1
|
Dubaissi E, Hilton EN, Lilley S, Collins R, Holt C, March P, Danahay H, Gosling M, Grencis RK, Roberts IS, Thornton DJ. The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin. Sci Rep 2024; 14:25555. [PMID: 39461969 PMCID: PMC11514049 DOI: 10.1038/s41598-024-76482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The TMEM16A chloride channel is proposed as a therapeutic target in cystic fibrosis, where activation of this ion channel might restore airway surface hydration and mitigate respiratory symptoms. While TMEM16A is associated with increased mucin production under stimulated or pro-inflammatory conditions, its role in baseline mucin production, secretion and/or maturation is less well understood. Here, we use the Xenopus tadpole skin mucociliary surface as a model of human upper airway epithelium to study Tmem16a function in mucus production. We found that Xenopus tropicalis Tmem16a is present at the apical membrane surface of tadpole skin small secretory cells that express canonical markers of mammalian "goblet cells" such as Foxa1 and spdef. X. tropicalis Tmem16a functions as a voltage-gated, calcium-activated chloride channel when transfected into mammalian cells in culture. Depletion of Tmem16a from the tadpole skin results in dysregulated mucin maturation post-secretion, with secreted mucins having a disrupted molecular size distribution and altered morphology assessed by sucrose gradient centrifugation and electron microscopy, respectively. Our results show that in the Xenopus tadpole skin, Tmem16a is necessary for normal mucus barrier formation and demonstrate the utility of this model system to discover new biology relevant to human mucosal biology in health and disease.
Collapse
Affiliation(s)
- Eamon Dubaissi
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Emma N Hilton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Richard Collins
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte Holt
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter March
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Martin Gosling
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Richard K Grencis
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - David J Thornton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Stalter EJ, Verhofste SL, Dagle JM, Steinbach EJ, Ten Eyck P, Wendt L, Segar JL, Harshman LA. Somatic growth outcomes in response to an individualized neonatal sodium supplementation protocol. J Perinatol 2024:10.1038/s41372-024-02141-9. [PMID: 39420073 DOI: 10.1038/s41372-024-02141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Evaluate the impact of a sodium (Na) supplementation protocol based upon urine Na concentration on growth parameters and morbidities. STUDY DESIGN Retrospective cohort study of infants 260/7-336/7 weeks gestational age (GA) cared for before (2012-15, n = 310) and after (2016-20, n = 382) implementation of the protocol. Within- and between-group changes over time were assessed using repeated measures generalized linear models. RESULTS For infants 260/7-296/7 weeks GA, utilization of the protocol was associated with increased mean body weight z-score at 8-weeks postnatal age, increased mean head circumference z-score at 16-weeks postnatal age, and decreased time on mechanical ventilation (all p < 0.02). No impact on growth was identified for infants 30-336/7 weeks GA. Incidences of hypertension, hypernatremia, bronchopulmonary dysplasia, necrotizing enterocolitis, and culture positive sepsis were unaffected by the protocol. CONCLUSION Protocolized Na supplementation is associated with improved growth and reduced time on invasive mechanical ventilation in extremely preterm infants without increasing incidence of morbidities.
Collapse
Affiliation(s)
- Elliot J Stalter
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, IA, USA
| | - Silvia L Verhofste
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, IA, USA
| | - John M Dagle
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, IA, USA
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa, IA, USA
| | - Linder Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa, IA, USA
| | - Jeffrey L Segar
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lyndsay A Harshman
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
3
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
4
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
5
|
Cooney A, Loza L, Najdawi K, Brommel C, McCray P, Sinn P. High ionic strength vector formulations enhance gene transfer to airway epithelia. Nucleic Acids Res 2024; 52:9369-9383. [PMID: 39077931 PMCID: PMC11381324 DOI: 10.1093/nar/gkae640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here, we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.
Collapse
Affiliation(s)
- Ashley L Cooney
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Kenan Najdawi
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Christian M Brommel
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Paul B McCray
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
- University of Iowa, Center for Gene Therapy; Iowa City, IA 52242, USA
| | - Patrick L Sinn
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
- University of Iowa, Center for Gene Therapy; Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Shin J, Hammer MJ, Paul SM, Conley YP, Harris C, Oppegaard K, Morse L, Cooper BA, Levine JD, Miaskowski C. Associations Between Preoperative Shortness of Breath and Potassium Channels Gene Variations in Women With Breast Cancer. Biol Res Nurs 2024:10998004241268088. [PMID: 39137431 DOI: 10.1177/10998004241268088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVES Shortness of breath is a common symptom in patients with cancer. However, the mechanisms that underlie this troublesome symptom are poorly understood. Therefore, this study aimed to determine the prevalence of and associated risk factors for shortness of breath in women prior to breast cancer surgery and identify associations between shortness of breath and polymorphisms for potassium channel genes. METHODS Patients were recruited prior to breast cancer surgery and completed a self-report questionnaire on the occurrence of shortness of breath. Genotyping of single nucleotides polymorphism (SNPs) in potassium channel genes was performed using a custom array. Multiple logistic regression analyses were done to identify associations between the occurrence of shortness of breath and SNPs in ten candidate genes. RESULTS Of the 398 patients, 11.1% reported shortness of breath. These patients had a lower annual household income, a higher comorbidity burden, and a lower functional status. After controlling for functional status, comorbidity burden, genomic estimates of ancestry and self-reported race and ethnicity, the genetic associations that remained significant in the multiple regression analyses were for potassium voltage-gated channel subfamily D (KCND2) rs12673992, potassium voltage-gated channel modifier subfamily S (KCNS1) rs4499491, and potassium two pore channel subfamily K (KCNK2) rs4411107. CONCLUSIONS While these findings warrant replication, they suggest that alterations in potassium channel function may contribute to the occurrence of shortness of breath in women prior to breast cancer surgery.
Collapse
Affiliation(s)
- Joosun Shin
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Steven M Paul
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn Harris
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lisa Morse
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Bruce A Cooper
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- VA Portland Health Care System, Portland, OR, USA
| | - Christine Miaskowski
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
8
|
Harshman L, Stalter E, Verhofste S, Dagle J, Steinbach E, Eyck PT, Wendt L, Segar J. Somatic growth outcomes in response to an individualized neonatal sodium supplementation protocol. RESEARCH SQUARE 2024:rs.3.rs-3911085. [PMID: 38405851 PMCID: PMC10889073 DOI: 10.21203/rs.3.rs-3911085/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Objective Evaluate the impact of a sodium (Na) supplementation protocol based upon urine Na concentration on growth parameters and morbidities. Study Design Retrospective cohort study of infants 260/7-336/7 weeks gestational age (GA) cared for before (2012-15, n = 225) and after (2016-20, n = 157) implementation of the protocol. Within- and between-group changes over time were assessed using repeated measures generalized linear models. Results For infants 260/7-296/7 weeks GA, utilization of the protocol was associated with increased mean body weight z-score at 8-weeks postnatal age, increased mean head circumference z-score at 16-weeks postnatal age, and decreased time on mechanical ventilation (all p < 0.02). No impact on growth was identified for infants 30-336/7 weeks GA. Incidences of hypertension, hypernatremia, bronchopulmonary dysplasia, and culture positive sepsis were unaffected by the protocol. Conclusion Protocolized Na supplementation results in improved growth and reduced time on invasive mechanical ventilation in extremely preterm infants without increasing incidence of morbidities.
Collapse
|
9
|
Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids 2024; 202:109348. [PMID: 38049079 DOI: 10.1016/j.steroids.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Centro de Estudios Cientificos, Valdivia, Chile.
| |
Collapse
|
10
|
Cooney AL, Loza LM, Najdawi K, Brommel CM, McCray PB, Sinn PL. High ionic strength vector formulations enhance gene transfer to airway epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576687. [PMID: 38328187 PMCID: PMC10849541 DOI: 10.1101/2024.01.22.576687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.
Collapse
Affiliation(s)
- Ashley L. Cooney
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Kenan Najdawi
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Christian M. Brommel
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Paul B. McCray
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
- University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA
| | - Patrick L. Sinn
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
- University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Russell NX, Burra K, Shah RM, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. Am J Physiol Lung Cell Mol Physiol 2023; 325:L788-L802. [PMID: 37873566 PMCID: PMC11068408 DOI: 10.1152/ajplung.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wntless (Wls), a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulates the expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin-deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.NEW & NOTEWORTHY Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. In this study, we focused on the role of ion channels in the differentiation and patterning of the large airways of the developing respiratory tract. We identify a mechanism by which Wnt-beta-catenin signaling controls levels of ion channel-encoding genes to promote tracheal differentiation.
Collapse
Affiliation(s)
- Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Ronak M Shah
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Harshavardhana H Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
12
|
Namkoong H, Holland SM. Host Susceptibility to Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:723-730. [PMID: 37890911 PMCID: PMC10614071 DOI: 10.1016/j.ccm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) pulmonary disease is a chronic progressive pulmonary infectious disease caused by low virulence pathogens. The existence of host susceptibility to NTM infection has been recognized from a high incidence among Asians compared to other populations in the United States, a high incidence among slender, middle-aged women, and the presence of familial clusters. Recent whole exome sequencing and genome-wide association studies have identified immune, CFTR, cilia, connective tissue and ion homeostasis genes as host susceptibility genes. Large-scale international collaborative studies and functional analyses are expected to elucidate host susceptibility in the future.
Collapse
Affiliation(s)
- Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi Shinjyuku-ku, Tokyo 160-8582, Japan.
| | - Steven M Holland
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 10/11N248, MSC 1960, Bethesda, MD 20892-1960, USA
| |
Collapse
|
13
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
14
|
Sato Y, Kim D, Turner MJ, Luo Y, Zaidi SSZ, Thomas DY, Hanrahan JW. Ionocyte-Specific Regulation of Cystic Fibrosis Transmembrane Conductance Regulator. Am J Respir Cell Mol Biol 2023; 69:281-294. [PMID: 36952679 DOI: 10.1165/rcmb.2022-0241oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a tightly regulated anion channel that mediates chloride and bicarbonate conductance in many epithelia and in other tissues, but whether its regulation varies depending on the cell type has not been investigated. Epithelial CFTR expression is highest in rare cells called ionocytes. We studied CFTR regulation in control and ionocyte-enriched cultures by transducing bronchial basal cells with adenoviruses that encode only eGFP or FOXI1 (forkhead box I1) + eGFP as separate polypeptides. FOXI1 dramatically increased the number of transcripts for ionocyte markers ASCL3 (Achaete-Scute Family BHLH Transcription Factor 3), BSND, ATP6V1G3, ATP6V0D2, KCNMA1, and CFTR without altering those for secretory (SCGB1A1), basal (KRT5, KRT6, TP63), goblet (MUC5AC), or ciliated (FOXJ1) cells. The number of cells displaying strong FOXI1 expression was increased 7-fold, and there was no evidence for a broad increase in background immunofluorescence. Total CFTR mRNA and protein levels increased 10-fold and 2.5-fold, respectively. Ionocyte-enriched cultures displayed elevated basal current, increased adenylyl cyclase 5 expression, and tonic suppression of CFTR activity by the phosphodiesterase PDE1C, which has not been shown previously to regulate CFTR activity. The results indicate that CFTR regulation depends on cell type and identifies PDE1C as a potential target for therapeutics that aim to increase CFTR function specifically in ionocytes.
Collapse
Affiliation(s)
- Yukiko Sato
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Dusik Kim
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Mark J Turner
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Yishan Luo
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Center
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, and
| | - John W Hanrahan
- Department of Physiology
- Cystic Fibrosis Translational Research Center
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Russell NX, Burra K, Shah R, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523309. [PMID: 36711918 PMCID: PMC9882072 DOI: 10.1101/2023.01.10.523309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.
Collapse
Affiliation(s)
- Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Ronak Shah
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program Current Affiliation: Renaissance School of Medicine at Stony Brook University
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: P&G Cincinnati, OH
| | - Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
16
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
17
|
Orfali R, AlFaiz A, Rahman MA, Lau L, Nam YW, Zhang M. K Ca2 and K Ca3.1 Channels in the Airways: A New Therapeutic Target. Biomedicines 2023; 11:1780. [PMID: 37509419 PMCID: PMC10376499 DOI: 10.3390/biomedicines11071780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
K+ channels are involved in many critical functions in lung physiology. Recently, the family of Ca2+-activated K+ channels (KCa) has received more attention, and a massive amount of effort has been devoted to developing selective medications targeting these channels. Within the family of KCa channels, three small-conductance Ca2+-activated K+ (KCa2) channel subtypes, together with the intermediate-conductance KCa3.1 channel, are voltage-independent K+ channels, and they mediate Ca2+-induced membrane hyperpolarization. Many KCa2 channel members are involved in crucial roles in physiological and pathological systems throughout the body. In this article, different subtypes of KCa2 and KCa3.1 channels and their functions in respiratory diseases are discussed. Additionally, the pharmacology of the KCa2 and KCa3.1 channels and the link between these channels and respiratory ciliary regulations will be explained in more detail. In the future, specific modulators for small or intermediate Ca2+-activated K+ channels may offer a unique therapeutic opportunity to treat muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Ali AlFaiz
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
18
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
19
|
Guidone D, Buccirossi M, Scudieri P, Genovese M, Sarnataro S, De Cegli R, Cresta F, Terlizzi V, Planelles G, Crambert G, Sermet I, Galietta LJ. Airway surface hyperviscosity and defective mucociliary transport by IL-17/TNF-α are corrected by β-adrenergic stimulus. JCI Insight 2022; 7:164944. [PMID: 36219481 DOI: 10.1172/jci.insight.164944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 β-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a β-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.
Collapse
Affiliation(s)
- Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sergio Sarnataro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Federico Cresta
- Centro Fibrosi Cistica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vito Terlizzi
- Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Firenze, Italy
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | | | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), University of Napoli "Federico II", Napoli, Italy
| |
Collapse
|
20
|
Kelkar S, Nailwal N, Bhatia NY, Doshi G, Sathaye S, Godad AP. An Update On Proficiency of Voltage-gated Ion Channel Blockers in the Treatment of Inflammation-associated Diseases. Curr Drug Targets 2022; 23:1290-1303. [PMID: 35996239 DOI: 10.2174/1389450123666220819141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Inflammation is the body's mechanism to trigger the immune system, thereby preventing bacteria and viruses from manifesting their toxic effect. Inflammation plays a vital role in regulating inflammatory mediator levels to initiate the wound healing process depending on the nature of the stimuli. This process occurs due to chemical release from white blood cells by elevating blood flow to the site of action, leading to redness and increased body temperature. Currently, there are numerous Non-steroidal anti-inflammatory drugs (NSAIDs) available, but these drugs are reported with adverse effects such as gastric bleeding, progressive kidney damage, and increased risk of heart attacks when prolonged use. For such instances, alternative options need to be adopted. The introduction of voltage-gated ion channel blockers can be a substantial alternative to mask the side effects of these currently available drugs. Chronic inflammatory disorders such as rheumatoid and osteoarthritis, cancer and migraine, etc., can cause dreadful pain, which is often debilitating for the patient. The underlying mechanism for both acute and chronic inflammation involves various complex receptors, different types of cells, receptors, and proteins. The working of voltage-gated sodium and calcium channels is closely linked to both inflammatory and neuropathic pain. Certain drugs such as carbamazepine and gabapentin, which are ion channel blockers, have greater pharmacotherapeutic activity for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states. This review intends to provide brief information on the mechanism of action, latest clinical trials, and applications of these blockers in treating inflammatory conditions.
Collapse
Affiliation(s)
- Siddesh Kelkar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Reclamation, Bandra West, Mumbai, Maharashtra 400050, India
| | - Namrata Nailwal
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nirav Yogesh Bhatia
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Angel Pavalu Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India.,Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
21
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
22
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
23
|
SARS-CoV-2 Viroporins: A Multi-Omics Insight from Nucleotides to Amino Acids. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
COVID-19 is caused by SARS-CoV-2 which has so far affected more than 500 million people worldwide and killed over 6 million as of 1 May 2022. The approved emergency-use vaccines were lifesaving in such a devastating pandemic. Inflammation-related pathways have been well documented to be upregulated in the case of SARS-CoV-2 in rodents, non-human primates and human samples. We reanalysed a previously published dataset to understand if certain molecular components of inflammation could be higher in infected samples. Mechanistically, viroporins are important players in the life cycle of SARS-CoV-2 and are primary to its pathogenesis. We studied the two prominent viroporins of SARS-CoV-2 (i) Orf3a and (ii) envelope (E) protein from a sequence and structural point of view. Orf3a is a cation-selective viral ion channel which has been shown to disrupt the endosomal pathways. E protein is one of the most conserved proteins among the SARS-CoV proteome which affects the ERGIC-related pathways. The aqueous medium through the viroporins mediates the non-selective translocation of cations, affecting ionic homeostasis in the host cellular compartments. We hypothesize a possible mechanistic approach whereby the ionic imbalance caused by viroporin action could potentially be one of the major pathogenic drivers leading to the increased inflammatory response in the host cell. Our results shed light into the transcriptomic, genomic and structural proteomics aspects of widely studied SARS-CoV-2 viroporins, which can be potentially leveraged for the development of antiviral therapeutics.
Collapse
|
24
|
Hollenhorst MI, Kumar P, Zimmer M, Salah A, Maxeiner S, Elhawy MI, Evers SB, Flockerzi V, Gudermann T, Chubanov V, Boehm U, Krasteva-Christ G. Taste Receptor Activation in Tracheal Brush Cells by Denatonium Modulates ENaC Channels via Ca2+, cAMP and ACh. Cells 2022; 11:cells11152411. [PMID: 35954259 PMCID: PMC9367940 DOI: 10.3390/cells11152411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mucociliary clearance is a primary defence mechanism of the airways consisting of two components, ciliary beating and transepithelial ion transport (ISC). Specialised chemosensory cholinergic epithelial cells, named brush cells (BC), are involved in regulating various physiological and immunological processes. However, it remains unclear if BC influence ISC. In murine tracheae, denatonium, a taste receptor agonist, reduced basal ISC in a concentration-dependent manner (EC50 397 µM). The inhibition of bitter taste signalling components with gallein (Gβγ subunits), U73122 (phospholipase C), 2-APB (IP3-receptors) or with TPPO (Trpm5, transient receptor potential-melastatin 5 channel) reduced the denatonium effect. Supportively, the ISC was also diminished in Trpm5−/− mice. Mecamylamine (nicotinic acetylcholine receptor, nAChR, inhibitor) and amiloride (epithelial sodium channel, ENaC, antagonist) decreased the denatonium effect. Additionally, the inhibition of Gα subunits (pertussis toxin) reduced the denatonium effect, while an inhibition of phosphodiesterase (IBMX) increased and of adenylate cyclase (forskolin) reversed the denatonium effect. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh172 and the KCNQ1 potassium channel antagonist chromanol 293B both reduced the denatonium effect. Thus, denatonium reduces ISC via the canonical bitter taste signalling cascade leading to the Trpm5-dependent nAChR-mediated inhibition of ENaC as well as Gα signalling leading to a reduction in cAMP-dependent ISC. Therefore, BC activation contributes to the regulation of fluid homeostasis.
Collapse
Affiliation(s)
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Maxim Zimmer
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | | | - Saskia B. Evers
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signalling, Saarland University, 66421 Homburg, Germany
| | - Thomas Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Vladimir Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Centre for Molecular Signalling, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-16-26101
| |
Collapse
|
25
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
26
|
Gennari-Felipe M, Borges L, Dermargos A, Weimann E, Curi R, Pithon-Curi TC, Hatanaka E. Hypertonic Solution in Severe COVID-19 Patient: A Potential Adjuvant Therapy. Front Med (Lausanne) 2022; 9:917008. [PMID: 35801207 PMCID: PMC9253300 DOI: 10.3389/fmed.2022.917008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) features hyper-inflammation, cytokine storm, neutrophil function changes, and sodium chloride (NaCl) homeostasis disruption, while the treatment with NaCl hypertonic solutions (HS) controls electrolytic body homeostasis and cell functions. HS treatment is a simple, popular, economic, and feasible therapy to regulate leukocyte function with a robust anti-inflammatory effect in many inflammatory diseases. The purpose of this narrative review is to highlight the knowledge on the use of HS approaches against viral infection over the past years and to describe the mechanisms involved in the release of neutrophil extracellular traps (NETs) and production of cytokine in severe lung diseases, such as COVID-19. We reported the consequences of hyponatremia in COVID-19 patients, and the immunomodulatory effects of HS, either in vitro or in vivo. We also described the relationship between electrolyte disturbances and COVID-19 infection. Although there is still a lack of clinical trials, hypertonic NaCl solutions have marked effects on neutrophil function and NETs formation, emerging as a promising adjuvant therapy in COVID-19.
Collapse
Affiliation(s)
- Matheus Gennari-Felipe
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Leandro Borges
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Alexandre Dermargos
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Eleine Weimann
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Rui Curi
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
- Seção de Produção de Imunobiológicos, Centro Bioindustrial, Instituto Butantan, São Paulo, Brazil
| | | | - Elaine Hatanaka
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
- *Correspondence: Elaine Hatanaka,
| |
Collapse
|
27
|
Gitlin I, Fahy JV. Mucus secretion blocked at its source in the lungs. Nature 2022; 603:798-799. [PMID: 35322214 DOI: 10.1038/d41586-022-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Spix B, Jeridi A, Ansari M, Yildirim AÖ, Schiller HB, Grimm C. Endolysosomal Cation Channels and Lung Disease. Cells 2022; 11:304. [PMID: 35053420 PMCID: PMC8773812 DOI: 10.3390/cells11020304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/28/2022] Open
Abstract
Endolysosomal cation channels are emerging as key players of endolysosomal function such as endolysosomal trafficking, fusion/fission, lysosomal pH regulation, autophagy, lysosomal exocytosis, and endocytosis. Diseases comprise lysosomal storage disorders (LSDs) and neurodegenerative diseases, metabolic diseases, pigmentation defects, cancer, immune disorders, autophagy related diseases, infectious diseases and many more. Involvement in lung diseases has not been a focus of attention so far but recent developments in the field suggest critical functions in lung physiology and pathophysiology. Thus, loss of TRPML3 was discovered to exacerbate emphysema formation and cigarette smoke induced COPD due to dysregulated matrix metalloproteinase 12 (MMP-12) levels in the extracellular matrix of the lung, a known risk factor for emphysema/COPD. While direct lung function measurements with the exception of TRPML3 are missing for other endolysosomal cation channels or channels expressed in lysosome related organelles (LRO) in the lung, links between those channels and important roles in lung physiology have been established such as the role of P2X4 in surfactant release from alveolar epithelial Type II cells. Other channels with demonstrated functions and disease relevance in the lung such as TRPM2, TRPV2, or TRPA1 may mediate their effects due to plasma membrane expression but evidence accumulates that these channels might also be expressed in endolysosomes, suggesting additional and/or dual roles of these channels in cell and intracellular membranes. We will discuss here the current knowledge on cation channels residing in endolysosomes or LROs with respect to their emerging roles in lung disease.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| | - Aicha Jeridi
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Meshal Ansari
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Ali Önder Yildirim
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Herbert B. Schiller
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
29
|
Chai J, Capik SF, Kegley B, Richeson JT, Powell JG, Zhao J. Bovine respiratory microbiota of feedlot cattle and its association with disease. Vet Res 2022; 53:4. [PMID: 35022062 PMCID: PMC8756723 DOI: 10.1186/s13567-021-01020-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine respiratory disease (BRD), as one of the most common and costly diseases in the beef cattle industry, has significant adverse impacts on global food security and the economic stability of the industry. The bovine respiratory microbiome is strongly associated with health and disease and may provide insights for alternative therapy when treating BRD. The niche-specific microbiome communities that colonize the inter-surface of the upper and the lower respiratory tract consist of a dynamic and complex ecological system. The correlation between the disequilibrium in the respiratory ecosystem and BRD has become a hot research topic. Hence, we summarize the pathogenesis and clinical signs of BRD and the alteration of the respiratory microbiota. Current research techniques and the biogeography of the microbiome in the healthy respiratory tract are also reviewed. We discuss the process of resident microbiota and pathogen colonization as well as the host immune response. Although associations between the microbiota and BRD have been revealed to some extent, interpreting the development of BRD in relation to respiratory microbial dysbiosis will likely be the direction for upcoming studies, which will allow us to better understand the importance of the airway microbiome and its contributions to animal health and performance.
Collapse
Affiliation(s)
- Jianmin Chai
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Sarah F Capik
- Texas A&M AgriLife Research and Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, Canyon, TX, 79015, USA
| | - Beth Kegley
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - John T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79016, USA
| | - Jeremy G Powell
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
30
|
Dransfield M, Rowe S, Vogelmeier CF, Wedzicha J, Criner GJ, Han MK, Martinez FJ, Calverley P. Cystic Fibrosis Transmembrane Conductance Regulator: Roles in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:631-640. [DOI: 10.1164/rccm.202109-2064tr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mark Dransfield
- University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven Rowe
- University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Jadwiga Wedzicha
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Gerard J. Criner
- Lewis Katz School of Medicine at Temple University, 12314, Philadelphia, Pennsylvania, United States
| | - MeiLan K. Han
- University of Michigan, Ann Arbor, Michigan, United States
| | | | - Peter Calverley
- University of Liverpool, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
31
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
32
|
Zhang L, Bing S, Dong M, Lu X, Xiong Y. Targeting ion channels for the treatment of lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188629. [PMID: 34610420 DOI: 10.1016/j.bbcan.2021.188629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer is caused by several environmental and genetic variables and is globally associated with elevated morbidity and mortality. Among these variables, membrane-bound ion channels have a key role in regulating multiple signaling pathways in tumor cells and dysregulation of ion channel expression and function is closely related to proliferation, migration, and metastasis of lung cancer. This work reviews and summarizes current knowledge about the role of ion channels in lung cancer, focusing on the changes in the expression and function of various ion channels in lung cancer and how these changes affect lung cancer cell biology both in vitro and in vivo as evidenced by both genetic and pharmacological studies. It can help understand the molecular mechanisms of various ion channels influencing the initiation and progression of lung cancer and shed new insights into their roles in the development and treatment of this deadly disease.
Collapse
Affiliation(s)
- Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China.
| | - Shuya Bing
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Mo Dong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Xiaoqiu Lu
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Yuancheng Xiong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| |
Collapse
|
33
|
Huijghebaert S, Hoste L, Vanham G. Essentials in saline pharmacology for nasal or respiratory hygiene in times of COVID-19. Eur J Clin Pharmacol 2021; 77:1275-1293. [PMID: 33772626 PMCID: PMC7998085 DOI: 10.1007/s00228-021-03102-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Nasal irrigation or nebulizing aerosol of isotonic or hypertonic saline is a traditional method for respiratory or nasal care. A recent small study in outpatients with COVID-19 without acute respiratory distress syndrome suggests substantial symptom resolution. We therefore analyzed pharmacological/pharmacodynamic effects of isotonic or hypertonic saline, relevant to SARS-CoV-2 infection and respiratory care. METHODS Mixed search method. RESULTS Due to its wetting properties, saline achieves an improved spreading of alveolar lining fluid and has been shown to reduce bio-aerosols and viral load. Saline provides moisture to respiratory epithelia and gels mucus, promotes ciliary beating, and improves mucociliary clearance. Coronaviruses and SARS-CoV-2 damage ciliated epithelium in the nose and airways. Saline inhibits SARS-CoV-2 replication in Vero cells; possible interactions involve the viral ACE2-entry mechanism (chloride-dependent ACE2 configuration), furin and 3CLpro (inhibition by NaCl), and the sodium channel ENaC. Saline shifts myeloperoxidase activity in epithelial or phagocytic cells to produce hypochlorous acid. Clinically, nasal or respiratory airway care with saline reduces symptoms of seasonal coronaviruses and other common cold viruses. Its use as aerosol reduces hospitalization rates for bronchiolitis in children. Preliminary data suggest symptom reduction in symptomatic COVID-19 patients if saline is initiated within 48 h of symptom onset. CONCLUSIONS Saline interacts at various levels relevant to nasal or respiratory hygiene (nasal irrigation, gargling or aerosol). If used from the onset of common cold symptoms, it may represent a useful add-on to first-line interventions for COVID-19. Formal evaluation in mild COVID-19 is desirable as to establish efficacy and optimal treatment regimens.
Collapse
Affiliation(s)
| | - Levi Hoste
- Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Guido Vanham
- Department of Biomedical Sciences, Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
34
|
Peng Y, Zhang Y, Zhang Y, Wang X, Xia Y. Pterostilbene alleviates pulmonary fibrosis by regulating ASIC2. Chin Med 2021; 16:66. [PMID: 34321072 PMCID: PMC8317282 DOI: 10.1186/s13020-021-00474-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a serious chronic disease of the respiratory system, but its current treatment has certain shortcomings and adverse effects. In this study, we evaluate the antifibrotic activity of pterostilbene (PTE) using an in vitro IPF model induced by transforming growth factor (TGF)-β1. METHODS A549 and alveolar epithelial cells (AECs) were incubated with 10 ng/ml TGF-β1 to induce lung fibroblast activation. Then, 30 μmol/L of PTE was used to treat these cells. The epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) accumulation, and autophagy in cells were evaluated by western blot. Apoptosis was validated by flow cytometry analysis and western blot. Transcriptome high-throughput sequencing was performed on A549 cells incubated with TGF-β1 alone or TGF-β1 and PTE (TGF-β1 + PTE), and differentially expressed genes in PTE-treated cells were identified. The acid sensing ion channel subunit 2 (ASIC2) overexpression plasmid was used to rescue the protein levels of ASIC2 in A549 and AECs. RESULTS TGF-β1 caused EMT and ECM accumulation, and blocked the autophagy and apoptosis of A549 and AECs. Most importantly, 30 μmol/L of PTE inhibited pulmonary fibrosis induced by TGF-β1. Compared with TGF-β1, PTE inhibited EMT and ECM accumulation and rescued cell apoptosis and autophagy. The results of transcriptome high-throughput sequencing revealed that PTE greatly reduced the protein level of ASIC2. Compared with the TGF-β1 + PTE group, the transfection of ASIC2 overexpression plasmid stimulated the EMT and ECM accumulation and inhibited apoptosis and autophagy, suggesting that PTE inhibited pulmonary fibrosis by downregulating ASIC2. CONCLUSIONS This study suggests that PTE and ASIC2 inhibitors may have potential as IPF treatments in the future.
Collapse
Affiliation(s)
- Yanfang Peng
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yingwen Zhang
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
| | - Yabing Zhang
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xiuping Wang
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yukun Xia
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| |
Collapse
|
35
|
Cui X, Chen W, Zhou H, Gong Y, Zhu B, Lv X, Guo H, Duan J, Zhou J, Marcon E, Ma H. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front Pharmacol 2021; 12:664349. [PMID: 34163357 PMCID: PMC8215379 DOI: 10.3389/fphar.2021.664349] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 mortality is primarily driven by abnormal alveolar fluid metabolism of the lung, leading to fluid accumulation in the alveolar airspace. This condition is generally referred to as pulmonary edema and is a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are multiple potential mechanisms leading to pulmonary edema in severe Coronavirus Disease (COVID-19) patients and understanding of those mechanisms may enable proper management of this condition. Here, we provide a perspective on abnormal lung humoral metabolism of pulmonary edema in COVID-19 patients, review the mechanisms by which pulmonary edema may be induced in COVID-19 patients, and propose putative drug targets that may be of use in treating COVID-19. Among the currently pursued therapeutic strategies against COVID-19, little attention has been paid to abnormal lung humoral metabolism. Perplexingly, successful balance of lung humoral metabolism may lead to the reduction of the number of COVID-19 death limiting the possibility of healthcare services with insufficient capacity to provide ventilator-assisted respiration.
Collapse
Affiliation(s)
- Xinyu Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wuyue Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyan Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Gong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bowen Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Jasper AE, Sapey E, Thickett DR, Scott A. Understanding potential mechanisms of harm: the drivers of electronic cigarette-induced changes in alveolar macrophages, neutrophils, and lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321:L336-L348. [PMID: 34009037 DOI: 10.1152/ajplung.00081.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electronic (e-) cigarettes are growing in popularity despite uncertainties regarding their long-term health implications. The link between cigarette smoking and initiation of chronic lung disease took decades to unpick so in vitro studies mimicking e-cigarette exposure aim to detect early indicators of harm. In response to e-cigarette exposure, alveolar macrophages adopt a proinflammatory phenotype of increased secretion of proinflammatory cytokines, reduction in phagocytosis, and efferocytosis and reactive oxygen species generation. These effects are largely driven by free radical exposure, changes in PI3K/Akt signaling pathways, nicotine-induced reduction in phagocytosis receptors, and impaired lipid homeostasis leading to a foam-like lipid-laden phenotype. Neutrophils exhibit disrupted chemotaxis and transmigration to chemokines, reduced phagocytosis and bacterial killing, and an increase in protease secretion without corresponding antiproteases in response to e-cigarette exposure. This is driven by an altered ability to respond and to polarize toward chemoattractants, an activation of the p38 MAPK signaling pathway and inability to assemble NADPH oxidase. E-cigarettes induce lung epithelial cells to display decreased ciliary beat frequency and ion channel conductance as well as changes in chemokine secretion and surface protein expression. Changes in gene expression, mitochondrial function, and signaling pathways have been demonstrated in lung epithelial cells to explain these changes. Many functional outputs of alveolar macrophages, neutrophils, and lung epithelial cells have not been fully explored in the context of e-cigarette exposure and the underlying driving mechanisms are poorly understood. This review discusses current evidence surrounding the effects of e-cigarettes on alveolar macrophages, neutrophils, and lung epithelial cells with particular focus on the cellular mechanisms of change.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R Thickett
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
37
|
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor, Michigan
| |
Collapse
|
38
|
Trichomonas vaginalis infection impairs anion secretion in vaginal epithelium. PLoS Negl Trop Dis 2021; 15:e0009319. [PMID: 33861752 PMCID: PMC8051796 DOI: 10.1371/journal.pntd.0009319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl− and HCO3−. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl− and HCO3− secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl− transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl− signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment. Trichomonas vaginalis is a common sexually transmitted parasite that colonized the urogenital mucosa and causes trichomoniasis, a neglected sexually transmitted infection associated with multiple adverse reproductive outcomes in humans. However, the underlying mechanisms remain largely unknown. The epithelial cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel conducting both Cl− and HCO3−, which participates in the regulation of luminal fluid microenvironment conducive to the success of reproductive events. Prostaglandin E2 (PGE2), a bioactive molecule abundant in human seminal fluid, has been demonstrated to exhibit a robust pro-secretory action by activating CFTR in the female genital tract epithelial cells such as endometrial epithelium. These discoveries motivated the authors to investigate the effect of T. vaginalis infection on exogenous PGE2-induced transepithelial transport of electrolytes in vagina. Here, we found that in rat vaginal epithelium, luminal administration of PGE2 elicited a response of Cl− and HCO3− secretion mediated by cAMP-activated CFTR. However, T. vaginalis infection impaired transepithelial anion transport evoked by PGE2, which is probably related to the defective expression and function of CFTR. These outcomes may complement and expand our knowledge of the complex interaction between T. vaginalis and the infected host, providing a novel therapeutic strategy for disequilibrium in vaginal fluid microenvironment and infertility induced by T. vaginalis infection.
Collapse
|
39
|
Marshall H, Gibson OR, Romer LM, Illidi C, Hull JH, Kippelen P. Systemic but not local rehydration restores dehydration-induced changes in pulmonary function in healthy adults. J Appl Physiol (1985) 2021; 130:517-527. [PMID: 33300853 DOI: 10.1152/japplphysiol.00311.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Water transport and local (airway) hydration are critical for the normal functioning of lungs and airways. Currently, there is uncertainty regarding the effects of systemic dehydration on pulmonary function. Our aims were 1) to clarify the impact of exercise- or fluid restriction-induced dehydration on pulmonary function in healthy adults; and 2) to establish whether systemic or local rehydration can reverse dehydration-induced alterations in pulmonary function. Ten healthy participants performed four experimental trials in a randomized order (2 h exercise in the heat twice and 28 h fluid restriction twice). Pulmonary function was assessed using spirometry and whole body plethysmography in the euhydrated, dehydrated, and rehydrated states. Oral fluid consumption was used for systemic rehydration and nebulized isotonic saline inhalation for local rehydration. Both exercise and fluid restriction induced mild dehydration (2.7 ± 0.7% and 2.5 ± 0.4% body mass loss, respectively; P < 0.001) and elevated plasma osmolality (P < 0.001). Dehydration across all four trials was accompanied by a reduction in forced vital capacity (152 ± 143 mL, P < 0.01) and concomitant increases in residual volume (216 ± 177 mL, P < 0.01) and functional residual capacity (130 ± 144 mL, P < 0.01), with no statistical differences between modes of dehydration. These changes were normalized by fluid consumption but not nebulization. Our results suggest that, in healthy adults: 1) mild systemic dehydration induced by exercise or fluid restriction leads to pulmonary function impairment, primarily localized to small airways; and 2) systemic, but not local, rehydration reverses these potentially deleterious alterations.NEW & NOTEWORTHY This study demonstrates that, in healthy adults, mild systemic dehydration induced by exercise in the heat or a prolonged period of fluid restriction leads to negative alterations in pulmonary function, primarily localized to small airways. Oral rehydration, but not nebulized isotonic saline, is able to restore pulmonary function in dehydrated individuals. Our findings highlight the importance of maintaining an adequate systemic fluid balance to preserve pulmonary function.
Collapse
Affiliation(s)
- Hannah Marshall
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Oliver R Gibson
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health, and Exercise Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Lee M Romer
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health, and Exercise Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Camilla Illidi
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - James H Hull
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Pascale Kippelen
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health, and Exercise Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
40
|
Yadav S, Shaughnessy CA, Zeitlin PL, Bratcher PE. Downregulation of epithelial sodium channel (ENaC) activity in human airway epithelia after low temperature incubation. BMJ Open Respir Res 2021; 8:8/1/e000861. [PMID: 33622672 PMCID: PMC7907861 DOI: 10.1136/bmjresp-2020-000861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction The incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF. Methods After differentiation at the air–liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber. Results While F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors. Discussion Significant transcriptional downregulation of ENaC subunits β and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.
Collapse
Affiliation(s)
- Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
41
|
Weidenfeld S, Chupin C, Langner DI, Zetoun T, Rozowsky S, Kuebler WM. Sodium-coupled neutral amino acid transporter SNAT2 counteracts cardiogenic pulmonary edema by driving alveolar fluid clearance. Am J Physiol Lung Cell Mol Physiol 2021; 320:L486-L497. [PMID: 33439101 DOI: 10.1152/ajplung.00461.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constant transport of ions across the alveolar epithelial barrier regulates alveolar fluid homeostasis. Dysregulation or inhibition of Na+ transport causes fluid accumulation in the distal airspaces resulting in impaired gas exchange and respiratory failure. Previous studies have primarily focused on the critical role of amiloride-sensitive epithelial sodium channel (ENaC) in alveolar fluid clearance (AFC), yet activation of ENaC failed to attenuate pulmonary edema in clinical trials. Since 40% of AFC is amiloride-insensitive, Na+ channels/transporters other than ENaC such as Na+-coupled neutral amino acid transporters (SNATs) may provide novel therapeutic targets. Here, we identified a key role for SNAT2 (SLC38A2) in AFC and pulmonary edema resolution. In isolated perfused mouse and rat lungs, pharmacological inhibition of SNATs by HgCl2 and α-methylaminoisobutyric acid (MeAIB) impaired AFC. Quantitative RT-PCR identified SNAT2 as the highest expressed System A transporter in pulmonary epithelial cells. Pharmacological inhibition or siRNA-mediated knockdown of SNAT2 reduced transport of l-alanine across pulmonary epithelial cells. Homozygous Slc38a2-/- mice were subviable and died shortly after birth with severe cyanosis. Isolated lungs of Slc38a2+/- mice developed higher wet-to-dry weight ratios (W/D) as compared to wild type (WT) in response to hydrostatic stress. Similarly, W/D ratios were increased in Slc38a2+/- mice as compared to controls in an acid-induced lung injury model. Our results identify SNAT2 as a functional transporter for Na+ and neutral amino acids in pulmonary epithelial cells with a relevant role in AFC and the resolution of lung edema. Activation of SNAT2 may provide a new therapeutic strategy to counteract and/or reverse pulmonary edema.
Collapse
Affiliation(s)
- Sarah Weidenfeld
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cécile Chupin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Tamador Zetoun
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Rozowsky
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
43
|
Russ KA, Thompson JA, Reynolds JS, Mercer RR, Porter DW, McKinney W, Dey RD, Barger M, Cumpston J, Batchelor TP, Kashon ML, Kodali V, Jackson MC, Sriram K, Fedan JS. Biological effects of inhaled hydraulic fracturing sand dust. IV. Pulmonary effects. Toxicol Appl Pharmacol 2020; 409:115284. [PMID: 33068619 PMCID: PMC7736927 DOI: 10.1016/j.taap.2020.115284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023]
Abstract
Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.
Collapse
Affiliation(s)
- Kristen A Russ
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jeffrey S Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Dale W Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Richard D Dey
- Department of Physiology and Pharmacology, Anatomy and Laboratory Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America; Department of Pathology, Anatomy and Laboratory Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America
| | - Mark Barger
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jared Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, Anatomy and Laboratory Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America; Department of Pathology, Anatomy and Laboratory Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Mark C Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
| |
Collapse
|
44
|
Lyu Y, Li P, Yang Z, Zhong N. Exacerbation of disease by intranasal liquid administration following influenza virus infection in mice. Pathog Dis 2020; 78:5816566. [PMID: 32250390 DOI: 10.1093/femspd/ftaa017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Although numerous studies have clarified the synergistic pathogenesis in mouse models of influenza A virus (IAV)-associated dual infections, fewer studies have investigated the influence of intranasal liquid administration on the disease. This study explored the effects of intranasal PBS administration in mouse models of mimic IAV dual infection and the infectious dose of IAV that caused equivalent pathogenesis in different dual infection models. Weights, survival rates, virus loads, lung indexes and lung pathology were compared. We demonstrated that intranasal PBS administration following H1N1 or H3N2 infection increased weight loss, mortality, virus replication and lung damage. No difference was observed if the order was reversed or PBS was given simultaneously with IAV. To induce equivalent virulence, a 20-fold difference in the infectious dose was needed when the H3N2-PBS superinfection and H3N2-PBS coinfection or PBS-H3N2 superinfection groups were compared. Our study demonstrated that the unfavourable effect of intranasal liquid administration should not be neglected and that both the strain and infectious dose of IAV should be considered to avoid an illusion of synergistic pathogenicity when establishing IAV-associated dual infection model. A 20-fold lower dose than that of coinfection may be a better choice for secondary infection following IAV.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Pengcheng Li
- Department of Burns and Plastic Surgery, Henan Children's Hospital, Zhengzhou, Henan 450052, China
| | - Zifeng Yang
- Clinical Virology Division, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 1 Kangda Road, Guangzhou 510230, China
| | - Nanshan Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
45
|
Alothaid H, Aldughaim MSK, El Bakkouri K, AlMashhadi S, Al-Qahtani AA. Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: a review of potential targets for diagnosis and treatment. Channels (Austin) 2020; 14:403-412. [PMID: 33092458 PMCID: PMC7588196 DOI: 10.1080/19336950.2020.1837439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted an urgent need to identify effective medicines for the prevention and treatment of the disease. A comparative analysis between SARS-CoV-2 and Hepatitis C Virus (HCV) can expand the available knowledge regarding the virology and potential drug targets against these viruses. Interestingly, comparing HCV with SARS-CoV-2 reveals major similarities between them, ranging from the ion channels that are utilized, to the symptoms that are exhibited by patients. Via this comparative analysis, and from what is known about HCV, the most promising treatments for COVID-19 can focus on the reduction of viral load, treatment of pulmonary system damages, and reduction of inflammation. In particular, the drugs that show most potential in this regard include ritonavir, a combination of peg-IFN, and lumacaftor-ivacaftor. This review anaylses SARS-CoV-2 from the perspective of the role of ion homeostasis and channels in viral pathomechanism. We also highlight other novel treatment approaches that can be used for both treatment and prevention of COVID-19. The relevance of this review is to offer high-quality evidence that can be used as the basis for the identification of potential solutions to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University , Al-Baha, Saudi Arabia
| | | | - Karim El Bakkouri
- Research Center, King Fahad Medical City , Riyadh, Saudi Arabia.,Rapid Test Development Department, SciMed Services and Solutions , Brussels, Belgium
| | - Sufana AlMashhadi
- Research Center, King Fahad Medical City , Riyadh, Saudi Arabia.,McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, USA
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre , Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, School of Medicine, Alfaisal University , Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
47
|
Stanton BA, Hampton TH, Ashare A. SARS-CoV-2 (COVID-19) and cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L408-L415. [PMID: 32668165 PMCID: PMC7518058 DOI: 10.1152/ajplung.00225.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CFTR gene. Although viral respiratory tract infections are, in general, more severe in patients with CF compared with the general population, a small number of studies indicate that SARS-CoV-2 does not cause a worse infection in CF. This is surprising since comorbidities including preexisting lung disease have been reported to be associated with worse outcomes in SARS-CoV-2 infections. Several recent studies provide insight into why SARS-CoV-2 may not produce more severe outcomes in CF. First, ACE and ACE2, genes that play key roles in SARS-CoV-2 infection, have some variants that are predicted to reduce the severity of SARS-CoV-2 infection. Second, mRNA for ACE2 is elevated and mRNA for TMPRSS2, a serine protease, is decreased in CF airway epithelial cells. Increased ACE2 is predicted to enhance SARS-CoV-2 binding to cells but would increase conversion of angiotensin II, which is proinflammatory, to angiotensin-1-7, which is anti-inflammatory. Thus, increased ACE2 would reduce inflammation and lung damage due to SARS-CoV-2. Moreover, decreased TMPRSS2 would reduce SARS-CoV-2 entry into airway epithelial cells. Second, many CF patients are treated with azithromycin, which suppresses viral infection and lung inflammation and inhibits the activity of furin, a serine protease. Finally, the CF lung contains high levels of serine protease inhibitors including ecotin and SERPINB1, which are predicted to reduce the ability of TMPRSS2 to facilitate SARS-CoV-2 entry into airway epithelial cells. Thus, a variety of factors may mitigate the severity of SARS-CoV-2 in CF.
Collapse
Affiliation(s)
- Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Section of Pulmonology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
48
|
Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L444-L455. [PMID: 32755307 DOI: 10.1152/ajplung.00252.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Jakiela
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
50
|
Molinari G, Molinari L, Nervo E. Environmental and Endogenous Acids Can Trigger Allergic-Type Airway Reactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4688. [PMID: 32610702 PMCID: PMC7370125 DOI: 10.3390/ijerph17134688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory allergic and nonallergic respiratory disorders are spreading worldwide and often coexist. The root cause is not clear. This review demonstrates that, from a biochemical point of view, it is ascribable to protons (H+) released into cells by exogenous and endogenous acids. The hypothesis of acids as the common cause stems from two considerations: (a) it has long been known that exogenous acids present in air pollutants can induce the irritation of epithelial surfaces, particularly the airways, inflammation, and bronchospasm; (b) according to recent articles, endogenous acids, generated in cells by phospholipases, play a key role in the biochemical mechanisms of initiation and progression of allergic-type reactions. Therefore, the intracellular acidification and consequent Ca2+ increase, induced by protons generated by either acid pollutants or endogenous phospholipases, may constitute the basic mechanism of the multimorbidity of these disorders, and environmental acidity may contribute to their spread.
Collapse
Affiliation(s)
- Giuliano Molinari
- Studio Tecnico Ing. Laura Molinari, Environmental Health and Safety Via Quarto Ponte 17, 37138 Verona, Italy;
| | - Laura Molinari
- Studio Tecnico Ing. Laura Molinari, Environmental Health and Safety Via Quarto Ponte 17, 37138 Verona, Italy;
| | - Elsa Nervo
- Elsa Nervo, Società Chimica Italiana, 00198 Rome, Italy;
| |
Collapse
|