1
|
Tu J, Wan W, Tang B, Jiang F, Wen J, Luo Q, Ye J. Dissecting the pathogenic effects of smoking in blood DNA methylation on allergic diseases. World Allergy Organ J 2024; 17:100995. [PMID: 39640897 PMCID: PMC11617736 DOI: 10.1016/j.waojou.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Allergic diseases, such as asthma and allergic rhinitis, present significant health challenges globally. Elucidating the genetic and epigenetic foundations is crucial for developing effective interventions. Methods We performed two-sample Mendelian Randomization (MR) analyses to investigate the associations between smoking behaviors and various allergic diseases, leveraging data from the FinnGen database. Additionally, we examined the relationships of DNA methylation (CpG sites) with allergic diseases, employing mQTLs as epigenetic proxies. Furthermore, we conducted reverse MR analyses on CpG sites that exhibited cross-allergic disease effects. Results In our genomic MR analysis, smoking behaviors such as smoking initiation and the number of cigarettes smoked per day were identified to be causally associated with an increased risk of asthma. Additionally, there was suggestive evidence linking smoking initiation to atopic contact dermatitis. Our epigenetic MR analysis found that methylation changes at 46 CpG sites, assessed via mQTLs, were significantly associated with asthma risk. Notably, cg17272563 (PRRT1), cg03689048 (BAT3), cg20069688 (STK19), and cg20513976 (LIME1) were identified with cross-allergic effects. Crucially, reverse MR analysis substantiated these associations. Conclusions Our study has highlighted the associations between smoking behaviors and allergic diseases in the genetic and epigenetic landscape, notably asthma. We identified several DNA methylation-related CpG sites, such as cg03689048 (BAT3), cg17272563 (PRRT1), and cg20069688 (STK19), which demonstrate cross-allergic potential and reverse causal relationships.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Wei Wan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fan Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jinyang Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Allergy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Wang C, Liu Z, Xie X, Li Y, Sun L. Klotho improves Der p1-induced bronchial epithelial cell damage by inhibiting endoplasmic reticulum stress to regulate mitochondrial function. Tissue Cell 2024; 93:102646. [PMID: 39693897 DOI: 10.1016/j.tice.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Asthma is a prevalent chronic pediatric lung disease which is commonly perceived as a syndrome of airway inflammation characterized by cough and wheeze in clinic. Klotho is implicated in diverse cellular activities, including inflammation, oxidative stress and apoptosis. This paper aims to explore the role of klotho in asthma and investigate the relevant molecular reaction mechanisms. To this end, we used Der p1 to induce an in vitro asthma model in BEAS-2B cells. Klotho expression was manipulated in Der p1-induced BEAS-2B cells with overexpression and its effects on Der p1-induced pathologies including apoptosis and inflammatory cytokine levels and the expressions of oxidative stress-related markers and major mediators in endoplasmic reticulum stress (ER stress) were investigated. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening were also detected. Our data demonstrated that Der p1 stimulation decreased klotho expression and klotho overexpression inhibited the Der p1-induced inflammation, oxidative stress and apoptosis. Overexpressing klotho inhibited ER stress to modulate mitochondrial function. The inhibitory effects of klotho overexpression were reversed by ER stress agonist tunicamycin. This paper validated the role of klotho in asthma pathogenies and developed prospective therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Caiwen Wang
- Changchun University of Chinese Medicine, Changchun City, Jilin Province 130117, PR China
| | - Zhimei Liu
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province 130000, PR China
| | - Xiaofei Xie
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province 130000, PR China
| | - Yiquan Li
- Changchun University of Chinese Medicine, Changchun City, Jilin Province 130117, PR China.
| | - Liping Sun
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province 130000, PR China.
| |
Collapse
|
3
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
4
|
Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H, Su H, Sun X. Multifaceted roles of mitochondria in asthma. Cell Biol Toxicol 2024; 40:85. [PMID: 39382744 PMCID: PMC11464602 DOI: 10.1007/s10565-024-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Zheng M, Yao Y, Borkar NA, Thompson MA, Zhang E, Drake LY, Ye X, Vogel ER, Pabelick CM, Prakash YS. Piezo channels modulate human lung fibroblast function. Am J Physiol Lung Cell Mol Physiol 2024; 327:L547-L556. [PMID: 39189800 DOI: 10.1152/ajplung.00356.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Bronchial airways and lung parenchyma undergo both static and dynamic stretch in response to normal breathing as well as in the context of insults such as mechanical ventilation (MV) or in diseases such as asthma and chronic obstructive pulmonary disease (COPD) which lead to airway remodeling involving increased extracellular matrix (ECM) production. Here, the role of fibroblasts is critical, but the relationship between stretch- and fibroblast-induced ECM remodeling under these conditions is not well-explored. Piezo (PZ) channels play a role in mechanotransduction in many cell and organ systems, but their role in mechanical stretch-induced airway remodeling is not known. To explore this, we exposed human lung fibroblasts to 10% static stretch on a background of 5% oscillations for 48 h, with no static stretch considered controls. Collagen I, fibronectin, alpha-smooth muscle actin (α-SMA), and Piezo 1 (PZ1) expression was determined in the presence or absence of Yoda1 (PZ1 agonist) or GsMTx4 (PZ1 inhibitor). Collagen I, fibronectin, and α-SMA expression was increased by stretch and Yoda1, whereas pretreatment with GsMTx4 or knockdown of PZ1 by siRNA blunted this effect. Acute stretch in the presence and absence of Yoda1 demonstrated activation of the ERK pathway but not Smad. Measurement of [Ca2+]i responses to histamine showed significantly greater responses following stretch, effects that were blunted by knockdown of PZ1. Our findings identify an essential role for PZ1 in mechanical stretch-induced production of ECM mediated by ERK phosphorylation and Ca2+ influx in lung fibroblasts. Targeting PZ channels in fibroblasts may constitute a novel approach to ameliorate airway remodeling by decreasing ECM deposition.NEW & NOTEWORTHY The lung is an inherently mechanosensitive organ that can respond to mechanical forces in adaptive or maladaptive ways, including via remodeling resulting in increased fibrosis. We explored the mechanisms that link mechanical forces to remodeling using human lung fibroblasts. We found that mechanosensitive Piezo channels increase with stretch and mediate extracellular matrix formation and the fibroblast-to-myofibroblast transition that occurs with stretch. Our data highlight the importance of Piezo channels in lung mechanotransduction toward remodeling.
Collapse
Affiliation(s)
- Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital, Guiyang, China
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Yang Yao
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Emily Zhang
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital, Guiyang, China
| | - Elizabeth R Vogel
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Yao Y, Zheng M, Borkar NA, Thompson MA, Zhang EY, Koloko Ngassie ML, Wang S, Pabelick CM, Vogel ER, Prakash YS. Role of STIM1 in stretch-induced signaling in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 327:L150-L159. [PMID: 38771147 DOI: 10.1152/ajplung.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital, Guiyang, People's Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Maunick Lefin Koloko Ngassie
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
7
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|