1
|
Sánchez-Lanzas R, Barclay J, Hardas A, Kalampalika F, Jiménez-Pompa A, Gallipoli P, Ganuza M. A CADASIL NOTCH3 mutation leads to clonal hematopoiesis and expansion of Dnmt3a-R878H hematopoietic clones. Leukemia 2024:10.1038/s41375-024-02464-8. [PMID: 39537978 DOI: 10.1038/s41375-024-02464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Clonal hematopoiesis (CH) is nearly universal in the elderly. The molecular and cellular mechanisms driving CH and the clinical consequences of carrying clonally derived mutant mature blood cells are poorly understood. We recently identified a C223Y mutation in the extracellular domain (ECD) of NOTCH3 as a putative CH driver in mice. Provocatively, germline NOTCH3 ECD mutations perturbing cysteine numbers cause Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), a type of vascular dementia, suggesting an unexpected link between CADASIL and CH. Here, we formally demonstrated that mouse hematopoietic stem and progenitor cells (HSPCs) expressing CADASIL-related NOTCH3C455R exhibit a proliferative advantage resulting in robust cellular expansion in vivo and in vitro. Co-expression of NOTCH3C455R and Dnmt3aR878H, homologous to a frequent human CH mutation, increased the fitness of NOTCH3C455R HSPCs, demonstrating their functional cooperation. Surprisingly, the presence of NOTCH3C455R hematopoietic cells supported the expansion of Dnmt3aR878H HSPCs in a non-cell autonomous fashion in vivo, strongly suggesting that CADASIL patients and asymptomatic carriers can be highly predisposed to DNMT3AR882H-driven CH. Considering that CADASIL-related NOTCH3 mutations are more frequent in the general population than anticipated (~1 carrier in 400 people), the effect of these NOTCH3 mutations on CH development should be considered.
Collapse
Affiliation(s)
- Raúl Sánchez-Lanzas
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Justin Barclay
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alexandros Hardas
- Royal Veterinary College, Hertfordshire, UK
- Francis Crick Institute, London, UK
| | - Foteini Kalampalika
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Amanda Jiménez-Pompa
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Paolo Gallipoli
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Miguel Ganuza
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Schaunaman N, Nichols T, Cervantes D, Hartsoe P, Ferrington DA, Chu HW. The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice. Viruses 2024; 16:1384. [PMID: 39339860 PMCID: PMC11437510 DOI: 10.3390/v16091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency.
Collapse
Affiliation(s)
| | - Taylor Nichols
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Diana Cervantes
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Paige Hartsoe
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | | | - Hong Wei Chu
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| |
Collapse
|
3
|
Zhang Y, Lee C, Geng S, Wang J, Bohara U, Hou J, Yi Z, Li L. Immune-enhancing neutrophils reprogrammed by subclinical low-dose endotoxin in cancer treatment. EMBO Mol Med 2024; 16:1886-1900. [PMID: 39009886 PMCID: PMC11319772 DOI: 10.1038/s44321-024-00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Despite the re-emergence of the pioneering "Coley's toxin" concept in anti-cancer immune therapies highlighted by check-point inhibitors and CAR-T approaches, fundamental mechanisms responsible for the immune-enhancing efficacy of low-dose "Coley's toxin" remain poorly understood. This study examines the novel reprogramming of immune-enhancing neutrophils by super-low dose endotoxin conducive for anti-cancer therapies. Through integrated analyses including scRNAseq and functional characterizations, we examined the efficacy of reprogrammed neutrophils in treating experimental cancer. We observed that neutrophils trained by super-low dose endotoxin adopt a potent immune-enhancing phenotype characterized by CD177loCD11bloCD80hiCD40hiDectin2hi. Both murine and human neutrophils trained by super-low dose endotoxin exhibit relieved suppression of adaptive T cells as compared to un-trained neutrophils. Functionally, neutrophils trained by super-low dose endotoxin can potently reduce tumor burden when transfused into recipient tumor-bearing mice. Mechanistically, Super-low dose endotoxin enables the generation of immune-enhancing neutrophils through activating STAT5 and reducing innate suppressor IRAK-M. Together, our data clarify the long-held mystery of "Coley's toxin" in rejuvenating anti-tumor immune defense, and provide a proof-of-concept in developing innate neutrophil-based anti-tumor therapeutics.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Christina Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Udipta Bohara
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Jacqueline Hou
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.
| |
Collapse
|
4
|
Wohlleben AM, Tabima JF, Meyer NP, Steinel NC. Population-level immunologic variation in wild threespine stickleback (Gasterosteusaculeatus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109580. [PMID: 38663464 DOI: 10.1016/j.fsi.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 04/19/2024] [Indexed: 05/09/2024]
Abstract
Wild organisms are regularly exposed to a wide range of parasites, requiring the management of an effective immune response while avoiding immunopathology. Currently, our knowledge of immunoparasitology primarily derives from controlled laboratory studies, neglecting the genetic and environmental diversity that contribute to immune phenotypes observed in wild populations. To gain insight into the immunologic variability in natural settings, we examined differences in immune gene expression of two Alaskan stickleback (Gasterosteus aculeatus) populations with varying susceptibility to infection by the cestode Schistocephalus solidus. Between these two populations, we found distinct immune gene expression patterns at the population level in response to infection with fish from the high-infection population displaying signs of parasite-driven immune manipulation. Further, we found significant differences in baseline immune gene profiles between the populations, with uninfected low-infection population fish showing signatures of inflammation compared to uninfected high-infection population fish. These results shed light on divergent responses of wild populations to the same parasite, providing valuable insights into host-parasite interactions in natural ecosystems.
Collapse
Affiliation(s)
- Anika M Wohlleben
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany; Biology Department, Clark University, Worcester, MA, USA.
| | | | - Néva P Meyer
- Biology Department, Clark University, Worcester, MA, USA
| | - Natalie C Steinel
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA; Center for Pathogen Research and Training, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
5
|
Yang J, Ouedraogo SY, Wang J, Li Z, Feng X, Ye Z, Zheng S, Li N, Zhan X. Clinically relevant stratification of lung squamous carcinoma patients based on ubiquitinated proteasome genes for 3P medical approach. EPMA J 2024; 15:67-97. [PMID: 38463626 PMCID: PMC10923771 DOI: 10.1007/s13167-024-00352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Relevance The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome's regulatory function is closely associated with the disease's pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan-Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters. Results This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin-proteasome system for degradation. Conclusions Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00352-w.
Collapse
Affiliation(s)
- Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Zhijun Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Xiaoxia Feng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
- School of Basic Medicine, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China
| | - Shu Zheng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| |
Collapse
|
6
|
Xu X, Xu J, Qiu M, Yu Y, Gou M, Pang Y, Li Q, Su P. A Comparative Transcriptomic Study and Key Gene Targeting of Lamprey Gonadal Immune Response. Immunol Invest 2024; 53:241-260. [PMID: 38078455 DOI: 10.1080/08820139.2023.2289070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.
Collapse
Affiliation(s)
- Xiangting Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jing Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Functional laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mingyue Qiu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Yu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
7
|
Burov AV, Rodin AA, Karpov VL, Morozov AV. The Role of Ubiquitin-Proteasome System in the Biology of Stem Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2043-2053. [PMID: 38462448 DOI: 10.1134/s0006297923120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 03/12/2024]
Abstract
Selective degradation of cellular proteins by the ubiquitin-proteasome system (UPS) is one of the key regulatory mechanisms in eukaryotic cells. A growing body of evidence indicates that UPS is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging, and programmed cell death, via proteolytic degradation of key transcription factors and cell signaling proteins and post-translational modification of target proteins with ubiquitin. Studying molecular mechanisms of proteostasis in stem cells is of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer, and other socially significant pathologies. This review discusses current data on the UPS functions in stem cells.
Collapse
Affiliation(s)
- Alexander V Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey A Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vadim L Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Wang P, Fu Z, Liu Y, Huang S, Guo Y, Jin J, Fang Y, Pan Y, Fan Z, Yu H. tRF-21-LNK8KEP1B as a potential novel diagnostic biomarker for enthesitis-related arthritis. Int Immunopharmacol 2023; 124:110820. [PMID: 37660592 DOI: 10.1016/j.intimp.2023.110820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE tRNA-derived fragments (tRFs) play crucial roles in the progression of various diseases, and widely distribute in human tissues, including blood and urine. The diagnosis of enthesitis-related arthritis (ERA) is based on the observation of clinical manifestations. Therefore, we aimed to investigate whether serum tRFs can be used as diagnostic markers for ERA. METHODS Serum was collected from children admitted to the Children's Hospital Affiliated with Nanjing Medical University between February 2022 to October 2022. The expression profiles of tRFs in the serum of ERA patients (n = 5) and healthy controls (HCs; n = 5) were investigated using small RNA high-throughput sequencing. The level and diagnostic value of tRF-21-LNK8KEP1B were evaluated by real-time quantitative PCR in serum samples from 30 ERA patients and 31 HCs. The specificity and sensitivity of tRFs were determined using receiver operating characteristic analyses. Bioinformatics analysis was performed to explore and identify the potential biological pathways induced by tRFs. RESULTS Ninety-eight upregulated and 63 downregulated tRFs were identified in the serum. We selected tRF-21-LNK8KEP1B as a candidate marker using KEGG pathway enrichment and PCR validation. tRF-21-LNK8KEP1B was substantially increased in the serum of ERA patients compared with that in HCs. The area under the curve (AUC) for tRF-21-LNK8KEP1B in the ERA group was 0.7849. CONCLUSIONS Collectively, we demonstrated the promising role of serum tRF-21-LNK8KEP1B -levels as a diagnostic biomarker for ERA.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Maternal and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Liu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shuoyin Huang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yanli Guo
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Jin
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuying Fang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Pan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Chen J, Wang X, Schmalen A, Haines S, Wolff M, Ma H, Zhang H, Stoleriu MG, Nowak J, Nakayama M, Bueno M, Brands J, Mora AL, Lee JS, Krauss-Etschmann S, Dmitrieva A, Frankenberger M, Hofer TP, Noessner E, Moosmann A, Behr J, Milger K, Deeg CA, Staab-Weijnitz CA, Hauck SM, Adler H, Goldmann T, Gaede KI, Behrends J, Kammerl IE, Meiners S. Antiviral CD8 + T-cell immune responses are impaired by cigarette smoke and in COPD. Eur Respir J 2023; 62:2201374. [PMID: 37385655 PMCID: PMC10397470 DOI: 10.1183/13993003.01374-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- These authors contributed equally
| | - Xinyuan Wang
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Guangzhou Medical University, Guangzhou, China
- These authors contributed equally
| | - Adrian Schmalen
- Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Sophia Haines
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Wolff
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Huan Ma
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Huabin Zhang
- Neurosurgery Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mircea Gabriel Stoleriu
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Thoracic Surgery Munich, University Clinic of Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- Asklepios Pulmonary Hospital, Gauting, Germany
| | - Johannes Nowak
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marta Bueno
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Judith Brands
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart Lung Institute, Ohio State University, Columbus, OH, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Anna Dmitrieva
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas P Hofer
- Immunoanalytics - Working Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics - Working Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Andreas Moosmann
- DZIF Group Host Control of Viral Latency and Reactivation, Department of Medicine III, LMU-Klinikum, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Cornelia A Deeg
- Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Torsten Goldmann
- Histology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Karoline I Gaede
- BioMaterialBank North, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Popgen 2.0 Network, (P2N), Borstel, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ilona E Kammerl
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- These authors contributed equally
| | - Silke Meiners
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- These authors contributed equally
| |
Collapse
|
10
|
Tabaei S, Haghshenas MR, Ariafar A, Gilany K, Stensballe A, Farjadian S, Ghaderi A. Comparative proteomics analysis in different stages of urothelial bladder cancer for identification of potential biomarkers: highlighted role for antioxidant activity. Clin Proteomics 2023; 20:28. [PMID: 37501157 PMCID: PMC10373361 DOI: 10.1186/s12014-023-09419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate and muscle-invasive bladder cancer (MIBC) has unfavorable outcomes in urothelial bladder cancer (UBC) patients. Complex UBC-related protein biomarkers for outcome prediction may provide a more efficient management approach with an improved clinical outcome. The aim of this study is to recognize tumor-associated proteins, which are differentially expressed in different stages of UBC patients compared non-cancerous tissues. METHODS The proteome of tissue samples of 42 UBC patients (NMIBC n = 25 and MIBC n = 17) was subjected to two-dimensional electrophoresis (2-DE) combined with Liquid chromatography-mass spectrometry (LC-MS) system to identify differentially expressed proteins. The intensity of protein spots was quantified and compared with Prodigy SameSpots software. Functional, pathway, and interaction analyses of identified proteins were performed using geneontology (GO), PANTHER, Reactome, Gene MANIA, and STRING databases. RESULTS Twelve proteins identified by LC-MS showed differential expression (over 1.5-fold, p < 0.05) by LC-MS, including 9 up-regulated in NMIBC and 3 up-regulated in MIBC patients. Proteins involved in the detoxification of reactive oxygen species and cellular responses to oxidative stress showed the most significant changes in UBC patients. Additionally, the most potential functions related to these detected proteins were associated with peroxidase, oxidoreductase, and antioxidant activity. CONCLUSION We identified several alterations in protein expression involved in canonical pathways which were correlated with the clinical outcomes suggested might be useful as promising biomarkers for early detection, monitoring, and prognosis of UBC.
Collapse
Affiliation(s)
- Samira Tabaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Gistrup, 9260, Denmark
- Clinical Cancer Research Center, Aalborg University hospital, Gistrup, 9260, Denmark
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Wang X, Zhang H, Wang Y, Bramasole L, Guo K, Mourtada F, Meul T, Hu Q, Viteri V, Kammerl I, Konigshoff M, Lehmann M, Magg T, Hauck F, Fernandez IE, Meiners S. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J 2023; 42:e110597. [PMID: 36912165 PMCID: PMC10106989 DOI: 10.15252/embj.2022110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huabin Zhang
- Neurosurgical Research, Department of Neurosurgery, University Hospital and Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Wang
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laylan Bramasole
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Fatima Mourtada
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Qianjiang Hu
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Valeria Viteri
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Ilona Kammerl
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Melanie Konigshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.,Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Department of Medicine V, University Hospital, LMU Munich, Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
12
|
Revealing Natural Intracellular Peptides in Gills of Seahorse Hippocampus reidi. Biomolecules 2023; 13:biom13030433. [PMID: 36979368 PMCID: PMC10046794 DOI: 10.3390/biom13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The seahorse is a marine teleost fish member of the Syngnathidae family that displays a complex variety of morphological and reproductive behavior innovations and has been recognized for its medicinal importance. In the Brazilian ichthyofauna, the seahorse Hippocampus reidi is among the three fish species most used by the population in traditional medicine. In this study, a protocol was performed based on fast heat inactivation of proteases plus liquid chromatography coupled to mass spectrometry to identify native peptides in gills of seahorse H. reidi. The MS/MS spectra obtained from gills allowed the identification of 1080 peptides, of which 1013 peptides were present in all samples and 67 peptide sequences were identified in an additional LC-MS/MS run from an alkylated and reduced pool of samples. The majority of peptides were fragments of the internal region of the amino acid sequence of the precursor proteins (67%), and N- and C-terminal represented 18% and 15%, respectively. Many peptide sequences presented ribosomal proteins, histones and hemoglobin as precursor proteins. In addition, peptide fragments from moronecidin-like protein, described with antimicrobial activity, were found in all gill samples of H. reidi. The identified sequences may reveal new bioactive peptides.
Collapse
|
13
|
Soto LF, Romaní AC, Jiménez-Avalos G, Silva Y, Ordinola-Ramirez CM, Lopez Lapa RM, Requena D. Immunoinformatic analysis of the whole proteome for vaccine design: An application to Clostridium perfringens. Front Immunol 2022; 13:942907. [PMID: 36110855 PMCID: PMC9469472 DOI: 10.3389/fimmu.2022.942907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium perfringens is a dangerous bacterium and known biological warfare weapon associated with several diseases, whose lethal toxins can produce necrosis in humans. However, there is no safe and fully effective vaccine against C. perfringens for humans yet. To address this problem, we computationally screened its whole proteome, identifying highly immunogenic proteins, domains, and epitopes. First, we identified that the proteins with the highest epitope density are Collagenase A, Exo-alpha-sialidase, alpha n-acetylglucosaminidase and hyaluronoglucosaminidase, representing potential recombinant vaccine candidates. Second, we further explored the toxins, finding that the non-toxic domain of Perfringolysin O is enriched in CTL and HTL epitopes. This domain could be used as a potential sub-unit vaccine to combat gas gangrene. And third, we designed a multi-epitope protein containing 24 HTL-epitopes and 34 CTL-epitopes from extracellular regions of transmembrane proteins. Also, we analyzed the structural properties of this novel protein using molecular dynamics. Altogether, we are presenting a thorough immunoinformatic exploration of the whole proteome of C. perfringens, as well as promising whole-protein, domain-based and multi-epitope vaccine candidates. These can be evaluated in preclinical trials to assess their immunogenicity and protection against C. perfringens infection.
Collapse
Affiliation(s)
- Luis F. Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ana C. Romaní
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Gabriel Jiménez-Avalos
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Yshoner Silva
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Carla M. Ordinola-Ramirez
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Rainer M. Lopez Lapa
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Instituto de Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, United States
- *Correspondence: David Requena,
| |
Collapse
|
14
|
Proteomic Analysis of Vero Cells Infected with Pseudorabies Virus. Viruses 2022; 14:v14040755. [PMID: 35458485 PMCID: PMC9029783 DOI: 10.3390/v14040755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
Suid herpesvirus 1 (SuHV-1), known as pseudorabies virus (PRV), is one of the most devastating swine pathogens in China, particularly the sudden occurrence of PRV variants in 2011. The higher pathogenicity and cross-species transmission potential of the newly emerged variants caused not only colossal economic losses, but also threatened public health. To uncover the underlying pathogenesis of PRV variants, Tandem Mass Tag (TMT)-based proteomic analysis was performed to quantitatively screen the differentially expressed cellular proteins in PRV-infected Vero cells. A total of 7072 proteins were identified and 960 proteins were significantly regulated: specifically 89 upregulated and 871 downregulated. To make it more credible, the expression of XRCC5 and XRCC6 was verified by western blot and RT-qPCR, and the results dovetailed with the proteomic data. The differentially expressed proteins were involved in various biological processes and signaling pathways, such as chaperonin-containing T-complex, NIK/NF-κB signaling pathway, DNA damage response, and negative regulation of G2/M transition of mitotic cell cycle. Taken together, our data holistically outline the interactions between PRV and host cells, and our results may shed light on the pathogenesis of PRV variants and provide clues for pseudorabies prevention.
Collapse
|
15
|
Guo T, Liu C, Yang C, Wu J, Su P, Chen J. Immunoproteasome subunit PSMB8 regulates microglia-mediated neuroinflammation upon manganese exposure by PERK signaling. Food Chem Toxicol 2022; 163:112951. [DOI: 10.1016/j.fct.2022.112951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 01/04/2023]
|
16
|
Liu W, Wen D, Liu Z, Wang K, Wang J. Erythropoiesis signature and ubiquitin‐mediated proteolysis are enriched in systematic juvenile idiopathic arthritis. Int J Immunogenet 2022; 49:193-201. [PMID: 35253998 DOI: 10.1111/iji.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Wenping Liu
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Dawei Wen
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Ziyi Liu
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Kunyu Wang
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Jibo Wang
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| |
Collapse
|
17
|
Sato H, Inoue Y, Kawashima Y, Nakajima D, Ishikawa M, Konno R, Nakamura R, Kato D, Mitsunaga K, Yamamoto T, Yamaide A, Tomiita M, Hoshioka A, Ohara O, Shimojo N. In-Depth Serum Proteomics by DIA-MS with In Silico Spectral Libraries Reveals Dynamics during the Active Phase of Systemic Juvenile Idiopathic Arthritis. ACS OMEGA 2022; 7:7012-7023. [PMID: 35252692 PMCID: PMC8892657 DOI: 10.1021/acsomega.1c06681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 05/09/2023]
Abstract
In serum proteomics using mass spectrometry, the number of detectable proteins is reduced due to high-abundance proteins, such as albumin. However, recently developed data-independent acquisition mass spectrometry (DIA-MS) proteomics technology has made it possible to remarkably improve the number of proteins in a serum analysis by removing high-abundance proteins. Using this technology, we analyzed sera from patients with systemic juvenile idiopathic arthritis (sJIA), a rare pediatric disease. As a result, we identified 2727 proteins with a wide dynamic range derived from various tissue leakages. We also selected 591 proteins that differed significantly in their active phases. These proteins were involved in many inflammatory processes, and we also identified immunoproteasomes, which were not previously found in serum, suggesting that they may be involved in the pathogenesis of sJIA. A detailed high-depth DIA-MS proteomic analysis of serum may be useful for understanding the pathogenesis of sJIA and may provide clues for the development of new biomarkers.
Collapse
Affiliation(s)
- Hironori Sato
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
- Department
of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan
| | - Yuzaburo Inoue
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
- Division
of Cancer Genetics, Chiba Cancer Center
Research Institute, Chiba, Chiba 260-8717, Japan
| | - Yusuke Kawashima
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Nakajima
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Ishikawa
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ryo Konno
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daigo Kato
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Kanako Mitsunaga
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Takeshi Yamamoto
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
- Benaroya
Research Institute at Virginia Mason, Seattle, Washington 98101-2795, United States
| | - Akiko Yamaide
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Minako Tomiita
- Department
of Clinical Research, National Hospital
Organization Shimoshizu National Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Akira Hoshioka
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Osamu Ohara
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Naoki Shimojo
- Center for
Preventive Medical Sciences, Chiba University, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
18
|
Wessolly M, Mairinger FD, Herold T, Hadaschik B, Szarvas T, Reis H. Proteasomal Processing Immune Escape Mechanisms in Platinum-Treated Advanced Bladder Cancer. Genes (Basel) 2022; 13:genes13030422. [PMID: 35327977 PMCID: PMC8948673 DOI: 10.3390/genes13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the number and type of treatment options in advanced bladder cancer (BC) have been rapidly evolving. To select an effective therapy and spare unnecessary side effects, predictive biomarkers are urgently needed. As the host’s anti-cancer immune response is by far the most effective system to impede malignant tumor growth, immune system-based biomarkers are promising. We have recently described altered proteasomal epitope processing as an effective immune escape mechanism to impair cytotoxic T-cell activity. By altering the neoantigens’ characteristics through different proteasomal peptide cleavage induced by non-synonymous somatic mutations, the ability for T-cell activation was decreased (“processing escapes”). In the present study, we analyzed primary chemo-naïve tissue samples of 26 adjuvant platinum-treated urothelial BC patients using a targeted next-generation sequencing panel followed by the epitope determination of affected genes, a machine-learning based prediction of epitope processing and proteasomal cleavage and of HLA-affinity as well as immune activation. Immune infiltration (immunohistochemistries for CD8, granzyme B, CD45/LCA) was digitally quantified by a pathologist and clinico-pathological and survival data were collected. We detected 145 epitopes with characteristics of a processing escape associated with a higher number of CD8-positive but lower number of granzyme B-positive cells and no association with PD-L1-expression. In addition, a high prevalence of processing escapes was associated with unfavorable overall survival. Our data indicate the presence of processing escapes in advanced BC, potentially creating a tumor-promoting pro-inflammatory environment with lowered anti-cancerous activity and independence from PD-L1-expression. The data also need to be prospectively validated in BC treated with immune therapy.
Collapse
Affiliation(s)
- Michael Wessolly
- Institute of Pathology, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.W.); (F.D.M.); (T.H.)
| | - Fabian D. Mairinger
- Institute of Pathology, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.W.); (F.D.M.); (T.H.)
| | - Thomas Herold
- Institute of Pathology, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.W.); (F.D.M.); (T.H.)
| | - Boris Hadaschik
- Department of Urology, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany; (B.H.); (T.S.)
| | - Tibor Szarvas
- Department of Urology, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany; (B.H.); (T.S.)
- Department of Urology, Semmelweis University Budapest, 1085 Budapest, Hungary
| | - Henning Reis
- Institute of Pathology, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.W.); (F.D.M.); (T.H.)
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-4514
| |
Collapse
|
19
|
Effects of Low Luteinizing Hormone During Ovarian Stimulation on Endometrial Gene Expression and Function - Transcriptome Analysis During the Implantation Window. Reprod Sci 2022; 29:1908-1920. [PMID: 35170000 DOI: 10.1007/s43032-022-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
This study explored the impact of low luteinizing hormone (LH) levels during ovarian stimulation on endometrial function. Based on previous studies by us and others, we divided the patients into low (< 4 IU/L), medium (4-10 IU/L), and high (> 10 IU/L) LH groups. The study utilized a comparison control group design with three groups of 10 patients. Gene set enrichment analysis (GSEA) was applied for functional annotation. By analyzing the exon differentially expressed genes in the endometrium of these three patient groups during the embryo implantation window, we found that when compared to the medium LH group, low LH downregulated endometrial cell metabolism, including mitochondrial-nicotinamide adenine dinucleotide (Normalized Enrichment Scores, NES = - 1.53) and glycolytic metabolism (NES = - 1.22), immune regulation, and autophagy (NES = - 1.58). Transcription factors were the main regulators of cell function. We found that MCM2 was probably involved in regulating the endometrial function induced by low LH. MCM2 target genes were enriched in low LH group, NES = - 1.54. Low LH, but not high LH, altered the endometrial receptivity assay gene expression in comparison to the medium LH. Our results indicated that low LH impacted the endometrial cell function, with a greater effect than high LH. This research provides timely and necessary data on the involvement of LH in important endometrial cellular processes and these data support further clinical development of endometrial receptivity.
Collapse
|
20
|
Correa F, Luise D, Bosi P, Trevisi P. Weaning differentially affects the maturation of piglet peripheral blood and jejunal Peyer's patches. Sci Rep 2022; 12:1604. [PMID: 35102264 PMCID: PMC8803882 DOI: 10.1038/s41598-022-05707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess how the post-weaning condition changes piglet peripheral blood (PB) and jejunal Peyer's patches (JPPs) as compared to the suckling period, and how these changes are associated with intestinal microbiota evolution. Sixteen pigs were slaughtered and sampled for PB, JPPs and jejunal content (JC) at weaning (26 days) or at 12 days fed on a pre-starter diet. The PB and JPP transcriptomes were analysed using mRNA-seq. The Gene Set Enrichment Analysis was used to demonstrate enriched gene clusters, depending on sampling time. Jejunal microbiota was profiled using 16S rRNA gene sequencing. Post-weaning JPPs were enriched for processes related to the activation of IFN-γ and major histocompatibility complex (MHC) class I antigen processing which clustered with the reduced abundance of the Weisella genus and Faecalibacterium prausnitzii in JC. The post-weaning microbiome differed from that seen in just-weaned pigs. For just-weaned PB, the enrichment of genes related to hemoglobin and the iron metabolism indicated the greater presence of reticulocytes and immature erythrocytes. The JPP genes involved in the I MHC and IFN-γ activations were markers of the post-weaning phase. Several genes attributable to reticulocyte and erythrocyte maturation could be interesting for testing the iron nutrition of piglets.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
21
|
Li N, Zhan X. Integrated genomic analysis of proteasome alterations across 11,057 patients with 33 cancer types: clinically relevant outcomes in framework of 3P medicine. EPMA J 2021; 12:605-627. [PMID: 34956426 DOI: 10.1007/s13167-021-00256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Relevance Proteasome, a cylindrical complex containing 19S regulatory particle lid, 19S regulatory particle base, and 20S core particle, acted as a major mechanism to regulate the levels of intracellular proteins and degrade misfolded proteins, which involved in many cellular processes, and played important roles in cancer biological processes. Elucidation of proteasome alterations across multiple cancer types will directly contribute to cancer medical services in the context of predictive, preventive, and personalized medicine (PPPM / 3P medicine). Purpose This study aimed to investigate proteasome gene alterations across 33 cancer types for discovery of effective biomarkers and therapeutic targets in the framework of PPPM practice in cancers. Methods Proteasome gene data, including gene expression RNAseq, somatic mutation, tumor mutation burden (TMB), copy number variant (CNV), microsatellite instability (MSI) score, clinical characteristics, immune phenotype, 22 immune cells, cancer stemness index, drug sensitivity, and related pathways, were systematically analyzed with publically available database and bioinformatics across 11,057 patients with 33 cancer types. Results Differentially expressed proteasome genes were extensively found between tumor and control tissues. PSMB4 occurred the top mutation event among proteasome genes, and those proteasome genes were significantly associated with TMB and MSI score. Most of proteasome genes were positively related to CNV among single deletion, control copy number, and single gain. Kaplan-Meier curves and COX regression survival analysis showed proteasome genes were significantly associated with patient survival rate across 33 cancer types. Furthermore, the expressions of proteasome genes were significantly different among different clinical stages and immune subtypes. The expressions of proteasome genes were correlated with immune-related scores (ImmuneScore, StromalScore, and ESTIMATEScore), 22 immune cells, and cancer stemness. The sensitivities of multiple drugs were closely related to proteasome gene expressions. The identified proteasome and proteasome-interacted proteins were significantly enriched in various cancer-related pathways. Conclusions This study provided the first landscape of proteasome alterations across 11,057 patients with 33 cancer types and revealed that proteasome played a significant and wide functional role in cancer biological processes. These findings are the precious scientific data to reveal the common and specific alterations of proteasome genes among 33 cancer types, which benefits the research and practice of PPPM in cancers. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-021-00256-z.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| |
Collapse
|
22
|
Blood Immunoproteasome Activity Is Regulated by Sex, Age and in Chronic Inflammatory Diseases: A First Population-Based Study. Cells 2021; 10:cells10123336. [PMID: 34943847 PMCID: PMC8699521 DOI: 10.3390/cells10123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.
Collapse
|
23
|
Liu J, Shao J, Zhang C, Qin G, Liu J, Li M, Wu P, Zhao X, Zhang Y. Immuno-oncological role of 20S proteasome alpha-subunit 3 in aggravating the progression of esophageal squamous cell carcinoma. Eur J Immunol 2021; 52:338-351. [PMID: 34755333 DOI: 10.1002/eji.202149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/05/2022]
Abstract
PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingwen Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jiayin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Miaomiao Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Wu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, P. R. China
| |
Collapse
|
24
|
Kammerl IE, Hardy S, Flexeder C, Urmann A, Peierl J, Wang Y, Vosyka O, Frankenberger M, Milger K, Behr J, Koch A, Merl-Pham J, Hauck SM, Pilette C, Schulz H, Meiners S. Activation of immune cell proteasomes in peripheral blood of smokers and COPD patients - implications for therapy. Eur Respir J 2021; 59:13993003.01798-2021. [PMID: 34561290 PMCID: PMC8891681 DOI: 10.1183/13993003.01798-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Immune cells contain a specialised type of proteasome, i.e. the immunoproteasome, which is required for intracellular protein degradation. Immunoproteasomes are key regulators of immune cell differentiation, inflammatory activation and autoimmunity. Immunoproteasome function in peripheral immune cells might be altered by smoking and in COPD thereby affecting immune cell responses.We here analysed the expression and activity of proteasome complexes in peripheral blood mononuclear cells (PBMC) isolated from healthy male young smokers as well as from patients with severe COPD and compared them to matching controls. Proteasome expression was upregulated in COPD patients as assessed by RT-qPCR and mass spectrometry-based proteomics analysis. Proteasome activity was quantified using activity-based probes and native gel analysis. We observed distinct activation of immunoproteasomes in the peripheral blood cells of young male smokers and severely ill COPD patients. Native gel analysis and linear regression modeling confirmed robust activation and elevated assembly of 20S proteasomes, which correlated significantly with reduced lung function parameters in COPD patients. The immunoproteasome was distinctly activated in COPD patients upon inflammatory cytokine stimulation of PBMCs in vitro Inhibition of the immunoproteasome reduced proinflammatory cytokine expression in COPD-derived blood immune cells.Given the crucial role of chronic inflammatory signalling and the emerging involvement of autoimmune responses in COPD, therapeutic targeting of the immunoproteasome might represent a novel therapeutic concept for COPD.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sophie Hardy
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Andrea Urmann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julia Peierl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yuqin Wang
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea Koch
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dept. of Pneumology, Teaching Hospital Pyhrn-Eisenwurzen Klinikum Steyr, Austria
| | - Juliane Merl-Pham
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Charles Pilette
- Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
25
|
Bakutenko IY, Hileuskaya ID, Nikitchenko NV, Sechko EV, Tchitchko AM, Batyan GM, Sukalo AV, Ryabokon NI. Polymorphism of Proteasomal Genes Can Be a Risk Factor for Systemic Autoimmune Diseases in Children. J Pediatr Genet 2021; 10:98-104. [PMID: 33996179 PMCID: PMC8110351 DOI: 10.1055/s-0040-1714697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
The study aimed to assess the involvement of three proteasomal genes, PSMA6 , PSMC6 , and PSMA3 , in autoimmune pathogenesis by analyzing associations between single nucleotide polymorphisms and systemic rheumatic diseases with a different autoimmune component: juvenile idiopathic arthritis (JIA), the juvenile form of systemic lupus erythematosus, and Kawasaki's disease (KD). Our results showed that the PSMA6 (rs1048990) polymorphism can be a risk factor for JIA (false discovery rate q ≤ 0.090), while PSMA3 (rs2348071) has a tendency to be nonspecific and is shared with JIA and other autoimmune diseases, including KD, an illness with very low autoimmune activity and high autoinflammation.
Collapse
Affiliation(s)
- Ivan Y. Bakutenko
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Irena D. Hileuskaya
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Natalia V. Nikitchenko
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Elena V. Sechko
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Alexej M. Tchitchko
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Galina M. Batyan
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Alexander V. Sukalo
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | - Nadezhda I. Ryabokon
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| |
Collapse
|
26
|
Hertzberg L, Maggio N, Muler I, Yitzhaky A, Majer M, Haroutunian V, Zuk O, Katsel P, Domany E, Weiser M. Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Schizophr Bull 2021; 47:785-795. [PMID: 33141894 PMCID: PMC8084431 DOI: 10.1093/schbul/sbaa160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The main challenge in the study of schizophrenia is its high heterogeneity. While it is generally accepted that there exist several biological mechanisms that may define distinct schizophrenia subtypes, they have not been identified yet. We performed comprehensive gene expression analysis to search for molecular signals that differentiate schizophrenia patients from healthy controls and examined whether an identified signal was concentrated in a subgroup of the patients. METHODS Transcriptome sequencing of 14 superior temporal gyrus (STG) samples of subjects with schizophrenia and 15 matched controls from the Stanley Medical Research Institute (SMRI) was performed. Differential expression and pathway enrichment analysis results were compared to an independent cohort. Replicability was tested on 6 additional independent datasets. RESULTS The 2 STG cohorts showed high replicability. Pathway enrichment analysis of the down-regulated genes pointed to proteasome-related pathways. Meta-analysis of differential expression identified down-regulation of 12 of 39 proteasome subunit genes in schizophrenia. The signal of proteasome subunits down-regulation was replicated in 6 additional datasets (overall 8 cohorts with 267 schizophrenia and 266 control samples, from 5 brain regions). The signal was concentrated in a subgroup of patients with schizophrenia. CONCLUSIONS We detected global down-regulation of proteasome subunits in a subgroup of patients with schizophrenia. We hypothesize that the down-regulation of proteasome subunits leads to proteasome dysfunction that causes accumulation of ubiquitinated proteins, which has been recently detected in a subgroup of schizophrenia patients. Thus, down-regulation of proteasome subunits might define a biological subtype of schizophrenia.
Collapse
Affiliation(s)
- Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inna Muler
- Childhood Leukemia Research Institute and the Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Majer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Or Zuk
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pavel Katsel
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Weiser
- Department of Psychiatry, Chaim Sheba Medical Center, Ramat-Gan and the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Shen H, Li C, He M, Huang Y, Wang J, Wang M, Yue B, Zhang X. Immune profiles of male giant panda (Ailuropoda melanoleuca) during the breeding season. BMC Genomics 2021; 22:143. [PMID: 33639852 PMCID: PMC7916315 DOI: 10.1186/s12864-021-07456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened endemic Chinese species and a flagship species of national and global conservation concern. Life history theory proposes that reproduction and immunity can be mutually constraining and interrelated. Knowledge of immunity changes of male giant pandas during the breeding season is limited. Results Here, we researched peripheral blood gene expression profiles associated with immunity. Thirteen captive giant pandas, ranging from 9 to 11 years old, were divided into two groups based on their reproductive status. We identified 318 up-regulated DEGs and 43 down-regulated DEGs, which were enriched in 87 GO terms and 6 KEGG pathways. Additionally, we obtained 45 immune-related genes with altered expression, mostly up-regulated, and identified four hub genes HSPA4, SUGT1, SOD1, and IL1B in PPI analysis. These 45 genes were related to pattern recognition receptors, autophagy, peroxisome, proteasome, natural killer cell, antigen processing and presentation. SUGT1 and IL1B were related to pattern recognition receptors. HSP90AA1 was the most up-regulated gene and is a member of heat shock protein 90 family. HSP90 contributes to the translocation of extracellular antigen. KLRD1 encodes CD94, whose complex is an inhibitor of the cytotoxic activity of NK cells, was down-regulated. IGIP, which has the capability of inducing IgA production by B cells, was down-regulated, suggesting low concentration of IgA in male giant pandas. Our results suggest that most immune-related genes were up-regulated and more related to innate immune than adaptive immune. Conclusions Our results indicated that breeding male giant pandas presented an immunoenhancement in innate immunity, enhanced antigen presentation and processing in cellular immunity compared to non-breeding males. The humoral immunity of male giant pandas may show a tendency to decrease during the breeding season. This study will provide a foundation for further studies of immunity and reproduction in male giant pandas. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07456-x.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
28
|
Saha D, Kundu S. A Molecular Interaction Map of Klebsiella pneumoniae and Its Human Host Reveals Potential Mechanisms of Host Cell Subversion. Front Microbiol 2021; 12:613067. [PMID: 33679637 PMCID: PMC7930833 DOI: 10.3389/fmicb.2021.613067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of pneumonia and septicemia across the world. The rapid emergence of multidrug-resistant K. pneumoniae strains necessitates the discovery of effective drugs against this notorious pathogen. However, there is a dearth of knowledge on the mechanisms by which this deadly pathogen subverts host cellular machinery. To fill this knowledge gap, our study attempts to identify the potential mechanisms of host cell subversion by building a K. pneumoniae-human interactome based on rigorous computational methodology. The putative host targets inferred from the predicted interactome were found to be functionally enriched in the host's immune surveillance system and allied functions like apoptosis, hypoxia, etc. A multifunctionality-based scoring system revealed P53 as the most multifunctional protein among host targets accompanied by HIF1A and STAT1. Moreover, mining of host protein-protein interaction (PPI) network revealed that host targets interact among themselves to form a network (TTPPI), where P53 and CDC5L occupy a central position. The TTPPI is composed of several inter complex interactions which indicate that K. pneumoniae might disrupt functional coordination between these protein complexes through targeting of P53 and CDC5L. Furthermore, we identified four pivotal K. pneumoniae-targeted transcription factors (TTFs) that are part of TTPPI and are involved in generating host's transcriptional response to K. pneumoniae-mediated sepsis. In a nutshell, our study identifies some of the pivotal molecular targets of K. pneumoniae which primarily correlate to the physiological response of host during K. pneumoniae-mediated sepsis.
Collapse
Affiliation(s)
- Deeya Saha
- Department of Biophysics, Molecular Biology and Bioinformatics, Faculty of Science, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, Faculty of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
29
|
|
30
|
Proteasome inhibitors attenuates mitoxantrone-triggered immunogenic cell death in prostate cancer cells. Med Oncol 2020; 37:116. [PMID: 33215275 DOI: 10.1007/s12032-020-01445-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Both mitoxantrone (MTX) and proteasome inhibitors efficiently trigger immunogenic cell death (ICD) in cancer cells. However, whether the combination of MTX and proteasome inhibitors can synergistically enhance ICD remains unknown. In this study, we showed that the proteasome inhibitors bortezomib (BZM) and carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) impaired MTX-induced ICD in prostate cancer cells, as measured using ICD biomarkers and dendritic cell activation in vitro. Mice vaccinated with RM-1 mouse prostate cancer cell line treated with BZM or MG132 in combination with MTX showed enhanced tumor growth, and shortened tumor-free, and worse overall survival compared with those treated with MTX alone. In conclusion, we demonstrated that proteasome inhibitors (BZM or MG132) attenuated MTX-induced ICD, suggesting that proteasome activation was required for MTX-induced ICD.
Collapse
|
31
|
Demircan T, Sibai M, Avşaroğlu ME, Altuntaş E, Ovezmyradov G. The first report on circulating microRNAs at Pre- and Post-metamorphic stages of axolotls. Gene 2020; 768:145258. [PMID: 33131713 DOI: 10.1016/j.gene.2020.145258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are endogenously coded small RNAs, implicated in post-transcriptional gene regulation by targeting messenger RNAs (mRNAs). Circulating miRNAs are cell-free molecules, found in body fluids, such as blood and saliva, and emerged recently as potential diagnostic biomarkers. Functions of circulating miRNAs and their roles in target tissues have been extensively investigated in mammals, and the reports on circulating miRNAs in non-mammalian clades are largely missing. Salamanders display remarkable regenerative potential, and the Mexican axolotl (Ambystoma mexicanum), a critically endangered aquatic salamander, has emerged as a powerful model organism in regeneration and developmental studies. This study aimed to explore the circulating miRNA signature in axolotl blood plasma. Small RNA sequencing on plasma samples revealed 16 differentially expressed (DE) circulating miRNAs between neotenic and metamorphic stages out of identified 164 conserved miRNAs. Bioinformatics predictions provided functional annotation of detected miRNAs for both stages and enrichment of DE miRNAs in cancer-related and developmental pathways was notable. Comparison with previous reports on axolotl miRNAs unraveled common and unique members of the axolotl circulating miRNome. Overall, this work provides novel insights into non-mammalian aspects of circulating miRNA biology and expands the multi-omics toolkit for this versatile model organism.
Collapse
Affiliation(s)
- Turan Demircan
- Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey; Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.
| | - Mustafa Sibai
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Mahmut Erhan Avşaroğlu
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Altuntaş
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Guvanch Ovezmyradov
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey; Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
32
|
Kao SST, Bassiouni A, Ramezanpour M, Finnie J, Chegeni N, Colella AD, Chataway TK, Wormald PJ, Vreugde S, Psaltis AJ. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. J Allergy Clin Immunol 2020; 147:168-178. [PMID: 32750382 DOI: 10.1016/j.jaci.2020.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) has a complex and multifactorial pathogenesis with a heterogeneous inflammatory profile. Proteomic analysis of nasal mucus may enable further understanding of protein abundances and biologic processes present in CRS and its endotypes compared with in healthy patients. OBJECTIVE Our aim was to determine differences in the nasal mucus proteome of healthy patients and patients with CRS. METHODS Nasal mucus was obtained from healthy patients, patients with CRS without nasal polyps (CRSsNP), and patients with CRS with nasal polyps (CRSwNP) before surgery. Gel electrophoresis was performed to fractionate the complex protein extracts before mass spectrometry analysis. Gene set enrichment analysis was performed on differentially expressed proteins. RESULTS A total of 33 patients were included in this study (12 healthy, 10 with CRSsNP, and 11 with CRSwNP). In all, 1142 proteins were identified in mucus samples from healthy patients, 761 in mucus samples from patients with CRSsNP, and 998 in mucus samples from patients with CRSwNP. Dysfunction in immunologic pathways, reduced cellular signaling, and increased cellular metabolism with associated tissue remodeling pathways were present in patients with CRS compared with in healthy patients. CONCLUSION Significant downregulation of mucosal immunity and antioxidant pathways with increased tissue modeling processes may account for the clinical manifestations of CRS. Ultimately, the differing proteome and biologic processes provide further insight into CRS pathogenesis and its endotypes.
Collapse
Affiliation(s)
- Stephen Shih-Teng Kao
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Ahmed Bassiouni
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia
| | - Nusha Chegeni
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia; Flinders Proteomic Facility, Department of Human Physiology, Flinders University, Bedford Park, Australia
| | - Alex D Colella
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia; Flinders Proteomic Facility, Department of Human Physiology, Flinders University, Bedford Park, Australia
| | - Timothy K Chataway
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia; Flinders Proteomic Facility, Department of Human Physiology, Flinders University, Bedford Park, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia.
| |
Collapse
|
33
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
34
|
Peruzzi L, Coppo R, Cocchi E, Loiacono E, Bergallo M, Bodria M, Vergano L, Krutova A, Russo ML, Amore A, Lundberg S, Maixerova D, Tesar V, Perkowska-Ptasińska A, Durlik M, Goumenos D, Papasotiriou M, Galesic K, Toric L, Papagianni A, Stangou M, Mizerska-Wasiak M, Gesualdo L, Montemurno E, Benozzi L, Cusinato S, Hryszko T, Klinger M, Kamińska D, Krajewska M. The switch from proteasome to immunoproteasome is increased in circulating cells of patients with fast progressive immunoglobulin A nephropathy and associated with defective CD46 expression. Nephrol Dial Transplant 2020; 36:1389-1398. [PMID: 32582935 DOI: 10.1093/ndt/gfaa092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
The proteasome to immunoproteasome (iPS) switch consists of β1, β2 and β5 subunit replacement by low molecular weight protein 2 (LMP2), LMP7 and multicatalytic endopeptidase-like complex-1 (MECL1) subunits, resulting in a more efficient peptide preparation for major histocompatibility complex 1 (MHC-I) presentation. It is activated by toll-like receptor (TLR) agonists and interferons and may also be influenced by genetic variation. In a previous study we found an iPS upregulation in peripheral cells of patients with immunoglobulin A nephropathy (IgAN). We aimed to investigate in 157 IgAN patients enrolled through the multinational Validation Study of the Oxford Classification of IgAN (VALIGA) study the relationships between iPS switch and estimated glomerular filtration rate (eGFR) modifications from renal biopsy to sampling. Patients had a previous long follow-up (6.4 years in median) that allowed an accurate calculation of their slope of renal function decline. We also evaluated the effects of the PSMB8/PSMB9 locus (rs9357155) associated with IgAN in genome-wide association studies and the expression of messenger RNAs (mRNAs) encoding for TLRs and CD46, a C3 convertase inhibitor, acting also on T-regulatory cell promotion, found to have reduced expression in progressive IgAN. We detected an upregulation of LMP7/β5 and LMP2/β1 switches. We observed no genetic effect of rs9357155. TLR4 and TLR2 mRNAs were found to be significantly associated with iPS switches, particularly TLR4 and LMP7/β5 (P < 0.0001). The LMP7/β5 switch was significantly associated with the rate of eGFR loss (P = 0.026), but not with eGFR at biopsy. Fast progressors (defined as the loss of eGFR >75th centile, i.e. -1.91 mL/min/1.73 m2/year) were characterized by significantly elevated LMP7/β5 mRNA (P = 0.04) and low CD46 mRNA expression (P < 0.01). A multivariate logistic regression model, categorizing patients by different levels of kidney disease progression, showed a high prediction value for the combination of high LMP7/β5 and low CD46 expression.
Collapse
Affiliation(s)
- Licia Peruzzi
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy.,Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Enrico Cocchi
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Elisa Loiacono
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Massimilano Bergallo
- Department of Nephrology, Dialysis and Transplantation, Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | | | - Luca Vergano
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | | | - Maria Luisa Russo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Alessandro Amore
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Sigrid Lundberg
- Department of Clinical Sciences, Nephrology, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dita Maixerova
- Department of Nephrology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Magdalena Durlik
- Department of Transplantation Medicine and Nephrology, Warsaw Medical University, Warsaw, Poland
| | - Dimitris Goumenos
- Department of Nephrology, University Hospital of Patras, Patras, Greece
| | | | - Kresimir Galesic
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Luka Toric
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loreto Gesualdo
- Department of Nephrology, Emergency and Transplantation, University of Bari, Bari, Italy
| | - Eustacchio Montemurno
- Department of Nephrology, Emergency and Transplantation, University of Bari, Bari, Italy
| | - Luisa Benozzi
- Department of Nephrology, Borgomanero Hospital, Borgomanero, Italy
| | - Stefano Cusinato
- Department of Nephrology, Borgomanero Hospital, Borgomanero, Italy
| | - Tomasz Hryszko
- Department of Nephrology, Transplantation and Dialysis, Medical University of Bialystok, Bialystok, Poland
| | - Marian Klinger
- Department of Internal Medicine, Opole University, Poland
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
35
|
Afonso J, Fortes MRS, Reverter A, Diniz WJDS, Cesar ASM, Lima AOD, Petrini J, de Souza MM, Coutinho LL, Mourão GB, Zerlotini A, Gromboni CF, Nogueira ARA, Regitano LCDA. Genetic regulators of mineral amount in Nelore cattle muscle predicted by a new co-expression and regulatory impact factor approach. Sci Rep 2020; 10:8436. [PMID: 32439843 PMCID: PMC7242321 DOI: 10.1038/s41598-020-65454-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Mineral contents in bovine muscle can affect meat quality, growth, health, and reproductive traits. To better understand the genetic basis of this phenotype in Nelore (Bos indicus) cattle, we analysed genome-wide mRNA and miRNA expression data from 114 muscle samples. The analysis implemented a new application for two complementary algorithms: the partial correlation and information theory (PCIT) and the regulatory impact factor (RIF), in which we included the estimated genomic breeding values (GEBVs) for the phenotypes additionally to the expression levels, originally proposed for these methods. We used PCIT to determine putative regulatory relationships based on significant associations between gene expression and GEBVs for each mineral amount. Then, RIF was adopted to determine the regulatory impact of genes and miRNAs expression over the GEBVs for the mineral amounts. We also investigated over-represented pathways, as well as pieces of evidences from previous studies carried in the same population and in the literature, to determine regulatory genes for the mineral amounts. For example, NOX1 expression level was positively correlated to Zinc and has been described as Zinc-regulated in humans. Based on our approach, we were able to identify genes, miRNAs and pathways not yet described as underlying mineral amount. The results support the hypothesis that extracellular matrix interactions are the core regulator of mineral amount in muscle cells. Putative regulators described here add information to this hypothesis, expanding the knowledge on molecular relationships between gene expression and minerals.
Collapse
Affiliation(s)
- Juliana Afonso
- Department of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Marina Rufino Salinas Fortes
- School of Chemistry and Molecular Biosciences, Faculty of Sciences, The University of Queensland, Brisbane, Australia
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | | | - Aline Silva Mello Cesar
- Department of Agroindustry, Food and Nutrition, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Andressa Oliveira de Lima
- Department of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Juliana Petrini
- Department of Statistics, Institute of Exact Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | | | - Gerson Barreto Mourão
- Department of Agroindustry, Food and Nutrition, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Adhemar Zerlotini
- Bioinformatic Multi-user Laboratory, Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
36
|
Immunoproteasome Genes Are Modulated in CD34 + JAK2 V617F Mutated Cells from Primary Myelofibrosis Patients. Int J Mol Sci 2020; 21:ijms21082926. [PMID: 32331228 PMCID: PMC7216198 DOI: 10.3390/ijms21082926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.
Collapse
|
37
|
Zhao Z, Sun C, Chen L, Qin J, Yuan X, Li W. Inorganic nitrite increases the susceptibility of tilapia (Oreochromis niloticus) leucocytes to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 97:1-11. [PMID: 31846770 DOI: 10.1016/j.fsi.2019.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Deteriorating water quality, especially from high concentrations of nitrite, is currently largely blamed for disease outbreaks in farmed tilapia (Oreochromis niloticus). In this study, the underlying mechanism of nitrite on the susceptibility of tilapia leucocytes to Streptococcus agalactiae (S. agalactiae) was studied. We found that a high dose of heat-killed S. agalactiae decreased tilapia leucocytes cell viability, whereas nitrite decreased the cell viability of leucocytes exposed to a low dose of bacteria. Bacterial challenge increased the production of nitric oxide (NO), whereas nitrite and bacteria coexposure caused higher NO production than nitrite or bacterial exposure alone. Cell viability increased after elimination of NO, and negative correlations existed between cell viability and the NO content, suggesting that nitrite increased the susceptibility of the leucocytes against S. agalactiae was NO-dependent. For a more comprehensive understanding of the mechanism of nitrite affecting disease resistance in tilapia leucocytes, an RNA-Seq-based transcriptome was generated. The results showed that 6173 transcripts were differently expressed, and the differentially expressed transcripts (DETs) of the bacterial group, nitrite group and bacteria-nitrite co-treatment group compared to the control group were selected for GO and KEGG analyses. The DETs in the bacterial group and bacteria-nitrite cotreatment group were highly involved with the membrane component, signal transduction, and immune responses. KEGG analysis showed that the protein processing in the endoplasmic reticulum and the AMPK signaling pathway, which are related to autophagy, were significantly enriched in the cotreatment group but not in bacterial group. In addition, the mRNA expression of ten DETs and several autophagy and apoptosis related genes validated by q-PCR showed the high reliability of the RNA-seq. Taken together, the results of this study suggest that nitrite may increase the susceptibility of tilapia leucocytes to S. agalactiae by generating excess NO to affect the autophagy and apoptosis process.
Collapse
Affiliation(s)
- Zaoya Zhao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center of Healthy Breeding in Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center of Healthy Breeding in Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Limin Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center of Healthy Breeding in Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center of Healthy Breeding in Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center of Healthy Breeding in Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center of Healthy Breeding in Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
38
|
Wang H, Yan W, Feng Z, Gao Y, Zhang L, Feng X, Tian D. Plasma proteomic analysis of autoimmune hepatitis in an improved AIH mouse model. J Transl Med 2020; 18:3. [PMID: 31906950 PMCID: PMC6943959 DOI: 10.1186/s12967-019-02180-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background The prevalence of autoimmune hepatitis (AIH) is increasing, and its early clinical diagnosis is difficult. The pathogenesis of AIH remains unclear, and AIH-related studies are largely limited because of lack of suitable mouse models. Methods To obtain a good tool for research on AIH, we first established an improved immune-mediated mouse model that can mimic the pathological process of AIH as in the human body, through repeated injections of human cytochrome P450 2D6 (CYP2D6) plasmid. Next, a proteomic analysis based on isobaric tag (IBT) technology was performed to detect the differentially expressed proteins (DEPs), and related biological functions and pathways in the plasma of AIH and normal mice. Finally, we performed enzyme-linked immunosorbent assay (ELISA) to further confirm the most abundant DEP in the plasma of patients with AIH. Results Autoantibodies and the characteristic pathology of AIH were observed in our mouse model. Inflammatory infiltration also increased in the livers of AIH mice over time and plateaued by day 42 post the first injection. Chronic hepatitis was most severe on day 35 with the development of fibrosis as well, and the plasma of AIH mice were collected for proteomic analysis. A total of 176 DEPs were found in this experiment, of which 148 DEPs were up-regulated and 28 DEPs were down-regulated. Thirty significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (P < 0.05) were detected. Arginine biosynthesis was found to be the most significant pathway involved in the AIH process. During the Gene Ontology (GO) analysis, most DEPs were found to be involved in the binding, cellular, and metabolic processes. Using ELISA, the most overexpressed DEP, serum amyloid A 1 (SAA1), was confirmed to be increased specifically in the plasma of patients with AIH compared to other chronic hepatitis. Different plasma levels of SAA1 were also found related to different grades of inflammation and stages of fibrosis in the liver of patients with AIH. Conclusions Our study is the first to describe the proteomics analysis of a true sense of AIH mouse model, which is beneficial for a better understanding of AIH pathogenesis and identifying potential biomarkers for its clinical diagnosis.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China
| | - Zuohua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Liu Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
39
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Yang WY, Rao PS, Luo YC, Lin HK, Huang SH, Yang JM, Yuh CH. Omics-based Investigation of Diet-induced Obesity Synergized with HBx, Src, and p53 Mutation Accelerating Hepatocarcinogenesis in Zebrafish Model. Cancers (Basel) 2019; 11:cancers11121899. [PMID: 31795276 PMCID: PMC6966430 DOI: 10.3390/cancers11121899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
The primary type of liver cancer, hepatocellular carcinoma (HCC), has been associated with nonalcoholic steatohepatitis, diabetes, and obesity. Previous studies have identified some genetic risk factors, such as hepatitis B virus X antigens, overexpression of SRC oncogene, and mutation of the p53 tumor suppressor gene; however, the synergism between diet and genetic risk factors is still unclear. To investigate the synergism between diet and genetic risk factors in hepatocarcinogenesis, we used zebrafish with four genetic backgrounds and overfeeding or high-fat-diet-induced obesity with an omics-based expression of genes and histopathological changes. The results show that overfeeding and high-fat diet can induce obesity and nonalcoholic steatohepatitis in wild-type fish. In HBx, Src (p53-) triple transgenic zebrafish, diet-induced obesity accelerated HCC formation at five months of age and increased the cancer incidence threefold. We developed a global omics data analysis method to investigate genes, pathways, and biological systems based on microarray and next-generation sequencing (NGS, RNA-seq) omics data of zebrafish with four diet and genetic risk factors. The results show that two Kyoto Encyclopedia of Genes and Genomes (KEGG) systems, metabolism and genetic information processing, as well as the pathways of fatty acid metabolism, steroid biosynthesis, and ribosome biogenesis, are activated during hepatocarcinogenesis. This study provides a systematic view of the synergism between genetic and diet factors in the dynamic liver cancer formation process, and indicate that overfeeding or a high-fat diet and the risk genes have a synergistic effect in causing liver cancer by affecting fatty acid metabolism and ribosome biogenesis.
Collapse
Affiliation(s)
- Wan-Yu Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Miaoli, Taiwan; (W.-Y.Y.); (P.-S.R.); (H.-K.L.)
| | - Pei-Shu Rao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Miaoli, Taiwan; (W.-Y.Y.); (P.-S.R.); (H.-K.L.)
- Department of Life Science, National Tsing-Hua University, Hsinchu 30070, Taiwan
| | - Yong-Chun Luo
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-C.L.); (S.-H.H.)
| | - Hua-Kuo Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Miaoli, Taiwan; (W.-Y.Y.); (P.-S.R.); (H.-K.L.)
| | - Sing-Han Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-C.L.); (S.-H.H.)
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-C.L.); (S.-H.H.)
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (J.-M.Y.); (C.-H.Y.); Tel.: +011-886-03-5712121*56942 (J.-M.Y.); +011-886-37-206166*35338 (C.-H.Y.)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Miaoli, Taiwan; (W.-Y.Y.); (P.-S.R.); (H.-K.L.)
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30070, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-M.Y.); (C.-H.Y.); Tel.: +011-886-03-5712121*56942 (J.-M.Y.); +011-886-37-206166*35338 (C.-H.Y.)
| |
Collapse
|
41
|
Roesel CL, Vollmer SV. Differential gene expression analysis of symbiotic and aposymbiotic Exaiptasia anemones under immune challenge with Vibrio coralliilyticus. Ecol Evol 2019; 9:8279-8293. [PMID: 31380089 PMCID: PMC6662555 DOI: 10.1002/ece3.5403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Anthozoans are a class of Cnidarians that includes scleractinian corals, anemones, and their relatives. Despite a global rise in disease epizootics impacting scleractinian corals, little is known about the immune response of this key group of invertebrates. To better characterize the anthozoan immune response, we used the model anemone Exaiptasia pallida to explore the genetic links between the anthozoan-algal symbioses and immunity in a two-factor RNA-Seq experiment using both symbiotic and aposymbiotic (menthol-bleached) Exaiptasia pallida exposed to the bacterial pathogen Vibrio coralliilyticus. Multivariate and univariate analyses of Exaiptasia gene expression demonstrated that exposure to live Vibrio coralliilyticus had strong and significant impacts on transcriptome-wide gene expression for both symbiotic and aposymbiotic anemones, but we did not observe strong interactions between symbiotic state and Vibrio exposure. There were 4,164 significantly differentially expressed (DE) genes for Vibrio exposure, 1,114 DE genes for aposymbiosis, and 472 DE genes for the additive combinations of Vibrio and aposymbiosis. KEGG enrichment analyses identified 11 pathways-involved in immunity (5), transport and catabolism (4), and cell growth and death (2)-that were enriched due to both Vibrio and/or aposymbiosis. Immune pathways showing strongest differential expression included complement, coagulation, nucleotide-binding, and oligomerization domain (NOD), and Toll for Vibrio exposure and coagulation and apoptosis for aposymbiosis.
Collapse
|
42
|
Neidhart M, Pajak A, Laskari K, Riksen NP, Joosten LAB, Netea MG, Lutgens E, Stroes ESG, Ciurea A, Distler O, Grigorian M, Karouzakis E. Oligomeric S100A4 Is Associated With Monocyte Innate Immune Memory and Bypass of Tolerance to Subsequent Stimulation With Lipopolysaccharides. Front Immunol 2019; 10:791. [PMID: 31037071 PMCID: PMC6476283 DOI: 10.3389/fimmu.2019.00791] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
Objectives: Most DAMPs in inflammatory diseases are TLR2- and TLR4-ligands and according to the current concept, repeated stimuli would result in tolerance. Aims of the study were to verify this assumption, to investigate whether epigenetic effectors are involved and to explore the situation in rheumatoid arthritis (RA). Methods: A trained immunity (TI) and tolerance protocol was established using peripheral blood monocytes from healthy donors, β-glucan and lipopolysaccharide (LPS). The training or tolerance capacities of RA-relevant DAMPs were tested. Results: β-Glucan-, oS100A4-, HMBG1-, and HSP90-pretreated monocytes showed increased IL-6 responses to LPS re-stimulation. β-Glucan, oS100A and tenascin C induced training of monocytes to release more TNFα. In comparison to β-glucan, most DAMPs tested induced less TI, with exception of oS100A4. Monocytes exposed to oS100A4 showed increased IL-1β, IL-6, and TNFα in response to LPS, in spite that both stimulate TLR4. RNASEq upon β-glucan or oS100A4 revealed similar changes in chemokines/cytokines and epigenetic effectors; 17 epigenetic effectors correlated with chemokine/cytokine gene expression; PRDM8 was associated with more chemokine and cytokine transcripts. Knockdown of PRDM8 abolished TI induced by oS100A4. In RA, plasma S100A4 correlated with increased CSF2, and increased PRDM8 transcription in RA monocytes was associated with increased plasma CCL5 and IL-6, as well as therapy-resistance. Conclusion: Bypass of tolerance by DAMPs might be a phenomenon as important as TI, since it could explain how chronic inflammation can be maintained in spite of an environment with multiple TLR2/TLR4-ligands. In RA monocytes, a PRDM8-dependent TI mechanism could be responsible for sustained chemokine/cytokines levels.
Collapse
Affiliation(s)
- Michel Neidhart
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Agnieszka Pajak
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katerina Laskari
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania.,Department for Immunology & Metabolism, Life and Medical Science Institute (LIMES), University of Bonn, Bonn, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eric S G Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Adrian Ciurea
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mariam Grigorian
- Faculty of Health Sciences, Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuel Karouzakis
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Caputi FF, Rullo L, Stamatakos S, Candeletti S, Romualdi P. Interplay between the Endogenous Opioid System and Proteasome Complex: Beyond Signaling. Int J Mol Sci 2019; 20:ijms20061441. [PMID: 30901925 PMCID: PMC6470665 DOI: 10.3390/ijms20061441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Intracellular signaling mechanisms underlying the opioid system regulation of nociception, neurotransmitters release, stress responses, depression, and the modulation of reward circuitry have been investigated from different points of view. The presence of the ubiquitin proteasome system (UPS) in the synaptic terminations suggest a potential role of ubiquitin-dependent mechanisms in the control of the membrane occupancy by G protein-coupled receptors (GPCRs), including those belonging to the opioid family. In this review, we focused our attention on the role played by the ubiquitination processes and by UPS in the modulation of opioid receptor signaling and in pathological conditions involving the endogenous opioid system. The collective evidence here reported highlights the potential usefulness of proteasome inhibitors in neuropathic pain, addictive behavior, and analgesia since these molecules can reduce pain behavioral signs, heroin self-administration, and the development of morphine analgesic tolerance. Moreover, the complex mechanisms involved in the effects induced by opioid agonists binding to their receptors include the ubiquitination process as a post-translational modification which plays a relevant role in receptor trafficking and degradation. Hence, UPS modulation may offer novel opportunities to control the balance between therapeutic versus adverse effects evoked by opioid receptor activation, thus, representing a promising druggable target.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Serena Stamatakos
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
44
|
Kammerl IE, Caniard A, Merl-Pham J, Ben-Nissan G, Mayr CH, Mossina A, Geerlof A, Eickelberg O, Hauck SM, Sharon M, Meiners S. Dissecting the molecular effects of cigarette smoke on proteasome function. J Proteomics 2018; 193:1-9. [PMID: 30557664 DOI: 10.1016/j.jprot.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023]
Abstract
Proteasome dysfunction is emerging as a novel pathomechanism for the development of chronic obstructive pulmonary disease (COPD), a major leading cause of death in the world. Cigarette smoke, one of the main risk factors for COPD, impairs proteasome function in vitro and in vivo. In the present study, we dissected the molecular changes induced by cigarette smoke on the proteasome in lung epithelial cells and mouse lungs. 26S proteasome pull-down, MS interactome, and stoichiometry analyses indicated that 26S proteasome complexes become instable in cigarette smoke-treated lung epithelial cells as well as in lungs of mice after three day smoke exposure. The interactome of the 26S was clearly altered in mouse lungs upon smoke exposure but not in cells after 24 h of smoke exposure. Using native MS analysis of purified 20S proteasomes, we observed some destabilization of 20S complexes purified from cigarette smoke-exposed cells in the absence of any dominant and inhibitory modification of proteasomal proteins. Taken together, our results suggest that cigarette smoke induces minor but detectable changes in the stability of 20S and 26S proteasome complexes which might contribute to imbalanced proteostasis in a chronic setting as observed in chronic lung diseases associated with cigarette smoking.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Caniard
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Christoph H Mayr
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alessandra Mossina
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Eickelberg
- Division of Respiratory and Critical Care Medicine, University of Colorado, Aurora, USA
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
45
|
Abstract
Successful viral infection, as well as any resultant antiviral response, relies on numerous sequential interactions between host and viral factors. These interactions can take the form of affinity-based interactions between viral and host macromolecules or active, enzyme-based interactions, consisting both of direct enzyme activity performed by viral enzymes and indirect modulation of the activity of the host cell's enzymes via viral interference. This activity has the potential to transform the local microenvironment to the benefit or detriment of both the virus and the host, favouring either the continuation of the viral life cycle or the host's antiviral response. Comprehensive characterisation of enzymatic activity during viral infection is therefore necessary for the understanding of virally induced diseases. Activity-based protein profiling techniques have been established as effective and practicable tools with which to interrogate the regulation of enzymes' catalytic activity and the roles played by these enzymes in various cell processes. This paper will review the contributions of these techniques in characterising the roles of both host and viral enzymes during viral infection in humans.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- grid.214007.00000000122199231Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Ku-Lung Hsu
- grid.27755.320000 0000 9136 933XDepartment of Chemistry, University of Virginia, Charlottesville, VA USA
| | - Eranthie Weerapana
- grid.208226.c0000 0004 0444 7053Department of Chemistry, Boston College, Chestnut Hill, MA USA
| |
Collapse
|
46
|
Immunoproteasomes as a novel antiviral mechanism in rhinovirus-infected airways. Clin Sci (Lond) 2018; 132:1711-1723. [PMID: 29980604 DOI: 10.1042/cs20180337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Rhinovirus (RV) infection is involved in acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). RV primarily infects upper and lower airway epithelium. Immunoproteasomes (IP) are proteolytic machineries with multiple functions including the regulation of MHC class I antigen processing during viral infection. However, the role of IP in RV infection has not been explored. We sought to investigate the expression and function of IP during airway RV infection. Primary human tracheobronchial epithelial (HTBE) cells were cultured at air-liquid interface (ALI) and treated with RV16, RV1B, or interferon (IFN)-λ in the absence or presence of an IP inhibitor (ONX-0914). IP gene (i.e. LMP2) deficient mouse tracheal epithelial cells (mTECs) were cultured for the mechanistic studies. LMP2-deficient mouse model was used to define the in vivo role of IP in RV infection. IP subunits LMP2 and LMP7, antiviral genes MX1 and OAS1 and viral load were measured. Both RV16 and RV1B significantly increased the expression of LMP2 and LMP7 mRNA and proteins, and IFN-λ mRNA in HTBE cells. ONX-0914 down-regulated MX1 and OAS1, and increased RV16 load in HTBE cells. LMP2-deficient mTECs showed a significant increase in RV1B load compared with the wild-type (WT) cells. LMP2-deficient (compared with WT) mice increased viral load and neutrophils in bronchoalveolar lavage (BAL) fluid after 24 h of RV1B infection. Mechanistically, IFN-λ induction by RV infection contributed to LMP2 and LMP7 up-regulation in HTBE cells. Our data suggest that IP are induced during airway RV infection, which in turn may serve as an antiviral and anti-inflammatory mechanism.
Collapse
|
47
|
Meiners S, Evankovich J, Mallampalli RK. The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res 2018; 198:17-28. [PMID: 29702079 DOI: 10.1016/j.trsl.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 01/16/2023]
Abstract
The present review aims to summarize available knowledge on the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of scleroderma and scleroderma-related disease mechanisms. This will provide the reader with a more mechanistic understanding of disease pathogenesis and help to identify putative novel targets within the UPS for potential therapeutic intervention. Because of the heterogenous manifestations of scleroderma, we will primarily focus on conserved mechanisms that are involved in the development of lung scleroderma phenotypes.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig Maximilians University, Helmholtz Zentrum München, Germany; Comprehensive Pneumology Center, Munich (CPC-M), Germany; Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - John Evankovich
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Computational Design of Epitope-Enriched HIV-1 Gag Antigens with Preserved Structure and Function for Induction of Broad CD8 + T Cell Responses. Sci Rep 2018; 8:11264. [PMID: 30050069 PMCID: PMC6062507 DOI: 10.1038/s41598-018-29435-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
The partially protective phenotype observed in HIV-infected long-term-non-progressors is often associated with certain HLA alleles, thus indicating that cytotoxic T lymphocyte (CTL) responses play a crucial role in combating virus replication. However, both the vast variability of HIV and the HLA diversity impose a challenge on elicitation of broad and effective CTL responses. Therefore, we conceived an algorithm for the enrichment of CD8+ T cell epitopes in HIV’s Gag protein, respecting functional preservation to enable cross-presentation. Experimentally identified epitopes were compared to a Gag reference sequence. Amino-acid-substitutions (AAS) were assessed for their impact on Gag’s budding-function using a trained classifier that considers structural models and sequence conservation. Experimental assessment of Gag-variants harboring selected AAS demonstrated an apparent classifier-precision of 100%. Compatible epitopes were assigned an immunological score that incorporates features such as conservation or HLA-association in a user-defined weighted manner. Using a genetic algorithm, the epitopes were incorporated in an iterative manner into novel T-cell-epitope-enriched Gag sequences (TeeGag). Computational evaluation showed that these antigen candidates harbor a higher fraction of epitopes with higher score as compared to natural Gag isolates and other artificial antigen designs. Thus, these designer sequences qualify as next-generation antigen candidates for induction of broader CTL responses.
Collapse
|
49
|
Imamura K, Takaya A, Ishida YI, Fukuoka Y, Taya T, Nakaki R, Kakeda M, Imamachi N, Sato A, Yamada T, Onoguchi-Mizutani R, Akizuki G, Tanu T, Tao K, Miyao S, Suzuki Y, Nagahama M, Yamamoto T, Jensen TH, Akimitsu N. Diminished nuclear RNA decay upon Salmonella infection upregulates antibacterial noncoding RNAs. EMBO J 2018; 37:embj.201797723. [PMID: 29880601 DOI: 10.15252/embj.201797723] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic mRNA degradation controls gene expression to help eliminate pathogens during infection. However, it has remained unclear whether such regulation also extends to nuclear RNA decay. Here, we show that 145 unstable nuclear RNAs, including enhancer RNAs (eRNAs) and long noncoding RNAs (lncRNAs) such as NEAT1v2, are stabilized upon Salmonella infection in HeLa cells. In uninfected cells, the RNA exosome, aided by the Nuclear EXosome Targeting (NEXT) complex, degrades these labile transcripts. Upon infection, the levels of the exosome/NEXT components, RRP6 and MTR4, dramatically decrease, resulting in transcript stabilization. Depletion of lncRNAs, NEAT1v2, or eRNA07573 in HeLa cells triggers increased susceptibility to Salmonella infection concomitant with the deregulated expression of a distinct class of immunity-related genes, indicating that the accumulation of unstable nuclear RNAs contributes to antibacterial defense. Our results highlight a fundamental role for regulated degradation of nuclear RNA in the response to pathogenic infection.
Collapse
Affiliation(s)
- Katsutoshi Imamura
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | | | | | | | - Miho Kakeda
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Naoto Imamachi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Toshimichi Yamada
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Gen Akizuki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Tao
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tomoko Yamamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
50
|
Wessolly M, Walter RFH, Vollbrecht C, Werner R, Borchert S, Schmeller J, Mairinger E, Herold T, Streubel A, Christoph DC, Eberhardt WEE, Kollmeier J, Mairinger T, Schmid KW, Wohlschlaeger J, Hager T, Mairinger FD. Processing Escape Mechanisms Through Altered Proteasomal Cleavage of Epitopes Affect Immune Response in Pulmonary Neuroendocrine Tumors. Technol Cancer Res Treat 2018. [PMCID: PMC6295696 DOI: 10.1177/1533033818818418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Immunotherapy, especially immune checkpoint inhibition, is one of the most sophisticated approaches in cancer therapy. Immune checkpoint inhibition has already been successfully applied for treatment of non-small cell lung cancer and various other entities. Unfortunately, 60% of the cases show signs of therapy resistance. Additionally, a proportion of cases shows initial insensitivity to immune checkpoint inhibition. We consider a novel escape mechanism in association with deficient proteasomal epitope processing to be one prominent reason for initial insensitivity and therapy resistance. Therefore, we aim to identify mutations in association with these so-called processing escapes, in a highly diverse collective of pulmonary neuroendocrine lung tumors. Materials and Methods: Seventy representative tumor specimens of pulmonary neuroendocrine lung tumors were analyzed retrospectively via immunohistochemical detection of CD4, CD8, CD68, and CD20 as well as programmed cell death protein 1 and programmed cell death 1 ligand 1 for tumor immune infiltration and composition. Afterward, samples were screened for alterations in 48 genes, including 221 known mutational hotspots by massive parallel sequencing using the Illumina TruSeq Amplicon-Cancer Panel. For prediction of proteasomal cleavage probabilities, an R implementation of the machine learning tool NetChop 3.1 was utilized. Results: Immune cell infiltration of different compositions could be found in the majority of tumors. Deficient epitope processing was revealed to be a common event in those with steady distribution across all different subtypes. Despite immune infiltration, no significant antitumor response could be detected. Conclusion: Since it is widely acknowledged that tumors need to avoid the immune system to ensure their survival, processing escapes should already be present during primary tumor development. In line, processing escapes can be found in all tumors, regardless of subtype and mutational burden. Furthermore, there is solid evidence that processing escapes have a negative impact on the antitumor activity of tumor infiltrating immune cells.
Collapse
Affiliation(s)
- Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Robert F. H. Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
- Ruhrlandklinik, University Hospital Essen, University of Duisburg, Essen, Germany
| | | | - Robert Werner
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Anna Streubel
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel C. Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Wilfried E. E. Eberhardt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
- Ruhrlandklinik, West German Lung Center University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jens Kollmeier
- Department of Pulmonology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Thomas Mairinger
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Kurt W. Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
- Institute of Pathology, DIAKO Hospital, Flensburg, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Fabian D. Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| |
Collapse
|