1
|
Willis KA, Silverberg M, Martin I, Abdelgawad A, Karabayir I, Halloran BA, Myers ED, Desai JP, White CT, Lal CV, Ambalavanan N, Peters BM, Jain VG, Akbilgic O, Tipton L, Jilling T, Cormier SA, Pierre JF, Talati AJ. The fungal intestinal microbiota predict the development of bronchopulmonary dysplasia in very low birthweight newborns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290625. [PMID: 37398134 PMCID: PMC10312873 DOI: 10.1101/2023.05.29.23290625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. METHODS We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. RESULTS We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. CONCLUSIONS The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis.
Collapse
|
2
|
Feng DD, Chen JH, Chen YF, Cao Q, Li BJ, Chen XQ, Jin R, Zhou GP. MALAT1 binds to miR-188-3p to regulate ALOX5 activity in the lung inflammatory response of neonatal bronchopulmonary dysplasia. Mol Immunol 2023; 160:67-79. [PMID: 37385102 DOI: 10.1016/j.molimm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) causes high morbidity and mortality in infants, but no effective preventive or therapeutic agents have been developed to combat BPD. In this study, we assessed the expression of MALAT1 and ALOX5 in peripheral blood mononuclear cells from BPD neonates, hyperoxia-induced rat models and lung epithelial cell lines. Interestingly, we found upregulated expression of MALAT1 and ALOX5 in the experimental groups, along with upregulated expression of proinflammatory cytokines. According to bioinformatics prediction, MALAT1 and ALOX5 simultaneously bind to miR-188-3p, which was downregulated in the experimental groups above. Silencing MALAT1 or ALOX5 and overexpressing miR-188-3p inhibited apoptosis and promoted the proliferation of hyperoxia-treated A549 cells. Suppressing MALAT1 or overexpressing miR-188-3p increased the expression levels of miR-188-3p but decreased the expression levels of ALOX5. Moreover, RNA immunoprecipitation (RIP) and luciferase assays showed that MALAT1 directly targeted miR-188-3p to regulate ALOX5 expression in BPD neonates. Collectively, our study demonstrates that MALAT1 regulates ALOX5 expression by binding to miR-188-3p, providing novel insights into potential therapeutics for BPD treatment.
Collapse
Affiliation(s)
- Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Fei Chen
- Department of Pediatrics, Yancheng Maternal and Child Health Care Hospital, Yancheng 224000, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Bing-Jie Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
3
|
Clark GC, Elfsmark L, Armstrong S, Essex-Lopresti A, Gustafsson Å, Ryan Y, Moore K, Paszkiewicz K, Green AC, Hiscox JA, David J, Jonasson S. From "crisis to recovery": A complete insight into the mechanisms of chlorine injury in the lung. Life Sci 2022; 312:121252. [PMID: 36460096 DOI: 10.1016/j.lfs.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Chlorine (Cl2) gas is a toxic industrial chemical (TIC) that poses a hazard to human health following accidental and/or intentional (e.g. terrorist) release. By using a murine model of sub-lethal Cl2 exposure we have examined the airway hyper responsiveness, cellular infiltrates, transcriptomic and proteomic responses of the lung. In the "crisis" phase at 2 h and 6 h there is a significant decreases in leukocytes within bronchoalveolar lavage fluid accompanied by an upregulation within the proteome of immune pathways ultimately resulting in neutrophil influx at 24 h. A flip towards "repair" in the transcriptome and proteome occurs at 24 h, neutrophil influx and an associated drop in the lung function persisting until 14 d post-exposure and subsequent "recovery" after 28 days. Collectively, this research provides new insights into the mechanisms of damage, early global responses and processes of repair induced in the lung following the inhalation of Cl2.
Collapse
Affiliation(s)
- Graeme C Clark
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK; Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK.
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Angela Essex-Lopresti
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Åsa Gustafsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Yan Ryan
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Karen Moore
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Konrad Paszkiewicz
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Julian A Hiscox
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Jonathan David
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
4
|
Masjoan Juncos JX, Shakil S, Ahmad A, Mariappan N, Zafar I, Bradley WE, Dell’Italia LJ, Ahmad A, Ahmad S. Sex differences in cardiopulmonary effects of acute bromine exposure. Toxicol Res (Camb) 2021; 10:1064-1073. [PMID: 34733491 PMCID: PMC8557644 DOI: 10.1093/toxres/tfab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
Accidental occupational bromine (Br>2>) exposures are common, leading to significant morbidity and mortality; however, the specific effects of Br>2> inhalation in female victims are unclear. Our studies demonstrated that acute high-concentration Br>2> inhalation is fatal, and cardiac injury and dysfunction play an important role in Br>2> toxicity in males. In this study, we exposed female Sprague Dawley rats, age-matched to those males from previously studied, to 600 ppm Br>2> for 45 min and assessed their survival, cardiopulmonary injury and cardiac function after exposure. Br>2> exposure caused serious mortality in female rats (59%) 48 h after exposure. Rats had severe clinical distress, reduced heart rates and oxygen saturation after Br>2> inhalation as was previously reported with male animals. There was significant lung injury and edema when measured 24 h after exposure. Cardiac injury biomarkers were also significantly elevated 24 h after Br>2> inhalation. Echocardiography and hemodynamic studies were also performed and revealed that the mean arterial pressure was not significantly elevated in females. Other functional cardiac parameters were also altered. Aside from the lack of elevation of blood pressure, all other changes observed in female animals were also present in male animals as reported in our previous study. These studies are important to understand the toxicity mechanisms to generate therapies and better-equip first responders to deal with these specific scenarios after bromine spill disasters.>.
Collapse
Affiliation(s)
- Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis J Dell’Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Colunga Biancatelli RML, Solopov P, Dimitropoulou C, Catravas JD. Age-Dependent Chronic Lung Injury and Pulmonary Fibrosis following Single Exposure to Hydrochloric Acid. Int J Mol Sci 2021; 22:ijms22168833. [PMID: 34445540 PMCID: PMC8396339 DOI: 10.3390/ijms22168833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to hydrochloric acid (HCl) represents a threat to public health. Children may inhale higher doses and develop greater injury because of their smaller airways and faster respiratory rate. We have developed a mouse model of pediatric exposure to HCl by intratracheally instilling p24 mice (mice 24 days old; 8-10 g) with 2 µL/g 0.1 N HCl, and compared the profile of lung injury to that in HCl-instilled adults (10 weeks old; 25-30 g) and their age-matched saline controls. After 30 days, alveolar inflammation was observed with increased proteinosis and mononuclear cells in the bronchoalveolar lavage fluid (BALF) in both HCl-instilled groups. Young p24 animals-but not adults-exhibited higher NLR family pyrin domain containing 3 (NLRP3) inflammasome levels. Increased amounts of Transforming Growth Factor-β (TGF-β) mRNA and its intracellular canonical and non-canonical pathways (p-Smad2 and p-ERK) were found in the lungs of both young and adult HCl-instilled mice. Constitutive age-related differences were observed in the levels of heat shock protein family (HSP70 and HSP90). HCl equally provoked the deposition of collagen and fibronectin; however, significant age-dependent differences were observed in the increase in elastin and tenascin C mRNA. HCl induced pulmonary fibrosis with an increased Ashcroft score, which was higher in adults, and a reduction in alveolar Mean Alveolar Linear Intercept (MALI). Young mice developed increased Newtonian resistance (Rn) and lower PV loops, while adults showed a higher respiratory system resistance and elastance. This data indicate that young p24 mice can suffer long-term complications from a single exposure to HCl, and can develop chronic lung injury characterized by a stronger persistent inflammation and lesser fibrotic pattern, mostly in the airways, differently from adults. Further data are required to characterize HCl time- and dose-dependent injury in young animals and to identify new key-molecular targets.
Collapse
Affiliation(s)
- Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.S.); (C.D.); (J.D.C.)
- Correspondence: ; Tel.: +1-757-683-2690
| | - Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.S.); (C.D.); (J.D.C.)
| | - Christiana Dimitropoulou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.S.); (C.D.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.S.); (C.D.); (J.D.C.)
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23509, USA
| |
Collapse
|
7
|
Ali A, Zambrano R, Duncan MR, Chen S, Luo S, Yuan H, Chen P, Benny M, Schmidt A, Young K, Kerr N, de Rivero Vaccari JP, Keane RW, Dietrich WD, Wu S. Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Sci Rep 2021; 11:8791. [PMID: 33888735 PMCID: PMC8062626 DOI: 10.1038/s41598-021-87706-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Hyperoxia-induced lung injury plays a key role in the development of bronchopulmonary dysplasia (BPD), characterized by inflammatory injury and impaired lung development in preterm infants. Although BPD is a predictor of poor neurodevelopmental outcomes, currently it is uncertain how lung injury contributes to brain injury in preterm infants. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that regulate intercellular and inter-organ communications. Gasdermin D (GSDMD) has emerged as a key executor of inflammasome-mediated cell death and inflammation. In this study, we utilized a neonatal rat model of BPD to assess if hyperoxia stimulates lung release of circulating EVs and if these EVs induce lung and brain injury. We found that hyperoxia-exposed rats had elevated numbers of plasma-derived EVs compared to rats maintained in room air. These EVs also had increased cargos of surfactant protein C, a marker of type II alveolar epithelial cells (AEC), and the active (p30) form of GSDMD. When these EVs were adoptively transferred into normal newborn rats via intravenous injection, they were taken up both by lung and brain tissues. Moreover, EVs from hyperoxic animals induced not only the pathological hallmarks of BPD, but also brain inflammatory injury in recipient rats, as well as inducing cell death in cultured pulmonary vascular endothelial cells and neural stem cells (NSC). Similarly, hyperoxia-exposed cultured AEC-like cells released EVs that also contained increased GSDMD-p30 and these EVs induced pyroptotic cell death in NSC. Overall, these data indicate that hyperoxia-activated circulating EVs mediate a lung to brain crosstalk resulting in brain injury and suggest a mechanism that links lung injury and neurodevelopmental impairment in BPD infants.
Collapse
Affiliation(s)
- Anum Ali
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Ronald Zambrano
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Matthew R Duncan
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shaoyi Chen
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shihua Luo
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Huijun Yuan
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Pingping Chen
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Merline Benny
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Augusto Schmidt
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Karen Young
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Nadine Kerr
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Shu Wu
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
8
|
Masjoan Juncos JX, Shakil S, Bradley WE, Wei CC, Zafar I, Powell P, Mariappan N, Louch WE, Ford DA, Ahmad A, Dell'Italia LJ, Ahmad S. Chronic cardiac structural damage, diastolic and systolic dysfunction following acute myocardial injury due to bromine exposure in rats. Arch Toxicol 2021; 95:179-193. [PMID: 32979061 PMCID: PMC7855670 DOI: 10.1007/s00204-020-02919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.
Collapse
MESH Headings
- Animals
- Bromine
- Calcium-Binding Proteins/metabolism
- Cardiomegaly/chemically induced
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiotoxicity
- Diastole
- Disease Models, Animal
- Fibrosis
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Myocardium/metabolism
- Myocardium/ultrastructure
- NADPH Oxidase 2/metabolism
- Natriuretic Peptide, Brain/metabolism
- Oxidative Stress/drug effects
- Peptide Fragments/metabolism
- Phosphorylation
- Protein Phosphatase 1/metabolism
- Rats, Sprague-Dawley
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Systole
- Time Factors
- Troponin I/metabolism
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Left
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, #322 BMRII, 901 19th St. South, Birmingham, AL, 35294, USA
| | - Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, #322 BMRII, 901 19th St. South, Birmingham, AL, 35294, USA
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Chih-Chang Wei
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, #322 BMRII, 901 19th St. South, Birmingham, AL, 35294, USA
| | - Pamela Powell
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, #322 BMRII, 901 19th St. South, Birmingham, AL, 35294, USA
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - David A Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, #322 BMRII, 901 19th St. South, Birmingham, AL, 35294, USA
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, #322 BMRII, 901 19th St. South, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Addis DR, Molyvdas A, Ambalavanan N, Matalon S, Jilling T. Halogen exposure injury in the developing lung. Ann N Y Acad Sci 2020; 1480:30-43. [PMID: 32738176 DOI: 10.1111/nyas.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Owing to a high-volume industrial usage of the halogens chlorine (Cl2 ) and bromine (Br2 ), they are stored and transported in abundance, creating a risk for accidental or malicious release to human populations. Despite extensive efforts to understand the mechanisms of toxicity upon halogen exposure and to develop specific treatments that could be used to treat exposed individuals or large populations, until recently, there has been little to no effort to determine whether there are specific features and or the mechanisms of halogen exposure injury in newborns or children. We established a model of neonatal halogen exposure and published our initial findings. In this review, we aim to contrast and compare the findings in neonatal mice exposed to Br2 with the findings published on adult mice exposed to Br2 and the neonatal murine models of bronchopulmonary dysplasia. Despite remarkable similarities across these models in overall alveolar architecture, there are distinct functional and apparent mechanistic differences that are characteristic of each model. Understanding the mechanistic and functional features that are characteristic of the injury process in neonatal mice exposed to halogens will allow us to develop countermeasures that are appropriate for, and effective in, this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,UAB Comprehensive Cardiovascular Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
10
|
Addis DR, Aggarwal S, Doran SF, Jian MY, Ahmad I, Kojima K, Ford DA, Matalon S, Mobley JA. Vascular permeability disruption explored in the proteomes of mouse lungs and human microvascular cells following acute bromine exposure. Am J Physiol Lung Cell Mol Physiol 2020; 319:L337-L359. [PMID: 32579402 DOI: 10.1152/ajplung.00196.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bromine (Br2) is an organohalide found in nature and is integral to many manufacturing processes. Br2 is toxic to living organisms, and high concentrations can prove fatal. To meet industrial demand, large amounts of purified Br2 are produced, transported, and stored worldwide, providing a multitude of interfaces for potential human exposure through either accidents or terrorism. To identify the key mechanisms associated with acute Br2 exposure, we have surveyed the lung proteomes of C57BL/6 male mice and human lung-derived microvascular endothelial cells (HMECs) at 24 h following exposure to Br2 in concentrations likely to be encountered in the vicinity of industrial accidents. Global discovery proteomics applications combined with systems biology analysis identified robust and highly significant changes in proteins associated with three biological processes: 1) exosome secretion, 2) inflammation, and 3) vascular permeability. We focused on the latter, conducting physiological studies on isolated perfused lungs harvested from mice 24 h after Br2 exposure. These experiments revealed significant increases in the filtration coefficient (Kf) indicating increased permeability of the pulmonary vasculature. Similarly, confluent monolayers of Br2 and Br-lipid-treated HMECs exhibited differential levels of zona occludens-1 that were found to be dissociated from cell wall localization, an increase in phosphorylation and internalization of E-cadherin, as well as increased actin stress fiber formation, all of which are consistent with increased permeability. Taken as a whole, our discovery proteomics and systems analysis workflow, combined with physiological measurements of permeability, revealed both profound and novel biological changes that contribute to our current understanding of Br2 toxicity.
Collapse
Affiliation(s)
- Dylan R Addis
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Stephen F Doran
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Ming-Yuan Jian
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Kyoko Kojima
- Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - James A Mobley
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
11
|
Guo S, Liu H, He H, Wang W, Jiang L, Xiong X, Wang L. Eco-Friendly Strategy To Improve Durability and Stability of Zwitterionic Capping Ligand Colloidal CsPbBr 3 Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6775-6781. [PMID: 32456439 DOI: 10.1021/acs.langmuir.0c00883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Long-chain zwitterionic ligands have been demonstrated to greatly improve the chemical durability of colloidal CsPbBr3 nanocrystals (NCs) by the chelate effect. However, Br sources are toxic, and the reaction is so dynamic that it is hard to control the size of the crystal. We propose an eco-friendly strategy to improve the chemical durability of colloidal CsPbBr3 NCs. Nontoxic, inexpensive, and directly available benzoyl bromine was used as the Br source, and tri-n-octylphosphine oxide was used as the adjuvant to control the reaction kinetics. Uniform, monodispersed NCs with a size of ∼11 nm were obtained. They had high photoluminescence quantum yields (PLQYs) of above 95% and, especially, showed strong stability against attack by polar solvents. The PLQY remained 80% even after 12 cycles of purification. Furthermore, after 24 h of continuous radiation by 405 nm laser, the photoluminescence (PL) intensity showed negligible decrease, and the wavelength and full width at half-maximum of PL had no significant change.
Collapse
Affiliation(s)
- Siyu Guo
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Hu Liu
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Haiyang He
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Wei Wang
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Lin Jiang
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Xuhui Xiong
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Li Wang
- School of Material Science and Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Addis DR, Lambert JA, Ford DA, Jilling T, Matalon S. Halogen gas exposure: toxic effects on the parturient. Toxicol Mech Methods 2020; 31:272-287. [PMID: 32131668 DOI: 10.1080/15376516.2020.1736702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The elemental halogens include chlorine, bromine, and phosgene. Halogen gas can be directly weaponized and employed in warfare or terrorism. Industrial stockpiles or halogen transport can provide targets for terrorist attack as well as an origin for accidental release creating a risk for potential mass-casualty incidents. Pregnant and post-partum women represent a substantial and vulnerable subset of the population who may be at particular risk during an attack or accidental exposure. We review the effects of halogen exposure on the parturient with a focus on bromine toxicity. Bromine is the most extensively studied agent in the context of pregnancy and to-date murine models form the basis for the majority of current knowledge. Pregnancy potentiates the acute lung injury after halogen exposure. In addition, halogen exposure precipitates a preeclamptic-like syndrome in mice. This phenotype is characterized by systemic and pulmonary hypertension, endothelial dysfunction, decreased cardiac output, placental injury and fetal growth restriction. This constellation contributes to increased maternal and fetal mortality observed after bromine exposure. Angiogenic imbalance is noted with overexpression of the soluble fms-like tyrosine kinase-1 (sFlt-1) form of the vascular endothelial growth factor receptor 1 reminiscent of human preeclampsia. Additional research is needed to further explore the effect of halogen gas exposure in pregnancy and to develop therapeutic interventions to mitigate risk to this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Lambert
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO, USA
| | - Tamas Jilling
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
14
|
Ramani M, Miller K, Brown J, Kumar R, Kadasamy J, McMahon L, Ballinger S, Ambalavanan N. Early Life Supraphysiological Levels of Oxygen Exposure Permanently Impairs Hippocampal Mitochondrial Function. Sci Rep 2019; 9:13364. [PMID: 31527593 PMCID: PMC6746707 DOI: 10.1038/s41598-019-49532-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Preterm infants requiring prolonged oxygen therapy often develop cognitive dysfunction in later life. Previously, we reported that 14-week-old young adult mice exposed to hyperoxia as newborns had spatial and learning deficits and hippocampal shrinkage. We hypothesized that the underlying mechanism was the induction of hippocampal mitochondrial dysfunction by neonatal hyperoxia. C57BL/6J mouse pups were exposed to 85% oxygen or room air from P2-P14. Hippocampal proteomic analysis was performed in young adult mice (14 weeks). Mitochondrial bioenergetics were measured in neonatal (P14) and young adult mice. We found that hyperoxia exposure reduced mitochondrial ATP-linked oxygen consumption and increased state 4 respiration linked proton leak in both neonatal and young adult mice while complex I function was decreased at P14 but increased in young adult mice. Proteomic analysis revealed that hyperoxia exposure decreased complex I NDUFB8 and NDUFB11 and complex IV 7B subunits, but increased complex III subunit 9 in young adult mice. In conclusion, neonatal hyperoxia permanently impairs hippocampal mitochondrial function and alters complex I function. These hippocampal mitochondrial changes may account for cognitive deficits seen in children and adolescents born preterm and may potentially be a contributing mechanism in other oxidative stress associated brain disorders.
Collapse
Affiliation(s)
- Manimaran Ramani
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Kiara Miller
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jamelle Brown
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ranjit Kumar
- Departments of Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jegen Kadasamy
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lori McMahon
- Departments of cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Departments of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Scott Ballinger
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Namasivayam Ambalavanan
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Departments of cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
15
|
Aggarwal S, Jilling T, Doran S, Ahmad I, Eagen JE, Gu S, Gillespie M, Albert CJ, Ford D, Oh JY, Patel RP, Matalon S. Phosgene inhalation causes hemolysis and acute lung injury. Toxicol Lett 2019; 312:204-213. [PMID: 31047999 DOI: 10.1016/j.toxlet.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Phosgene (Carbonyl Chloride, COCl2) remains an important chemical intermediate in many industrial processes such as combustion of chlorinated hydrocarbons and synthesis of solvents (degreasers, cleaners). It is a sweet smelling gas, and therefore does not prompt escape by the victim upon exposure. Supplemental oxygen and ventilation are the only available management strategies. This study was aimed to delineate the pathogenesis and identify novel biomarkers of acute lung injury post exposure to COCl2 gas. Adult male and female C57BL/6 mice (20-25 g), exposed to COCl2 gas (10 or 20 ppm) for 10 min in environmental chambers, had a dose dependent reduction in PaO2 and an increase in PaCO2, 1 day post exposure. However, mortality increased only in mice exposed to 20 ppm of COCl2 for 10 min. Correspondingly, these mice (20 ppm) also had severe acute lung injury as indicated by an increase in lung wet to dry weight ratio, extravasation of plasma proteins and neutrophils into the bronchoalveolar lavage fluid, and an increase in total lung resistance. The increase in acute lung injury parameters in COCl2 (20 ppm, 10 min) exposed mice correlated with simultaneous increase in oxidation of red blood cells (RBC) membrane, RBC fragility, and plasma levels of cell-free heme. In addition, these mice had decreased plasmalogen levels (plasmenylethanolamine) and elevated levels of their breakdown product, polyunsaturated lysophosphatidylethanolamine, in the circulation suggesting damage to cellular plasma membranes. This study highlights the importance of free heme in the pathogenesis of COCl2 lung injury and identifies plasma membrane breakdown product as potential biomarkers of COCl2 toxicity.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pediatrics, Division of Neonatology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Doran
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Jeannette E Eagen
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Gu
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Mark Gillespie
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; Department of Pharmacology, Mobile, AL, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Carolyn J Albert
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - David Ford
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States
| | - Joo-Yeun Oh
- Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Rakesh P Patel
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States.
| |
Collapse
|
16
|
Pan YQ, Hou AN. Hyperoxia-induced lung injury increases CDKN1A levels in a newborn rat model of bronchopulmonary dysplasia. Exp Lung Res 2019; 44:424-432. [PMID: 30755044 DOI: 10.1080/01902148.2018.1479898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu-Qing Pan
- Department of Pediatrics, Shengjing Hospital affiliated to China Medical University, Shenyang, P.R. China
| | - A-na Hou
- Department of Pediatrics, Shengjing Hospital affiliated to China Medical University, Shenyang, P.R. China
| |
Collapse
|
17
|
Ahmad S, Masjoan Juncos JX, Ahmad A, Zaky A, Wei CC, Bradley WE, Zafar I, Powell P, Mariappan N, Vetal N, Louch WE, Ford DA, Doran SF, Matalon S, Dell'Italia LJ. Bromine inhalation mimics ischemia-reperfusion cardiomyocyte injury and calpain activation in rats. Am J Physiol Heart Circ Physiol 2018; 316:H212-H223. [PMID: 30379573 DOI: 10.1152/ajpheart.00652.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Halogens are widely used, highly toxic chemicals that pose a potential threat to humans because of their abundance. Halogens such as bromine (Br2) cause severe pulmonary and systemic injuries; however, the mechanisms of their toxicity are largely unknown. Here, we demonstrated that Br2 and reactive brominated species produced in the lung and released in blood reach the heart and cause acute cardiac ultrastructural damage and dysfunction in rats. Br2-induced cardiac damage was demonstrated by acute (3-24 h) increases in circulating troponin I, heart-type fatty acid-binding protein, and NH2-terminal pro-brain natriuretic peptide. Transmission electron microscopy demonstrated acute (3-24 h) cardiac contraction band necrosis, disruption of z-disks, and mitochondrial swelling and disorganization. Echocardiography and hemodynamic analysis revealed left ventricular (LV) systolic and diastolic dysfunction at 7 days. Plasma and LV tissue had increased levels of brominated fatty acids. 2-Bromohexadecanal (Br-HDA) injected into the LV cavity of a normal rat caused acute LV enlargement with extensive disruption of the sarcomeric architecture and mitochondrial damage. There was extensive infiltration of neutrophils and increased myeloperoxidase levels in the hearts of Br2- or Br2 reactant-exposed rats. Increased bromination of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and increased phosphalamban after Br2 inhalation decreased cardiac SERCA activity by 70%. SERCA inactivation was accompanied by increased Ca2+-sensitive LV calpain activity. The calpain-specific inhibitor MDL28170 administered within 1 h after exposure significantly decreased calpain activity and acute mortality. Bromine inhalation and formation of reactive brominated species caused acute cardiac injury and myocardial damage that can lead to heart failure. NEW & NOTEWORTHY The present study defines left ventricular systolic and diastolic dysfunction due to cardiac injury after bromine (Br2) inhalation. A calpain-dependent mechanism was identified as a potential mediator of cardiac ultrastructure damage. This study not only highlights the importance of monitoring acute cardiac symptoms in victims of Br2 exposure but also defines calpains as a potential target to treat Br2-induced toxicity.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chih-Chang Wei
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Pamela Powell
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Nilam Vetal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo , Oslo , Norway.,KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - David A Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University , St. Louis, Missouri
| | - Stephen F Doran
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
18
|
Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Pathways Required for Learning and Memory. Sci Rep 2018; 8:9914. [PMID: 29967535 PMCID: PMC6028393 DOI: 10.1038/s41598-018-28220-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Preterm infants often require prolonged oxygen supplementation and are at high risk of neurodevelopmental impairment. We recently reported that adult mice exposed to neonatal hyperoxia (postnatal day [P] 2 to 14) had spatial navigation memory deficits associated with hippocampal shrinkage. The mechanisms by which early oxidative stress impair neurodevelopment are not known. Our objective was to identify early hyperoxia-induced alterations in hippocampal receptors and signaling pathways necessary for memory formation. We evaluated C57BL/6 mouse pups at P14, exposed to either 85% oxygen or air from P2 to 14. We performed targeted analysis of hippocampal ligand-gated ion channels and proteins necessary for memory formation, and global bioinformatic analysis of differentially expressed hippocampal genes and proteins. Hyperoxia decreased hippocampal mGLU7, TrkB, AKT, ERK2, mTORC1, RPS6, and EIF4E and increased α3, α5, and ɤ2 subunits of GABAA receptor and PTEN proteins, although changes in gene expression were not always concordant. Bioinformatic analysis indicated dysfunction in mitochondria and global protein synthesis and translational processes. In conclusion, supraphysiological oxygen exposure reduced proteins necessary for hippocampus-dependent memory formation and may adversely impact hippocampal mitochondrial function and global protein synthesis. These early hippocampal changes may account for memory deficits seen in preterm survivors following prolonged oxygen supplementation.
Collapse
|
19
|
Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol 2018; 9:602. [PMID: 29875698 PMCID: PMC5974054 DOI: 10.3389/fphys.2018.00602] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.
Collapse
Affiliation(s)
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Angel L López de Pablo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Carmen González
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Zhou T, Song WF, Shang Y, Yao SL, Matalon S. Halogen Inhalation-Induced Lung Injury and Acute Respiratory Distress Syndrome. Chin Med J (Engl) 2018; 131:1214-1219. [PMID: 29722341 PMCID: PMC5956773 DOI: 10.4103/0366-6999.231515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Exposure to halogens, such as chlorine or bromine, results in environmental and occupational hazard to the lung and other organs. Chlorine is highly toxic by inhalation, leading to dyspnea, hypoxemia, airway obstruction, pneumonitis, pulmonary edema, and acute respiratory distress syndrome (ARDS). Although bromine is less reactive and oxidative than chlorine, inhalation also results in bronchospasm, airway hyperresponsiveness, ARDS, and even death. Both halogens have been shown to damage the systemic circulation and result in cardiac injury as well. There is no specific antidote for these injuries since the mechanisms are largely unknown. DATA SOURCES This review was based on articles published in PubMed databases up to January, 2018, with the following keywords: "chlorine," "bromine," "lung injury," and "ARDS." STUDY SELECTION The original articles and reviews including the topics were the primary references. RESULTS Based on animal studies, it is found that inhaled chlorine will form chlorine-derived oxidative products that mediate postexposure toxicity; thus, potential treatments will target the oxidative stress and inflammation induced by chlorine. Antioxidants, cAMP-elevating agents, anti-inflammatory agents, nitric oxide-modulating agents, and high-molecular-weight hyaluronan have shown promising effects in treating acute chlorine injury. Elevated free heme level is involved in acute lung injury caused by bromine inhalation. Hemopexin, a heme-scavenging protein, when administered postexposure, decreases lung injury and improves survival. CONCLUSIONS At present, there is an urgent need for additional research to develop specific therapies that target the basic mechanisms by which halogens damage the lungs and systemic organs.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei-Feng Song
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shang-Long Yao
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|