aminohydrolase‐1 (DDAH1). We tested the hypothesis that DDAH1 expression is essential for maintaining NO production in human fetal pulmonary microvascular endothelial cells (hfPMVEC), such that knockdown of DDAH1 expression will lead to decreased NO production resulting in less caspase‐3 activation and less tube formation. We found that hfPMVEC transfected with DDAH1 siRNA had lower NO production than control, with no difference in eNOS protein levels between groups. hfPMVEC transfected with DDAH1 siRNA had lower protein levels of cleaved caspase‐3 and ‐8 than control. Both DDAH1 siRNA‐ and ADMA‐treated hfPMVEC had greater numbers of viable cells than controls. Angiogenesis was assessed using tube formation assays in matrigel, and tube formation was lower after either DDAH1 siRNA transfection or ADMA treatment than controls. Addition of an NO donor restored cleaved caspase‐3 and ‐8 protein levels after DDAH1 siRNA transfection in hfPMVEC to essentially the levels seen in scramble control. Addition of a putative caspase‐3 inhibitor to DDAH1 siRNA transfected and NO‐donor treated cells led to greater numbers of viable cells and far less angiogenesis than in any other group studied. We conclude that in hfPMVEC, DDAH1 is central to the regulation of NO‐mediated caspase‐3 activation and the resultant apoptosis and angiogenesis. Our findings suggest that DDAH1 may be a potential therapeutic target in pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Lowe MM, Boothby I, Clancy S, Ahn RS, Liao W, Nguyen DN, Schumann K, Marson A, Mahuron KM, Kingsbury GA, Liu Z, Munoz Sandoval P, Rodriguez RS, Pauli ML, Taravati K, Arron ST, Neuhaus IM, Harris HW, Kim EA, Shin US, Krummel MF, Daud A, Scharschmidt TC, Rosenblum MD. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight 2019; 4:129756. [PMID: 31852848 DOI: 10.1172/jci.insight.129756] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Distinct subsets of Tregs reside in nonlymphoid tissues where they mediate unique functions. To interrogate the biology of tissue Tregs in human health and disease, we phenotypically and functionally compared healthy skin Tregs with those in peripheral blood, inflamed psoriatic skin, and metastatic melanoma. The mitochondrial enzyme, arginase 2 (ARG2), was preferentially expressed in Tregs in healthy skin, increased in Tregs in metastatic melanoma, and reduced in Tregs from psoriatic skin. ARG2 enhanced Treg suppressive capacity in vitro and conferred a selective advantage for accumulation in inflamed tissues in vivo. CRISPR-mediated deletion of this gene in primary human Tregs was sufficient to skew away from a tissue Treg transcriptional signature. Notably, the inhibition of ARG2 increased mTOR signaling, whereas the overexpression of this enzyme suppressed it. Taken together, our results suggest that Tregs express ARG2 in human tissues to both regulate inflammation and enhance their metabolic fitness.
Collapse
Affiliation(s)
| | - Ian Boothby
- Department of Dermatology.,Medical Scientist Training Program
| | | | | | | | | | | | | | | | | | - Zheng Liu
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | - Esther A Kim
- Department of Surgery, UCSF, San Francisco, California, USA
| | - Uk Sok Shin
- Department of Surgery, UCSF, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
15
|
Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, Kiefmann R, Klose H. The P2-receptor-mediated Ca 2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension. Purinergic Signal 2019; 15:299-311. [PMID: 31396838 DOI: 10.1007/s11302-019-09674-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as vessel integrity, vasodilatation, inflammatory, and thrombotic responses as well as survival and DNA repair, mostly via Ca2+ signaling pathways. However, a comprehensive analysis of the molecular components of the underlying P2 receptor-mediated Ca2+ signaling pathways in the lung has not been conducted so far. Therefore, our aim was to identify the principal P2 receptor Ca2+ signalosome in the human pulmonary endothelium and investigate potential dysregulation in pulmonary vascular disease. Comparative transcriptomics and quantitative immunohistochemistry were performed on publicly available RNA sequencing and protein datasets to identify the specific expression profile of the P2-receptor Ca2+ signalosome in the healthy human pulmonary endothelium and endothelial cells (EC) dysfunctional due to loss of or defective bone morphogenetic protein receptor (BMPR2). Functional expression of signalosome components was tested by single cell Ca2+ imaging. Comparative transcriptome analysis of 11 endothelial cell subtypes revealed a specific P2 receptor Ca2+ signalosome signature for the pulmonary endothelium. Pulmonary endothelial expression of the most abundantly expressed Ca2+ toolkit genes CALM1, CALM2, VDAC1, and GNAS was confirmed by immunohistochemistry (IHC). P2RX1, P2RX4, P2RY6, and P2YR11 showed strong lung endothelial staining by IHC, P2X5, and P2Y1 were found to a much lesser extent. Very weak or no signals were detected for all other P2 receptors. Stimulation of human pulmonary artery (HPA) EC by purine nucleotides ATP, ADP, and AMP led to robust intracellular Ca2+ signals mediated through both P2X and P2Y receptors. Pyrimidine UTP and UDP-mediated Ca2+ signals were generated almost exclusively by activation of P2Y receptors. HPAEC made dysfunctional by siRNA-mediated BMPR2 depletion showed downregulation of 18 and upregulation of 19 P2 receptor Ca2+ signalosome genes including PLCD4, which was found to be upregulated in iPSC-EC from BMPR2-mutant patients with pulmonary arterial hypertension. In conclusion, the human pulmonary endothelium expresses a distinct functional subset of the P2 receptor Ca2+ signalosome. Composition of the P2 receptor Ca2+ toolkit in the pulmonary endothelium is susceptible to genetic disturbances likely contributing to an unfavorable pulmonary disease phenotype found in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jan K Hennigs
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Nicole Lüneburg
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Annett Stage
- Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Melanie Schmitz
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Körbelin
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lars Harbaum
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christiane Matuszcak
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Mienert
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer H Böger
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer Kiefmann
- Department of Anesthesiology, Center of Anesthesiology and Critical Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hans Klose
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
16
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Pool CM, Jin Y, Chen B, Liu Y, Nelin LD. Hypoxic-induction of arginase II requires EGF-mediated EGFR activation in human pulmonary microvascular endothelial cells. Physiol Rep 2018; 6:e13693. [PMID: 29845760 PMCID: PMC5974731 DOI: 10.14814/phy2.13693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that hypoxia-induced proliferation of human pulmonary microvascular endothelial cells (hPMVEC) depends on arginase II, and that epidermal growth factor receptor (EGFR) is necessary for hypoxic-induction of arginase II. However, it remains unclear how hypoxia activates EGFR-mediated signaling in hPMVEC. We hypothesized that hypoxia results in epidermal growth factor (EGF) production and that EGF binds to EGFR to activate the signaling cascade leading to arginase II induction and proliferation in hPMVEC. We found that hypoxia significantly increased the mRNA levels of EGF, EGFR, and arginase in hPMVEC. Hypoxia significantly increased pEGFR(Tyr845) protein levels and an EGF neutralizing antibody prevented the hypoxic induction of pEGFR. Inhibiting EGFR activation prevented hypoxia-induced arginase II mRNA and protein induction. Treatment of hPMVEC with exogenous EGF resulted in greater levels of arginase II protein both in normoxia and hypoxia. An EGF neutralizing antibody diminished hypoxic induction of arginase II and resulted in fewer viable cells in hPMVEC. Similarly, siRNA against EGF prevented hypoxic induction of arginase II and resulted in fewer viable cells. Finally, conditioned media from hypoxic hPMVEC induced proliferation in human pulmonary artery smooth muscle cells (hPASMC), however, conditioned media from a group of hypoxic hPMVEC in which EGF were knocked down did not promote hPASMC proliferation. These findings demonstrate that hypoxia-induced arginase II expression and cellular proliferation depend on autocrine EGF production leading to EGFR activation in hPMVEC. We speculate that EGF-EGFR signaling may be a novel therapeutic target for pulmonary hypertensive disorders associated with hypoxia.
Collapse
Affiliation(s)
- Caitlyn M. Pool
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Yi Jin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Bernadette Chen
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Yusen Liu
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Leif D. Nelin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| |
Collapse
|
18
|
Setty BA, Pillay Smiley N, Pool CM, Jin Y, Liu Y, Nelin LD. Hypoxia-induced proliferation of HeLa cells depends on epidermal growth factor receptor-mediated arginase II induction. Physiol Rep 2017; 5:5/6/e13175. [PMID: 28330951 PMCID: PMC5371558 DOI: 10.14814/phy2.13175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022] Open
Abstract
Solid tumors can often be hypoxic in regions, and cancer cells can respond to hypoxia with an increase in proliferation and a decrease in apoptosis, leading to a net increase in viable cell numbers. We have recently found that in an osteosarcoma cell line, hypoxia-induced proliferation depends on arginase II induction. Epidermal growth factor receptor (EGFR) has been shown to mediate the hypoxia-induced cellular proliferation in some cancer cell lines. We hypothesized that hypoxia-induced proliferation of HeLa cells would depend on arginase II induction and that this induction of arginase II would occur through EGFR activation. Exposure of HeLa cells to hypoxia resulted in an upregulation of arginase II mRNA and protein levels, with no effect on arginase I expression. Hypoxia also resulted in significantly greater viable cell numbers than did normoxia. The hypoxia-induced increase in viable cell numbers was prevented by either a small molecule inhibitor of arginase or siRNA targeting arginase II Overexpression of arginase II resulted in an increase in viable cell numbers both in normoxia and hypoxia. Hypoxia caused a substantial induction of both epidermal growth factor (EGF) and EGFR Preventing hypoxia-induced EGFR expression using siRNA abolished hypoxia-induced arginase II expression and the increase in viable cell numbers. Treatment with EGF in normoxia not only induced arginase II expression but also resulted in an increase in viable cell numbers. Blocking EGF interactions with EGFR using either an EGF neutralizing antibody or an EGFR antibody prevented the hypoxia-induced increase in viable cell numbers. These results demonstrate an EGF/EGFR/arginase II pathway that is necessary for hypoxic proliferation in HeLa cells.
Collapse
Affiliation(s)
- Bhuvana A Setty
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Natasha Pillay Smiley
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Caitlyn M Pool
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Trittmann JK, Jin Y, Chicoine LG, Liu Y, Chen B, Nelin LD. An arginase-1 SNP that protects against the development of pulmonary hypertension in bronchopulmonary dysplasia enhances NO-mediated apoptosis in lymphocytes. Physiol Rep 2017; 4:4/22/e13041. [PMID: 27895230 PMCID: PMC5358007 DOI: 10.14814/phy2.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022] Open
Abstract
Arginase and nitric oxide synthase (NOS) share a common substrate, l‐arginine, and have opposing effects on vascular remodeling. Arginase is the first step in polyamine and proline synthesis necessary for cellular proliferation, while NO produced from NOS promotes apoptosis. Previously, we identified a single nucleotide polymorphism (SNP) in the arginase‐1 (ARG1) gene, rs2781666 (T‐allele) that was associated with a decreased risk for developing pulmonary hypertension (PH) in a cohort of infants with bronchopulmonary dysplasia (BPD). In this study, we utilized lymphocytes from neonates (the only readily available cells from these patients expressing the two genotypes of interest) with either the rs2781666 SNP (TT) or wild type (GG) to test the hypothesis that the protection of the ARG1 SNP against the development of PH in BPD would involve augmented NO production leading to more apoptosis. Lymphocytes were stimulated with IL‐4, IL‐13, and phorbol myristate acetate (PMA). We found that TT lymphocytes had similar levels of arginase I and arginase II expression, but there was a tendency for lower urea production (a surrogate marker of arginase activity), than in the GG lymphocytes. The TT lymphocytes also had significantly greater NO production than did GG lymphocytes despite no differences in iNOS expression between genotypes. Furthermore, the TT lymphocytes had lower numbers of viable cells, and higher levels of cleaved caspase‐3 than did GG lymphocytes. Inhibiting NOS activity using Nω‐Nitro‐l‐arginine methyl ester hydrochloride (l‐NAME) significantly decreased cleaved caspase‐3 levels in the TT lymphocytes. These data demonstrate that the TT genotype results in greater levels of NO production leading to more apoptosis, which is consistent with the concept that BPD patients with the TT genotype are protected against the development of PH by producing greater basal levels of endogenous NO.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio
| | - Louis G Chicoine
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension. Int J Mol Sci 2017; 18:ijms18081609. [PMID: 28757567 PMCID: PMC5578001 DOI: 10.3390/ijms18081609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg) is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague–Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose). There were three experimental groups: sham-treated controls (control group, n = 11), MCT-induced PH (MCT group, n = 11) and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13). ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys) was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg) compared to the control group (41 ± 15 mmHg, p = 0.002) accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001). Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01). Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006) and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022). PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH.
Collapse
|
21
|
Endothelial Nox1 oxidase assembly in human pulmonary arterial hypertension; driver of Gremlin1-mediated proliferation. Clin Sci (Lond) 2017; 131:2019-2035. [PMID: 28522681 DOI: 10.1042/cs20160812] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly degenerating and devastating disease of increased pulmonary vessel resistance leading to right heart failure. Palliative modalities remain limited despite recent endeavors to investigate the mechanisms underlying increased pulmonary vascular resistance (PVR), i.e. aberrant vascular remodeling and occlusion. However, little is known of the molecular mechanisms responsible for endothelial proliferation, a root cause of PAH-associated vascular remodeling. Lung tissue specimens from PAH and non-PAH patients and hypoxia-exposed human pulmonary artery endothelial cells (ECs) (HPAEC) were assessed for mRNA and protein expression. Reactive oxygen species (ROS) were measured using cytochrome c and Amplex Red assays. Findings demonstrate for the first time an up-regulation of NADPH oxidase 1 (Nox1) at the transcript and protein level in resistance vessels from PAH compared with non-PAH patients. This coincided with an increase in ROS production and expression of bone morphogenetic protein (BMP) antagonist Gremlin1 (Grem1). In HPAEC, hypoxia induced Nox1 subunit expression, assembly, and oxidase activity leading to elevation in sonic hedgehog (SHH) and Grem1 expression. Nox1 gene silencing abrogated this cascade. Moreover, loss of either Nox1, SHH or Grem1 attenuated hypoxia-induced EC proliferation. Together, these data support a Nox1-SHH-Grem1 signaling axis in pulmonary vascular endothelium that is likely to contribute to pathophysiological endothelial proliferation and the progression of PAH. These findings also support targeting of Nox1 as a viable therapeutic option to combat PAH.
Collapse
|
22
|
Xue J, Nelin LD, Chen B. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα 1 signaling. Am J Physiol Lung Cell Mol Physiol 2017; 312:L568-L578. [PMID: 28213467 DOI: 10.1152/ajplung.00117.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs.
Collapse
Affiliation(s)
- Jianjing Xue
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
White HA, Jin Y, Chicoine LG, Chen B, Liu Y, Nelin LD. Hypoxic proliferation requires EGFR-mediated ERK activation in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L649-L656. [PMID: 28188223 DOI: 10.1152/ajplung.00267.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that hypoxic proliferation of human pulmonary microvascular endothelial cells (hPMVECs) depends on epidermal growth factor receptor (EGFR) activation. To determine downstream signaling leading to proliferation, we tested the hypothesis that hypoxia-induced proliferation in hPMVECs would require EGFR-mediated activation of extracellular signal-regulated kinase (ERK) leading to arginase II induction. To test this hypothesis, hPMVECs were incubated in either normoxia (21% O2, 5% CO2) or hypoxia (1% O2, 5% CO2) and Western blotting was performed for EGFR, arginase II, phosphorylated-ERK (pERK), and total ERK (ERK). Hypoxia led to greater EGFR, pERK, and arginase II protein levels than did normoxia in hPMVECs. To examine the role of EGFR in these hypoxia-induced changes, hPMVECs were transfected with siRNA against EGFR or a scrambled siRNA and placed in hypoxia. Inhibition of EGFR using siRNA attenuated hypoxia-induced pERK and arginase II expression as well as the hypoxia-induced increase in viable cell numbers. hPMVECs were then treated with vehicle, an EGFR inhibitor (AG1478), or an ERK pathway inhibitor (U0126) and placed in hypoxia. Pharmacologic inhibition of EGFR significantly attenuated the hypoxia-induced increase in pERK level. Both AG1478 and U0126 also significantly attenuated the hypoxia-induced increase in viable hPMVECs numbers. hPMVECs were transfected with an adenoviral vector containing arginase II (AdArg2) and overexpression of arginase II rescued the U0126-mediated decrease in viable cell numbers in hypoxic hPMVECs. Our findings suggest that hypoxic activation of EGFR results in phosphorylation of ERK, which is required for hypoxic induction of arginase II and cellular proliferation.
Collapse
Affiliation(s)
- Hilary A White
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Louis G Chicoine
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
24
|
Pastukh VM, Gorodnya OM, Gillespie MN, Ruchko MV. Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region. Free Radic Biol Med 2016; 96:78-88. [PMID: 27091693 PMCID: PMC4912408 DOI: 10.1016/j.freeradbiomed.2016.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 02/04/2023]
Abstract
Mitochondria of mammalian cells contain multiple copies of mitochondrial (mt) DNA. Although mtDNA copy number can fluctuate dramatically depending on physiological and pathophysiologic conditions, the mechanisms regulating mitochondrial genome replication remain obscure. Hypoxia, like many other physiologic stimuli that promote growth, cell proliferation and mitochondrial biogenesis, uses reactive oxygen species as signaling molecules. Emerging evidence suggests that hypoxia-induced transcription of nuclear genes requires controlled DNA damage and repair in specific sequences in the promoter regions. Whether similar mechanisms are operative in mitochondria is unknown. Here we test the hypothesis that controlled oxidative DNA damage and repair in the D-loop region of the mitochondrial genome are required for mitochondrial DNA replication and transcription in hypoxia. We found that hypoxia had little impact on expression of mitochondrial proteins in pulmonary artery endothelial cells, but elevated mtDNA content. The increase in mtDNA copy number was accompanied by oxidative modifications in the D-loop region of the mitochondrial genome. To investigate the role of this sequence-specific oxidation of mitochondrial genome in mtDNA replication, we overexpressed mitochondria-targeted 8-oxoguanine glycosylase Ogg1 in rat pulmonary artery endothelial cells, enhancing the mtDNA repair capacity of transfected cells. Overexpression of Ogg1 resulted in suppression of hypoxia-induced mtDNA oxidation in the D-loop region and attenuation of hypoxia-induced mtDNA replication. Ogg1 overexpression also reduced binding of mitochondrial transcription factor A (TFAM) to both regulatory and coding regions of the mitochondrial genome without altering total abundance of TFAM in either control or hypoxic cells. These observations suggest that oxidative DNA modifications in the D-loop region during hypoxia are important for increased TFAM binding and ensuing replication of the mitochondrial genome.
Collapse
Affiliation(s)
- Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Olena M Gorodnya
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mark N Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mykhaylo V Ruchko
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| |
Collapse
|
25
|
Rafikova O, Rafikov R, Kangath A, Qu N, Aggarwal S, Sharma S, Desai J, Fields T, Ludewig B, Yuan JXY, Jonigk D, Black SM. Redox regulation of epidermal growth factor receptor signaling during the development of pulmonary hypertension. Free Radic Biol Med 2016; 95:96-111. [PMID: 26928584 PMCID: PMC5929487 DOI: 10.1016/j.freeradbiomed.2016.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/19/2022]
Abstract
The development of pulmonary hypertension (PH) involves the uncontrolled proliferation of pulmonary smooth muscle cells via increased growth factor receptor signaling. However, the role of epidermal growth factor receptor (EGFR) signaling is controversial, as humans with advanced PH exhibit no changes in EGFR protein levels and purpose of the present study was to determine whether there are post-translational mechanisms that enhance EGFR signaling in PH. The EGFR inhibitor, gefinitib, significantly attenuated EGFR signaling and prevented the development of PH in monocrotaline (MCT)-exposed rats, confirming the contribution of EGFR activation in MCT induced PH. There was an early MCT-mediated increase in hydrogen peroxide, which correlated with the binding of the active metabolite of MCT, monocrotaline pyrrole, to catalase Cys377, disrupting its multimeric structure. This early oxidative stress was responsible for the oxidation of EGFR and the formation of sodium dodecyl sulfate (SDS) stable EGFR dimers through dityrosine cross-linking. These cross-linked dimers exhibited increased EGFR autophosphorylation and signaling. The activation of EGFR signaling did not correlate with pp60(src) dependent Y845 phosphorylation or EGFR ligand expression. Importantly, the analysis of patients with advanced PH revealed the same enhancement of EGFR autophosphorylation and covalent dimer formation in pulmonary arteries, while total EGFR protein levels were unchanged. As in the MCT exposed rat model, the activation of EGFR in human samples was independent of pp60(src) phosphorylation site and ligand expression. This study provides a novel molecular mechanism of oxidative stress stimulated covalent EGFR dimerization via tyrosine dimerization that contributes into development of PH.
Collapse
Affiliation(s)
- Olga Rafikova
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Archana Kangath
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ning Qu
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Saurabh Aggarwal
- Department of Anesthesiology, University of Alabama, Birmingham, AL, United States
| | - Shruti Sharma
- Center For Biotechnology & Genomic Medicine, Georgia Regents University, Augusta, GA, United States
| | - Julin Desai
- Vascular Biology Center, Georgia Regents University, Augusta, GA, United States
| | - Taylor Fields
- Vascular Biology Center, Georgia Regents University, Augusta, GA, United States
| | - Britta Ludewig
- Institute of Pathology, Hannover Medical School, Hanover, Germany
| | - Jason X-Y Yuan
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
26
|
Nelin LD, White HA, Jin Y, Trittmann JK, Chen B, Liu Y. The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L880-8. [PMID: 26919896 DOI: 10.1152/ajplung.00306.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/19/2016] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells are essential for normal lung function: they sense and respond to circulating factors and hemodynamic alterations. In inflammatory lung diseases such as acute respiratory distress syndrome, endothelial cell apoptosis is an inciting event in pathogenesis and a prominent pathological feature. Endothelial cell apoptosis is mediated by circulating inflammatory factors, which bind to receptors on the cell surface, activating signal transduction pathways, leading to caspase-3-mediated apoptosis. We hypothesized that yes and src have differential effects on caspase-3 activation in human pulmonary microvascular endothelial cells (hPMVEC) due to differential downstream signaling effects. To test this hypothesis, hPMVEC were treated with siRNA against src (siRNAsrc), siRNA against yes (siRNAyes), or their respective scramble controls. After recovery, the hPMVEC were treated with cytomix (LPS, IL-1β, TNF-α, and IFN-γ). Treatment with cytomix induced activation of the extracellular signal-regulated kinase (ERK) pathway and caspase-3-mediated apoptosis. Treatment with siRNAsrc blunted cytomix-induced ERK activation and enhanced cleaved caspase-3 levels, while treatment with siRNAyes enhanced cytomix-induced ERK activation and attenuated levels of cleaved caspase-3. Inhibition of the ERK pathway using U0126 enhanced cytomix-induced caspase-3 activity. Treatment of hPMVEC with cytomix induced Akt activation, which was inhibited by siRNAsrc. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway using LY294002 prevented cytomix-induced ERK activation and augmented cytomix-induced caspase-3 cleavage. Together, our data demonstrate that, in hPMVEC, yes activation blunts the ERK cascade in response to cytomix, resulting in greater apoptosis, while cytomix-induced src activation induces the phosphatidylinositol 3-kinase pathway, which leads to activation of Akt and ERK and attenuation of apoptosis.
Collapse
Affiliation(s)
- Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hilary A White
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Nishimura R, Nishiwaki T, Kawasaki T, Sekine A, Suda R, Urushibara T, Suzuki T, Takayanagi S, Terada J, Sakao S, Tatsumi K. Hypoxia-induced proliferation of tissue-resident endothelial progenitor cells in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 308:L746-58. [PMID: 25502500 DOI: 10.1152/ajplung.00243.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022] Open
Abstract
Exposure to hypoxia induces changes in the structure and functional phenotypes of the cells composing the pulmonary vascular wall from larger to most peripheral vessels. Endothelial progenitor cells (EPCs) may be involved in vascular endothelial repair. Resident EPCs with a high proliferative potential are found in the pulmonary microcirculation. However, their potential location, identification, and functional role have not been clearly established. We investigated whether resident EPCs or bone marrow (BM)-derived EPCs play a major role in hypoxic response of pulmonary vascular endothelial cells (PVECs). Mice were exposed to hypoxia. The number of PVECs transiently decreased followed by an increase in hypoxic animals. Under hypoxic conditions for 1 wk, prominent bromodeoxyuridine incorporation was detected in PVECs. Some Ki67-positive cells were detected among PVECs after 1 wk under hypoxic conditions, especially in the capillaries. To clarify the origin of proliferating endothelial cells, we used BM chimeric mice expressing green fluorescent protein (GFP). The percentage of GFP-positive PVECs was low and constant during hypoxia in BM-transplanted mice, suggesting little engraftment of BM-derived cells in lungs under hypoxia. Proliferating PVECs in hypoxic animals showed increased expression of CD34, suggesting hypoxia-induced gene expression and cell surface antigen of EPC or stem/progenitor cells markers. Isolated PVECs from hypoxic mice showed colony- and tube-forming capacity. The present study indicated that hypoxia could induce proliferation of PVECs, and the origin of these cells might be tissue-resident EPCs.
Collapse
Affiliation(s)
- Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsu Nishiwaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Chen B, Strauch K, Jin Y, Cui H, Nelin LD, Chicoine LG. Asymmetric dimethylarginine does not inhibit arginase activity and is pro-proliferative in pulmonary endothelial cells. Clin Exp Pharmacol Physiol 2015; 41:469-74. [PMID: 24799070 DOI: 10.1111/1440-1681.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenously produced nitric oxide synthase (NOS) inhibitor. L-Arginine can be metabolised by NOS and arginase, and arginase is the first step in polyamine production necessary for cellular proliferation. We tested the hypothesis that ADMA would inhibit NOS but not arginase activity and that this pattern of inhibition would result in greater L-arginine bioavailability to arginase, thereby increasing viable cell number. Bovine arginase was used in in vitro activity assays with various concentrations of substrate (L-arginine, ADMA, N(G) -monomethyl-L-arginine (L-NMMA) and N(G) -nitro-L-arginine methyl ester (L-NAME)). Only L-arginine resulted in measurable urea production (Km = 6.9 ± 0.8 mmol/L; Vmax = 6.6 ± 0.3 μmol/mg protein per min). We then incubated bovine arginase with increasing concentrations of ADMA, L-NMMA and L-NAME in the presence of 1 mmol/L l-arginine and found no effect of any of the tested compounds on arginase activity. Using bovine pulmonary arterial endothelial cells (bPAEC) we determined the effects of ADMA on nitric oxide (NO) and urea production and found significantly lower NO production and greater urea production (P < 0.003) with ADMA, without changes in arginase protein levels. In addition, ADMA treatment resulted in an approximately 30% greater number of viable cells after 48 h than in control bPAEC. These results demonstrate that ADMA is neither a substrate nor an inhibitor of arginase activity and that in bPAEC ADMA inhibits NO production and enhances urea production, leading to more viable cells. These results may have pathophysiological implications in disorders associated with higher ADMA levels, such as pulmonary hypertension.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
29
|
Pitsiou G, Zarogoulidis P, Petridis D, Kioumis I, Lampaki S, Organtzis J, Porpodis K, Papaiwannou A, Tsiouda T, Hohenforst-Schmidt W, Kakolyris S, Syrigos K, Huang H, Li Q, Turner JF, Zarogoulidis K. Inhaled tyrosine kinase inhibitors for pulmonary hypertension: a possible future treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1753-63. [PMID: 25336919 PMCID: PMC4199972 DOI: 10.2147/dddt.s70277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension is a disease with severe consequences for the human body. There are several diseases and situations that induce pulmonary hypertension and are usually underdiagnosed. Treatments include conventional medical therapies and oral, inhaled, intravenous, and subcutaneous options. Depending on its severity, heart or lung transplant may also be an option. A possible novel treatment could be tyrosine kinase inhibitors. We conducted experiments with three jet nebulizers and three ultrasound nebulizers with erlotinib, gefitinib, and imatinib. Different residual cup designs and residual cup loadings were used in order to identify the best combination to produce droplets of less than 5 μm in mass median aerodynamic diameter. We found that gefitinib could not be transformed into a powder, so conversion to an aerosol form was not possible. Our experiments indicated that imatinib is superior to erlotinib with regard to small droplet size formation using both inhaled technologies (1.37 μm <2.23 μm and 1.92 μm <3.11 μm, jet and ultrasound, respectively) and, at jet devices (1.37 μm <1.92 μm). Cup designs C and G contribute best to small droplet creation uniquely supporting and equally well the activity of both drugs. The disadvantage of the large droplets formed for erlotinib was offset when combined with residual cup C (1.37 μm instead of 2.23 μm). At a 2 mL dose, the facemask and cone mouthpieces performed best and evenly; the facemask and low dose were the best choice (2.08 μm and 2.12 μm, respectively). Erlotinib and imatinib can be administered as an aerosols, and further in vivo experimentation is necessary to investigate the positive effects of these drugs in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Georgia Pitsiou
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Petridis
- Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, Thessaloniki, Greece
| | - Ioannis Kioumis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Lampaki
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Organtzis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Papaiwannou
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Tsiouda
- Internal Medicine Department, Thegenio Anticancer Hospital, Thessaloniki, Greece
| | | | - Stylianos Kakolyris
- Oncology Department, Sotiria Hospital of Chest Diseases, University of Athens, Athens, Greece
| | - Konstantinos Syrigos
- Oncology Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Haidong Huang
- Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Qiang Li
- Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - J Francis Turner
- Division of Interventional Pulmonology and Medical Oncology, Cancer Treatment Centers of America, Western Regional Medical Center, Goodyear, AZ, USA
| | - Konstantinos Zarogoulidis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
30
|
Trittmann JK, Nelin LD, Zmuda EJ, Gastier-Foster JM, Chen B, Backes CH, Frick J, Vaynshtok P, Vieland VJ, Klebanoff MA. Arginase I gene single-nucleotide polymorphism is associated with decreased risk of pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr 2014; 103:e439-43. [PMID: 24919409 DOI: 10.1111/apa.12717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/10/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022]
Abstract
AIM To test the hypothesis that there are single-nucleotide polymorphisms (SNPs) in genes of the l-arginine/nitric oxide pathway associated with pulmonary hypertension (PH) in neonates with bronchopulmonary dysplasia (BPD). METHODS Neonates with BPD were enrolled (n = 140) and clinical characteristics compared between case (BPD + PH) and control (BPD) groups. DNA was isolated from blood leucocytes and assayed for 17 SNPs in l-arginine/nitric oxide pathway genes by Sequenom massarray. Genes included carbamoyl-phosphate synthetase, ornithine transcarbamylase, argininosuccinate synthase, nitric oxide synthase and arginase. SNPs were selected from the National Center for Biotechnology Information database for their putative functionality. Calculated minor allele frequencies (MAF) of cases and controls were compared using χ2 and logistic regression. RESULTS Of the 140 patients with BPD, 26% had echocardiographic evidence of PH. Ventilation days were longer for cases than controls (mean 31 vs. 15 days, p < 0.05). Of the 17 SNPs, rs2781666 in arginase I gene was less common in cases (MAF = 0.23) than controls (MAF = 0.37, p = 0.04). The odds of PH decreased by 43% (p = 0.047) for each copy of the SNP minor allele in arginase I gene in patients with BPD. CONCLUSION Arginase I SNP (rs2781666) may be associated with protection against pulmonary hypertension in preterm neonates with BPD.
Collapse
Affiliation(s)
- JK Trittmann
- Ohio Perinatal Research Network; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Pulmonary Hypertension Group; Center for Perinatal Research; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Department of Pediatrics; The Ohio State University; Columbus OH USA
| | - LD Nelin
- Ohio Perinatal Research Network; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Pulmonary Hypertension Group; Center for Perinatal Research; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Department of Pediatrics; The Ohio State University; Columbus OH USA
| | - EJ Zmuda
- Cytogenetics/Molecular Genetics Laboratory at Nationwide Children's Hospital; Columbus OH USA
- Department of Pathology; The Ohio State University; Columbus OH USA
| | - JM Gastier-Foster
- Department of Pediatrics; The Ohio State University; Columbus OH USA
- Cytogenetics/Molecular Genetics Laboratory at Nationwide Children's Hospital; Columbus OH USA
- Department of Pathology; The Ohio State University; Columbus OH USA
| | - B Chen
- Ohio Perinatal Research Network; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Pulmonary Hypertension Group; Center for Perinatal Research; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Department of Pediatrics; The Ohio State University; Columbus OH USA
| | - CH Backes
- Ohio Perinatal Research Network; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Pulmonary Hypertension Group; Center for Perinatal Research; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Department of Pediatrics; The Ohio State University; Columbus OH USA
- The Heart Center at Nationwide Children's Hospital; Columbus OH USA
| | - J Frick
- Cytogenetics/Molecular Genetics Laboratory at Nationwide Children's Hospital; Columbus OH USA
- Department of Pathology; The Ohio State University; Columbus OH USA
| | - P Vaynshtok
- Department of Pediatrics; The Ohio State University; Columbus OH USA
| | - VJ Vieland
- Center for Mathematical Medicine; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
| | - MA Klebanoff
- Ohio Perinatal Research Network; The Research Institute at Nationwide Children's Hospital; Columbus OH USA
- Department of Pediatrics; The Ohio State University; Columbus OH USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF THE REVIEW The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with a wide implication in tumor biology, wound healing and development. Besides acting as a growth factor receptor activated by ligands such as EGF, the EGFR can also be transactivated and thereby mediate cross-talk with different signaling pathways. The aim of this review is to illustrate the Janus-faced function of the EGFR in the vasculature with its relevance for vascular biology and disease. RECENT FINDINGS Over recent years, the number of identified signaling partners of the EGFR has steadily increased, as have the biological processes in which the EGFR is thought to be involved. Recently, new models have allowed investigation of EGFR effects in vivo, shedding some light on the overall function of the EGFR in the vasculature. At the same time, EGFR inhibitors and antibodies have become increasingly established in cancer therapy, providing potential therapeutic tools for decreasing EGFR signaling. SUMMARY The EGFR is a versatile signaling pathway integrator associated with vascular homeostasis and disease. In addition to modulating basal vascular tone and tissue homeostasis, the EGFR also seems to be involved in proinflammatory, proliferative, migratory and remodeling processes, with enhanced deposition of extracellular matrix components, thereby promoting vascular diseases such as hypertension or atherosclerosis.
Collapse
|
32
|
Chen B, Xue J, Meng X, Slutzky JL, Calvert AE, Chicoine LG. Resveratrol prevents hypoxia-induced arginase II expression and proliferation of human pulmonary artery smooth muscle cells via Akt-dependent signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L317-25. [PMID: 24951775 DOI: 10.1152/ajplung.00285.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary artery smooth muscle cell (PASMC) proliferation plays a fundamental role in the vascular remodeling seen in pulmonary hypertensive diseases associated with hypoxia. Arginase II, an enzyme regulating the first step in polyamine and proline synthesis, has been shown to play a critical role in hypoxia-induced proliferation of human PASMC (hPASMC). In addition, there is evidence that patients with pulmonary hypertension have elevated levels of arginase in the vascular wall. Resveratrol, a natural polyphenol found in red wine and grape skins, has diverse biochemical and physiological actions including antiproliferative properties. Furthermore, resveratrol has been shown to attenuate right ventricular and pulmonary artery remodeling, both pathological components of pulmonary hypertension. The present studies tested the hypothesis that resveratrol would prevent hypoxia-induced pulmonary artery smooth muscle cell proliferation by inhibiting hypoxia-induced arginase II expression. Our data indicate that hypoxia-induced hPASMC proliferation is abrogated following treatment with resveratrol. In addition, the hypoxic induction of arginase II was directly attenuated by resveratrol treatment. Furthermore, we found that the inhibitory effect of resveratrol on arginase II in hPASMC was mediated through the PI3K-Akt signaling pathway. Supporting these in vitro findings, resveratrol normalized right ventricular hypertrophy in an in vivo neonatal rat model of chronic hypoxia-induced pulmonary hypertension. These novel data support the notion that resveratrol may be a potential therapeutic agent in pulmonary hypertension by preventing PASMC arginase II induction and proliferation.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jianjing Xue
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Xiaomei Meng
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Jessica L Slutzky
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Andrea E Calvert
- Pulmonary Hypertension Group, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Louis G Chicoine
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS One 2014; 9:e98532. [PMID: 24906007 PMCID: PMC4048210 DOI: 10.1371/journal.pone.0098532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/05/2014] [Indexed: 01/11/2023] Open
Abstract
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.
Collapse
Affiliation(s)
- Kristi M. Porter
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Bum-Yong Kang
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Sherry E. Adesina
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Tamara C. Murphy
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - C. Michael Hart
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Roy L. Sutliff
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy. J Invest Dermatol 2014; 134:2428-2437. [PMID: 24717244 DOI: 10.1038/jid.2014.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is widely used to treat non-melanoma skin cancer. However, some patients affected with squamous cell carcinoma (SCC) do not respond adequately to PDT with methyl-δ-aminolevulinic acid (MAL-PDT) and the tumors acquire an infiltrative phenotype and became histologically more aggressive, less differentiated, and more fibroblastic. To search for potential factors implicated in SCC resistance to PDT, we have used the SCC-13 cell line (parental) and resistant SCC-13 cells obtained by repeated MAL-PDT treatments (5th and 10th PDT-resistant generations). Xenografts assays in immunodeficient mice showed that the tumors generated by resistant cells were bigger than those induced by parental cells. Comparative genomic hybridization array (aCGH) showed that the three cell types presented amplicons in 3p12.1 CADM2, 7p11.2 EFGR, and 11q13.3 CCND1 genes. The 5th and 10th PDT-resistant cells showed an amplicon in 5q11.2 MAP3K1, which was not present in parental cells. The changes detected by aCGH on CCND1, EFGR, and MAP3K1 were confirmed in extracts of SCC-13 cells by reverse-transcriptase PCR and by western blot, and by immunohistochemistry in human biopsies from persistent tumors after MAL-PDT. Our data suggest that genomic imbalances related to CCND1, EFGR, and particularly MAP3K1 seem to be involved in the development of the resistance of SCC to PDT.
Collapse
|
35
|
Chen B, Nelin VE, Locy ML, Jin Y, Tipple TE. Thioredoxin-1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L389-95. [PMID: 23812635 DOI: 10.1152/ajplung.00432.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pathological pulmonary artery smooth muscle cell (PASMC) proliferation contributes to pulmonary vascular remodeling in pulmonary hypertensive diseases associated with hypoxia. Both the hypoxia-inducible factor (HIF) and phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (Akt) pathways have been implicated in hypoxia-induced PASMC proliferation. Thioredoxin-1 (Trx1) is a ubiquitously expressed protein that is involved in redox-dependent signaling via HIF and PI3K-Akt in cancer. The role of Trx1 in PASMC proliferation has not been elucidated. The present studies tested the hypothesis that Trx1 regulates hypoxia-induced PASMC proliferation via HIF and/or PI3K- and Akt-dependent mechanisms. Following exposure to chronic hypoxia, our data indicate that Trx1 activity is increased in adult murine lungs. Furthermore, hypoxia-induced increases in cellular proliferation are correlated with increased Trx1 expression, HIF activation, and Akt activation in cultured human PASMC. Both small-interfering RNA-mediated knockdown and pharmacological Trx1 inhibition attenuated hypoxia-induced PASMC proliferation, HIF activation, and Akt activation. While Trx1 knockdown suppressed hypoxia-induced PI3K-Akt activation in PASMC, PI3K-Akt inhibition prevented hypoxia-induced proliferation but had no effect on hypoxia-induced increases in Trx1 or HIF activation. Thus, our findings indicate that Trx1 contributes to hypoxia-induced PASMC proliferation by modulating HIF activation and subsequent PI3K-Akt activation. These novel data suggest that Trx1 might represent a novel therapeutic target to prevent hypoxic PASMC proliferation.
Collapse
Affiliation(s)
- Bernadette Chen
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia Columbia, MO, USA
| |
Collapse
|
37
|
Ino Y, Yamazaki-Itoh R, Oguro S, Shimada K, Kosuge T, Zavada J, Kanai Y, Hiraoka N. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS One 2013; 8:e55146. [PMID: 23424623 PMCID: PMC3570471 DOI: 10.1371/journal.pone.0055146] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 12/19/2012] [Indexed: 01/05/2023] Open
Abstract
An adequate level of arginine in the tissue microenvironment is essential for T cell activity and survival. Arginine levels are regulated by the arginine-catabolizing enzyme, arginase (ARG). It has been reported that arginase II (ARG2), one of two ARGs, is aberrantly expressed in prostate cancer cells, which convert arginine into ornithine, resulting in a lack of arginine that weakens tumor-infiltrating lymphocytes and renders them dysfunctional. However, immune suppression mediated by ARG2-expressing cancer cells in lung cancer has not been observed. Here we studied the expression of ARG2 in pancreatic ductal carcinoma (PDC) tissue clinicopathologically by examining over 200 cases of PDC. In contrast to prostate cancer, ARG2 expression was rarely demonstrated in PDC cells by immunohistochemistry, and instead ARG2 was characteristically expressed in α-smooth muscle actin-positive cancer-associated fibroblasts (CAFs), especially those located within and around necrotic areas in PDC. The presence of ARG2-expressing CAFs was closely correlated with shorter overall survival (OS; P = 0.003) and disease-free survival (DFS; P = 0.0006). Multivariate Cox regression analysis showed that the presence of ARG2-expressing CAFs in PDC tissue was an independent predictor of poorer OS (hazard ratio [HR] = 1.582, P = 0.007) and DFS (HR = 1.715, P = 0.001) in PDC patients. In addition to the characteristic distribution of ARG2-expressing CAFs, such CAFs co-expressed carbonic anhydrase IX, SLC2A1, or HIF-1α, markers of hypoxia, in PDC tissue. Furthermore, in vitro experiments revealed that cultured fibroblasts extracted from PDC tissue expressed the ARG2 transcript after exposure to hypoxia, which had arginase activity. These results indicate that cancer cell-mediated immune suppression through ARG2 expression is not a general event and that the presence of ARG2-expressing CAFs is an indicator of poor prognosis, as well as hypoxia, in PDC tissue.
Collapse
Affiliation(s)
- Yoshinori Ino
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Yamazaki-Itoh
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Seiji Oguro
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuaki Shimada
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoo Kosuge
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Jan Zavada
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous L-arginine. Am J Physiol Heart Circ Physiol 2012; 304:H195-205. [PMID: 23103497 DOI: 10.1152/ajpheart.00188.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is characterized by vasoconstriction and vascular remodeling, leading to right ventricular dysfunction. Given the role of arterial compliance (C(a)) in right ventricular work, a decrease in C(a) would add to right ventricular work. Nitric oxide (NO) is a potent vasodilator made by NO synthases from L-arginine (L-Arg). However, little is known of the effect of L-Arg on vascular compliance (C(v)) in the lung. We hypothesized that exposure to CH would decrease C(a) and that this effect would be reversed by exogenous L-Arg. Sprague-Dawley rats were exposed to either normoxia or CH for 14 days; the lungs were then isolated and perfused. Vascular occlusions were performed and modeled using a three-compliance, two-resistor model. Pressure-flow curves were generated, and a distensible vessel model was used to estimate distensibility and a vascular resistance parameter (R(0)). Hypoxia resulted in the expected increase in arterial resistance (R(a)) as well as a decrease in both C(a) and C(v). L-Arg had little effect on R(a), C(a), or C(v) in isolated lungs from normoxic animals. L-Arg decreased R(a) in lungs from CH rats and redistributed compliance to approximately that found in normoxic lungs. CH increased R(0), and L-Arg reversed this increase in R(0). L-Arg increased exhaled NO, and inhibition of L-Arg uptake attenuated the L-Arg-induced increase in exhaled NO. These data demonstrate that the CH-induced decrease in C(a) was reversed by L-Arg, suggesting that L-Arg may improve CH-induced right ventricular dysfunction.
Collapse
Affiliation(s)
- Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cui H, Chen B, Chicoine LG, Nelin LD. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells. Clin Exp Pharmacol Physiol 2012; 38:796-803. [PMID: 21923750 DOI: 10.1111/j.1440-1681.2011.05609.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2. 2. To test the hypothesis that hypoxia will decrease CAT expression and L-arg uptake resulting in decreased NO production in human pulmonary microvascular endothelial cells (hPMVEC), cells were incubated in either normoxia (21% O(2), 5% CO(2), balance N(2)) or hypoxia (1% O(2), 5% CO(2), balance N(2)). 3. The hPMVEC incubated in hypoxia had 80% less NO production than cells incubated in normoxia (P < 0.01). The hPMVEC incubated in hypoxia had significantly lower CAT-2 mRNA levels than normoxic hPMVEC (P < 0.005), and the transport of L-arg was 40% lower in hypoxic than in normoxic hPMVEC (P < 0.01). In hypoxic cells, overexpression of CAT-1 resulted in significantly greater L-arg transport and NO production (P < 0.05). 4. These results demonstrate that in hPMVEC, hypoxia decreased CAT-2 expression, L-arg uptake and NO production. Furthermore, the hypoxia-induced decrease in NO production in hPMVEC can be attenuated by overexpressing CAT in these cells. We speculate that the CAT may represent a novel therapeutic target for treating pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Hongmei Cui
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
40
|
Hyseni X, Soukup JM, Huang YCT. Pollutant particles induce arginase II in human bronchial epithelial cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:624-636. [PMID: 22712848 DOI: 10.1080/15287394.2012.688479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse pulmonary effects, including induction and exacerbation of asthma. Recently arginase was shown to play an important role in the pathogenesis of asthma. In this study, it was postulated that PM exposure might induce arginase. Human bronchial epithelial cells (HBEC) obtained from normal individuals by endobronchial brushings cultured on an air-liquid interface were incubated with fine Chapel Hill particles (PM₂.₅, 100 μg/ml) for up to 72 h. Arginase activity, protein expression, and mRNA of arginase I and arginase II were measured. PM₂.₅ increased arginase activity in a time-dependent manner. The rise was primarily due to upregulation of arginase II. PD153035 (10 μM), an epidermal growth factor (EGF) receptor antagonist, attenuated the PM₂.₅-induced elevation in arginase activity and arginase II expression. Treatment of HBEC with human EGF increased arginase activity and arginase II expression. Pretreatment with catalase (200 U/ml), superoxide dismutase (100 U/ml), or apocynin (5 μg/ml), an NAD(P)H oxidase inhibitor, did not markedly affect arginase II expression. Treatment of HBEC with arginase II siRNA inhibited the expression of arginase II by 60% and increased IL-8 release induced by PM₂.₅. These results indicate that PM exposure upregulates arginase II activity and expression in human bronchial epithelial cells, in part via EGF-dependent mechanisms independent of oxidative stress. The elevated arginase II activity and expression may be a mechanism underlying adverse effects induced by PM exposure in asthma patients.
Collapse
Affiliation(s)
- Xhevahire Hyseni
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
41
|
Yu L, Hales CA. Hypoxia does neither stimulate pulmonary artery endothelial cell proliferation in mice and rats with pulmonary hypertension and vascular remodeling nor in human pulmonary artery endothelial cells. J Vasc Res 2011; 48:465-75. [PMID: 21691120 DOI: 10.1159/000327005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. METHODS We investigated PAEC proliferation in mice and rats with hypoxia-induced pulmonary hypertension and vascular remodeling as well as in human PAECs under hypoxia. RESULTS AND CONCLUSION We did not find significant PAEC proliferation in chronically hypoxic rats or mice. There was a slight decrease in proliferation in mice and rats with pulmonary hypertension and vascular remodeling. We also did not find significant human PAEC proliferation and cell cycle progression under different levels of oxygen (1, 2, 3, 5 and 10%) for one day, although the same conditions of hypoxia induced significant proliferation and cell cycle progression in pulmonary artery smooth muscle cells and pulmonary artery fibroblasts. Exposure to hypoxia for 7 days also did not increase PAEC proliferation. These results demonstrated that hypoxia alone is not a stimulus to PAEC proliferation in vivo and in vitro. The present study provides a novel role for PAECs in hypoxia-induced pulmonary hypertension and vascular remodeling.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
42
|
Nitric oxide synthase inhibition enhances the antitumor effect of radiation in the treatment of squamous carcinoma xenografts. PLoS One 2011; 6:e20147. [PMID: 21647438 PMCID: PMC3102067 DOI: 10.1371/journal.pone.0020147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/19/2011] [Indexed: 01/10/2023] Open
Abstract
This study tests whether the nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NNA), combines favorably with ionizing radiation (IR) in controlling squamous carcinoma tumor growth. Animals bearing FaDu and A431 xenografts were treated with L-NNA in the drinking water. IR exposure was 10 Gy for tumor growth and survival studies and 4 Gy for ex vivo clonogenic assays. Cryosections were examined immunohistochemically for markers of apoptosis and hypoxia. Blood flow was assayed by fluorescent microscopy of tissue cryosections after i.v. injection of fluorospheres. Orally administered L-NNA for 24 hrs reduces tumor blood flow by 80% (p<0.01). Within 24 hrs L-NNA treatment stopped tumor growth for at least 10 days before tumor growth again ensued. The growth arrest was in part due to increased cell killing since a combination of L-NNA and a single 4 Gy IR caused 82% tumor cell killing measured by an ex vivo clonogenic assay compared to 49% by L-NNA or 29% by IR alone. A Kaplan-Meyer analysis of animal survival revealed a distinct survival advantage for the combined treatment. Combining L-NNA and IR was also found to be at least as effective as a single i.p. dose of cisplatin plus IR. In contrast to the in vivo studies, exposure of cells to L-NNA in vitro was without effect on clonogenicity with or without IR. Western and immunochemical analysis of expression of a number of proteins involved in NO signaling indicated that L-NNA treatment enhanced arginase-2 expression and that this may represent vasculature remodeling and escape from NOS inhibition. For tumors such as head and neck squamous carcinomas that show only modest responses to inhibitors of specific angiogenic pathways, targeting NO-dependent pro-survival and angiogenic mechanisms in both tumor and supporting stromal cells may present a potential new strategy for tumor control.
Collapse
|
43
|
Kim JH, Park SH, Park SG, Choi JS, Xia Y, Sung JH. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev 2011; 20:1753-61. [PMID: 21265612 DOI: 10.1089/scd.2010.0469] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adipose-derived stem cells (ASCs) offer a potential alternative for tissue repair and regeneration. We have recently shown that hypoxia stimulates ASCs and enhances the regenerative potential of ASCs, which is beneficial for ASC therapy. In the present study, we further investigated a key mediator and a signal pathway involved in the stimulation of ASC during hypoxia. Culturing ASC in a hypoxic incubator (2% oxygen tension) increased the proliferation and migration, and this was mediated by Akt and ERK pathways. To determine the generation of reactive oxygen species (ROS), 2',7'-dichlorofluorescin diacetate intensity was detected by fluorescence-activated cell sorting. Hypoxia significantly increased the dichlorofluorescin diacetate intensity, which was greatly reduced by N-acetyl-cysteine and diphenyleneiodonium treatment. Likewise, the hypoxia-induced proliferation and migration of ASCs were reversed by N-acetyl-cysteine and diphenyleneiodonium treatment, suggesting the involvement of ROS generation in ASC stimulation. Further, we examined the activation of receptor tyrosine kinases and observed that hypoxia stimulated the phosphorylation of platelet-derived growth factor receptor-β. In summary, the ROS produced by ASCs in response to hypoxia was mostly likely due to NADPH oxidase activity. The increased cellular ROS was accompanied by the phosphorylation of platelet-derived growth factor receptor-β as well as by the activation of ERK and Akt signal pathways. Our results suggest a pivotal role for ROS generation in the stimulation of ASCs by hypoxia.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Krotova K, Patel JM, Block ER, Zharikov S. Hypoxic upregulation of arginase II in human lung endothelial cells. Am J Physiol Cell Physiol 2010; 299:C1541-8. [PMID: 20861464 DOI: 10.1152/ajpcell.00068.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated arginase has been implicated in many diseases including cancer, immune cell dysfunction, infections, and vascular disease. Enhanced arginase activity has been reported in lungs of patients with pulmonary artery hypertension. We used hypoxia as a model for pulmonary hypertension and studied the effect of exposure to hypoxia on arginase activity in human lung microvascular endothelial cells (HMVEC). Hypoxia induces upregulation of arginase activity as well as mRNA and protein levels of arginase II (Arg II), the only arginase isoform we were able to identify in HMVEC. In endothelial cells, arginase shares and competes for the substrate l-arginine with nitric oxide (NO) synthase (NOS). Through regulation of substrate availability for NOS, arginase is able to modulate NO production. To evaluate the role of Arg II in regulation of NO production under hypoxia, we compared NO output (RFL-6 reporter assay) in cells with normal and silenced Arg II. Exposure to hypoxia led to an increase in NO levels produced by HMVEC. Inhibition of Arg II by specific small interfering RNA or by the pharmacological inhibitor BEC additionally enhanced the levels of NO. Another possible role for activated arginase is involvement in regulation of cell proliferation. However, we showed that hypoxia decreased cell proliferation and upregulated Arg II did not have an effect on cell proliferation. Since hypoxia-inducible factors (HIF) are a family of transcriptional factors activated by hypoxia, we tested the possibility of involvement of HIF-1 and HIF-2 in regulation of Arg II under hypoxia. The silencing of HIF-2 but not HIF-1 prevented the activation of Arg II by hypoxia.
Collapse
Affiliation(s)
- Karina Krotova
- Dept. of Medicine, MSB Rm. M452, Univ. of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
45
|
Yakovlev VA, Mikkelsen RB. Protein tyrosine nitration in cellular signal transduction pathways. J Recept Signal Transduct Res 2010; 30:420-9. [PMID: 20843272 DOI: 10.3109/10799893.2010.513991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
How specificity and reversibility in tyrosine nitration are defined biologically in cellular systems is poorly understood. As more investigations identify proteins involved in cell regulatory pathways in which only a small fraction of that protein pool is modified by nitration to affect cell function, the mechanisms of biological specificity and reversal should come into focus. In this review experimental evidence has been summarized to suggest that tyrosine nitration is a highly selective modification and under certain physiological conditions fulfills the criteria of a physiologically relevant signal. It can be specific, reversible, occurs on a physiological time scale, and, depending on a target, can result in either activation or inhibition.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
46
|
Solmesky L, Lefler S, Jacob-Hirsch J, Bulvik S, Rechavi G, Weil M. Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules. PLoS One 2010; 5. [PMID: 20844755 PMCID: PMC2937025 DOI: 10.1371/journal.pone.0012689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022] Open
Abstract
Human mesenchymal stem cells (hMSC) are easily isolated from the bone marrow by adherence to plastic surfaces. These cells show self-renewal capacity and multipotency. A unique feature of hMSC is their capacity to survive without serum. Under this condition hMSC neither proliferate nor differentiate but maintain their biological properties unaffected. Therefore, this should be a perfect platform to study the biological effects of defined molecules on these human stem cells. We show that hMSC treated for five days with retinoic acid (RA) in the absence of serum undergo several transcriptional changes causing an inhibition of ERK related pathways. We found that RA induces the loss of hMSC properties such as differentiation potential to either osteoblasts or adipocytes. We also found that RA inhibits cell cycle progression in the presence of proliferating signals such as epidermal growth factor (EGF) combined with basic fibroblast growth factor (bFGF). In the same manner, RA showed to cause a reduction in cell adhesion and cell migration. In contrast to these results, the addition of EGF+bFGF to serum free cultures was enough to upregulate ERK activity and induce hMSC proliferation and cell migration. Furthermore, the addition of these factors to differentiation specific media instead of serum was enough to induce either osteogenesis or adipogenesis. Altogether, our results show that hMSC's ability to survive without serum enables the identification of signaling factors and pathways that are involved in their stem cell biological characteristics without possible serum interferences.
Collapse
Affiliation(s)
- Leonardo Solmesky
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Lefler
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Shlomo Bulvik
- Hematology Department, Laniado Hospital, Netanya, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Miguel Weil
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|