1
|
Bohnacker S, Henkel FDR, Hartung F, Geerlof A, Riemer S, Prodjinotho UF, Salah EB, Mourão ASD, Bohn S, Teder T, Thomas D, Gurke R, Boeckel C, Ud-Dean M, König AC, Quaranta A, Alessandrini F, Lechner A, Spitzlberger B, Kabat AM, Pearce E, Haeggström JZ, Hauck SM, Wheelock CE, Jakobsson PJ, Sattler M, Voehringer D, Feige MJ, da Costa CP, Esser-von Bieren J. A helminth enzyme subverts macrophage-mediated immunity by epigenetic targeting of prostaglandin synthesis. Sci Immunol 2024; 9:eadl1467. [PMID: 39642243 DOI: 10.1126/sciimmunol.adl1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using Heligmosomoides polygyrus bakeri (Hpb), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E2 (PGE2) as a major immune regulatory mechanism of heGDH. The induction of PGE2 and other immunoregulatory factors, including IL-12 family cytokines and indoleamine 2,3-dioxygenase 1, by heGDH required p300-mediated histone acetylation, whereas the enzyme's catalytic activity suppressed the synthesis of type 2-promoting leukotrienes by macrophages via 2-hydroxyglutarate. By contrast, the induction of immunoregulatory factors involved the heGDH N terminus by potentially mediating interactions with cellular targets (CD64 and GPNMB) identified by proteomics. Type 2 cytokines counteracted suppressive effects of heGDH on host defense, indicating that type 2 immunity can limit helminth-driven immune evasion. Thus, helminths harness a ubiquitous metabolic enzyme to epigenetically target type 2 macrophage activation and establish chronicity.
Collapse
Affiliation(s)
- Sina Bohnacker
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Fiona D R Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Riemer
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ulrich F Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Eya Ben Salah
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
| | - André Santos Dias Mourão
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Bohn
- Department of CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tarvi Teder
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Christiane Boeckel
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Benedikt Spitzlberger
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital at Solna, Stockholm, Sweden
| | - Michael Sattler
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Bavarian NMR-Center, Department Chemie, Technische Universität München, Garching, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Julia Esser-von Bieren
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
2
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
3
|
Li XH, Huang P, Cheng HP, Zhou Y, Feng DD, Yue SJ, Han Y, Luo ZQ. NMDAR activation attenuates the protective effect of BM-MSCs on bleomycin-induced ALI via the COX-2/PGE 2 pathway. Heliyon 2024; 10:e23723. [PMID: 38205313 PMCID: PMC10776937 DOI: 10.1016/j.heliyon.2023.e23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation mediates glutamate (Glu) toxicity and involves bleomycin (BLM)-induced acute lung injury (ALI). We have reported that bone marrow-derived mesenchymal stem cells (BM-MSCs) are NMDAR-regulated target cells, and NMDAR activation inhibits the protective effect of BM-MSCs on BLM-induced pulmonary fibrosis, but its effect on ALI remains unknown. Here, we found that Glu release was significantly elevated in plasma of mice at d 7 after intratracheally injected with BLM. BM-MSCs were pretreated with NMDA (the selective agonist of NMDAR) and transplanted into the recipient mice after the BLM challenge. BM-MSCs administration significantly alleviated the pathological changes, inflammatory response, myeloperoxidase activity, and malondialdehyde content in the damaged lungs, but NMDA-pretreated BM-MSCs did not ameliorate BLM-induced lung injury in vivo. Moreover, NMDA down-regulated prostaglandin E2 (PGE2) secretion and cyclooxygenase (COX)-2 expression instead of COX-1 expression in BM-MSCs in vitro. We also found that NMDAR1 expression was increased and COX-2 expression was decreased, but COX-1 expression was not changed in primary BM-MSCs of BLM-induced ALI mice. Further, the cultured supernatants of lipopolysaccharide (LPS)-pretreated RAW264.7 macrophages were collected to detect inflammatory factors after co-culture with NMDA-pretreated BM-MSCs. The co-culture experiments showed that NMDA precondition inhibited the anti-inflammatory effect of BM-MSCs on LPS-induced macrophage inflammation, and PGE2 could partially alleviate this inhibition. Our findings suggest that NMDAR activation attenuated the protective effect of BM-MSCs on BLM-induced ALI in vivo. NMDAR activation inhibited COX-2 expression and PGE2 secretion in BM-MSCs and weakened the anti-inflammatory effect of BM-MSCs on LPS-induced macrophage inflammation in vitro. In conclusion, NMDAR activation attenuates the protective effect of BM-MSCs on BLM-induced ALI via the COX-2/PGE2 pathway. Keywords: Acute Lung Injury, BM-MSCs, NMDA receptor, COX-1/2, PGE2.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Pu Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Health Management Center, Changsha Central Hospital Affiliated to Nanhua University, Changsha, 410018, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Shao-Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410078, China
| |
Collapse
|
4
|
Dahlqvist C, Delaunois L, Demeure F. Sartan-induced interstitial lung disease. Respir Med Case Rep 2023; 46:101946. [PMID: 38025246 PMCID: PMC10663810 DOI: 10.1016/j.rmcr.2023.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background Lung toxicity of angiotensin receptor blockers (sartans) have very seldom been reported in the literature despite their wide use. We here report a case of interstitial lung disease elicited by sartans, with two episodes induced by two different sartans at 10 years of interval. Case presentation In 2012, eprosartan was the very likely cause of a drug induced interstitial lung disease in a 60 year old man. Indeed, his symptoms, consisting in a MMRC2 dyspnea and recurrent hemoptysis, completely disappeared after the removal of this drug. When the circumstances rendered it necessary to start another angiotensin receptor blocker (namely valsartan) ten years later we did not expect the same reaction to occur given among other things a very poor literature on the topic. After a few months with this medication, he however developed similar symptoms and a Chest CT imaging that was comparable to what he had in 2012.This time also the clinical picture resolved completely when the sartan was stopped. Conclusion We report this first case of a drug induced interstitial lung disease induced by two different angiotensin receptor blockers (sartans) with a new drug challenge ten years after the first one.
Collapse
|
5
|
Wong YS, Mançanares AC, Navarrete FI, Poblete PM, Méndez-Pérez L, Ferreira-Dias GML, Rodriguez-Alvarez L, Castro FO. Mare stromal endometrial cells differentially modulate inflammation depending on oestrus cycle status: an in vitro study. Front Vet Sci 2023; 10:1271240. [PMID: 37869492 PMCID: PMC10587403 DOI: 10.3389/fvets.2023.1271240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
The modulation of inflammation is pivotal for uterine homeostasis. Here we evaluated the effect of the oestrus cycle on the expression of pro-inflammatory and anti-inflammatory markers in a cellular model of induced fibrosis. Mare endometrial stromal cells isolated from follicular or mid-luteal phase were primed with 10 ng/mL of TGFβ alone or in combination with either IL1β, IL6, or TNFα (10 ng/mL each) or all together for 24 h. Control cells were not primed. Messenger and miRNA expression were analyzed using real-time quantitative PCR (RT-qPCR). Cells in the follicular phase primed with pro-inflammatory cytokines showed higher expression of collagen-related genes (CTGF, COL1A1, COL3A1, and TIMP1) and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) genes; p < 0.05. Cells primed during the mid-luteal overexpressed genes associated with extracellular matrix, processing, and prostaglandin E synthase (MMP2, MMP9, PGR, TIMP2, and PTGES; p < 0.05). There was a notable upregulation of pro-fibrotic miRNAs (miR17, miR21, and miR433) in the follicular phase when the cells were exposed to TGFβ + IL1β, TGFβ + IL6 or TGFβ + IL1β + IL6 + TNFα. Conversely, in cells from the mid-luteal phase, the treatments either did not or diminished the expression of the same miRNAs. On the contrary, the anti-fibrotic miRNAs (miR26a, miR29b, miR29c, miR145, miR378, and mir488) were not upregulated with treatments in the follicular phase. Rather, they were overexpressed in cells from the mid-luteal phase, with the highest regulation observed in TGFβ + IL1β + IL6 + TNFα treatment groups. These miRNAs were also analyzed in the extracellular vesicles secreted by the cells. A similar trend as seen with cellular miRNAs was noted, where anti-fibrotic miRNAs were downregulated in the follicular phase, while notably elevated pro-fibrotic miRNAs were observed in extracellular vesicles originating from the follicular phase. Pro-inflammatory cytokines may amplify the TGFβ signal in the follicular phase resulting in significant upregulation of extracellular matrix-related genes, an imbalance in the metalloproteinases, downregulation of estrogen receptors, and upregulation of pro-fibrotic factors. Conversely, in the luteal phase, there is a protective role mediated primarily through an increase in anti-fibrotic miRNAs, a decrease in SMAD2 phosphorylation, and reduced expression of fibrosis-related genes.
Collapse
Affiliation(s)
- Yat S. Wong
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Ana C. Mançanares
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Felipe I. Navarrete
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Pamela M. Poblete
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Lídice Méndez-Pérez
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Graça M. L. Ferreira-Dias
- Faculty of Veterinary Medicine, Department of Morphology and Function, CIISA—Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
6
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
7
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
8
|
Berggren-Nylund R, Ryde M, Löfdahl A, Ibáñez-Fonseca A, Kåredal M, Westergren-Thorsson G, Tufvesson E, Larsson-Callerfelt AK. Effects of hypoxia on bronchial and alveolar epithelial cells linked to pathogenesis in chronic lung disorders. Front Physiol 2023; 14:1094245. [PMID: 36994416 PMCID: PMC10040785 DOI: 10.3389/fphys.2023.1094245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Chronic lung disorders involve pathological alterations in the lung tissue with hypoxia as a consequence. Hypoxia may influence the release of inflammatory mediators and growth factors including vascular endothelial growth factor (VEGF) and prostaglandin (PG)E2. The aim of this work was to investigate how hypoxia affects human lung epithelial cells in combination with profibrotic stimuli and its correlation to pathogenesis.Methods: Human bronchial (BEAS-2B) and alveolar (hAELVi) epithelial cells were exposed to either hypoxia (1% O2) or normoxia (21% O2) during 24 h, with or without transforming growth factor (TGF)-β1. mRNA expression of genes and proteins related to disease pathology were analysed with qPCR, ELISA or immunocytochemistry. Alterations in cell viability and metabolic activity were determined.Results: In BEAS-2B and hAELVi, hypoxia significantly dowregulated genes related to fibrosis, mitochondrial stress, oxidative stress, apoptosis and inflammation whereas VEGF receptor 2 increased. Hypoxia increased the expression of Tenascin-C, whereas both hypoxia and TGF-β1 stimuli increased the release of VEGF, IL-6, IL-8 and MCP-1 in BEAS-2B. In hAELVi, hypoxia reduced the release of fibroblast growth factor, epidermal growth factor, PGE2, IL-6 and IL-8, whereas TGF-β1 stimulus significantly increased the release of PGE2 and IL-6. TGF-β1 stimulated BEAS-2B cells showed a decreased release of VEGF-A and IL-8, while TGF-β1 stimulated hAELVi cells showed a decreased release of PGE2 and IL-8 during hypoxia compared to normoxia. Metabolic activity was significantly increased by hypoxia in both epithelial cell types.Discussion: In conclusion, our data indicate that bronchial and alveolar epithelial cells respond differently to hypoxia and profibrotic stimuli. The bronchial epithelium appears more responsive to changes in oxygen levels and remodelling processes compared to the alveoli, suggesting that hypoxia may be a driver of pathogenesis in chronic lung disorders.
Collapse
Affiliation(s)
| | - Martin Ryde
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Arturo Ibáñez-Fonseca
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Ellen Tufvesson
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Anna-Karin Larsson-Callerfelt,
| |
Collapse
|
9
|
Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023; 12:cells12040548. [PMID: 36831215 PMCID: PMC9954511 DOI: 10.3390/cells12040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a representative disease that causes fibrosis of the lungs. Its pathogenesis is thought to be characterized by sustained injury to alveolar epithelial cells and the resultant abnormal tissue repair, but it has not been fully elucidated. IPF is currently difficult to cure and is known to follow a chronic progressive course, with the patient's survival period estimated at about three years. The disease occasionally exacerbates acutely, leading to a fatal outcome. In recent years, it has become evident that lipid metabolism is involved in the fibrosis of lungs, and various reports have been made at the cellular level as well as at the organic level. The balance among eicosanoids, sphingolipids, and lipid composition has been reported to be involved in fibrosis, with particularly close attention being paid to a bioactive lipid "lysophosphatidic acid (LPA)" and its pathway. LPA signals are found in a wide variety of cells, including alveolar epithelial cells, vascular endothelial cells, and fibroblasts, and have been reported to intensify pulmonary fibrosis via LPA receptors. For instance, in alveolar epithelial cells, LPA signals reportedly induce mitochondrial dysfunction, leading to epithelial damage, or induce the transcription of profibrotic cytokines. Based on these mechanisms, LPA receptor inhibitors and the metabolic enzymes involved in LPA formation are now considered targets for developing novel means of IPF treatment. Advances in basic research on the relationships between fibrosis and lipid metabolism are opening the path to new therapies targeting lipid metabolism in the treatment of IPF.
Collapse
|
10
|
The role of PGE2 and EP receptors on lung's immune and structural cells; possibilities for future asthma therapy. Pharmacol Ther 2023; 241:108313. [PMID: 36427569 DOI: 10.1016/j.pharmthera.2022.108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Asthma is the most common airway chronic disease with treatments aimed mainly to control the symptoms. Adrenergic receptor agonists, corticosteroids and anti-leukotrienes have been used for decades, and the development of more targeted asthma treatments, known as biological therapies, were only recently established. However, due to the complexity of asthma and the limited efficacy as well as the side effects of available treatments, there is an urgent need for a new generation of asthma therapies. The anti-inflammatory and bronchodilatory effects of prostaglandin E2 in asthma are promising, yet complicated by undesirable side effects, such as cough and airway irritation. In this review, we summarize the most important literature on the role of all four E prostanoid (EP) receptors on the lung's immune and structural cells to further dissect the relevance of EP2/EP4 receptors as potential targets for future asthma therapy.
Collapse
|
11
|
Tofteng SS, Nilsson L, Mogensen AK, Nørregaard R, Nüsing R, Diatchikhine M, Lund L, Bistrup C, Jensen BL, Madsen K. Increased COX-2 after ureter obstruction attenuates fibrosis and is associated with EP 2 receptor upregulation in mouse and human kidney. Acta Physiol (Oxf) 2022; 235:e13828. [PMID: 35543087 PMCID: PMC9542224 DOI: 10.1111/apha.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
AIM Cyclooxygenase-2 (COX-2) activity protects against oxidative stress and apoptosis early in experimental kidney injury. The present study was designed to test the hypothesis that COX-2 activity attenuates fibrosis and preserves microvasculature in injured kidney. The murine unilateral ureteral-obstruction (UUO) model of kidney fibrosis was employed and compared with human nephrectomy tissue with and without chronic hydronephrosis. METHODS Fibrosis and angiogenic markers were quantified in kidney tissue from wild-type and COX-2-/- mice subjected to UUO for 7 days and in human kidney tissue. COX-enzymes, prostaglandin (PG) synthases, PG receptors, PGE2 , and thromboxane were determined in human tissue. RESULTS COX-2 immunosignal was observed in interstitial fibroblasts at baseline and after UUO. Fibronectin, collagen I, III, alpha-smooth muscle actin, and fibroblast specific protein-1 mRNAs increased significantly more after UUO in COX-2-/- vs wild-type mice. In vitro, fibroblasts from COX-2-/- kidneys showed higher matrix synthesis. Compared to control, human hydronephrotic kidneys showed (i) fibrosis, (ii) no significant changes in COX-2, COX-1, PGE2 -, and prostacyclin synthases, and prostacyclin and thromboxane receptor mRNAs, (iii) increased mRNA and protein of PGE2 -EP2 receptor level but unchanged PGE2 tissue concentration, and (iv) two- to threefold increased thromboxane synthase mRNA and protein levels, and increased thromboxane B2 tissue concentration in cortex and outer medulla. CONCLUSION COX-2 protects in the early phase against obstruction-induced fibrosis and maintains angiogenic factors. Increased PGE2 -EP2 receptor in obstructed human and murine kidneys could contribute to protection.
Collapse
Affiliation(s)
- Signe S. Tofteng
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Line Nilsson
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Amalie K. Mogensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | - Rolf Nüsing
- Institute of Clinical PharmacologyGoethe UniversityFrankfurtGermany
| | | | - Lars Lund
- Department of UrologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Claus Bistrup
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of NephrologyOdense University HospitalOdenseDenmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark,Department of PathologyOdense University HospitalOdenseDenmark
| |
Collapse
|
12
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
13
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
14
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Pils V, Terlecki-Zaniewicz L, Schosserer M, Grillari J, Lämmermann I. The role of lipid-based signalling in wound healing and senescence. Mech Ageing Dev 2021; 198:111527. [PMID: 34174292 DOI: 10.1016/j.mad.2021.111527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
16
|
Corboz MR, Salvail W, Gagnon S, LaSala D, Laurent CE, Salvail D, Chen KJ, Cipolla D, Perkins WR, Chapman RW. Prostanoid receptor subtypes involved in treprostinil-mediated vasodilation of rat pulmonary arteries and in treprostinil-mediated inhibition of collagen gene expression of human lung fibroblasts. Prostaglandins Other Lipid Mediat 2021; 152:106486. [PMID: 33011365 DOI: 10.1016/j.prostaglandins.2020.106486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Treprostinil (TRE) is a potent pulmonary vasodilator with effects on other pathological aspects of pulmonary arterial hypertension. In this study, the prostanoid receptors involved in TRE-induced relaxation of isolated rat pulmonary arteries and TRE-induced inhibition of increased gene expression in collagen synthesis and contractility of human lung fibroblasts were determined. TRE (0.01-100 μM) relaxed prostaglandin F2α-precontracted rat pulmonary arteries which was attenuated by denudation of the vascular endothelium. TRE-induced relaxation was predominantly blocked by the IP receptor antagonist RO3244194 (1 μM), with slightly greater inhibition in endothelium-denuded tissue. At higher TRE concentrations (> 1 μM), the DP1 receptor antagonist BW A868C (1 μM) also inhibited relaxation reaching significance above 10 μM. In contrast, the EP3 receptor antagonist L798106 (1 μM) accentuated TRE-induced relaxation of pulmonary arteries with intact endothelium. In human lung fibroblasts, the EP2 receptor antagonist PF-04418948 (1 μM) blocked transforming growth factor β1 (TGF-β1)-increased expression of collagen synthesis (COL1A1 and COL1A2) and fibroblast contractility (ACTG2) genes in presence of TRE (0.1 μM). In conclusion, the IP receptor located on rat pulmonary vascular smooth muscle and endothelium is the primary receptor mediating vasorelaxation, while the DP1 receptor present on the rat endothelium is involved only at higher TRE concentrations. In human lung fibroblasts, the EP2 receptor is the dominant receptor subtype involved in suppression of increased collagen synthesis and fibroblast contractility gene expression induced by TGF-β1 in the presence of TRE.
Collapse
Affiliation(s)
- Michel R Corboz
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - William Salvail
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Sandra Gagnon
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Daniel LaSala
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | | | - Dany Salvail
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Kuan-Ju Chen
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - David Cipolla
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Walter R Perkins
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Richard W Chapman
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| |
Collapse
|
17
|
Kim N, Shin S, Bae SW. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. BIOSENSORS-BASEL 2021; 11:bios11020039. [PMID: 33572585 PMCID: PMC7911721 DOI: 10.3390/bios11020039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.
Collapse
Affiliation(s)
- Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea;
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
| | - Se Won Bae
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3543
| |
Collapse
|
18
|
Berhan A, Harris T, Jaffar J, Jativa F, Langenbach S, Lönnstedt I, Alhamdoosh M, Ng M, Lee P, Westall G, Wilson N, Wilson M, Stewart AG. Cellular Microenvironment Stiffness Regulates Eicosanoid Production and Signaling Pathways. Am J Respir Cell Mol Biol 2021; 63:819-830. [PMID: 32926636 DOI: 10.1165/rcmb.2020-0227oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathological changes in the biomechanical environment are implicated in the progression of idiopathic pulmonary fibrosis (IPF). Stiffened matrix augments fibroblast proliferation and differentiation and activates TGF-β1 (transforming growth factor-β1). Stiffened matrix impairs the synthesis of the antifibrogenic lipid mediator prostaglandin E2 (PGE2) and reduces the expression of the rate-limiting prostanoid biosynthetic enzyme cyclooxygenase-2 (COX-2). We now show that prostaglandin E synthase (PTGES), the final enzyme in the PGE2 biosynthetic pathway, is expressed at lower levels in the lungs of patients with IPF. We also show substantial induction of COX-2, PTGES, prostaglandin E receptor 4 (EP4), and cytosolic phospholipase A2 (cPLA2) expression in human lung fibroblasts cultured in soft collagen hydrogels or in spheroids compared with conventional culture on stiff plastic culture plates. Induction of COX-2, cPLA2, and PTGES expression in spheroid cultures was moderately inhibited by the p38 mitogen-activated protein kinase inhibitor SB203580. The induction of prostanoid biosynthetic enzyme expression was accompanied by an increase in PGE2 levels only in non-IPF-derived fibroblast spheroids. Our study reveals an extensive dysregulation of prostanoid biosynthesis and signaling pathways in IPF-derived fibroblasts, which are only partially abrogated by culture in soft microenvironments.
Collapse
Affiliation(s)
- Asres Berhan
- Department of Pharmacology and Therapeutics, and
| | - Trudi Harris
- Department of Pharmacology and Therapeutics, and
| | - Jade Jaffar
- Department of Allergy, Immunology, Respiratory Medicine, The Alfred Hospital/Monash University, Melbourne, Victoria, Australia
| | - Fernando Jativa
- Department of Pharmacology and Therapeutics, and.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Milica Ng
- CSL Ltd., Melbourne, Victoria, Australia; and
| | - Peter Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Glen Westall
- Department of Allergy, Immunology, Respiratory Medicine, The Alfred Hospital/Monash University, Melbourne, Victoria, Australia
| | - Nick Wilson
- CSL Ltd., Melbourne, Victoria, Australia; and
| | | | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, and.,ARC Centre for Personalised Therapeutics Technologies, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Zannikou M, Barbayianni I, Fanidis D, Grigorakaki T, Vlachopoulou E, Konstantopoulos D, Fousteri M, Nikitopoulou I, Kotanidou A, Kaffe E, Aidinis V. MAP3K8 Regulates Cox-2-Mediated Prostaglandin E 2 Production in the Lung and Suppresses Pulmonary Inflammation and Fibrosis. THE JOURNAL OF IMMUNOLOGY 2020; 206:607-620. [PMID: 33443087 DOI: 10.4049/jimmunol.2000862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by exuberant deposition of extracellular matrix components, leading to the deterioration of lung architecture and respiratory functions. Profibrotic mechanisms are controlled by multiple regulatory molecules, including MAPKs, in turn regulated by multiple phosphorylation cascades. MAP3K8 is an MAPK kinase kinase suggested to pleiotropically regulate multiple pathogenic pathways in the context of inflammation and cancer; however, a possible role in the pathogenesis of IPF has not been investigated. In this report, MAP3K8 mRNA levels were found decreased in the lungs of IPF patients and of mice upon bleomycin-induced pulmonary fibrosis. Ubiquitous genetic deletion of Map3k8 in mice exacerbated the modeled disease, whereas bone marrow transfer experiments indicated that although MAP3K8 regulatory functions are active in both hematopoietic and nonhematopoietic cells, Map3k8 in hematopoietic cells has a more dominant role. Macrophage-specific deletion of Map3k8 was further found to be sufficient for disease exacerbation thus confirming a major role for macrophages in pulmonary fibrotic responses and suggesting a main role for Map3k8 in the homeostasis of their effector functions in the lung. Map3k8 deficiency was further shown to be associated with decreased Cox-2 expression, followed by a decrease in PGE2 production in the lung; accordingly, exogenous administration of PGE2 reduced inflammation and reversed the exacerbated fibrotic profile of Map3k8 -/- mice. Therefore, MAP3K8 has a central role in the regulation of inflammatory responses and Cox-2-mediated PGE2 production in the lung, and the attenuation of its expression is integral to pulmonary fibrosis development.
Collapse
Affiliation(s)
- Markella Zannikou
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ilianna Barbayianni
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Dionysios Fanidis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Theodora Grigorakaki
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Evlalia Vlachopoulou
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Dimitris Konstantopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Maria Fousteri
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ioanna Nikitopoulou
- GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; and
| | - Anastasia Kotanidou
- GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; and.,First Department of Critical Care and Pulmonary Services, Medical School, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens 106 76, Greece
| | - Eleanna Kaffe
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Vassilis Aidinis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece;
| |
Collapse
|
20
|
Bormann T, Maus R, Stolper J, Jonigk D, Welte T, Gauldie J, Kolb M, Maus UA. Role of the COX2-PGE 2 axis in S. pneumoniae-induced exacerbation of experimental fibrosis. Am J Physiol Lung Cell Mol Physiol 2020; 320:L377-L392. [PMID: 33296268 DOI: 10.1152/ajplung.00024.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) associated with high morbidity and mortality. Patients with ILD frequently develop an acute exacerbation of their disease, which may be triggered by viral and/or bacterial infections. Prostaglandin E2 (PGE2) is an eicosanoid released in a cyclooxygenase-2 (COX2)-dependent manner and is considered to contribute to regulation of lung fibrosis. However, its role in infection-induced exacerbation of lung fibrosis is poorly defined. We found significantly increased levels of PGE2 in lung tissue of patients with ILD. Increased levels of PGE2 were also found in lung tissue of mice with AdTGF-β1-induced lung fibrosis and even more so in Streptococcus pneumoniae exacerbated lung fibrosis. Type II alveolar epithelial cells (AT II cells) and alveolar macrophages (AM) contributed to PGE2 release during exacerbating fibrosis. Application of parecoxib to inhibit PGE2 synthesis ameliorated lung fibrosis, whereas intratracheal application of PGE2 worsened lung fibrosis in mice. Both interventions had no effect on S. pneumoniae-exacerbated lung fibrosis. Together, we found that the COX2-PGE2 axis has dual roles in fibrosis that may offset each other: PGE2 helps resolve infection/attenuate inflammation in fibrosis exacerbation but accentuates TGF-β/AT II cell-mediated fibrosis. These data support the efficacy of COX/PGE2 interventions in the setting of non-exacerbating lung fibrosis.
Collapse
Affiliation(s)
- Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, partner site BREATH, Hannover, Germany.,Clinic for Pneumology, Hannover Medical School, Hannover, Germany
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| |
Collapse
|
21
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
22
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
23
|
Agonist-specific desensitization of PGE 2-stimulated cAMP signaling due to upregulated phosphodiesterase expression in human lung fibroblasts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:843-856. [PMID: 31884570 PMCID: PMC7328663 DOI: 10.1007/s00210-019-01800-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 11/03/2022]
Abstract
Pulmonary fibrosis is characterized by fibroblasts persisting in an activated form, producing excessive fibrous material that destroys alveolar structure. The second messenger molecule cyclic 3',5'-adenosine monophosphate (cAMP) has antifibrotic properties, and prostaglandin E2 (PGE2) can stimulate cAMP production through prostaglandin E (EP)2 and EP4 receptors. Although EP receptors are attractive therapeutic targets, the effects of long-term exposure to PGE2 have not been characterized. To determine the effects of long-term exposure of lung fibroblasts to PGE2, human fetal lung (HFL)-1 cells were treated for 24 h with 100 nM PGE2 or other cAMP-elevating agents. cAMP levels stimulated by acute exposure to PGE2 were measured using a fluorescent biosensor. Pretreatment for 24 h with PGE2 shifted the concentration-response curve to PGE2 rightward by approximately 22-fold but did not affect responses to the beta-adrenoceptor agonist isoproterenol. Neither isoproterenol nor forskolin pretreatment altered PGE2 responses, implying that other cAMP-elevating agents do not induce desensitization. Use of EP2- and EP4-selective agonists and antagonists suggested that PGE2-stimulated cAMP responses in HFL-1 cells are mediated by EP2 receptors. EP2 receptors are resistant to classical mechanisms of agonist-specific receptor desensitization, so we hypothesized that increased PDE activity mediates the loss of signaling after PGE2 pretreatment. PGE2 treatment upregulated messenger RNA for PDE3A, PDE3B, PDE4B, and PDE4D and increased overall PDE activity. The PDE4 inhibitor rolipram partially reversed PGE2-mediated desensitization and PDE4 activity was increased, but rolipram did not alter responses to isoproterenol. The PDE3 inhibitor cilostazol had minimal effect. These results show that long-term exposure to PGE2 causes agonist-specific desensitization of EP2 receptor-stimulated cAMP signaling through the increased expression of PDE isozymes, most likely of the PDE4 family.
Collapse
|
24
|
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4:130056. [PMID: 31687975 DOI: 10.1172/jci.insight.130056] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.
Collapse
Affiliation(s)
| | | | - Sonnet S Davis
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | - Cheresa Calhoun
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | - Ying Wei
- UCSF, San Francisco, California, USA
| | | | - Arvind Ramanathan
- Buck Institute for Research on Aging, Novato, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine (inStem), Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claude Jourdan Le Saux
- UCSF, San Francisco, California, USA.,University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
25
|
Bärnthaler T, Theiler A, Zabini D, Trautmann S, Stacher-Priehse E, Lanz I, Klepetko W, Sinn K, Flick H, Scheidl S, Thomas D, Olschewski H, Kwapiszewska G, Schuligoi R, Heinemann A. Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol 2019; 145:818-833.e11. [PMID: 31812575 DOI: 10.1016/j.jaci.2019.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease with high 5-year mortality and few therapeutic options. Prostaglandin (PG) E2 exhibits antifibrotic properties and is reduced in bronchoalveolar lavage from patients with IPF. 15-Prostaglandin dehydrogenase (15-PGDH) is the key enzyme in PGE2 metabolism under the control of TGF-β and microRNA 218. OBJECTIVE We sought to investigate the expression of 15-PGDH in IPF and the therapeutic potential of a specific inhibitor of this enzyme in a mouse model and human tissue. METHODS In vitro studies, including fibrocyte differentiation, regulation of 15-PGDH, RT-PCR, and Western blot, were performed using peripheral blood from healthy donors and patients with IPF and A549 cells. Immunohistochemistry, immunofluorescence, 15-PGDH activity assays, and in situ hybridization as well as ex vivo IPF tissue culture experiments were done using healthy donor and IPF lungs. Therapeutic effects of 15-PGDH inhibition were studied in the bleomycin mouse model of pulmonary fibrosis. RESULTS We demonstrate that 15-PGDH shows areas of increased expression in patients with IPF. Inhibition of this enzyme increases PGE2 levels and reduces collagen production in IPF precision cut lung slices and in the bleomycin model. Inhibitor-treated mice show amelioration of lung function, decreased alveolar epithelial cell apoptosis, and fibroblast proliferation. Pulmonary fibrocyte accumulation is also decreased by inhibitor treatment in mice, similar to PGE2 that inhibits fibrocyte differentiation from blood of healthy donors and patients with IPF. Finally, microRNA 218-5p, which is downregulated in patients with IPF, suppressed 15-PGDH expression in vivo and in vitro. CONCLUSIONS These findings highlight the role of 15-PGDH in IPF and suggest 15-PGDH inhibition as a promising therapeutic approach.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Theiler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Elvira Stacher-Priehse
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ilse Lanz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Sinn
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Holger Flick
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Stefan Scheidl
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Rufina Schuligoi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
26
|
Nikitopoulou I, Manitsopoulos N, Kotanidou A, Tian X, Petrovic A, Magkou C, Ninou I, Aidinis V, Schermuly RT, Kosanovic D, Orfanos SE. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling, and fibrosis in mice. Pulm Circ 2019; 9:2045894019881954. [PMID: 31819797 PMCID: PMC6883672 DOI: 10.1177/2045894019881954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease characterized by disruption of lung architecture and deregulation of the pulmonary function. Prostacyclin, a metabolite of arachidonic acid, is a potential disease mediator since it exerts anti-inflammatory and anti-fibrotic actions. We investigated the effect of treprostinil, a prostacyclin analogue, in bleomycin-induced experimental pulmonary fibrosis. Bleomycin sulfate or saline was administrated intratracheally to mice (n = 9-10/group) at day 0. Orotracheal aspiration of treprostinil or vehicle was administered daily and started 24 h prior to bleomycin challenge. Evaluation of lung pathology was performed in tissue samples and bronchoalveolar lavage fluid collected 7, 14 and 21 days after bleomycin exposure. Lung injury was achieved due to bleomycin exposure at all time points as indicated by impaired lung mechanics, pathologic lung architecture (from day 14), and cellular and protein accumulation in the alveolar space accompanied by a minor decrease in lung tissue VE-cadherin at day 14. Treprostinil preserved lung mechanics, and reduced lung inflammation, fibrosis, and vascular remodeling (day 21); reduced cellularity and protein content of bronchoalveolar lavage fluid were additionally observed with no significant effect on VE-cadherin expression. Bleomycin-induced collagen deposition was attenuated by treprostinil from day 14, while treprostinil involvement in regulating inflammatory processes appears mediated by NF-κB signaling. Overall, prophylactic administration of treprostinil, a stable prostacyclin analogue, maintained lung function, and prevented bleomycin-induced lung injury, and fibrosis, as well as vascular remodeling, a hallmark of pulmonary hypertension. This suggests potential therapeutic efficacy of treprostinil in pulmonary fibrosis and possibly in pulmonary hypertension related to chronic lung diseases.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- GP Livanos and M Simou Laboratories,1st
Department of Critical Care & Pulmonary Services, Medical School, National &
Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Nikolaos Manitsopoulos
- GP Livanos and M Simou Laboratories,1st
Department of Critical Care & Pulmonary Services, Medical School, National &
Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Anastasia Kotanidou
- GP Livanos and M Simou Laboratories,1st
Department of Critical Care & Pulmonary Services, Medical School, National &
Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- 1st Department of Critical Care &
Pulmonary Services, Medical School, National & Kapodistrian University of
Athens, Evangelismos Hospital, Athens, Greece
| | - Xia Tian
- Universities of Giessen and Marburg Lung
Center, Member of the German Center for Lung Research (DZL), Justus-Liebig
University, Giessen, Germany
| | - Aleksandar Petrovic
- Universities of Giessen and Marburg Lung
Center, Member of the German Center for Lung Research (DZL), Justus-Liebig
University, Giessen, Germany
| | | | - Ioanna Ninou
- Institute of Immunology, Biomedical
Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vassilis Aidinis
- Institute of Immunology, Biomedical
Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ralph T. Schermuly
- Universities of Giessen and Marburg Lung
Center, Member of the German Center for Lung Research (DZL), Justus-Liebig
University, Giessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung
Center, Member of the German Center for Lung Research (DZL), Justus-Liebig
University, Giessen, Germany
- Sechenov First Moscow State Medical
University
(Sechenov
University), Moscow, Russia
| | - Stylianos E. Orfanos
- GP Livanos and M Simou Laboratories,1st
Department of Critical Care & Pulmonary Services, Medical School, National &
Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- 1st Department of Critical Care &
Pulmonary Services, Medical School, National & Kapodistrian University of
Athens, Evangelismos Hospital, Athens, Greece
- 2nd Department of Critical Care, Medical
School, National & Kapodistrian University of Athens, “Attikon” Hospital,
Haidari, Athens, Greece
| |
Collapse
|
27
|
Beyhan Sagmen S, Comert S, Turan Erkek E, Küçüköz Uzun A, Doğan C, Yılmaz G, Kıral N, Fidan A, Yılmaz Haksal Ç, Torun Parmaksız E. Can We Predict Bleomycin Toxicity with PET-CT? Acta Haematol 2019; 142:171-175. [PMID: 31454795 DOI: 10.1159/000502374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023]
Abstract
AIM Bleomycin is an antitumor antibiotic used successfully to treat a variety of malignancies, predominantly germ cell tumors and Hodgkin's lymphoma (HL). The major limitation of bleomycin therapy is the potential for life-threatening interstitial pulmonary fibrosis. Early identification of asymptomatic patients who may develop toxicity is important. We aimed to evaluate fluorodeoxyglucose positron-emission tomography (FDG-PET/CT) findings to predict bleomycin toxicity (BT) early after chemotherapy with doxorubicin, bleomycin, vinblastine, dacarbazine (ABVD) chemotherapy before clinical symptoms and radiological changes occur. MATERIALS AND METHODS HL patients who were treated with ABVD were evaluated. SUVmax values of lung parenchyma were analyzed in FDG-PET/CT at diagnosis and after 4 cycles of chemotherapy in all patients. At the end of the chemotherapy cycles, lung parenchymal SUVmax values of patients with BT and without BT were compared statistically. RESULTS Twenty (66.7%) male and 10 (33.3%) female patients with HL were included. Five (16.7%) HL patients developed BT. In 3 HL patients, BT was determined after 5 cycles and in 2 patients, BT was seen after 6 cycles. In all 5 of these patients with BT, FDG uptake in PET-CT was increased after 4 cycles of chemotherapy and BT was predicted before clinical and radiological findings by FDG-PET/CT. After 4 cycles of chemotherapy, lung parenchymal SUVmax of patients with BT (3.24 ± 0.76) was significantly higher than in patients without toxicity (1.84 ± 0.52) (p < 0.001). In patients with BT, a significant increase was established in lung parenchymal SUVmax after 4 cycles of chemotherapy when compared to the time of diagnosis (p = 0.043). CONCLUSION BT can be fatal. Early detection of BT is essential in clinical practice. FDG-PET/CT can predict BT before clinical and radiological findings occur.
Collapse
Affiliation(s)
- Seda Beyhan Sagmen
- Pulmonary Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey,
| | - Sevda Comert
- Pulmonary Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Esra Turan Erkek
- Hematology, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Aysun Küçüköz Uzun
- Nuclear Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Coşkun Doğan
- Pulmonary Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Guven Yılmaz
- Hematology, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Nesrin Kıral
- Pulmonary Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Ali Fidan
- Pulmonary Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Çağla Yılmaz Haksal
- Nuclear Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| | - Elif Torun Parmaksız
- Pulmonary Medicine, University of Health Sciences Kartal Dr. Lutfi Kirdar Training and Research Hospital, Kartal, Turkey
| |
Collapse
|
28
|
Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Res Ther 2019; 10:264. [PMID: 31443678 PMCID: PMC6708232 DOI: 10.1186/s13287-019-1365-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Even though mesenchymal stromal cells (MSCs) mitigate lung and distal organ damage in experimental polymicrobial sepsis, mortality remains high. We investigated whether preconditioning with eicosapentaenoic acid (EPA) would potentiate MSC actions in experimental sepsis by further decreasing lung and distal organ injury, thereby improving survival. Methods In C57BL/6 mice, sepsis was induced by cecal hligation and puncture (CLP); sham-operated animals were used as control. Twenty-four hours after surgery, CLP mice were further randomized to receive saline, adipose tissue-derived (AD)-MSCs (105, nonpreconditioned), or AD-MSCs preconditioned with EPA for 6 h (105, EPA-preconditioned MSCs) intravenously. After 24 h, survival rate, sepsis severity score, lung mechanics and histology, protein level of selected biomarkers in lung tissue, cellularity in blood, distal organ damage, and MSC distribution (by technetium-99m tagging) were analyzed. Additionally, the effects of EPA on the secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-β1 by MSCs were evaluated in vitro. Results Nonpreconditioned and EPA-preconditioned AD-MSCs exhibited similar viability and differentiation capacity, accumulated mainly in the lungs and kidneys following systemic administration. Compared to nonpreconditioned AD-MSCs, EPA-preconditioned AD-MSCs further reduced static lung elastance, alveolar collapse, interstitial edema, alveolar septal inflammation, collagen fiber content, neutrophil cell count as well as protein levels of interleukin-1β and keratinocyte chemoattractant in lung tissue, and morphological abnormalities in the heart (cardiac myocyte architecture), liver (hepatocyte disarrangement and Kupffer cell hyperplasia), kidney (acute tubular necrosis), spleen (increased number of megakaryocytes and lymphocytes), and small bowel (villi architecture disorganization). EPA preconditioning of MSCs resulted in increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-β). Conclusions Compared to nonpreconditioned cells, EPA-preconditioned AD-MSCs yielded further reductions in the lung and distal organ injury, resulting in greater improvement in sepsis severity score and higher survival rate in CLP-induced experimental sepsis. This may be a promising therapeutic approach to improve outcome in septic patients. Electronic supplementary material The online version of this article (10.1186/s13287-019-1365-z) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Cheng Y, Rong J. Pro-resolving lipid mediators as therapeutic leads for cardiovascular diseases. Expert Opin Ther Targets 2019; 23:423-436. [PMID: 30917700 DOI: 10.1080/14728222.2019.1599360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Abstract
Myofibroblast activation is a critical process in the pathogenesis of tissue fibrosis accounting for 45% of all deaths. No effective therapies are available for the treatment of fibrotic diseases. We focus our mini-review on recent data showing that cardiotonic steroids (CTS) that are known as potent inhibitors of Na+,K+-ATPase affect myofibroblast differentiation in a cell type-specific manner. In cultured human lung fibroblasts (HLF), epithelial cells, and cancer-associated fibroblasts, CTS blocked myofibroblast differentiation triggered by profibrotic cytokine TGF-β. In contrast, in the absence of TGF-β, CTS augmented myofibroblast differentiation of cultured cardiac fibroblasts. The cell type-specific action of CTS in myofibroblast differentiation is consistent with data obtained in in vivo studies. Thus, infusion of ouabain via osmotic mini-pumps attenuated the development of lung fibrosis in bleomycintreated mice, whereas marinobufagenin stimulated renal and cardiac fibrosis in rats with experimental renal injury. In TGF-β-treated HLF, suppression of myofibroblast differentiation by ouabain is mediated by elevation of the [Na+]i/[K+]i ratio and is accompanied by upregulation of cyclooxygenase COX-2 and downregulation of TGF-β receptor TGFBR2. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger, suggesting a key role of [Ca2+]i-mediated signaling. What is the relative impact in tissue fibrosis of [Na+]i,[K+]iindependent signaling documented in several types of CTS-treated cells? Do the different conformational transitions of Na+,K+-ATPase α1 subunit in the presence of ouabain and marinobufagenin contribute to their distinct involvement in myofibroblast differentiation? Additional experiments should be done to answer these questions and to develop novel pharmacological approaches for the treatment of fibrosis-related disorders.
Collapse
Affiliation(s)
- Sergei N. Orlov
- Faculty of Biology, Lomonosov Moscow State University, Russian Federation
| | - Jennifer La
- Department of Medicine, The University of Chicago, IL, United States
| | | | - Nickolai O. Dulin
- Department of Medicine, The University of Chicago, IL, United States
| |
Collapse
|
31
|
The Basic Science and Molecular Mechanisms of Lung Injury and Acute Respiratory Distress Syndrome. Int Anesthesiol Clin 2019; 56:1-25. [PMID: 29227309 DOI: 10.1097/aia.0000000000000177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Esser-von Bieren J. Eicosanoids in tissue repair. Immunol Cell Biol 2019; 97:279-288. [PMID: 30680784 DOI: 10.1111/imcb.12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/29/2022]
Abstract
Trauma or infection can result in tissue damage, which needs to be repaired in a well-orchestrated manner to restore tissue function and homeostasis. Lipid mediators derived from arachidonic acid (termed eicosanoids) play central and versatile roles in the regulation of tissue repair. Here, I summarize the current state-of the-art regarding the functional activities of eicosanoids in tissue repair responses during homeostasis and disease. I also describe how eicosanoids are produced during tissue damage and repair in a time-, cell- and tissue-dependent fashion. In particular, recent insights into the roles of eicosanoids in epithelial barrier repair are reviewed. Furthermore, the distinct roles of different eicosanoids in settings of pathological tissue repair such as chronic wounds, scarring or fibrosis are discussed. Finally, an outlook is provided on how eicosanoids may be targeted by future therapeutic strategies to achieve physiological tissue repair and prevent scarring and loss of tissue function in various disease contexts.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| |
Collapse
|
33
|
Saito K, Tanaka N, Ikari J, Suzuki M, Anazawa R, Abe M, Saito Y, Tatsumi K. Comprehensive lipid profiling of bleomycin-induced lung injury. J Appl Toxicol 2018; 39:658-671. [PMID: 30565269 DOI: 10.1002/jat.3758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 02/01/2023]
Abstract
Drug-induced lung injury is an adverse effect of drug treatment that can result in respiratory failure. Because lipid profiling could provide cutting-edge understanding of the pathophysiology of toxicological responses, we performed lipidomic analyses of drug-induced lung injury. We used a mouse model of bleomycin-induced lung injury and followed the physiological responses at the acute inflammatory (day 2), inflammatory-to-fibrosis (day 7) and fibrosis (day 21) phases. The overall lipid profiles of plasma, lung and bronchoalveolar lavage fluid (BALF) revealed that drastic changes in lipids occurred in the lung and BALF, but not in the plasma, after 7 and 21 days of bleomycin treatment. In the lung, the levels of ether-type phosphatidylethanolamines decreased, while those of phosphatidylcholines, bismonophosphatidic acids and cholesterol esters increased on days 7 and 21. In BALF, the global lipid levels increased on days 7 and 21, but only those of some lipids, such as phosphatidylglycerols/bismonophosphatidic acids and phosphatidylinositols, increased from day 2. The lung levels of prostaglandins, such as prostaglandin D2 , were elevated on day 2, and those of 5- and 15-lipoxygenase metabolites of docosahexaenoic acid were elevated on day 7. In BALF, the levels of 12-lipoxygenase metabolites of polyunsaturated fatty acids were elevated on day 7. Our comprehensive lipidomics approach suggested anti-inflammatory responses in the inflammatory phase, phospholipidosis and anti-inflammatory responses in the inflammatory-to-fibrosis phase, and increased oxidative stress and/or cell phenotypic transitions in the fibrosis phase. Understanding these molecular changes and potential mechanisms will help develop novel drugs to prevent or treat drug-induced lung injury.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| | - Nozomi Tanaka
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Jun Ikari
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Masaki Suzuki
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Rie Anazawa
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Mitsuhiro Abe
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| | - Koichiro Tatsumi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, Japan
| |
Collapse
|
34
|
Gurung S, Williams S, Deane JA, Werkmeister JA, Gargett CE. The Transcriptome of Human Endometrial Mesenchymal Stem Cells Under TGFβR Inhibition Reveals Improved Potential for Cell-Based Therapies. Front Cell Dev Biol 2018; 6:164. [PMID: 30564575 PMCID: PMC6288489 DOI: 10.3389/fcell.2018.00164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with favorable properties for cell therapies and regenerative medicine. Human endometrium harbors a small population of perivascular, clonogenic MSCs (eMSCs) identified by the SUSD2 marker. As for other MSCs, eMSCs require extensive in vitro expansion to generate clinically relevant numbers of cells, resulting in spontaneous differentiation, replicative senescence and cell death, decreasing therapeutic potency. We previously demonstrated that A83-01, a TGF-β receptor inhibitor, maintained eMSC clonogenicity, promoted proliferation, prevented apoptosis and maintained MSC function in vitro. Here we compare the transcriptome of passaged eMSCs from six women cultured with and without A83-01 for 7 days. We identified 1206 differentially expressed genes (DEG) using a false discovery rate cut-off at 0.01 and fold change >2. Significant enrichment of genes involved in anti-inflammatory responses, angiogenesis, cell migration and proliferation, and collagen fibril and extracellular matrix organization were revealed. TGF-β, Wnt and Akt signaling pathways were decreased. Anti-fibrotic and anti-apoptotic genes were induced, and fibroblast proliferation and myofibroblast related genes were downregulated. We found increased MSC potency genes (TWIST1, TWIST2, JAG1, LIFR, and SLIT2) validating the enhanced potency of A83-01-treated eMSCs, and importantly no pluripotency gene expression. We also identified eMSCs’ potential for secreting exosomes, possibly explaining their paracrine properties. Angiogenic and cytokine protein arrays confirmed the angiogenic, anti-fibrotic and immunomodulatory phenotype of A83-01-treated eMSCs, and increased angiogenic activity was functionally demonstrated in vitro. eMSCs culture expanded with A83-01 have enhanced clinically relevant properties, suggesting their potential for cell-therapies and regenerative medicine applications.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Sieber P, Schäfer A, Lieberherr R, Le Goff F, Stritt M, Welford RWD, Gatfield J, Peter O, Nayler O, Lüthi U. Novel high-throughput myofibroblast assays identify agonists with therapeutic potential in pulmonary fibrosis that act via EP2 and EP4 receptors. PLoS One 2018; 13:e0207872. [PMID: 30485339 PMCID: PMC6261607 DOI: 10.1371/journal.pone.0207872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Pathological features of pulmonary fibrosis include accumulation of myofibroblasts and increased extracellular matrix (ECM) deposition in lung tissue. Contractile α–smooth muscle actin (α–SMA)–expressing myofibroblasts that produce and secrete ECM are key effector cells of the disease and therefore represent a viable target for potential novel anti–fibrotic treatments. We used primary normal human lung fibroblasts (NHLF) in two novel high–throughput screening assays to discover molecules that inhibit or revert fibroblast–to–myofibroblast differentiation. A phenotypic high–content assay (HCA) quantified the degree of myofibroblast differentiation, whereas an impedance–based assay, multiplexed with MS / MS quantification of α–SMA and collagen 1 alpha 1 (COL1) protein, provided a measure of contractility and ECM formation. The synthetic prostaglandin E1 (PGE1) alprostadil, which very effectively and potently attenuated and even reversed TGF–β1–induced myofibroblast differentiation, was identified by screening a library of approved drugs. In TGF–β1–induced myofibroblasts the effect of alprostadil was attributed to activation of prostanoid receptor 2 and 4 (EP2 and EP4, respectively). However, selective activation of the EP2 or the EP4 receptor was already sufficient to prevent or reverse TGF–β1–induced NHLF myofibroblast transition. Our high–throughput assays identified chemical structures with potent anti–fibrotic properties acting through potentially novel mechanisms.
Collapse
Affiliation(s)
- Patrick Sieber
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
- * E-mail:
| | - Anny Schäfer
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | - Manuel Stritt
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - John Gatfield
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Oliver Peter
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Oliver Nayler
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Urs Lüthi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
36
|
Corboz MR, Zhang J, LaSala D, DiPetrillo K, Li Z, Malinin V, Brower J, Kuehl PJ, Barrett TE, Perkins WR, Chapman RW. Therapeutic administration of inhaled INS1009, a treprostinil prodrug formulation, inhibits bleomycin-induced pulmonary fibrosis in rats. Pulm Pharmacol Ther 2018; 49:95-103. [DOI: 10.1016/j.pupt.2018.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/20/2023]
|
37
|
Shiraishi K, Jinta T, Nishimura N, Nakaoka H, Tsugitomi R, Okafuji K, Kitamura A, Tomishima Y, Deshpande GA, Tamura T. Digital Clubbing Is Associated with Higher Serum KL-6 Levels and Lower Pulmonary Function in Patients with Interstitial Lung Disease. Can Respir J 2018; 2018:3640967. [PMID: 29610629 PMCID: PMC5828477 DOI: 10.1155/2018/3640967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Background Although digital clubbing is a common presentation in patients with interstitial lung disease (ILD), little has been reported regarding its role in assessing patients with ILD. This study evaluated patients with ILD for the presence of clubbing and investigated its association with clinical data. Methods We evaluated patients with ILD who visited the teaching hospital at which the study was conducted, between October 2014 and January 2015. Clubbing, evaluated using a Vernier caliper for individual patients, was defined as a phalangeal depth ratio > 1. We examined the association of clubbing with clinical data. Results Of 102 patients with ILD, we identified 17 (16.7%) with clubbing. The partial pressure of oxygen in arterial blood was lower (65.2 ± 5.9 mmHg versus 80.2 ± 3.1 mmHg; p=0.03), serum Krebs von den Lugen-6 (KL-6) levels were higher (1495.0 ± 277.4 U/mL versus 839.1 ± 70.2 U/mL; p=0.001), and the percent predicted diffusing capacity of carbon monoxide was lower (50.0 ± 6.0 versus 73.5 ± 3.1; p=0.002) in these patients with clubbing. Conclusions Patients with clubbing had lower oxygen levels, higher serum KL-6 levels, and lower pulmonary function than those without clubbing.
Collapse
Affiliation(s)
- Kazushige Shiraishi
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Torahiko Jinta
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Naoki Nishimura
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Hiroshi Nakaoka
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Ryosuke Tsugitomi
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Kohei Okafuji
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Kitamura
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Yutaka Tomishima
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Gautam A. Deshpande
- Center for Clinical Epidemiology, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| | - Tomohide Tamura
- Department of Pulmonary Medicine, St. Luke's International University, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
38
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.
Collapse
|
39
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:810. [PMID: 29081515 DOI: 10.1038/nrd.2017.225] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:755-772. [DOI: 10.1038/nrd.2017.170] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Yamazaki R, Kasuya Y, Fujita T, Umezawa H, Yanagihara M, Nakamura H, Yoshino I, Tatsumi K, Murayama T. Antifibrotic effects of cyclosporine A on TGF‐β1–treated lung fibroblasts and lungs from bleomycin‐treated mice: role of hypoxia‐inducible factor‐1α. FASEB J 2017; 31:3359-3371. [DOI: 10.1096/fj.201601357r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Risa Yamazaki
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular PharmacologyChiba University Chiba Japan
- Department of Biomedical ScienceChiba University Chiba Japan
| | - Tetsuo Fujita
- Department of Biochemistry and Molecular PharmacologyChiba University Chiba Japan
- Department of RespirologyChiba University Chiba Japan
| | - Hiroki Umezawa
- Department of Biochemistry and Molecular PharmacologyChiba University Chiba Japan
- Department of Biomedical ScienceChiba University Chiba Japan
- Department of RespirologyChiba University Chiba Japan
| | - Madoka Yanagihara
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| | - Ichiro Yoshino
- Department of General Thoracic SurgeryGraduate School of MedicineChiba University Chiba Japan
| | | | - Toshihiko Murayama
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| |
Collapse
|
42
|
Li X, Yue S, Luo Z. Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget 2017; 8:102600-102616. [PMID: 29254275 PMCID: PMC5731985 DOI: 10.18632/oncotarget.18126] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a major cause of respiratory failure in critically ill patients and common outcome of various lung interstitial diseases. Its mortality remains high, and no effective pharmacotherapy, in addition to artificial ventilation and transplantation, exists. As such, the administration of mesenchymal stem or stromal cells (MSCs) is currently investigated as a new therapeutic method for pulmonary fibrosis. Clinical trials on MSC-based therapy as a potential treatment for lung injury and fibrosis are also performed. MSCs can migrate to injured sites and secrete multiple paracrine factors and then regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. In this review, recent studies on stem cells, particularly MSCs, involved in alleviating lung inflammation and fibrosis and their potential MSC-induced mechanisms, including migration and differentiation, soluble factor and extracellular vesicle secretion, and endogenous regulatory functions, were summarized.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shaojie Yue
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
43
|
Valatas V, Filidou E, Drygiannakis I, Kolios G. Stromal and immune cells in gut fibrosis: the myofibroblast and the scarface. Ann Gastroenterol 2017; 30:393-404. [PMID: 28655975 PMCID: PMC5479991 DOI: 10.20524/aog.2017.0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory scarring is the end-result of excessive extracellular matrix (ECM) accumulation and tissue architectural destruction. It represents a failure to effectively remodel ECM and achieve proper reinstitution and healing during chronic relapsing inflammatory processes. Scarring may affect the functionality of any organ, and in the case of inflammatory bowel disease (IBD)-associated fibrosis leads to stricture formation and often surgery to remove the affected bowel. The activated myofibroblast is the final effector cell that overproduces ECM under the influence of various mediators generated by an intense interplay of classic and non-classic immune cells. This review focuses on how proinflammatory mediators from various sources produced in different stages of intestinal inflammation can form profibrotic pathways that eventually lead to tissue scarring through sustained activation of myofibroblasts.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| |
Collapse
|
44
|
Kida T, Ayabe S, Omori K, Nakamura T, Maehara T, Aritake K, Urade Y, Murata T. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis. PLoS One 2016; 11:e0167729. [PMID: 27992456 PMCID: PMC5167321 DOI: 10.1371/journal.pone.0167729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/19/2016] [Indexed: 01/08/2023] Open
Abstract
Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Taiki Kida
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Ayabe
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toko Maehara
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Zhou Y, He Z, Gao Y, Zheng R, Zhang X, Zhao L, Tan M. Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition. Front Pharmacol 2016; 7:430. [PMID: 27895584 PMCID: PMC5108931 DOI: 10.3389/fphar.2016.00430] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS) cells have been considered as an ideal resource for stem cell-based therapy. Although, an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF)-β1 signaling pathway, and epithelial to mesenchymal transition (EMT) during bleomycin (BLM)-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg) was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free) were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2) to its tissue inhibitor -2 (TIMP-2) and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3) and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM) profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse alveolar epithelial type II cells (AECII). Collectively, our results suggest that transplantation of iPS cells could suppress inflammatory responses, TGF-β1/Smad2/3 pathway and EMT during the progression of BLM-induced pulmonary fibrosis, providing new useful clues regarding the mechanisms of iPS cells in the treatment for this disease.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Zhong He
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Yuan Gao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Rui Zheng
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University Shenyang, China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Mingqi Tan
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| |
Collapse
|
46
|
Peña Silva RA, Mitchell IJ, Kung DK, Pewe LL, Granja MF, Harty JT, Faraci FM, Heistad DD, Hasan DM. Paradoxical Increase in Mortality and Rupture of Intracranial Aneurysms in Microsomal Prostaglandin E2 Synthase Type 1-Deficient Mice: Attenuation by Aspirin. Neurosurgery 2016; 77:613-20. [PMID: 26134597 DOI: 10.1227/neu.0000000000000883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in formation and rupture of intracranial aneurysms. Expression of microsomal prostaglandin E2 (PGE2) synthase type 1 (mPGES-1) is increased in the wall of intracranial aneurysms in humans. PGE2, a by-product of mPGES-1, is associated with inflammation and cerebrovascular dysfunction. OBJECTIVE To test the hypothesis that deletion of mPGES-1 decreases the formation and rupture of intracranial aneurysms in a murine model. METHODS Intracranial aneurysms were induced in wild-type and mPGES-1 knockout (mPGES-1 KO) mice by using a combination of deoxycorticosterone acetate-salt-induced hypertension and intracranial injection of elastase in the basal cistern. Prevalence of aneurysms, subarachnoid hemorrhage, and mortality were assessed. We also tested the effects of administration of aspirin (6 mg/kg/d) by gavage and PGE2 (1 mg/kg/d) by subcutaneous infusion. RESULTS Systolic blood pressure and prevalence of aneurysm were similar in wild-type and mPGES-1 KO mice. However, mortality and the prevalence of subarachnoid hemorrhage were markedly increased in mPGES-1 KO mice (P < .05). Bone marrow reconstitution studies suggest that mPGES-1 derived from leukocytes does not appear to increase rupture of intracranial aneurysms. Aspirin, but not PGE2, attenuated the increased mortality in mPGES-1 KO mice (P < .05). CONCLUSION Vascular mPGES-1 plays a protective role in blood vessels and attenuates rupture of cerebral aneurysms. In contrast to effects on abdominal aneurysms, mPGES-1 deficiency is associated with an increase in rupture of cerebral aneurysms and mortality, which are attenuated by low-dose aspirin.
Collapse
Affiliation(s)
- Ricardo A Peña Silva
- *Universidad de los Andes, Bogotá, Colombia; ‡Departments of Internal Medicine, §Neurosurgery, ¶Microbiology, and ‖Pharmacology, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of Lung Fibrosis Resolution. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1066-77. [PMID: 27021937 DOI: 10.1016/j.ajpath.2016.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/09/2023]
Abstract
Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California; Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - Simon Wong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California
| | - Carmen A Taype
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California-San Diego, La Jolla, California
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
48
|
La J, Reed EB, Koltsova S, Akimova O, Hamanaka RB, Mutlu GM, Orlov SN, Dulin NO. Regulation of myofibroblast differentiation by cardiac glycosides. Am J Physiol Lung Cell Mol Physiol 2016; 310:L815-23. [PMID: 26851261 DOI: 10.1152/ajplung.00322.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast differentiation is a key process in pathogenesis of fibrotic diseases. Cardiac glycosides (ouabain, digoxin) inhibit Na(+)-K(+)-ATPase, resulting in increased intracellular [Na(+)]-to-[K(+)] ratio in cells. Microarray analysis suggested that increased intracellular [Na(+)]/[K(+)] ratio may promote the expression of cyclooxygenase-2 (COX-2), a critical enzyme in the synthesis of prostaglandins. Given antifibrotic effects of prostaglandins through activation of protein kinase A (PKA), we examined if cardiac glycosides stimulate COX-2 expression in human lung fibroblasts and how they affect myofibroblast differentiation. Ouabain stimulated a profound COX-2 expression and a sustained PKA activation, which was blocked by COX-2 inhibitor or by COX-2 knockdown. Ouabain-induced COX-2 expression and PKA activation were abolished by the inhibitor of the Na(+)/Ca(2+) exchanger, KB-R4943. Ouabain inhibited transforming growth factor-β (TGF-β)-induced Rho activation, stress fiber formation, serum response factor activation, and the expression of smooth muscle α-actin, collagen-1, and fibronectin. These effects were recapitulated by an increase in intracellular [Na(+)]/[K(+)] ratio through the treatment of cells with K(+)-free medium or with digoxin. Although inhibition of COX-2 or of the Na(+)/Ca(2+) exchanger blocked ouabain-induced PKA activation, this failed to reverse the inhibition of TGF-β-induced Rho activation or myofibroblast differentiation by ouabain. Together, these data demonstrate that ouabain, through the increase in intracellular [Na(+)]/[K(+)] ratio, drives the induction of COX-2 expression and PKA activation, which is accompanied by a decreased Rho activation and myofibroblast differentiation in response to TGF-β. However, COX-2 expression and PKA activation are not sufficient for inhibition of the fibrotic effects of TGF-β by ouabain, suggesting that additional mechanisms must exist.
Collapse
Affiliation(s)
- Jennifer La
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Eleanor B Reed
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Svetlana Koltsova
- Laboratory of Biomembranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation; and
| | - Olga Akimova
- Laboratory of Biomembranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation; and
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Sergei N Orlov
- Laboratory of Biomembranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation; and Siberian State Medical University, Tomsk, Russian Federation
| | - Nickolai O Dulin
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois;
| |
Collapse
|
49
|
Hidvegi T, Stolz DB, Alcorn JF, Yousem SA, Wang J, Leme AS, Houghton AM, Hale P, Ewing M, Cai H, Garchar EA, Pastore N, Annunziata P, Kaminski N, Pilewski J, Shapiro SD, Pak SC, Silverman GA, Brunetti-Pierri N, Perlmutter DH. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy. J Biol Chem 2015; 290:29742-57. [PMID: 26494620 DOI: 10.1074/jbc.m115.691253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that autophagy mitigates the pathological effects of proteinopathies in the liver, heart, and skeletal muscle but this has not been investigated for proteinopathies that affect the lung. This may be due at least in part to the lack of an animal model robust enough for spontaneous pathological effects from proteinopathies even though several rare proteinopathies, surfactant protein A and C deficiencies, cause severe pulmonary fibrosis. In this report we show that the PiZ mouse, transgenic for the common misfolded variant α1-antitrypsin Z, is a model of respiratory epithelial cell proteinopathy with spontaneous pulmonary fibrosis. Intracellular accumulation of misfolded α1-antitrypsin Z in respiratory epithelial cells of the PiZ model resulted in activation of autophagy, leukocyte infiltration, and spontaneous pulmonary fibrosis severe enough to elicit functional restrictive deficits. Treatment with autophagy enhancer drugs or lung-directed gene transfer of TFEB, a master transcriptional activator of the autophagolysosomal system, reversed these proteotoxic consequences. We conclude that this mouse is an excellent model of respiratory epithelial proteinopathy with spontaneous pulmonary fibrosis and that autophagy is an important endogenous proteostasis mechanism and an attractive target for therapy.
Collapse
Affiliation(s)
- Tunda Hidvegi
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | - John F Alcorn
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | | | | | - Pamela Hale
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Michael Ewing
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Houming Cai
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Evelyn Akpadock Garchar
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Nunzia Pastore
- Department of Translational Medicine, Federico II University, Naples, Italy, 80138
| | - Patrizia Annunziata
- Department of Translational Medicine, Federico II University, Naples, Italy, 80138
| | | | | | | | - Stephen C Pak
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Gary A Silverman
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, Cell Biology, and
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy, 80138 Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy, 80131, and
| | - David H Perlmutter
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, Cell Biology, and
| |
Collapse
|
50
|
Cheng J, Dackor RT, Bradbury JA, Li H, DeGraff LM, Hong LK, King D, Lih FB, Gruzdev A, Edin ML, Travlos GS, Flake GP, Tomer KB, Zeldin DC. Contribution of alveolar type II cell-derived cyclooxygenase-2 to basal airway function, lung inflammation, and lung fibrosis. FASEB J 2015; 30:160-73. [PMID: 26396235 DOI: 10.1096/fj.14-268458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX)-2 has been shown to be involved in regulating basal airway function, bacterial LPS-induced airway hyperresponsiveness (AHR) and lung inflammation, and bleomycin-induced lung fibrosis; however, the cellular source of COX-2 that underlies these effects is unknown. We generated mice with alveolar type II (ATII) cell-specific knockdown of COX-2 (AT2CC(-/-)), to examine the role of ATII cell-derived prostaglandins (PGs) in these processes. Specific knockdown of COX-2 was confirmed by real-time RT-PCR and Western blot analyses. LC/MS/MS analysis showed that ATII cells produced PGs. Basal airway responsiveness of AT2CC(-/-) mice was decreased compared to that of wild-type (WT) mice. LPS-induced hypothermic response, infiltration of inflammatory cells into the airway, and lung inflammation were enhanced in AT2CC(-/-) mice relative to WT controls; however, LPS-induced AHR and proinflammatory cytokine and chemokine expression were similar between the genotypes. After 21 d of bleomycin administration, AT2CC(-/-) mice behaved in a manner similar to WT mice. Thus, ATII cell-derived COX-2 plays an important role in regulating basal airway function and LPS-induced lung inflammation, but does not play a role in bleomycin-induced fibrosis. These findings provide insight into the cellular source of COX-2 related to these lung phenotypes.
Collapse
Affiliation(s)
- Jennifer Cheng
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Ryan T Dackor
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - J Alyce Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Hong Li
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Lee K Hong
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Debra King
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory S Travlos
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gordon P Flake
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kenneth B Tomer
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|