1
|
Bathla T, Lotfollahzadeh S, Quisel M, Mehta M, Malikova M, Chitalia VC. End Organ Affection in Sickle Cell Disease. Cells 2024; 13:934. [PMID: 38891066 PMCID: PMC11174153 DOI: 10.3390/cells13110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Sickle cell disease is an orphan disease affecting ethnic minorities and characterized by profound systemic manifestations. Although around 100,000 individuals with SCD are living in the US, the exact number of individuals is unknown, and it is considered an orphan disease. This single-gene disorder leads to red blood cell sickling and the deoxygenation of hemoglobin, resulting in hemolysis. SCD is associated with acute complications such as vaso-occlusive crisis, infections, and chronic target organ complications such as pulmonary disease and renal failure. While genetic therapy holds promise to alter the fundamental disease process, the major challenge in the field remains the target end organ damage and ways to mitigate or reverse it. Here, we provide an overview of the clinical manifestations and pathogenesis with a focus on end-organ damage and current therapeutic options, including recent FDA-approved stem cell and gene editing therapies.
Collapse
Affiliation(s)
- Tanvi Bathla
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (T.B.); (S.L.); (M.Q.)
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (T.B.); (S.L.); (M.Q.)
| | - Matthew Quisel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (T.B.); (S.L.); (M.Q.)
| | - Mansi Mehta
- Saint Vincent’s Medical Hospital, Worcester, MA 01608, USA;
| | - Marina Malikova
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Vipul C. Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (T.B.); (S.L.); (M.Q.)
- Veterans Affairs Boston Healthcare System, Boston, MA 02118, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center of Cross-Organ Vascular Pathology, Department of Medicine, Boston University Medical Center, Evans Biomedical Research Center, X-530, Boston, MA 02118, USA
| |
Collapse
|
2
|
Mendonça-Reis E, Guimarães-Nobre CC, Teixeira-Alves LR, Miranda-Alves L, Berto-Junior C. TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes. Anemia 2024; 2024:7924015. [PMID: 38596654 PMCID: PMC11003793 DOI: 10.1155/2024/7924015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
SCD is a hereditary disorder caused by genetic mutation in the beta-globin gene, resulting in abnormal hemoglobin, HbS that forms sickle-shaped erythrocytes under hypoxia. Patients with SCD have endocrine disorders and it was described that 7% of these patients have clinical hypothyroidism. Recent studies have shown that mature erythrocytes possess TSH receptors. Thus, we aimed to assess the effects of TSH on SCD erythrocytes. The experiments were conducted using different concentrations of TSH (1, 2, 3, and 5 mIU/L). In HbS polymerization assay, erythrocytes were exposed to TSH in hypoxia to induce polymerization, and measurements were taken for 30 minutes. The deformability assay was made using Sephacryl-S 500 columns to separate deformable from nondeformable cells. Static adhesion test utilized thrombospondin to assess erythrocyte adhesion in the presence of TSH. TSH at all contractions were able to reduce polymerization of HbS and increase deformability. The static adhesion of erythrocytes at the lowest concentrations of 1 and 2 mIU/L were increased, but at higher contractions of 3 and 5 mIU/L, static adhesion was not modulated. The results suggest that TSH has potential involvement in the pathophysiology of sickle cell disease by inhibiting HbS polymerization, positively modulating deformability and impacting static adhesion to thrombospondin.
Collapse
Affiliation(s)
- Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zhang Y, Qiang Y, Li H, Li G, Lu L, Dao M, Karniadakis GE, Popel AS, Zhao C. Signaling-biophysical modeling unravels mechanistic control of red blood cell phagocytosis by macrophages in sickle cell disease. PNAS NEXUS 2024; 3:pgae031. [PMID: 38312226 PMCID: PMC10833451 DOI: 10.1093/pnasnexus/pgae031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Red blood cell (RBC) aging manifests through progressive changes in cell morphology, rigidity, and expression of membrane proteins. To maintain the quality of circulating blood, splenic macrophages detect the biochemical signals and biophysical changes of RBCs and selectively clear them through erythrophagocytosis. In sickle cell disease (SCD), RBCs display alterations affecting their interaction with macrophages, leading to aberrant phagocytosis that may cause life-threatening spleen sequestration crises. To illuminate the mechanistic control of RBC engulfment by macrophages in SCD, we integrate a system biology model of RBC-macrophage signaling interactions with a biophysical model of macrophage engulfment, as well as in vitro phagocytosis experiments using the spleen-on-a-chip technology. Our modeling framework accurately predicts the phagocytosis dynamics of RBCs under different disease conditions, reveals patterns distinguishing normal and sickle RBCs, and identifies molecular targets including Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP1) and cluster of differentiation 47 (CD47)/signal regulatory protein α (SIRPα) as therapeutic targets to facilitate the controlled clearance of sickle RBCs in the spleen.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Guansheng Li
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Lu Lu
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Oliveira JMF, Arcanjo GS, Domingos IF, Batista JVGF, Pereira-Martins DA, Batista THC, Hatzlhofer BLD, Falcão DA, Diniz MV, Silva AP, Pires BCV, Dos Anjos AC, Costa FF, Araujo AS, Lucena-Araujo AR, Bezerra MA. A-296G variant of THBS1 gene (rs1478605) is associated with a lower frequency of stroke in a Brazilian population with sickle cell anemia. J Stroke Cerebrovasc Dis 2024; 33:107474. [PMID: 38006767 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVES Stroke is a devastating clinical outcome that significantly contributes to the morbidity and mortality of sickle cell anemia (SCA) patients. Despite its advantages in predicting stroke risk, transcranial Doppler screening has limitations that restrict its applicability, highlighting the need for emerging prognostic tools. Thrombospondin-1 plays a crucial role in endothelial injury, platelet adhesion, and nitric oxide metabolism and may be implicated in stroke pathophysiology. Here, we aimed to evaluate the association of THBS1 genetic variations with the occurrence of stroke in SCA patients MATERIALS AND METHODS: By real-time PCR, 512 SCA patients were fully genotyped for THBS1 A-296G (rs1478605) polymorphism RESULTS: THBS1 GG genotype was associated with a lower risk for stroke occurrence [odds ratio (OR): 0.30; 95% confidence interval (CI): 0.11-0.78; P = 0.011], although these findings were not consistent with multivariate logistic regression analysis (OR: 0.73, 95% CI: 0.12 - 4.37; P = 0.736). In agreement, the cumulative incidence of stroke for patients with AG/AA genotypes was higher when compared to the GG genotype (P = 0.018). However, the association was not maintained in the multivariate proportional hazards model (hazard ratio: 0.67, 95% CI: 0.12-3.61; P = 0.643) CONCLUSIONS: In summary, the present study shows that the THBS1 A-296G (rs1478605) polymorphism may be a potential modifier for stroke in SCA.
Collapse
Affiliation(s)
- Jessica M F Oliveira
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriela S Arcanjo
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Igor F Domingos
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Pronto Socorro Cardiológico de Pernambuco, University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jéssica V G F Batista
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego A Pereira-Martins
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Thais H C Batista
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Betânia L D Hatzlhofer
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego A Falcão
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Madi V Diniz
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Alexsandro P Silva
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Bárbara C V Pires
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana C Dos Anjos
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Aderson S Araujo
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Marcos A Bezerra
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
5
|
Poyatos P, Gratacós M, Samuel K, Orriols R, Tura-Ceide O. Oxidative Stress and Antioxidant Therapy in Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:1006. [PMID: 37237872 PMCID: PMC10215203 DOI: 10.3390/antiox12051006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated artery pressures and pulmonary vascular resistance. Underlying mechanisms comprise endothelial dysfunction, pulmonary artery remodeling and vasoconstriction. Several studies have shown evidence of the critical role of oxidative stress in PH pathophysiology. Alteration of redox homeostasis produces excessive generation of reactive oxygen species, inducing oxidative stress and the subsequent alteration of biological molecules. Exacerbations in oxidative stress production can lead to alterations in nitric oxide signaling pathways, contributing to the proliferation of pulmonary arterial endothelial cells and smooth muscle cells, inducing PH development. Recently, antioxidant therapy has been suggested as a novel therapeutic strategy for PH pathology. However, the favorable outcomes observed in preclinical studies have not been consistently reproduced in clinical practice. Therefore, targeting oxidative stress as a therapeutic intervention for PH is an area that is still being explored. This review summarizes the contribution of oxidative stress to the pathogenesis of the different types of PH and suggests antioxidant therapy as a promising strategy for PH treatment.
Collapse
Affiliation(s)
- Paula Poyatos
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| | - Miquel Gratacós
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
| | - Kay Samuel
- Scottish National Blood Transfusion Service, NHS National Services Scotland, Edinburgh EH14 4BE, UK
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
6
|
Ormeloxifene, a selective estrogen receptor modulator, protects against pulmonary hypertension. Eur J Pharmacol 2023; 943:175558. [PMID: 36731722 DOI: 10.1016/j.ejphar.2023.175558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Protective effect of 17β-estradiol is well-known in pulmonary hypertension. However, estrogen-based therapy may potentially increase the risk of breast cancer, necessitating a search for novel drugs. This study, therefore, investigated the ameliorative effects of a selective estrogen receptor modulator, ormeloxifene, in pulmonary hypertension. METHODS Cardiomyocytes (H9C2) and human pulmonary arterial smooth muscle cells (HPASMCs) were exposed to hypoxia (1% O2) for 42 and 96 h, respectively, with or without ormeloxifene pre-treatment (1 μM). Also, female (ovary-intact or ovariectomized) and male Sprague-Dawley rats received monocrotaline (60 mg/kg, once, subcutaneously), with or without ormeloxifene treatment (2.5 mg/kg, orally) for four weeks. RESULTS Hypoxia dysregulated 17β-hydroxysteroid dehydrogenase (17βHSD) 1 & 2 expressions, reducing 17β-estradiol production and estrogen receptors α and β in HPASMC but increasing estrone, proliferation, inflammation, oxidative stress, and mitochondrial dysfunction. Similarly, monocrotaline decreased plasma 17β-estradiol and uterine weight in ovary-intact rats. Further, monocrotaline altered 17βHSD1 & 2 expressions and reduced estrogen receptors α and β, increasing right ventricular pressure, proliferation, inflammation, oxidative stress, endothelial dysfunction, mitochondrial dysfunction, and vascular remodeling in female and male rats, with worsened conditions in ovariectomized rats. Ormeloxifene was less uterotrophic; however, it attenuated both hypoxia and monocrotaline effects by improving pulmonary 17β-estradiol synthesis. Furthermore, ormeloxifene decreased cardiac hypertrophy and right ventricular remodeling induced by hypoxia and monocrotaline. CONCLUSION This study demonstrates that ormeloxifene promoted pulmonary 17β-estradiol synthesis, alleviated inflammation, improved the NOX4/HO1/Nrf/PPARγ/PGC-1α axis, and attenuated pulmonary hypertension. It is evidently safe at tested concentrations and may be effectively repurposed for pulmonary hypertension treatment.
Collapse
|
7
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
8
|
Penglong T, Saensuwanna A, Pholngam N, Tansila N, Buncherd H, Srinoun K. BACH1 regulates erythrophagocytosis and iron-recycling in β-thalassemia. Genes Cells 2023; 28:211-225. [PMID: 36565308 DOI: 10.1111/gtc.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Macrophages play essential roles in erythrophagocytosis and iron recycling. β-thalassemia is characterized by a genetic defect in hemoglobin synthesis, which increases the rate of iron recycling. We previously showed that reduced expression of the BTB and CNC homolog 1 (BACH1) gene leads to increased phagocytosis of abnormal RBCs by activated monocytes. However, the mechanisms underlying this abnormal RBC clearance remained unclear. Herein, the spleen and bone marrow cells of β-thalassemic mice were examined for erythrophagocytosis CD markers and iron-recycling genes. Higher expression levels of CD47 and CD163 on RBCs and macrophages, respectively, were observed in β-thalassemic mice than in wild-type cells. The decreased expression of BACH1 caused an increase in Nrf2, Spic, Slc40a1, and HMOX1 expression in splenic red pulp macrophages of thalassemic mice. To investigate BACH1 regulation, a macrophage cell line was transfected with BACH1-siRNA. Decreased BACH1 expression caused an increase in CD163 expression; however, the expression levels were lower when the cells were cultured in media supplemented with β-thalassemia/HbE patient plasma. Additionally, the iron recycling-related genes SPIC, SLC40A1, and HMOX1 were significantly upregulated in BACH1-suppressed macrophages. Our findings provide insights into BACH1 regulation, which plays an important role in erythrophagocytosis and iron recycling in thalassemic macrophages.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Apisara Saensuwanna
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Nuttanan Pholngam
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
9
|
DeVallance ER, Dustin CM, de Jesus DS, Ghouleh IA, Sembrat JC, Cifuentes-Pagano E, Pagano PJ. Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension. Antioxidants (Basel) 2022; 12:71. [PMID: 36670936 PMCID: PMC9854820 DOI: 10.3390/antiox12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.
Collapse
Affiliation(s)
- Evan R. DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Christopher M. Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Simoes de Jesus
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C. Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Nath PR, Pal-Nath D, Kaur S, Gangaplara A, Meyer TJ, Cam MC, Roberts DD. Loss of CD47 alters CD8+ T cell activation in vitro and immunodynamics in mice. Oncoimmunology 2022; 11:2111909. [PMID: 36105746 PMCID: PMC9467551 DOI: 10.1080/2162402x.2022.2111909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
CD47 has established roles in the immune system for regulating macrophage phagocytosis and lymphocyte activation, with growing evidence of its cell-intrinsic regulatory roles in natural killer and CD8+ T cells. CD47 limits antigen-dependent cytotoxic activities of human and murine CD8+ T cells, but its role in T cell activation kinetics remains unclear. Using in vitro and in vivo models, we show here that CD47 differentially regulates CD8+ T cell responses to short- versus long-term activation. Although CD47 was not required for T cell development in mice and early activation in vitro, short-term stimuli elevated pathogen-reactive gene expression and enhanced proliferation and the effector phenotypes of Cd47-deficient relative to Cd47-sufficient CD8+ T cells. In contrast, persistent TCR stimulation limited the effector phenotypes of Cd47 -/- CD8+ T cells and enhanced their apoptosis signature. CD8+ T cell expansion and activation in vivo induced by acute lymphocytic choriomeningitis virus (LCMV) infection did not differ in the absence of CD47. However, the frequency and effector phenotypes of Cd47-/- CD8+ T cells were constrained in chronic LCMV-infected as well as in mice bearing B16 melanoma tumors. Therefore, CD47 regulates CD8+ T cell activation, proliferation, and fitness in a context-dependent manner.
Collapse
Affiliation(s)
- Pulak R. Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical and Translational Immunology Unit, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arunkumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27123724. [PMID: 35744848 PMCID: PMC9229274 DOI: 10.3390/molecules27123724] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.
Collapse
|
12
|
Pinheiro AK, Pereira DA, dos Santos JL, Calmasini FB, Alexandre EC, Reis LO, Burnett AL, Costa FF, Silva FH. Resveratrol-nitric oxide donor hybrid effect on priapism in sickle cell and nitric oxide-deficient mouse. PLoS One 2022; 17:e0269310. [PMID: 35653352 PMCID: PMC9162357 DOI: 10.1371/journal.pone.0269310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Children and adult with sickle cell disease (SCD) display priapism associated with low nitric oxide (NO) bioavailability and oxidative stress in penis. Aim This study aimed to evaluate the effects of hybrid compound RVT-FxMe, derived from resveratrol bearing a NO-donor subunit, on two murine model that display priapism phenotype, SCD transgenic mice and endothelial NO synthase gene-deficient (eNOS-/-) mice. Methods Wild-type, SCD, and eNOS-/- mice were treated with RVT-FxMe (25 mg/kg/d, 2 weeks). Outcomes Hematological parameters, concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP), as well as to electrical field stimulation (EFS), were obtained in mice corpus cavernosum strips. Results Corpus cavernosum relaxations to SNP and EFS were increased in eNOS-/- group, which were normalized by RVT-FxMe treatment. SCD mice exhibited an excessive CC relaxant response induced by ACh, EFS and SNP RVT-FxMe treatment did not change the increased relaxant responses to ACh, EFS and SNP in corpus cavernosum from SCD group. Clinical translation Excess of plasma hemoglobin in SCD may interfere in pharmacological activity of NO donors compounds. Strength/Limitations While mechanistic data with promising potential is showed, the current study is not without limitations. RVT-FxMe effects in the mid- and long-term warrant complementary studies. Conclusion Treatment with RVT-FxMe reversed the enhanced NO-cGMP-mediated CC relaxations in eNOS-/- mice, but not in SCD mice; it is likely that excess of plasma hemoglobin in SCD mice act to inactivate NO before it reaches soluble guanylyl cyclase, avoiding restoration of NO bioavailability in penis.
Collapse
Affiliation(s)
- Andressa Kely Pinheiro
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Dalila Andrade Pereira
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Jean Leandro dos Santos
- State University of São Paulo (UNESP), School of Pharmaceutical Science, Laboratory of Drug Discovery, Araraquara, SP, Brazil
| | | | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
- * E-mail:
| |
Collapse
|
13
|
CD47 antibody protects mice from doxorubicin-induced myocardial damage by suppressing cardiomyocyte apoptosis. Exp Ther Med 2022; 23:350. [PMID: 35493436 PMCID: PMC9019770 DOI: 10.3892/etm.2022.11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Cluster of differentiation 47 (CD47) is upregulated in mouse models of doxorubicin (Dox)-induced dilated cardiomyopathy (DCM). To explore the role of CD47 in the development of DCM, in the present study, CD47 signaling was blocked by an anti-CD47 neutralizing antibody (aCD47) in mice with Dox-induced DCM. Intraperitoneal (i.p.) administration of 10 mg/kg Dox once a week significantly induced the development of DCM after 4 weeks, which was accompanied by the upregulation of CD47 expression in heart tissues. However, co-administration of Dox with 7 mg/kg aCD47 once a week significantly reduced the severity of DCM, with lower numbers of disordered and broken myofibers, reduced cardiomyocytes and infiltration of macrophages in the heart tissues of treated mice. The beneficial effects were associated with the reduced population of Annexin V+7-AAD- apoptotic cells, and the attenuated formation of interstitial fibrosis and release of lactate dehydrogenase (LDH) in the aCD47-treated mice. In addition, co-administration with aCD47 effectively reduced the expression of Bax, collagen I, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in murine DCM. These results were further supported by an in vitro study, in which aCD47 pre-treatment significantly reduced the Dox-induced early apoptosis of cardiomyocytes and suppressed the expression of Bax, cleaved caspase-1/3 and phosphorylation of p38 MAPK. Therefore, aCD47 attenuated DCM in mice, possibly by suppressing cardiomyocyte early apoptosis and p38 MAPK signaling. CD47 may be a useful therapeutic target in the treatment of DCM.
Collapse
|
14
|
Bowdridge EC, DeVallance E, Garner KL, Griffith JA, Schafner K, Seaman M, Engels KJ, Wix K, Batchelor TP, Goldsmith WT, Hussain S, Nurkiewicz TR. Nano-titanium dioxide inhalation exposure during gestation drives redox dysregulation and vascular dysfunction across generations. Part Fibre Toxicol 2022; 19:18. [PMID: 35260159 PMCID: PMC8905816 DOI: 10.1186/s12989-022-00457-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.
Collapse
Affiliation(s)
- Elizabeth C. Bowdridge
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Evan DeVallance
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Krista L. Garner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Julie A. Griffith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Kallie Schafner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Madison Seaman
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kevin J. Engels
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kimberley Wix
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Thomas P. Batchelor
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - William T. Goldsmith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Salik Hussain
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Timothy R. Nurkiewicz
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
15
|
Annarapu GK, Nolfi-Donegan D, Reynolds M, Wang Y, Kohut L, Zuckerbraun B, Shiva S. Heme stimulates platelet mitochondrial oxidant production to induce targeted granule secretion. Redox Biol 2021; 48:102205. [PMID: 34891098 PMCID: PMC8661700 DOI: 10.1016/j.redox.2021.102205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022] Open
Abstract
Hemolysis, a pathological component of many diseases, is associated with thrombosis and vascular dysfunction. Hemolytic products, including cell-free hemoglobin and free heme directly activate platelets. However, the effect of hemolysis on platelet degranulation, a central process in not only thrombosis, but also inflammatory and mitogenic signaling, remains less clear. Our group showed that hemoglobin-induced platelet activation involved the production of mitochondrial reactive oxygen species (mtROS). However, the molecular mechanism by which extracellular hemolysis induces platelet mtROS production, and whether these mtROS regulate platelet degranulation remains unknown. Here, we demonstrate using isolated human platelets that cell free heme is a more potent agonist for platelet activation than hemoglobin, and stimulates the release of a specific set of molecules, including the glycoprotein thrombospondin-1 (TSP-1), from the α-granule of platelets. We uncover the mechanism of heme-mediated platelet mtROS production which is dependent on the activation of platelet toll-like receptor 4 (TLR4) signaling and leads to the downstream phosphorylation and inhibition of complex-V by the serine kinase Akt. Notably, inhibition of platelet TLR4 or Akt, or scavenging of mtROS prevents heme-induced granule release in vitro. Further, heme-dependent granule release is significantly attenuated in vivo in mice lacking TLR4 or those treated with the mtROS scavenger MitoTEMPO. These data elucidate a novel mechanism of TLR4-mediated mitochondrial regulation, establish the mechanistic link between hemolysis and platelet degranulation, and begin to define the heme and mtROS-dependent platelet secretome. These data have implications for hemolysis-induced thrombo-inflammatory signaling and for the consideration of platelet mitochondria as a therapeutic target in hemolytic disorders.
Collapse
Affiliation(s)
- Gowtham K Annarapu
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Deirdre Nolfi-Donegan
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Michael Reynolds
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yinna Wang
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lauryn Kohut
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Brian Zuckerbraun
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
16
|
Yao M, Ganguly S, Shin JHS, Elbayoumi T. Efficient Ex Vivo Screening of Agents Targeting Thrombospondin1-Induced Vascular Dysfunction Using a Digital Multiwire Myograph System. Methods Protoc 2021; 4:mps4040074. [PMID: 34698263 PMCID: PMC8544428 DOI: 10.3390/mps4040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Homeostasis of vascular tone is intricately and delicately maintained systemically and locally, by autonomic nerves and hormones in the blood and by intimal vasoactive substances, respectively. The balance can be acutely or chronically interrupted secondary to many alterations, especially under pathological conditions. Excessive matricellular glycoprotein thrombospondin 1 (TSP1) levels in circulation have been found to play an important role in ischemia-reperfusion injuries of different organs, by acutely suppressing vasorelaxation and chronically remodeling vascular bed. Our laboratory has been interested in identifying new drug moieties, which can selectively and effectively counteract TSP1-induced vascular dysfunction, in order to address associated clinical complications. Preliminary studies using computational docking and molecular models revealed potential drug candidates for further evaluation via vascular functional bioassay to prove the antagonism using an ex vivo vascular model. Herein, we described an efficient screening method for the identification of active drug candidates, by adapting a multiwire myograph system to perform a protocol with different treatments, in the presence of pathological levels of TSP1. We discussed the promising pharmacological evaluation results and suggested suitable modification for versatile applications. We also described the necessity of pre-determination of optimal resting tension to obtain the maximal response, if the experimental test model is different from those with determined optimal resting tension.
Collapse
Affiliation(s)
- Molly Yao
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Cholla Hall 216, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
- College of Graduate Studies, Midwestern University, Science Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- Correspondence: (M.Y.); (T.E.)
| | - Samayita Ganguly
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Cholla Hall 216, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Jane Hae Soo Shin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Cholla Hall 216, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
- College of Graduate Studies, Midwestern University, Science Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- Correspondence: (M.Y.); (T.E.)
| |
Collapse
|
17
|
A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis. Curr Issues Mol Biol 2021; 43:1212-1225. [PMID: 34698067 PMCID: PMC8929144 DOI: 10.3390/cimb43030086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.
Collapse
|
18
|
Sugimoto K, Yokokawa T, Misaka T, Kaneshiro T, Yoshihisa A, Nakazato K, Takeishi Y. High-fat diet attenuates the improvement of hypoxia-induced pulmonary hypertension in mice during reoxygenation. BMC Cardiovasc Disord 2021; 21:331. [PMID: 34229630 PMCID: PMC8258936 DOI: 10.1186/s12872-021-02143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It is widely recognized that metabolic disorder is associated with pulmonary hypertension (PH). It is known that hypoxia-induced elevated pulmonary artery pressure in mice returns to normal pressure during reoxygenation. However, it is still unclear how metabolic disorder affects the reverse remodeling of pulmonary arteries. In this study, we investigated the effects of high-fat diet (HFD) on the decrease in pulmonary artery pressure and reverse remodeling of pulmonary arteries in mice with hypoxia-induced PH. METHODS We used female C57BL/6 mice aged 8 weeks. After being exposed to hypoxia (10% oxygen for four weeks) to induce PH, the mice were returned to normoxic conditions and randomized into a normal diet (ND) group and HFD group. Both groups were fed with their respective diets for 12 weeks. RESULTS The Fulton index and right ventricular systolic pressure measured by a micro-manometer catheter were significantly higher in the HFD group than in the ND group at 12 weeks after reoxygenation. The medial smooth muscle area was larger in the HFD group. Caspase-3 activity in the lung tissue of the HFD group was decreased, and the apoptosis of pulmonary smooth muscle cells was suppressed after reoxygenation. Moreover, the expression levels of peroxisome proliferator-activated receptor-γ and apelin were lower in the HFD group than in the ND group. CONCLUSIONS The results suggest that metabolic disorder may suppress pulmonary artery reverse remodeling in mice with hypoxia-induced PH during reoxygenation.
Collapse
MESH Headings
- Animals
- Apelin/metabolism
- Apoptosis
- Arterial Pressure
- Caspase 3/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Female
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/therapy
- Hypoxia/complications
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Obesity/etiology
- Obesity/metabolism
- Obesity/physiopathology
- Oxygen Inhalation Therapy
- PPAR gamma/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan.
- Department of Pulmonary Hypertension, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan.
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
- Department of Pulmonary Hypertension, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Kazuhiko Nakazato
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| |
Collapse
|
19
|
Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Biomolecules 2021; 11:biom11070963. [PMID: 34208829 PMCID: PMC8301992 DOI: 10.3390/biom11070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Blood transfusion remains a key treatment for managing occlusive episodes and painful crises in sickle-cell disease (SCD). In that clinical context, red blood cells (RBCs) from donors and transfused to patients, may be affected by plasma components in the recipients’ blood. Senescence lesion markers appear on the red cells after transfusion, shortening the RBC lifespan in circulation. In the specific context of SCD, senescence signals can also trigger the occlusive painful events, typical of the disease. This work follows through our previous data that described a RBC senescence process, rapidly detected after challenge with SCD pathological plasmas. In this clinical context, we wanted here to further explore the characteristics and physiologic consequences of AA RBC lesions associated with senescence, as lesions caused by RBCs after transfusion may have adverse consequences for SCD patients. METHODS: Plasma samples from SCD patients, with acute symptoms (n = 20) or steady-state disease (n = 34) were co-incubated with donor AA RBCs from blood units for 24 to 48 h. Specific markers signing RBC senescence were quantified after the incubation with SCD plasma samples. The physiologic in-flow adhesion was investigated on senescent RBCs, an in vitro technic into biochips that mimic adherence of RBCs during the occlusive events of SCD. RESULTS: Senescence markers on AA RBCs, together with their in-flow adhesion to the plasma-bridging protein thrombospondin, were associated with the clinical status of the SCD patients from whom plasma was obtained. In these experiments, the highest values were obtained for SCD acute plasma samples. Adhesion of senescent RBCs into biochips, which is not reversed by a pre-treatment with recombinant Annexin V, can be reproduced with the use of chemical agents acting on RBC membrane channels that regulate either Ca2+ entry or modulating RBC hydration. CONCLUSION: We found that markers on red cells are correlated, and that the senescence induced by SCD plasma provokes the adhesion of RBCs to the vessel wall protein thrombospondin. In-flow adhesion of senescent red cells after plasma co-incubations can be reproduced with the use of modulators of RBC membrane channels; activating the Piezo1 Ca2+ mechanosensitive channel provokes RBC adhesion of normal (non-senescent) RBCs, while blocking the Ca2+-dependent K+ Gardos channel, can reverse it. Clinically modulating the RBC adhesion to vascular wall proteins might be a promising avenue for the treatment of painful occlusive events in SCD.
Collapse
|
20
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
21
|
DeVallance ER, Branyan KW, Olfert IM, Pistilli EE, Bryner RW, Kelley EE, Frisbee JC, Chantler PD. Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Exp Physiol 2021; 106:1343-1358. [PMID: 33913209 DOI: 10.1113/ep089449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.
Collapse
Affiliation(s)
- Evan R DeVallance
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randall W Bryner
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
22
|
Integrin VLA-4 as a PET imaging biomarker of hyper-adhesion in transgenic sickle mice. Blood Adv 2021; 4:4102-4112. [PMID: 32882004 DOI: 10.1182/bloodadvances.2020002642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In sickle cell disease (SCD), very late antigen-4 (VLA-4 or integrin α4β1) mediates the adhesion of reticulocytes to inflamed, proinflammatory endothelium, a key process in promoting vaso-occlusive episodes (VOEs). We hypothesized that a radionuclide tracer targeting VLA-4 could be harnessed as a positron emission tomography (PET) imaging biomarker of VOEs. We tested the VLA-4 peptidomimetic PET tracer 64Cu-CB-TE1A1P-PEG4-LLP2A (64Cu-LLP2A) for imaging hyper-adhesion-associated VOEs in the SCD Townes mouse model. With lipopolysaccharide (LPS)-induced VOEs, 64Cu-LLP2A uptake was increased in the bone marrow of the humeri and femurs, common sites of VOEs in SCD mice compared with non-SCD mice. Treatment with a proven inhibitor of VOEs (the anti-mouse anti-P-selectin monoclonal antibody [mAb] RB40.34) during LPS stimulation led to a reduction in the uptake of 64Cu-LLP2A in the humeri and femurs to baseline levels, implying blockade of VOE hyper-adhesion. Flow cytometry with Cy3-LLP2A demonstrated an increased percentage of VLA-4-positive reticulocytes in SCD vs non-SCD mice in the bone and peripheral blood after treatment with LPS, which was abrogated by anti-P-selectin mAb treatment. These data, for the first time, show in vivo imaging of VLA-4-mediated hyper-adhesion, primarily of SCD reticulocytes, during VOEs. PET imaging with 64Cu-LLP2A may serve as a valuable, noninvasive method for identifying sites of vaso-occlusion and may provide an objective biomarker of disease severity and anti-P-selectin treatment efficacy in patients with SCD.
Collapse
|
23
|
Thrombospondin-1 CD47 Signalling: From Mechanisms to Medicine. Int J Mol Sci 2021; 22:ijms22084062. [PMID: 33920030 PMCID: PMC8071034 DOI: 10.3390/ijms22084062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances provide evidence that the cellular signalling pathway comprising the ligand-receptor duo of thrombospondin-1 (TSP1) and CD47 is involved in mediating a range of diseases affecting renal, vascular, and metabolic function, as well as cancer. In several instances, research has barely progressed past pre-clinical animal models of disease and early phase 1 clinical trials, while for cancers, anti-CD47 therapy has emerged from phase 2 clinical trials in humans as a crucial adjuvant therapeutic agent. This has important implications for interventions that seek to capitalize on targeting this pathway in diseases where TSP1 and/or CD47 play a role. Despite substantial progress made in our understanding of this pathway in malignant and cardiovascular disease, knowledge and translational gaps remain regarding the role of this pathway in kidney and metabolic diseases, limiting identification of putative drug targets and development of effective treatments. This review considers recent advances reported in the field of TSP1-CD47 signalling, focusing on several aspects including enzymatic production, receptor function, interacting partners, localization of signalling, matrix-cellular and cell-to-cell cross talk. The potential impact that these newly described mechanisms have on health, with a particular focus on renal and metabolic disease, is also discussed.
Collapse
|
24
|
Kaur S, Isenberg JS, Roberts DD. CD47 (Cluster of Differentiation 47). ATLAS OF GENETICS AND CYTOGENETICS IN ONCOLOGY AND HAEMATOLOGY 2021; 25:83-102. [PMID: 34707698 PMCID: PMC8547767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CD47, also known as integrin-associated protein, is a constitutively and ubiquitously expressed transmembrane receptor. CD47 is conserved across amniotes including mammals, reptiles, and birds. Expression is increased in many cancers and, in non-malignant cells, by stress and with aging. The up-regulation of CD47 expression is generally epigenetic, whereas gene amplification occurs with low frequency in some cancers. CD47 is a high affinity signaling receptor for the secreted protein thrombospondin-1 (THBS1) and the counter-receptor for signal regulatory protein-α (SIRPA, SIRPα) and SIRPγ (SIRPG). CD47 interaction with SIRPα serves as a marker of self to innate immune cells and thereby protects cancer cells from phagocytic clearance. Consequently, higher CD47 correlates with a poor prognosis in some cancers, and therapeutic blockade can suppress tumor growth by enhancing innate antitumor immunity. CD47 expressed on cytotoxic T cells, dendritic cells, and NK cells mediates inhibitory THBS1 signaling that further limits antitumor immunity. CD47 laterally associates with several integrins and thereby regulates cell adhesion and migration. CD47 has additional lateral binding partners in specific cell types, and ligation of CD47 in some cases modulates their function. THBS1-CD47 signaling in non-malignant cells inhibits nitric oxide/cGMP, calcium, and VEGF signaling, mitochondrial homeostasis, stem cell maintenance, protective autophagy, and DNA damage response, and promotes NADPH oxidase activity. CD47 signaling is a physiological regulator of platelet activation, angiogenesis and blood flow. THBS1/CD47 signaling is frequently dysregulated in chronic diseases.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | | | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Bryant AJ, Pham A, Gogoi H, Mitchell CR, Pais F, Jin L. The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulm Circ 2021; 11:2045894021996574. [PMID: 33738095 PMCID: PMC7934053 DOI: 10.1177/2045894021996574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
For as long as nucleic acids have been utilized to vertically and horizontally transfer genetic material, living organisms have had to develop methods of recognizing cytosolic DNA as either pathogenic (microbial invasion) or physiologic (mitosis and cellular proliferation). Derangement in key signaling molecules involved in these pathways of DNA sensing result in a family of diseases labeled interferonopathies. An interferonopathy, characterized by constitutive expression of type I interferons, ultimately manifests as severe autoimmune disease at a young age. Afflicted patients present with a constellation of immune-mediated conditions, including primary lung manifestations such as pulmonary fibrosis and pulmonary hypertension. The latter condition is especially interesting in light of the known role that DNA damage plays in a variety of types of inherited and induced pulmonary hypertension, with free DNA detection elevated in the circulation of affected individuals. While little is known regarding the role of cytosolic DNA sensing in development of pulmonary vascular disease, exciting new research in the related fields of immunology and oncology potentially sheds light on future areas of fruitful exploration. As such, the goal of this review is to summarize the state of the field of nucleic acid sensing, extrapolating common shared pathways that parallel our knowledge of pulmonary hypertension, in a molecular and cell-specific manner. Principles of DNA sensing related to known pulmonary injury inducing stimuli are also evaluated, in addition to potential therapeutic targets. Finally, future directions in pulmonary hypertension research and treatments will be briefly discussed.
Collapse
Affiliation(s)
- Andrew J. Bryant
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Ann Pham
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Himanshu Gogoi
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Carly R. Mitchell
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Faye Pais
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Lei Jin
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| |
Collapse
|
26
|
Wu X, You W, Wu Z, Ye F, Chen S. Serum biomarker analysis at the protein level on pulmonary hypertension secondary to old anterior myocardial infarction. Pulm Circ 2020; 10:2045894020969079. [PMID: 33282196 PMCID: PMC7691928 DOI: 10.1177/2045894020969079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023] Open
Abstract
Pulmonary hypertension (PH) related to old anterior myocardial infarction (OAMI)
always accompanies a bad prognosis, and thus, we aimed to screen serum
biomarkers related to PH in OAMI patients. According to right ventricular
systolic pressure, we divided mice into sham, OAMI, and PH-OAMI groups and
evaluated body, heart and lung weight, heart function, pulmonary blood flow
velocity, cardiac fibrotic area, and pulmonary arteriole condition. Lung and
serum were under the proteomic analysis. Levels of three identified proteins
were measured. Compared with sham and OAMI mice, PH-OAMI mice showed heart
dysfunction, low pulmonary blood flow, high right ventricular systolic pressure,
heavy heart and lung weight, large cardiac fibrotic area, and pathological
pulmonary arteriole remodeling (P<0.05 or
P<0.01). Haptoglobin, annexin A5, and Ig mu chain C region
of lung and serum were changed significantly in PH-OAMI mice
(P<0.01). Then, we collected serum and clinical data,
measured three serum protein levels, and performed multivariate regression and
receiver operating characteristic curve in patients (normal, OAMI, and PH-OAMI
groups). Compared with normal and OAMI patients, serum levels of three proteins
in PH-OAMI patients were also altered notably (P<0.01).
These three proteins can predict PH in OAMI patients
(P<0.01). Receiver operating characteristic curve analysis
revealed haptoglobin (cut-off value: 78.295, sensitivity: 62.8%, specificity:
94.4%), annexin A5 (cut-off value: 151.925, sensitivity: 41.9%, specificity:
82.4%), and Ig mu chain C region (cut-off value: 168.885, sensitivity: 86.0%,
specificity: 79.6%) (P<0.01). Three circulating serum
proteins can be useful for the categorization of OAMI patients with and without
PH.
Collapse
Affiliation(s)
- Xiangqi Wu
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei You
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiming Wu
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Ye
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Shet AS, Lizarralde-Iragorri MA, Naik RP. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 2020; 105:2368-2379. [PMID: 33054077 PMCID: PMC7556662 DOI: 10.3324/haematol.2019.239350] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The genetic and molecular basis of sickle cell disease (SCD) has long since been characterized but the pathophysiological basis is not entirely defined. How a red cell hemolytic disorder initiates inflammation, endothelial dysfunction, coagulation activation and eventually leads to vascular thrombosis, is yet to be elucidated. Recent evidence has demonstrated a high frequency of unprovoked/recurrent venous thromboembolism (VTE) in SCD, with an increased risk of mortality among patients with a history of VTE. Here, we thoroughly review the molecular basis for the prothrombotic state in SCD, specifically highlighting emerging evidence for activation of overlapping inflammation and coagulation pathways, that predispose to venous thromboembolism. We share perspectives in managing venous thrombosis in SCD, highlighting innovative therapies with the potential to influence the clinical course of disease and reduce thrombotic risk, while maintaining an acceptable safety profile.
Collapse
Affiliation(s)
- Arun S. Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda
| | | | - Rakhi P. Naik
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Bissinger R, Petkova-Kirova P, Mykhailova O, Oldenborg PA, Novikova E, Donkor DA, Dietz T, Bhuyan AAM, Sheffield WP, Grau M, Artunc F, Kaestner L, Acker JP, Qadri SM. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Commun Signal 2020; 18:155. [PMID: 32948210 PMCID: PMC7502024 DOI: 10.1186/s12964-020-00651-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs). METHODS Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer. RESULTS Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index). CONCLUSIONS Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases. Video abstract.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Elena Novikova
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | | | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at Eberhard-Karls University, Tübingen, Germany.,German Center for Diabetes Research (DZD), Eberhard-Karls University, Tübingen, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.
| |
Collapse
|
29
|
Lahm T. Taking it to heart: dissecting cardiopulmonary interactions in diseases of the lung and the cardiovascular system. Am J Physiol Lung Cell Mol Physiol 2020; 319:L547-L549. [PMID: 32783622 PMCID: PMC7518052 DOI: 10.1152/ajplung.00373.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
30
|
Curative vs targeted therapy for SCD: does it make more sense to address the root cause than target downstream events? Blood Adv 2020; 4:3457-3465. [PMID: 32722787 DOI: 10.1182/bloodadvances.2020001469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Sickle cell disease (SCD) places a heavy burden on a global and increasing population predominantly resident in resource-poor and developing countries. Progress continues to be made in preventing childhood mortality, and increasing numbers of chronically ill adults with disease are requiring care for disease sequelae. Curative therapies for SCD are therefore attractive to physicians and investigators focused on SCD. Gene therapies are being developed, and several are now in various stages of early-phase human clinical trials. However, we must also pursue avenues through which we can do the most good for the most people alive today. Such efforts include improving our understanding of disease mechanisms and which disease sequelae most strongly affect survival and interfere with quality of life. The pathways leading to disease sequelae are multiple, complex, and highly interactive. Four drugs have now been approved by the US Food and Drug Administration for SCD; however, each has a distinct mechanism and a measurable but limited effect on the many clinical sequelae of SCD. We therefore need to learn how to approach multi-agent therapy for SCD. The order of addition of each agent to treat a specific patient will need to be guided by response to previous therapy, risk factors identified for specific disease outcomes, and clinical studies to determine more comprehensively how the 4 currently approved drugs might interact and produce (or not) additive effects. Moreover, this will have to be accomplished with defined end points in mind, according to which pose the greatest threats to quality of life as well as survival.
Collapse
|
31
|
Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol 2020; 319:C481-C499. [PMID: 32579472 DOI: 10.1152/ajpcell.00147.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular remodeling is the adaptive response to various physiological and pathophysiological alterations that are closely related to aging and vascular diseases. Understanding the mechanistic regulation of vascular remodeling may be favorable for discovering potential therapeutic targets and strategies. The extracellular matrix (ECM), including matrix proteins and their degradative metalloproteases, serves as the main component of the microenvironment and exhibits dynamic changes during vascular remodeling. This process involves mainly the altered composition of matrix proteins, metalloprotease-mediated degradation, posttranslational modification of ECM proteins, and altered topographical features of the ECM. To date, adequate studies have demonstrated that ECM dynamics also play a critical role in vascular remodeling in various diseases. Here, we review these related studies, summarize how ECM dynamics control vascular remodeling, and further indicate potential diagnostic biomarkers and therapeutic targets in the ECM for corresponding vascular diseases.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
32
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
Abstract
Thrombospondins are encoded in vertebrates by a family of 5 THBS genes. THBS1 is infrequently mutated in most cancers, but its expression is positively regulated by several tumor suppressor genes and negatively regulated by activated oncogenes and promoter hypermethylation. Consequently, thrombospondin-1 expression is frequently lost during oncogenesis and is correlated with a poor prognosis for some cancers. Thrombospondin-1 is a secreted protein that acts in the tumor microenvironment to inhibit angiogenesis, regulate antitumor immunity, stimulate tumor cell migration, and regulate the activities of extracellular proteases and growth factors. Differential effects of thrombospondin-1 on the sensitivity of normal versus malignant cells to ischemic and genotoxic stress also regulate the responses to tumors to therapeutic radiation and chemotherapy.
Collapse
Affiliation(s)
| | - David D Roberts
- Biochemical Pathology Section, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Cheng Q, Gu J, Adhikari BK, Sun L, Sun J. Is CD47 a potentially promising therapeutic target in cardiovascular diseases? - Role of CD47 in cardiovascular diseases. Life Sci 2020; 247:117426. [PMID: 32061866 DOI: 10.1016/j.lfs.2020.117426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 01/03/2023]
Abstract
CD47 (cluster of differentiation 47) is a ubiquitously expressed transmembrane protein that belongs to the immunoglobulin superfamily. CD47 is both a receptor for the matricellular protein thrombospondin-1 (TSP-1) and a ligand for signal-regulatory protein alpha (SIRPα). Suppression of CD47 activity enhances angiogenesis and blood flow, restores phagocytosis by macrophages, improves ischemic tissue survival, attenuates ischemia reperfusion injury, and reverses atherosclerotic plaque formation. In conclusion, these observations suggest a pathogenic role of CD47 in the development of cardiovascular diseases (CVDs) and indicate that CD47 might be a potentially promising molecular target for treating CVDs. Herein, we highlight the role of CD47 in the CVD pathogenesis and discuss the potential clinical application by targeting CD47 for treating CVDs.
Collapse
Affiliation(s)
- Quanli Cheng
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China
| | - Junlian Gu
- The School of Nursing, Shandong University, Jinan, China
| | - Binay Kumar Adhikari
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China
| | - Liguang Sun
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China.
| | - Jian Sun
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China.
| |
Collapse
|