1
|
Mao P, Wu S, Li J, Fu W, He W, Liu X, Slutsky AS, Zhang H, Li Y. Human alveolar epithelial type II cells in primary culture. Physiol Rep 2015; 3:e12288. [PMID: 25677546 PMCID: PMC4393197 DOI: 10.14814/phy2.12288] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 01/13/2023] Open
Abstract
Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells.
Collapse
Affiliation(s)
- Pu Mao
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Songling Wu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Jianchun Li
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Wei Fu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Arthur S Slutsky
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
- Keenan Research Centre for Biomedical Science of St. Michael's HospitalToronto, Ontario, Canada
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - Haibo Zhang
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
- Keenan Research Centre for Biomedical Science of St. Michael's HospitalToronto, Ontario, Canada
- Department of Medicine, University of TorontoToronto, Ontario, Canada
- Department of Anesthesia, University of TorontoToronto, Ontario, Canada
- Department of Physiology, University of TorontoToronto, Ontario, Canada
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
2
|
Synergistic effect of caffeine and glucocorticoids on expression of surfactant protein B (SP-B) mRNA. PLoS One 2012; 7:e51575. [PMID: 23272120 PMCID: PMC3522739 DOI: 10.1371/journal.pone.0051575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis.
Collapse
|
3
|
Roszell BR, Tao JQ, Yu KJ, Huang S, Bates SR. Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung. Am J Physiol Lung Cell Mol Physiol 2012; 302:L919-32. [PMID: 22367786 DOI: 10.1152/ajplung.00383.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Niemann-Pick C (NPC) pathway plays an essential role in the intracellular trafficking of cholesterol by facilitating the release of lipoprotein-derived sterol from the lumen of lysosomes. Regulation of cellular cholesterol homeostasis is of particular importance to lung alveolar type II cells because of the need for production of surfactant with an appropriate lipid composition. We performed microscopic and biochemical analysis of NPC proteins in isolated rat type II pneumocytes. NPC1 and NPC2 proteins were present in the lung, isolated type II cells in culture, and alveolar macrophages. The glycosylated and nonglycosylated forms of NPC1 were prominent in the lung and the lamellar body organelles. Immunocytochemical analysis of isolated type II pneumocytes showed localization of NPC1 to the limiting membrane of lamellar bodies. NPC2 and lysosomal acid lipase were found within these organelles, as confirmed by z-stack analysis of confocal images. All three proteins also were identified in small, lysosome-like vesicles. In the presence of serum, pharmacological inhibition of the NPC pathway with compound U18666A resulted in doubling of the cholesterol content of the type II cells. Filipin staining revealed a striking accumulation of cholesterol within lamellar bodies. Thus the NPC pathway functions to control cholesterol accumulation in lamellar bodies of type II pneumocytes and, thereby, may play a role in the regulation of surfactant cholesterol content.
Collapse
Affiliation(s)
- Blair R Roszell
- Institute for Environmental Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104-6068, USA
| | | | | | | | | |
Collapse
|
4
|
Takahashi Y, Izumi Y, Kohno M, Kawamura M, Ikeda E, Nomori H. Airway administration of dexamethasone, 3'-5'-cyclic adenosine monophosphate, and isobutylmethylxanthine facilitates compensatory lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol 2010; 300:L453-61. [PMID: 21224213 DOI: 10.1152/ajplung.00100.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The combination of dexamethasone, 8-bromo-3'-5'-cyclic adenosine monophosphate, and isobutylmethylxanthine, referred to as DCI, has been reported to optimally induce cell differentiation in fetal lung explants and type II epithelial cells. DCI administration is also known to modulate the expression levels of many genes known to be involved in the facilitation of lung growth. Recently, we found that RNA silencing of thyroid transcription factor 1 (TTF-1) delayed compensatory lung growth. DCI is also known to induce TTF-1 expression in pulmonary epithelial cells. From these findings, we hypothesized that DCI administration may facilitate compensatory lung growth. In the present study, using a postpneumonectomy lung growth model in 9-wk-old male mice, we found that compensatory lung growth was significantly facilitated by airway administration of DCI immediately following left pneumonectomy, as indicated by the increase in the residual right lung dry weight index. TTF-1 expression was significantly elevated by DCI administration, and transient knockdown of TTF-1 attenuated the facilitation of compensatory lung growth by DCI. These results suggested that DCI facilitated compensatory lung growth, at least in part, through the induction of TTF-1. Morphological analyses suggested that DCI administration increased the number of alveoli, made each of them smaller, and produced a net increase in the calculated surface area of the alveoli per volume of lung. The effect of a single administration was maintained during the observation period, which was 28 days. DCI with further modifications may provide the material to potentially augment residual lung function after resection.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Division of General Thoracic Surgery, Dept. of Surgery, School of Medicine, Keio Univ., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Foster CD, Varghese LS, Gonzales LW, Margulies SS, Guttentag SH. The Rho pathway mediates transition to an alveolar type I cell phenotype during static stretch of alveolar type II cells. Pediatr Res 2010; 67:585-90. [PMID: 20220547 PMCID: PMC3063400 DOI: 10.1203/pdr.0b013e3181dbc708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stretch is an essential mechanism for lung growth and development. Animal models in which fetal lungs have been chronically over or underdistended demonstrate a disrupted mix of type II and type I cells, with static overdistention typically promoting a type I cell phenotype. The Rho GTPase family, key regulators of cytoskeletal signaling, are known to mediate cellular differentiation in response to stretch in other organs. Using a well-described model of alveolar epithelial cell differentiation and a validated stretch device, we investigated the effects of supraphysiologic stretch on human fetal lung alveolar epithelial cell phenotype. Static stretch applied to epithelial cells suppressed type II cell markers (SP-B and Pepsinogen C, PGC), and induced type I cell markers (Caveolin-1, Claudin 7 and Plasminogen Activator Inhibitor-1, PAI-1) as predicted. Static stretch was also associated with Rho A activation. Furthermore, the Rho kinase inhibitor Y27632 decreased Rho A activation and blunted the stretch-induced changes in alveolar epithelial cell marker expression. Together these data provide further evidence that mechanical stimulation of the cytoskeleton and Rho activation are key upstream events in mechanotransduction-associated alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Cherie D Foster
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
6
|
Ballard PL, Lee JW, Fang X, Chapin C, Allen L, Segal MR, Fischer H, Illek B, Gonzales LW, Kolla V, Matthay MA. Regulated gene expression in cultured type II cells of adult human lung. Am J Physiol Lung Cell Mol Physiol 2010; 299:L36-50. [PMID: 20382749 DOI: 10.1152/ajplung.00427.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.
Collapse
Affiliation(s)
- Philip L Ballard
- Department of Pediatrics, University of California San Francisco, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jin C, Zoidis E, Ghirlanda C, Schmid C. Dexamethasone and cyclic AMP regulate sodium phosphate cotransporter (NaPi-IIb and Pit-1) mRNA and phosphate uptake in rat alveolar type II epithelial cells. Lung 2009; 188:51-61. [PMID: 19806400 DOI: 10.1007/s00408-009-9183-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
Alveolar epithelial type II (AT II) cells need phosphate (Pi) for surfactant synthesis. The Na-dependent (Na(d)) Pi transporters NaPi-IIb and Pit-1 are expressed in lung, but their expression, regulation, and function in AT II cells remain unclear. We studied NaPi-IIb and Pit-1 mRNA expression in cultured AT II cells isolated from adult rat lung, their regulation by agents known to enhance surfactant production, dexamethasone (dex) and dibutyryl cyclic AMP (cAMP), and the effects of dex and cAMP on Na(d) Pi uptake by this cell type. By Northern analysis, cultured AT II cells expressed both NaPi-IIb (4.8 and 4.0 kb) and Pit-1 (4.3 kb) mRNA. Treatment with 100 nmol/l dex for 24 h decreased the expression of both mRNAs (to 0.48 +/- 0.06 and 0.77 +/- 0.05, respectively, as compared to control), while 0.1 mmol/l cAMP stimulated NaPi-IIb (1.94 +/- 0.22) but not Pit-1 mRNA (0.90 +/- 0.05, compared to vehicle-treated cells). NaPi-IIb and Pit-1 proteins could not be identified by western analysis of plasma membrane preparations of cultured AT II cells. AT II cells take up Pi in a Na(d) manner. Uptake was slightly (to 0.78-fold of the control) decreased by 100 nmol/l dex but not affected by 0.1 mmol/l cAMP treatment. Although NaPi-IIb mRNA expression was maintained to some extent by AT II cells kept in primary culture, Pi uptake was more closely related to Pit-1 mRNA expression.
Collapse
Affiliation(s)
- Chengluo Jin
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital, 8091, Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Wang Y, Feinstein SI, Fisher AB. Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced oxidative stress. J Cell Biochem 2008; 104:1274-85. [PMID: 18260127 DOI: 10.1002/jcb.21703] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We evaluated the antioxidant role of peroxiredoxin 6 (Prdx6) in primary lung alveolar epithelial type II cells (AEC II) that were isolated from wild type (WT), Prdx6-/-, or Prdx6 transgenic (Tg) overexpressing mice and exposed to H(2)O(2) at 50-500 microM for 1-24 h. Expression of Prdx6 in Tg AEC II was sevenfold greater than WT. Prdx6 null AEC II exposed to H(2)O(2) showed concentration-dependent cytotoxicity indicated by decreased "live/dead" cell ratio, increased propidium iodide (PI) staining, increased annexin V binding, increased DNA fragmentation by TUNEL assay, and increased lipid peroxidation by diphenylpyrenylphosphine (DPPP) fluorescence. Compared to Prdx6 null cells, oxidant-mediated damage was significantly less in WT AEC II and was least in Prdx6 Tg cells. Thus, Prdx6 functions as an antioxidant enzyme in mouse AEC II. Prdx6 has been shown previously to reduce phospholipid hydroperoxides and we postulate that this activity is a major mechanism for the effectiveness of Prdx6 as an antioxidant enzyme.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | |
Collapse
|
9
|
Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM. In Vivo Pulmonary Tissue Engineering: Contribution of Donor-Derived Endothelial Cells to Construct Vascularization*. Tissue Eng Part A 2008; 14:361-8. [DOI: 10.1089/tea.2007.0041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mark J. Mondrinos
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Sirma H. Koutzaki
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Honesto M. Poblete
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - M. Cecilia Crisanti
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Peter I. Lelkes
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Christine M. Finck
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Current address: Department of Pediatric Surgery, Connecticut Children's Hospital, Hartford, Connecticut
| |
Collapse
|
10
|
Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels: a cross-sectional study. Respir Res 2008; 9:13. [PMID: 18226251 PMCID: PMC2249580 DOI: 10.1186/1465-9921-9-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/28/2008] [Indexed: 12/02/2022] Open
Abstract
Background Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear. Methods We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture. Results Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture. Conclusion Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.
Collapse
|
11
|
Bates SR, Tao JQ, Yu KJ, Borok Z, Crandall ED, Collins HL, Rothblat GH. Expression and biological activity of ABCA1 in alveolar epithelial cells. Am J Respir Cell Mol Biol 2007; 38:283-92. [PMID: 17884990 PMCID: PMC2258448 DOI: 10.1165/rcmb.2007-0020oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms used by alveolar type I pneumocytes for maintenance of the lipid homeostasis necessary to sustain these large squamous cells are unknown. The processes may involve the ATP-binding cassette transporter A1 (ABCA1), a transport protein shown to be crucial in apolipoprotein A-I (apoA-I)-mediated mobilization of cellular cholesterol and phospholipid. Immunohistochemical data demonstrated the presence of ABCA1 in lung type I and type II cells and in cultured pneumocytes. Type II cells isolated from rat lungs and cultured for 5 days in 10% serum trans-differentiated toward cells with a type I-like phenotype which reacted with the type I cell-specific monoclonal antibody VIIIB2. Upon incubation of the type I-like pneumocytes with agents that up-regulate the ABCA1 gene (9-cis-retinoic acid [9cRA] and 22-hydroxycholesterol [22-OH, 9cRA/22-OH]), ABCA1 protein levels were enhanced to maximum levels after 8 to 16 hours and remained elevated for 24 hours. In the presence of apoA-I and 9cRA/22-OH, efflux of radioactive phospholipid and cholesterol from pneumocytes was stimulated 3- to 20-fold, respectively, over controls. Lipid efflux was inhibited by Probucol. Sucrose density gradient analysis of the media from stimulated cells incubated with apoA-I identified heterogeneous lipid particles that isolated at a density between 1.063 and 1.210 g/ml, with low or high apoA-I content. Thus, pneumocytes with markers for the type I phenotype contained functional ABCA1 protein, released lipid to apoA-I protein, and were capable of producing particles resembling nascent high-density lipoprotein, indicating an important role for ABCA1 in the maintenance of lung lipid homeostasis.
Collapse
Affiliation(s)
- Sandra R Bates
- Institute for Environmental Medicine, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Crisanti MC, Koutzaki SH, Mondrinos MJ, Lelkes PI, Finck CM. Novel methods for delivery of cell-based therapies. J Surg Res 2007; 146:3-10. [PMID: 17686493 PMCID: PMC2373425 DOI: 10.1016/j.jss.2007.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pulmonary hypoplasia (PH) is found in 15% to 20% of all neonatal autopsies, accounting for 2850 deaths yearly. Development of engineered tissue substitutes that could functionally restore damaged tissue remains a unique opportunity for biotechnology. Recently, we isolated and characterized murine fetal pulmonary cells (FPC) and engineered 3-D pulmonary tissue constructs in vitro. Our goal is to devise a reliable and reproducible method for delivering FPC into a live animal model of PH. MATERIALS AND METHODS Three methods of delivery were explored: intraoral, intratracheal, and intrapulmonary injection. Adult Swiss Webster mice were anesthetized and fluorescent labeled microspheres (20 microm diameter) were delivered by intraoral and intratracheal injection. Subsequently, labeled FPC (Cell Tracker, CMTPX; Molecular Probes, Eugene, OR) were delivered by the same methods. In addition, direct transpleural intrapulmonary injection of FPC was performed. Outcome analysis included survival, reproducibility, diffuse versus confined location of the injected substance, and adequacy of delivery. Routine histological examination, fluorescent microscopy, and immunostaining were performed. RESULTS Microspheres: We demonstrated reproducible, diffuse instillation via tracheotomy into the distal alveoli. Intraoral delivery appeared less reliable compared to direct intratracheal injection. FPC: Intratracheal injection was a reliable method of delivery. Labeled FPC showed transepithelial migration after 7 d of in vivo culture. Intrapulmonary injection led to local accumulation of cells in sites of injection. CONCLUSIONS We demonstrate that delivery of FPC is feasible with intratracheal injection giving the most reliable, diffuse delivery throughout the lung. This represents the first step toward translational research with site-specific delivery for a cell-based therapeutic approach toward PH and similar pulmonary diseases.
Collapse
Affiliation(s)
- M Cecilia Crisanti
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
13
|
Barar J, Campbell L, Hollins AJ, Thomas NPB, Smith MW, Morris CJ, Gumbleton M. Cell selective glucocorticoid induction of caveolin-1 and caveolae in differentiating pulmonary alveolar epithelial cell cultures. Biochem Biophys Res Commun 2007; 359:360-6. [PMID: 17537407 DOI: 10.1016/j.bbrc.2007.05.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/17/2007] [Indexed: 11/25/2022]
Abstract
Increased caveolin-1 expression is a marker of the differentiation of lung alveolar epithelial type II cells into a type I phenotype. Here, we show in both a primary differentiating rat alveolar culture, and a human alveolar cell line (A549) that caveolae formation and caveolin-1 expression are dependent upon dexamethasone Dex, and is inhibited by the glucocorticoid receptor (GR) antagonist, mifepristone. Study of a panel of 20 different cell types showed the effect of (Dex) upon caveolin-1 expression to be highly cell selective for lung alveolar epithelial cells. The actions of glucocorticoid upon caveolin-1 appear indirect acting via intermediary genes as evidenced by cycloheximide (CHX) abolition of Dex-induced increases in caveolin-1 mRNA and by recombinant transfection studies using the caveolin-1 promoter cloned upstream of a reporter gene. Treatment with actinomycin D (ACD) revealed that the effects of Dex are also, at least in part, mediated by stabilisation of caveolin-1 mRNA. Collectively, these results indicate that glucocorticoids modulate the expression of caveolin-1 and caveolae biogenesis within alveolar epithelial cells via both transcriptional and translational modifications. The cell-selective effects of glucocorticoid upon caveolin may represent a previously unrecognised mechanism by which glucocorticoids affect lung development.
Collapse
Affiliation(s)
- Jaleh Barar
- Cardiopulmonary Research, Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Dobbs LG, Johnson MD. Alveolar epithelial transport in the adult lung. Respir Physiol Neurobiol 2007; 159:283-300. [PMID: 17689299 DOI: 10.1016/j.resp.2007.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 01/11/2023]
Abstract
The alveolar surface comprises >99% of the internal surface area of the lungs. At birth, the fetal lung rapidly converts from a state of net fluid secretion, which is necessary for normal fetal lung development, to a state in which there is a minimal amount of alveolar liquid. The alveolar surface epithelium facing the air compartment is composed of TI and TII cells. The morphometric characteristics of both cell types are fairly constant over a range of mammalian species varying in body weight by a factor of approximately 50,000. From the conservation of size and shape across species, one may infer that both TI and TII cells also have important conserved functions. The regulation of alveolar ion and liquid transport has been extensively investigated using a variety of experimental models, including whole animal, isolated lung, isolated cell, and cultured cell model systems, each with their inherent strengths and weaknesses. The results obtained with different model systems and a variety of different species point to both interesting parallels and some surprising differences. Sometimes it has been difficult to reconcile results obtained with different model systems. In this section, the primary focus will be on aspects of alveolar ion and liquid transport under normal physiologic conditions, emphasizing newer data and describing evolving paradigms of lung ion and fluid transport. We will highlight some of the unanswered questions, outline the similarities and differences in results obtained with different model systems, and describe some of the complex and interweaving regulatory networks.
Collapse
Affiliation(s)
- Leland G Dobbs
- Department of Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| | | |
Collapse
|
15
|
Mondrinos MJ, Koutzaki S, Lelkes PI, Finck CM. A tissue-engineered model of fetal distal lung tissue. Am J Physiol Lung Cell Mol Physiol 2007; 293:L639-50. [PMID: 17526596 DOI: 10.1152/ajplung.00403.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In extending our previous studies toward development of an engineered distal lung tissue construct (M. J. Mondrinos, S. Koutzaki, E. Jiwanmall, M. Li, J. P. Dechadarevian, P. I. Lelkes, and C. M. Finck. Tissue Eng 12: 717-728, 2006), we studied the effects of exogenous fibroblast growth factors FGF10, FGF7, and FGF2 on mixed populations of embryonic day 17.5 murine fetal pulmonary cells cultured in three-dimensional collagen gels. The morphogenic effects of the FGFs alone and in various combinations were assessed by whole mount immunohistochemistry and confocal microscopy. FGF10/7 significantly increased epithelial budding and proliferation; however, only FGF10 alone induced widespread budding. FGF7 alone induced dilation of epithelial structures but not widespread budding. FGF2 alone had a similar dilation, but not budding, effect in epithelial structures, and, in addition, significantly enhanced endothelial tubular morphogenesis and network formation, as well as mesenchymal proliferation. The combination of FGF10/7/2 induced robust budding of epithelial structures and the formation of uniform endothelial networks in parallel. These data suggest that appropriate combinations of exogenous FGFs chosen to target specific FGF receptor isoforms will allow for control of lung epithelial and mesenchymal cell behavior in the context of an engineered system. We propose that tissue-engineered fetal distal lung constructs could provide a potential source of tissue or cells for lung augmentation in pediatric pulmonary pathologies, such as pulmonary hypoplasia and bronchopulmonary dysplasia. In addition, engineered systems will provide alternative in vitro venues for the study of lung developmental biology and pathobiology.
Collapse
Affiliation(s)
- M J Mondrinos
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
16
|
Mondrinos MJ, Koutzaki S, Jiwanmall E, Li M, Dechadarevian JP, Lelkes PI, Finck CM. Engineering three-dimensional pulmonary tissue constructs. ACTA ACUST UNITED AC 2006; 12:717-28. [PMID: 16674286 DOI: 10.1089/ten.2006.12.717] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, we report on engineering 3-D pulmonary tissue constructs in vitro. Primary isolates of murine embryonic day 18 fetal pulmonary cells (FPC) were comprised of a mixed population of epithelial, mesenchymal, and endothelial cells as assessed by immunohistochemistry and RT-PCR of 2-D cultures. The alveolar type II (AE2) cell phenotype in 2-D and 3-D cultures was confirmed by detection of SpC gene expression and presence of the gene product prosurfactant protein C. Three-dimensional constructs of FPC were generated utilizing Matrigel hydrogel and synthetic polymer scaffolds of poly-lactic-co-glycolic acid (PLGA) and poly-L-lactic-acid (PLLA) fabricated into porous foams and nanofibrous matrices, respectively. Three-dimensional Matrigel constructs contained alveolar forming units (AFU) comprised of cells displaying AE2 cellular ultrastructure while expressing the SpC gene and gene product. The addition of tissue-specific growth factors induced formation of branching, sacculated epithelial structures reminiscent of the distal lung architecture. Importantly, 3-D culture was necessary for inducing expression of the morphogenesis-associated distal epithelial gene fibroblast growth factor receptor 2 (FGFr2). PLGA foams and PLLA nanofiber scaffolds facilitated ingrowth of FPC, as evidenced by histology. However, these matrices did not support the survival of distal lung epithelial cells, despite the presence of tissue-specific growth factors. Our results may provide the first step on the long road toward engineering distal pulmonary tissue for augmenting and/or replacing dysfunctional native lung in diseases, such as neonatal pulmonary hypoplasia.
Collapse
Affiliation(s)
- Mark J Mondrinos
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kannan S, Pang H, Foster DC, Rao Z, Wu M. Human 8-oxoguanine DNA glycosylase increases resistance to hyperoxic cytotoxicity in lung epithelial cells and involvement with altered MAPK activity. Cell Death Differ 2006; 13:311-23. [PMID: 16052235 PMCID: PMC7091608 DOI: 10.1038/sj.cdd.4401736] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is unknown whether base excision DNA repair (BER) proteins interact with mitogen-activated protein kinases (MAPK) under oxidation. Here, we explored roles of BER proteins in signaling transduction involving MAPK during hyperoxia. We demonstrated that ERK1/2 phosphorylation in A549 cells was increased in 95% O2. p38 activity in A549 cells was also increased by exposure to 95% O2. To evaluate regulatory roles of MAPK, we have transduced A549 cells and primary alveolar epithelial type II cells (AECII) to overexpress 8-oxoguanine DNA glycosylase (hOgg1). Overexpression of hOgg1 reduced hyperoxic toxicity in A549 and AECII cells. Furthermore, protection by BER against hyperoxia appeared to involve an upregulation of ERK1/2 and downregulation of p38. These observations demonstrate, for the first time, that reduction of hyperoxic toxicity by BER proteins may be involved with MAPK activity, thereby impacting cell survival. Furthermore, our studies suggest that modulation of MAPK may be used in combination with BER proteins to counteract hyperoxic toxicity.
Collapse
Affiliation(s)
- S Kannan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND58203 China
| | - H Pang
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
- National Laboratory of Bio-Macromolecules, Institute of Biophysics, Beijing, 100101 China
| | - D C Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND58203 China
| | - Z Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
- National Laboratory of Bio-Macromolecules, Institute of Biophysics, Beijing, 100101 China
| | - M Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND58203 China
| |
Collapse
|
18
|
Bates SR, Tao JQ, Collins HL, Francone OL, Rothblat GH. Pulmonary abnormalities due to ABCA1 deficiency in mice. Am J Physiol Lung Cell Mol Physiol 2005; 289:L980-9. [PMID: 16055479 DOI: 10.1152/ajplung.00234.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice gene targeted for ATP-binding cassette transporter A1 (ABCA1; Abca1−/−) have been shown to have low-serum high-density lipoprotein and abnormal lung morphology. We examined alterations in the structure and function of lungs from −/− mice (DBA1/J). Electron microscopy of the diseased mouse lung revealed areas of focal disease confirming previous results ( 47 ). Lipid analysis of the lung tissue of −/− mice showed a 1.2- and 1.4-fold elevation in total phospholipid (PL) and saturated phosphatidylcholine, respectively, and a marked 50% enrichment in total cholesterol content predominately due to a 17.5-fold increase in cholesteryl ester compared with wild type (WT). Lung surfactant in the −/− mice was characterized by alveolar proteinosis (161%), a slight increase in total PL (124%), and a marked increase in free cholesterol (155%) compared with WT. Alveolar macrophages were enriched in cholesterol (4.8-fold) due to elevations in free cholesterol (2.4-fold) and in cholesteryl ester (14.8-fold) compared with WT macrophages. More PL mass was cleared from the alveolar space of −/− mice lungs, measured using intratracheal installation of3H-PL liposomes. Compared with WT mice, the Abca1−/−mice demonstrated respiratory distress with rapid, shallow breathing. Thus the lungs of mice lacking ABCA1 protein demonstrated abnormal morphology and physiology, with alveolar proteinosis and cholesterol enrichment of tissue, surfactant, and macrophages. The results indicate that the activity of ABCA1 is important for the maintenance of normal lung lipid composition, structure, and function.
Collapse
Affiliation(s)
- Sandra R Bates
- Institute for Environmental Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
19
|
Hasson E, Slovatizky Y, Shimoni Y, Falk H, Panet A, Mitrani E. Solid tissues can be manipulated ex vivo and used as vehicles for gene therapy. J Gene Med 2005; 7:926-35. [PMID: 15744776 DOI: 10.1002/jgm.740] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Organ fragments can be cultured for weeks in vitro if they are prepared of microscopic thickness and if the basic organ structure is preserved. Such organ fragments, which we termed micro-organs (MOs), express in culture endogenous tissue-specific gene products. We have exploited this methodology to engineer MOs ex vivo by gene transfer. METHODS MOs prepared from spleen, lung, colon and skin were infected using: herpes simplex type-1, adeno virus, vaccinia virus and murine leukemia virus (MuLV), carrying the reporter gene beta-galactosidase. RESULTS All four viral vectors infected MOs in culture, with adeno infection giving significantly higher values. After optimization, high levels of expression (> 15% positive cells), comparable to those obtained with the adeno construct, were also obtained using the MuLV construct both in vitro and after implantation into syngeneic hosts. After implantation, the engineered tissue was found to remain localized, become vascularized, and to express the transduced gene for several months. CONCLUSIONS The system can be used to study interactions between viruses and tissues both ex vivo and in vivo. Furthermore, the approach proposes a novel platform for ex vivo gene therapy. Such engineered structures could be used as autologous biological pumps for continuous secretion in vivo of gene products of clinical importance.
Collapse
Affiliation(s)
- E Hasson
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Jain D, Dodia C, Fisher AB, Bates SR. Pathways for clearance of surfactant protein A from the lung. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1011-8. [PMID: 16006481 DOI: 10.1152/ajplung.00250.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uptake and degradation of (125)I-surfactant protein A (SP-A) over a 1-h period was studied in alveolar cells in culture and in isolated perfused lungs to elucidate the mechanism for clearance of the protein from the alveolar space. Specific inhibitors of clathrin- and actin-dependent endocytosis were utilized. In type II cells, uptake of SP-A, compared with controls, was decreased by 60% on incubation with clathrin inhibitors (amantadine and phenylarsine oxide) or with the actin inhibitor cytochalasin D. All agents reduced SP-A metabolism by alveolar macrophages. Untreated rat isolated perfused lungs internalized 36% of instilled SP-A, and 56% of the incorporated SP-A was degraded. Inhibitors of clathrin and actin significantly reduced SP-A uptake by approximately 54%, whereas cytochalasin D inhibited SP-A degradation. Coincubation of agents did not produce an additive effect on uptake of SP-A by cultured pneumocytes or isolated perfused lungs, indicating that all agents affected the same pathway. Thus SP-A clears the lung via a clathrin-mediated pathway that requires the polymerization of actin.
Collapse
Affiliation(s)
- Deepika Jain
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | |
Collapse
|
21
|
Lee JW, Gonzalez RF, Chapin CJ, Busch J, Fineman JR, Gutierrez JA. Nitric oxide decreases surfactant protein gene expression in primary cultures of type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 2005; 288:L950-7. [PMID: 15640287 DOI: 10.1152/ajplung.00210.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaled nitric oxide (NO) is a selective pulmonary vasodilator effective in treating persistent pulmonary hypertension in newborns and in infants following congenital heart disease surgery. Recently, multiple in vivo and in vitro studies have shown a negative effect of NO on surfactant activity as well as surfactant protein gene expression. Although the relationship between NO and surfactant has been studied previously, the data has been hard to interpret due to the model systems used. The objective of the current study was to characterize the effect of NO on surfactant protein gene expression in primary rat type II pneumocytes cultured on a substratum that promoted the maintenance of type II cell phenotype. Exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), decreased surfactant protein (SP)-A, (SP)-B, and (SP)-C mRNA levels in type II pneumocytes in a time- and dose-dependent manner. The effect was mediated in part by an increase in endothelin-1 secretion and a decrease in the intracellular messenger, phosphorylated ERK1/2 mitogen-activated protein kinases (MAPK). Exposing type II pneumocytes to endothelin-1 receptor antagonists PD-156707 or bosentan before exposure to SNAP partially prevented the decrease in surfactant protein gene expression. The results showed that NO mediated the decrease in surfactant protein gene expression at least in part through an increase in endothelin-1 secretion and a decrease in phosphorylated ERK1/2 MAPKs.
Collapse
Affiliation(s)
- Jae W Lee
- Dept. of Anesthesiology, University of California San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Yang MCW, Weissler JC, Terada LS, Deng F, Yang YS. Pleiomorphic adenoma gene-like-2, a zinc finger protein, transactivates the surfactant protein-C promoter. Am J Respir Cell Mol Biol 2004; 32:35-43. [PMID: 15361364 DOI: 10.1165/rcmb.2003-0422oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression of surfactant protein (SP)-C occurs principally in type II pneumocytes located in the distal lung alveolae. SP-C expression is thought to be primarily regulated by thyroid transcription factor (TTF)-1 and its associated proteins interacting with a previously defined promoter region between -197 and -158 in mice. We screened a human lung cDNA library using a modified yeast one-hybrid system and identified pleiomorphic adenoma gene-like (PLAGL)-2, a ubiquitously expressed zinc finger protein, as a transfactor of the SP-C promoter. The PLAGL2 DNA-binding site was located in the SP-C promoter proximal region close to the TTF-1 sites. This site was demonstrated to be functional by use of electrophoresis mobility shift assay, mutagenesis analysis, and transfection studies. PLAGL2 bound to DNA via its N-terminus zinc fingers and activated the SP-C promoter in a TTF-1-independent manner. Both human and mouse SP-C promoters, but not the SP-B promoter, could be activated by PLAGL2 in transfected human embryonic kidney-293 (HEK293) cells as well as in murine type II (MLE12) cells. The expression of PLAGL2 in isolated human embryonic lung type II cells and its transactivation activity on the SP-C promoter suggest that PLAGL2 may modulate SP-C expression during lung development.
Collapse
Affiliation(s)
- Meng-Chun W Yang
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9034, USA
| | | | | | | | | |
Collapse
|
23
|
Cao Y, Tao JQ, Bates SR, Beers MF, Haczku A. IL-4 induces production of the lung collectin surfactant protein-D. J Allergy Clin Immunol 2004; 113:439-44. [PMID: 15007344 DOI: 10.1016/j.jaci.2003.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Surfactant protein (SP)-D is an epithelial cell product of the distal air spaces that aids uptake and clearance of inhaled pathogens and allergens. Allergic airway inflammation significantly increases SP-D levels in the bronchoalveolar lavage fluid in asthmatic patients and mouse models, but the mechanisms involved remain unknown. OBJECTIVE To investigate the effects of the TH2-type cytokine IL-4 on SP-D production by isolated pulmonary epithelial cells. METHODS Rat type II alveolar epithelial cells were purified and cultured with dexamethasone, cAMP, and isobutyl-1-methylxanthine (DCI). The effects of IL-4 on SP-D expression were investigated at the protein and mRNA levels by means of Western and Northern blot analyses. RESULTS In contrast to a lamellar body protein ABCA3 and surfactant protein-A, expression of SP-D significantly declined when cells were cultured in medium alone for 24 hours. The presence of DCI in the culture medium restored SP-D levels, which were enhanced by 2-fold after addition of recombinant IL-4. The enhancing effects of IL-4 were concentration-dependent, with maximum effects observed at 20 ng/mL (1.43 nmol/L). IL-4 did not rescue cycloheximide-induced decrease of intracellular SP-D levels and did not inhibit extracellular release of SP-D. However, IL-4 significantly augmented DCI-induced SP-D mRNA expression by approximately 2.5-fold over control levels. CONCLUSIONS IL-4 selectively upregulates SP-D expression, and it may act at the level of mRNA in isolated pulmonary epithelial cells. Since SP-D has a potent anti-inflammatory function, this mechanism may be part of a negative feedback loop providing a regulatory link between adaptive and innate immunity during allergic inflammation.
Collapse
Affiliation(s)
- Yang Cao
- Pulmonary Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6061, USA
| | | | | | | | | |
Collapse
|
24
|
Kim HS, Manevich Y, Feinstein SI, Pak JH, Ho YS, Fisher AB. Induction of 1-cys peroxiredoxin expression by oxidative stress in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L363-9. [PMID: 12851211 DOI: 10.1152/ajplung.00078.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-Cys peroxiredoxin (1-cysPrx), a member of the peroxiredoxin family that contains a single conserved cysteine residue, reduces a broad spectrum of hydroperoxides. We studied changes in 1-cysPrx expression in rat lungs and lung cell lines in response to oxidative stress due to hyperoxia, H2O2, or paraquat. After 60 h of hyperoxia (>95% O2), mRNA and protein levels of 1-cysPrx and peroxidase activity were significantly elevated in rat lungs by approximately 1.5- to 2-fold compared with the control (P < 0.05). A similar induction of 1-cysPrx was observed in mouse lungs following exposure to O2 for 63 or 72 h; enzyme induction in mouse lungs was similar for wild-type and glutathione peroxidase 1 gene-targeted mice. H2O2 and paraquat treatment induced 1-cysPrx gene expression in L2 cells. Enzyme induction was attenuated by pretreatment with Trolox or N-acetylcysteine. Actinomycin D treatment showed that stability of 1-cysPrx mRNA was not altered in the presence of H2O2 or paraquat, indicating that increased expression with oxidative stress is regulated at the transcriptional level. These data indicate that the antioxidant enzyme 1-cysPrx is induced in lung cells by oxidative stress.
Collapse
Affiliation(s)
- Han-Suk Kim
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gonzales LW, Guttentag SH, Wade KC, Postle AD, Ballard PL. Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol 2002; 283:L940-51. [PMID: 12376347 DOI: 10.1152/ajplung.00127.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mature alveolar type II cells that produce pulmonary surfactant are essential for adaptation to extrauterine life and prevention of infant respiratory distress syndrome. We have developed a new in vitro model to further investigate regulation of type II cell differentiation. Epithelial cells isolated from human fetal lung were cultured in serum-free medium on plastic. Cells treated with dexamethasone + cAMP analog and isobutylmethylxanthine for 4 days exhibited increased phosphatidylcholine synthesis and content of disaturated phosphatidylcholine species, manyfold increases in all surfactant proteins with processing to mature forms, and abundant lamellar bodies. DNA microarray analysis identified approximately 3,100 expressed genes, including subsets of genes induced 2- to >100-fold (approximately 2.5%) or repressed 2- to 18-fold (approximately 1.2%) by hormone treatment. Of the highly regulated genes, most were coregulated in an additive or synergistic manner by dexamethasone and cAMP agents. Approximately 90% of the regulated genes identified by this initial microarray analysis have not been previously recognized as hormone responsive. One newly identified hormone-induced gene is Nkx2.1 (thyroid transcription factor-1), which has a critical role in surfactant protein gene expression. Our findings indicate that glucocorticoid + cAMP is sufficient and necessary for precocious induction of functional type II cells in this in vitro system and that these hormones act primarily in combination to regulate expression of a subset of specific genes.
Collapse
Affiliation(s)
- Linda W Gonzales
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | |
Collapse
|
26
|
Kim HS, Pak JH, Gonzales LW, Feinstein SI, Fisher AB. Regulation of 1-cys peroxiredoxin expression in lung epithelial cells. Am J Respir Cell Mol Biol 2002; 27:227-33. [PMID: 12151315 DOI: 10.1165/ajrcmb.27.2.20010009oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
1-cys peroxiredoxin (1-cys Prx), the only member of a Prx subfamily that contains a single conserved cysteine residue, is abundant in lung. This bifunctional protein has both glutathione peroxidase and phospholipase A2 activities compatible with a role both in protection against lung oxidant injury and also in lung phospholipid metabolism. Here we studied the developmental expression of 1-cys Prx in rat lungs and hormonal effects on protein expression in human and rat lung cells. There was little change in 1-cys Prx expression during the prenatal period, but a marked increase in expression immediately after birth. Enzymatic (peroxidase and phospholipase) activities increased gradually after birth and reached adult level at 7-14 postnatal days. Expression of the protein was induced in the presence of dexamethasone (Dex) in cultured human and rat lung epithelial cells and also was upregulated in neonatal rat lung in vivo. cAMP treatment had no effect on expression, although there was a modest synergistic effect when combined with Dex in human fetal lung epithelial cells. The increased expression of 1-cys Prx at birth may be important for surfactant phospholipid turnover related to the phopholipase A2 activity of the protein and for antioxidant defense based on its peroxidase function.
Collapse
Affiliation(s)
- Han-Suk Kim
- Institute for Environmental Medicine and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|