1
|
Yu H, Li D, Zhao X, Fu J. Fetal origin of bronchopulmonary dysplasia: contribution of intrauterine inflammation. Mol Med 2024; 30:135. [PMID: 39227783 PMCID: PMC11373297 DOI: 10.1186/s10020-024-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in infants and the most frequent adverse outcome of premature birth, despite major efforts to minimize injury. It is thought to result from aberrant repair response triggered by either prenatal or recurrent postnatal injury to the lungs during development. Intrauterine inflammation is an important risk factor for prenatal lung injury, which is also increasingly linked to BPD. However, the specific mechanisms remain unclear. This review summarizes clinical and animal research linking intrauterine inflammation to BPD. We assess how intrauterine inflammation affects lung alveolarization and vascular development. In addition, we discuss prenatal therapeutic strategies targeting intrauterine inflammation to prevent or treat BPD.
Collapse
Affiliation(s)
- Haoting Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
2
|
Hillman NH, Kemp MW, Royse E, Grzych H, Usada H, Ikeda H, Takahashi Y, Takahashi T, Jobe AH, Fee E. Postnatal budesonide improved lung function in preterm lambs exposed to antenatal steroids and chorioamnionitis. Pediatr Res 2024; 96:678-684. [PMID: 38368498 DOI: 10.1038/s41390-024-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND A combination of budesonide and surfactant decreases the rates of BPD in infants and lung injury in preterm sheep. Whether this combination will show benefit in the setting of chorioamnionitis and antenatal steroids is not known. METHODS Ewes at 123 ± 1 day gestational age received intra-amniotic (IA) injections of 10 mg LPS before being randomized to receive either 0.25 mg/kg maternal betamethasone phosphate and acetate or saline by intramuscular (IM) injection at 48 and 24 h prior to delivery at 125 ± 1 day. Lambs (N = 6-9/group) underwent intentionally injurious ventilation for 15 min, then lambs received surfactant mixed with either: (1) saline; or (2) Budesonide 0.25 mg/kg and were ventilated for 4 h. RESULTS Compared with LPS-exposed animals that received no IM steroid treatment, betamethasone exposed fetuses had improved hemodynamic stability, lung compliance, and ventilation efficiency. The addition of budesonide to surfactant further improved markers of injury and pro-inflammatory cytokine mRNA in both betamethasone IM or no IM lambs exposed to LPS IA. Antenatal betamethasone and IA LPS exposures decreased budesonide levels in the fetal lung and plasma. CONCLUSION Antenatal betamethasone stabilizes physiologic parameters in LPS treated lambs. Budesonide mixed with surfactant further decreases injury and improves respiratory physiology in betamethasone treated animals. IMPACT Antenatal betamethasone improved lung and systemic physiology in the setting of intra-amniotic LPS. The addition of budesonide to the surfactant further improved lung function. Budesonide levels in the plasma and lung were lower in lambs exposed to either LPS or LPS and Betamethasone animals, and these findings were not explained by increased esterification in the lungs. The combination of antenatal steroids and budesonide with surfactant had the lowest markers of pro-inflammatory cytokines in the lung of LPS exposed animals.
Collapse
Affiliation(s)
- Noah H Hillman
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA.
| | - Matthew W Kemp
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Hayley Grzych
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Haruo Usada
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Hideyuki Ikeda
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Yuki Takahashi
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Tsukasa Takahashi
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Alan H Jobe
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Erin Fee
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Papagianis PC, Noble PB, Ahmadi-Noorbakhsh S, Savigni D, Moss TJM, Pillow JJ. Postnatal steroids as lung protective and anti-inflammatory in preterm lambs exposed to antenatal inflammation. Pediatr Res 2024; 95:931-940. [PMID: 38066248 DOI: 10.1038/s41390-023-02911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Lung inflammation and impaired alveolarization precede bronchopulmonary dysplasia (BPD). Glucocorticoids are anti-inflammatory and reduce ventilator requirements in preterm infants. However, high-dose glucocorticoids inhibit alveolarization. The effect of glucocorticoids on lung function and structure in preterm newborns exposed to antenatal inflammation is unknown. We hypothesise that postnatal low-dose dexamethasone reduces ventilator requirements, prevents inflammation and BPD-like lung pathology, following antenatal inflammation. METHODS Pregnant ewes received intra-amniotic LPS (E.coli, 4 mg/mL) or saline at 126 days gestation; preterm lambs were delivered 48 h later. Lambs were randomised to receive either tapered intravenous dexamethasone (LPS/Dex, n = 9) or saline (LPS/Sal, n = 10; Sal/Sal, n = 9) commencing <3 h after birth. Respiratory support was gradually de-escalated, using a standardised protocol aimed at weaning from ventilation towards unassisted respiration. Tissues were collected at day 7. RESULTS Lung morphology and mRNA levels for inflammatory mediators were measured. Respiratory support requirements were not different between groups. Histological analyses revealed higher tissue content and unchanged alveolarization in LPS/Sal compared to other groups. LPS/Dex lambs exhibited decreased markers of pulmonary inflammation compared to LPS/Sal. CONCLUSION Tapered low-dose dexamethasone reduces the impact of antenatal LPS on ventilation requirements throughout the first week of life and reduces inflammation and pathological thickening of the preterm lung IMPACT: We are the first to investigate the combination of antenatal inflammation and postnatal dexamethasone therapy in a pragmatic study design, akin to contemporary neonatal care. We show that antenatal inflammation with postnatal dexamethasone therapy does not reduce ventilator requirements, but has beneficial maturational impacts on the lungs of preterm lambs at 7 days of life. Appropriate tapered postnatal dexamethasone dosing should be explored for extuabtion of oxygen-dependant neonates.
Collapse
Affiliation(s)
- Paris C Papagianis
- Department of Pharmacology, School of Medicine, Nursing and Health Sciences, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | | | - Donna Savigni
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Timothy J M Moss
- Department of Obstetrics and Gynaecology, School of Clinical Health Sciences, Monash University, Clayton, VIC, Australia
| | - J Jane Pillow
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
4
|
Jain VG, Ambalavanan N. Is there a role for early postnatal steroids in very preterm infants exposed to chorioamnionitis? Pediatr Res 2024; 95:867-868. [PMID: 38245632 PMCID: PMC10920195 DOI: 10.1038/s41390-024-03031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Affiliation(s)
- Viral G Jain
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Staude B, Gschwendtner S, Frodermann T, Oehmke F, Kohl T, Kublik S, Schloter M, Ehrhardt H. Microbial signatures in amniotic fluid at preterm birth and association with bronchopulmonary dysplasia. Respir Res 2023; 24:248. [PMID: 37845700 PMCID: PMC10577941 DOI: 10.1186/s12931-023-02560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Microbiome dysbiosis can have long-lasting effects on our health and induce the development of various diseases. Bronchopulmonary dysplasia (BPD) is a multifactorial disease with pre- and postnatal origins including intra-amniotic infection as main risk factor. Recently, postnatal pathologic lung microbiota colonization was associated with BPD. The objectives of this prospective observational cohort study were to describe differences in bacterial signatures in the amniotic fluid (AF) of intact pregnancies without clinical signs or risk of preterm delivery and AF samples obtained during preterm deliveries and their variations between different BPD disease severity stages. METHODS AF samples were collected under sterile conditions during fetal intervention from intact pregnancies (n = 17) or immediately before preterm delivery < 32 weeks (n = 126). Metabarcoding based approaches were used for the molecular assessment of bacterial 16S rRNA genes to describe bacterial community structure. RESULTS The absolute amount of 16S rRNA genes was significantly increased in AF of preterm deliveries and detailed profiling revealed a reduced alpha diversity and a significant change in beta diversity with a reduced relative abundance of 16S rRNA genes indicative for Lactobacillus and Acetobacter while Fusobacterium, Pseudomonas, Ureaplasma and Staphylococcus 16S rRNA gene prevailed. Although classification of BPD by disease severity revealed equivalent absolute 16S rRNA gene abundance and alpha and beta diversity in no, mild and moderate/severe BPD groups, for some 16S rRNA genes differences were observed in AF samples. Bacterial signatures of infants with moderate/severe BPD showed predominance of 16S rRNA genes belonging to the Escherichia-Shigella cluster while Ureaplasma and Enterococcus species were enriched in AF samples of infants with mild BPD. CONCLUSIONS Our study identified distinct and diverse intrauterine 16S rRNA gene patterns in preterm infants immediately before birth, differing from the 16S rRNA gene signature of intact pregnancies. The distinct 16S rRNA gene signatures at birth derive from bacteria with varying pathogenicity to the immature lung and are suited to identify preterm infants at risk. Our results emphasize the prenatal impact to the origins of BPD.
Collapse
Affiliation(s)
- Birte Staude
- Department of General Pediatrics and Neonatology, Justus Liebig University and Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tina Frodermann
- Department of General Pediatrics and Neonatology, Justus Liebig University and Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Frank Oehmke
- Department of Gynecology and Obstetrics, Justus Liebig University of Giessen, Giessen, Germany
| | - Thomas Kohl
- Department of Gynecology and Obstetrics, Justus Liebig University of Giessen, Giessen, Germany
- German Center for Fetal Surgery and Minimally Invasive Therapy (DZFT), University of Mannheim (UMM), Mannheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus Liebig University and Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
6
|
Postnatal corticosteroid response in neonates < 32 weeks and relation with placental pathology. Eur J Pediatr 2023; 182:265-274. [PMID: 36318297 DOI: 10.1007/s00431-022-04672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
UNLABELLED Acute chorioamnionitis and maternal vascular malperfusion are associated with an increased risk of bronchopulmonary dysplasia. To prevent bronchopulmonary dysplasia, postnatal corticosteroids are given to preterm neonates. Clinical observations indicate not all neonates respond to corticosteroids, the so-called non-responders. This study aimed to investigate the association between placental pathology and short-term response to postnatal corticosteroids in neonates < 32 weeks postconceptional age at risk for bronchopulmonary dysplasia. All neonates < 32 weeks born between 2009 and 2016, receiving corticosteroids in the course of BPD, were included. The preterm neonates were divided into three groups depending on placental histology: acute chorioamnionitis, maternal vascular malperfusion, or no placental pathology. Respiratory support was assessed prior to treatment and at days 4 and 7. A responder was defined as extubation within 7 days after starting corticosteroid treatment. In total, 52% of the chorioamnionitis neonates, 67% of the maternal vascular malperfusion neonates, and 58% of neonates in the no pathology group were responders. The odds ratio for extubation was 0.53 (0.18-1.55) at day 4 and 0.66 (0.23-1.97) at day 7, in the chorioamnionitis group compared to the maternal vascular malperfusion. CONCLUSION Short-term response to postnatal corticosteroids did not significantly differ between premature neonates born after acute chorioamnionitis, maternal vascular malperfusion, or no placenta pathology. However, a trend of better corticosteroid response in maternal vascular malperfusion neonates was found, potentially due to differences in prenatal pulmonary development and postnatal cortisol. WHAT IS KNOWN • Bronchopulmonary dysplasia is related to chorioamnionitis and maternal vascular malperfusion. • Corticosteroids remain an important treatment in the course of bronchopulmonary dysplasia despite conflicting results and non-responsiveness in some preterm neonates. WHAT IS NEW • Non-responsiveness might be related to differences in pulmonary inflammation and systemic cortisol due to predispositions triggered by chorioamnionitis or maternal vascular malperfusion. • Neonates born after maternal vascular malperfusion seem to respond better to postnatal corticosteroid treatment.
Collapse
|
7
|
Parsons A, Netsanet A, Seedorf G, Abman SH, Taglauer ES. Understanding the role of placental pathophysiology in the development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2022; 323:L651-L658. [PMID: 36219136 PMCID: PMC9722259 DOI: 10.1152/ajplung.00204.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
The associations between bronchopulmonary dysplasia (BPD) and the gestational pathologies of chorioamnionitis (CA) and hypertensive disorders of pregnancy (HDP) have become increasingly well recognized. However, the mechanisms through which these antenatal conditions cause increased risk of BPD remain less well characterized. The objective of this review is to discuss the role of the placenta in BPD predisposition as a primary driver of intrauterine alterations adversely impacting fetal lung development. We hypothesize that due to similarities in structure and function, placental disorders during pregnancy can uniquely impact the developing fetal lung, creating a unique placental-pulmonary connection. In the current review, we explore this hypothesis through analysis of clinical literature and preclinical model systems evaluating BPD predisposition, discussion of BPD phenotypes, and an overview on strategies to incorporate placental investigation into research on fetal lung development. We also discuss important concepts learned from research on antenatal steroids as a modulator fetal lung development. Finally, we propose that the appropriate selection of animal models and establishment of in vitro lung developmental model systems incorporating primary human placental components are key in continuing to understand and address antenatal predisposition to BPD.
Collapse
Affiliation(s)
- Andrew Parsons
- Boston Combined Residency Program, Boston Children's Hospital, Boston, Massachusetts
| | - Adom Netsanet
- University of Colorado School of Medicine, Aurora, Colorado
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth S Taglauer
- Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
8
|
Autilio C. Techniques to evaluate surfactant activity for a personalized therapy of RDS neonates. Biomed J 2021; 44:671-677. [PMID: 34758409 PMCID: PMC8847822 DOI: 10.1016/j.bj.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
According to both European and American Guidelines, preterm neonates have to be treated by nasal continuous air pressure (CPAP) early in the delivery room. The administration of surfactant should be reserved only for babies with respiratory distress syndrome (RDS) with increased oxygen requirement, according to different thresholds of FiO2. However, these oxygenation thresholds do not fully take into consideration the lung physiopathology and mechanics or the lung surfactant biology of RDS neonates. Since surfactant replacement therapy (SRT) seems to be more effective if it is initiated within the first 3 hours after birth, the use of a reliable bench-to-bedside biological test able to predict as soon as possible the necessity of SRT will help optimise individualised therapies and personalise the actual collective strategy used to treat RDS neonates. With this in mind, in the present review several quantitative and qualitative biological tests to assess the surfactant status in RDS neonates are introduced as potential candidates for the early prediction of SRT requirement, summarising the state-of-the-art in the evaluation of surfactant activity.
Collapse
Affiliation(s)
- Chiara Autilio
- Department of Biochemistry and Molecular Biology and Research Institute ``Hospital 12 de Octubre (imas12)'', Faculty of Biology, Complutense University, Jose Antonio Novais 12, Madrid, Spain; Clinical Pathology and Microbiology Unit, "San Carlo" Hospital, Potenza, Italy.
| |
Collapse
|
9
|
Galaz J, Romero R, Arenas-Hernandez M, Panaitescu B, Para R, Gomez-Lopez N. Betamethasone as a potential treatment for preterm birth associated with sterile intra-amniotic inflammation: a murine study. J Perinat Med 2021; 49:897-906. [PMID: 33878254 PMCID: PMC8440410 DOI: 10.1515/jpm-2021-0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Preterm birth remains the leading cause of perinatal morbidity and mortality worldwide. Preterm birth is preceded by spontaneous preterm labor, which is commonly associated with sterile intra-amniotic inflammation; yet, no approved treatment exists for this clinical condition. Corticosteroids are the standard of care to improve neonatal outcomes in women at risk of preterm birth. Herein, we first validated our model of alarmin-induced preterm birth. Next, we investigated whether treatment with betamethasone could prevent preterm birth resulting from sterile intra-amniotic inflammation in mice. METHODS Under ultrasound guidance, the first cohort of dams received an intra-amniotic injection of the alarmin high-mobility group box-1 (HMGB1, n=10) or phosphate-buffered saline (PBS, n=9) as controls. A second cohort of dams received HMGB1 intra-amniotically and were subcutaneously treated with betamethasone (n=15) or vehicle (n=15). Dams were observed until delivery, and perinatal outcomes were observed. RESULTS Intra-amniotic HMGB1 reduced gestational length (p=0.04), inducing preterm birth in 40% (4/10) of cases, of which 100% (4/4) were categorized as late preterm births. Importantly, treatment with betamethasone extended the gestational length (p=0.02), thereby reducing the rate of preterm birth by 26.6% (from 33.3% [5/15] to 6.7% [1/15]). Treatment with betamethasone did not worsen the rate of neonatal mortality induced by HMGB1 or alter weight gain in the first three weeks of life. CONCLUSIONS Treatment with betamethasone prevents preterm birth induced by the alarmin HMGB1. This study supports the potential utility of betamethasone for treating women with sterile intra-amniotic inflammation.
Collapse
Affiliation(s)
- Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, United States
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
10
|
Advances in Neonatal Critical Care: Pushing at the Boundaries and Connecting to Long-Term Outcomes. Crit Care Med 2021; 49:2003-2016. [PMID: 34380942 DOI: 10.1097/ccm.0000000000005251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res 2021; 22:141. [PMID: 33964929 PMCID: PMC8105703 DOI: 10.1186/s12931-021-01738-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Surfactant protein D (SP-D) is a collectin protein synthesized by alveolar type II cells in the lungs. SP-D participates in the innate immune defense of the lungs by helping to clear infectious pathogens and modulating the immune response. SP-D has shown an anti-inflammatory role by down-regulating the release of pro-inflammatory mediators in different signaling pathways such as the TLR4, decreasing the recruitment of inflammatory cells to the lung, and modulating the oxidative metabolism in the lungs. Recombinant human SP-D (rhSP-D) has been successfully produced mimicking the structure and functions of native SP-D. Several in vitro and in vivo experiments using different animal models have shown that treatment with rhSP-D reduces the lung inflammation originated by different insults, and that rhSP-D could be a potential treatment for bronchopulmonary dysplasia (BPD), a rare disease for which there is no effective therapy up to date. BPD is a complex disease in preterm infants whose incidence increases with decreasing gestational age at birth. Lung inflammation, which is caused by different prenatal and postnatal factors like infections, lung hyperoxia and mechanical ventilation, among others, is the key player in BPD. Exacerbated inflammation causes lung tissue injury that results in a deficient gas exchange in the lungs of preterm infants and frequently leads to long-term chronic lung dysfunction during childhood and adulthood. In addition, low SP-D levels and activity in the first days of life in preterm infants have been correlated with a worse pulmonary outcome in BPD. Thus, SP-D mediated functions in the innate immune response could be critical aspects of the pathogenesis in BPD and SP-D could inhibit lung tissue injury in this preterm population. Therefore, administration of rhSP-D has been proposed as promising therapy that could prevent BPD.
Collapse
Affiliation(s)
- Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA. .,Airway Therapeutics Inc, Cincinnati, OH, 45249, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
12
|
Zaferani Arani H, Dehghan Manshadi G, Atashi HA, Rezaei Nejad A, Ghorani SM, Abolghasemi S, Bahrani M, Khaledian H, Bozorg Savodji P, Hoseinian M, Kazemzade Bejandi A, Abolghasemi S. Understanding the clinical and demographic characteristics of second coronavirus spike in 192 patients in Tehran, Iran: A retrospective study. PLoS One 2021; 16:e0246314. [PMID: 33739987 PMCID: PMC7979149 DOI: 10.1371/journal.pone.0246314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
During the last months of the coronavirus pandemic, with all those public restrictions and health interventions, the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears now to have been raised in some countries around the world. Iran was one of those first countries facing the second wave of coronavirus, due to the lack of appropriate public restrictions because of economic problems the country is facing. The clinical and demographic characteristics of severe cases and non-severe cases of Coronavirus Disease (COVID-19) in 192 patients in Tehran, Iran, between June 16 and July 11, 2020, were investigated. The patients were divided into severe cases (n = 82) and non-severe cases (n = 110). Demographic and clinical characteristics were compared between the two study clusters. The mean age was 54.6 ± 17.2 years, and the most common presenting symptom was persistent cough (81.8%) and fever (79.7%). The logistic regression model revealed that age, BMI, and affected family members were statistically associated with severity. Patients with complicated conditions of disorders faced more hospitalization days and medical care than the average statistical data. As the coronavirus spike in the case and death reports from June 2020, we observed the rise in the incidence of severe cases, where 42.7% (82/192) of cases have resulted in severe conditions. Our findings also suggested that the effect of IFB (Betamethasone) was more valid than the other alternative drugs such as LPV/r and IVIg.
Collapse
Affiliation(s)
- Hamid Zaferani Arani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Giti Dehghan Manshadi
- Department of Anesthesiology and Critical Care, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hesam Adin Atashi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aida Rezaei Nejad
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mojtaba Ghorani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soheila Abolghasemi
- Department of Infectious Diseases, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Bahrani
- Department of Emergency Medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Homayoon Khaledian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pantea Bozorg Savodji
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hoseinian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
13
|
Widowski H, Reynaert NL, Ophelders DRMG, Hütten MC, Nikkels PGJ, Severens-Rijvers CAH, Cleutjens JPM, Kemp MW, Newnham JP, Saito M, Usuda H, Payne MS, Jobe AH, Kramer BW, Delhaas T, Wolfs TGAM. Sequential Exposure to Antenatal Microbial Triggers Attenuates Alveolar Growth and Pulmonary Vascular Development and Impacts Pulmonary Epithelial Stem/Progenitor Cells. Front Med (Lausanne) 2021; 8:614239. [PMID: 33693012 PMCID: PMC7937719 DOI: 10.3389/fmed.2021.614239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Perinatal inflammatory stress is strongly associated with adverse pulmonary outcomes after preterm birth. Antenatal infections are an essential perinatal stress factor and contribute to preterm delivery, induction of lung inflammation and injury, pre-disposing preterm infants to bronchopulmonary dysplasia. Considering the polymicrobial nature of antenatal infection, which was reported to result in diverse effects and outcomes in preterm lungs, the aim was to examine the consequences of sequential inflammatory stimuli on endogenous epithelial stem/progenitor cells and vascular maturation, which are crucial drivers of lung development. Therefore, a translational ovine model of antenatal infection/inflammation with consecutive exposures to chronic and acute stimuli was used. Ovine fetuses were exposed intra-amniotically to Ureaplasma parvum 42 days (chronic stimulus) and/or to lipopolysaccharide 2 or 7 days (acute stimulus) prior to preterm delivery at 125 days of gestation. Pulmonary inflammation, endogenous epithelial stem cell populations, vascular modulators and morphology were investigated in preterm lungs. Pre-exposure to UP attenuated neutrophil infiltration in 7d LPS-exposed lungs and prevented reduction of SOX-9 expression and increased SP-B expression, which could indicate protective responses induced by re-exposure. Sequential exposures did not markedly impact stem/progenitors of the proximal airways (P63+ basal cells) compared to single exposure to LPS. In contrast, the alveolar size was increased solely in the UP+7d LPS group. In line, the most pronounced reduction of AEC2 and proliferating cells (Ki67+) was detected in these sequentially UP + 7d LPS-exposed lambs. A similar sensitization effect of UP pre-exposure was reflected by the vessel density and expression of vascular markers VEGFR-2 and Ang-1 that were significantly reduced after UP exposure prior to 2d LPS, when compared to UP and LPS exposure alone. Strikingly, while morphological changes of alveoli and vessels were seen after sequential microbial exposure, improved lung function was observed in UP, 7d LPS, and UP+7d LPS-exposed lambs. In conclusion, although sequential exposures did not markedly further impact epithelial stem/progenitor cell populations, re-exposure to an inflammatory stimulus resulted in disturbed alveolarization and abnormal pulmonary vascular development. Whether these negative effects on lung development can be rescued by the potentially protective responses observed, should be examined at later time points.
Collapse
Affiliation(s)
- Helene Widowski
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,Department of BioMedical Engineering, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthias C Hütten
- Neonatology, Pediatrics Department, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, Netherlands.,University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jack P M Cleutjens
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia.,Tohoku University Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia.,Tohoku University Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Matthew S Payne
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia.,Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tammo Delhaas
- Department of BioMedical Engineering, Maastricht University Medical Center, Maastricht, Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
14
|
Budesonide with surfactant decreases systemic responses in mechanically ventilated preterm lambs exposed to fetal intra-amniotic lipopolysaccharide. Pediatr Res 2021; 90:328-334. [PMID: 33177678 PMCID: PMC7657068 DOI: 10.1038/s41390-020-01267-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chorioamnionitis is associated with increased rates of bronchopulmonary dysplasia (BPD) in ventilated preterm infants. Budesonide when added to surfactant decreased lung and systemic inflammation from mechanical ventilation in preterm lambs and decreased the rates and severity of BPD in preterm infants. We hypothesized that the addition of budesonide to surfactant will decrease the injury from mechanical ventilation in preterm lambs exposed to intra-amniotic (IA) lipopolysaccharide (LPS). METHODS Lambs at 126 ± 1 day GA received LPS 10 mg IA 48 h prior to injurious mechanical ventilation. After 15 min, lambs received either surfactant mixed with: (1) saline or (2) Budesonide 0.25 mg/kg, then ventilated with normal tidal volumes for 4 h. Injury markers in the lung, liver, and brain were compared. RESULTS Compared with surfactant alone, the addition of budesonide improved blood pressures, dynamic compliance, and ventilation, while decreasing mRNA for pro-inflammatory cytokines in the lung, liver, and multiple areas of the brain. LPS caused neuronal activation and structural changes in the brain that were not altered by budesonide. Budesonide was not retained within the lung beyond 4 h. CONCLUSIONS In preterm lambs exposed to IA LPS, the addition of budesonide to surfactant improved physiology and markers of lung and systemic inflammation. IMPACT The addition of budesonide to surfactant decreases the lung and systemic responses to injurious mechanical ventilation preterm lambs exposed to fetal LPS. Budesonide was present in the plasma by 15 min and the majority of the budesonide is no longer in the lung at 4 h of ventilation. IA LPS and mechanical ventilation caused structural changes in the brain that were not altered by short-term exposure to budesonide. The budesonide dose of 0.25 mg/kg being used clinically seems likely to decrease lung inflammation in preterm infants with chorioamnionitis.
Collapse
|
15
|
Schmidt AF, Kannan PS, Bridges J, Presicce P, Jackson CM, Miller LA, Kallapur SG, Chougnet CA, Jobe AH. Prenatal inflammation enhances antenatal corticosteroid-induced fetal lung maturation. JCI Insight 2020; 5:139452. [PMID: 33328385 PMCID: PMC7819743 DOI: 10.1172/jci.insight.139452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Respiratory complicˆations are the major cause of morbidity and mortality among preterm infants, which is partially prevented by the administration of antenatal corticosteroids (ACS). Most very preterm infants are exposed to chorioamnionitis, but short- and long-term effects of ACS treatment in this setting are not well defined. In low-resource settings, ACS increased neonatal mortality by perhaps increasing infection. We report that treatment with low-dose ACS in the setting of inflammation induced by intraamniotic lipopolysaccharide (LPS) in rhesus macaques improves lung compliance and increases surfactant production relative to either exposure alone. RNA sequencing shows that these changes are mediated by suppression of proliferation and induction of mesenchymal cellular death via TP53. The combined exposure results in a mature-like transcriptomic profile with inhibition of extracellular matrix development by suppression of collagen genes COL1A1, COL1A2, and COL3A1 and regulators of lung development FGF9 and FGF10. ACS and inflammation also suppressed signature genes associated with proliferative mesenchymal progenitors similar to the term gestation lung. Treatment with ACS in the setting of inflammation may result in early respiratory advantage to preterm infants, but this advantage may come at a risk of abnormal extracellular matrix development, which may be associated with increased risk of chronic lung disease.
Collapse
Affiliation(s)
- Augusto F. Schmidt
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paranthaman S. Kannan
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Bridges
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Pietro Presicce
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A. Miller
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UCD, Davis, California, USA
| | - Suhas G. Kallapur
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alan H. Jobe
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Usuda H, Watanabe S, Saito M, Ikeda H, Koshinami S, Sato S, Musk GC, Fee E, Carter S, Kumagai Y, Takahashi T, Takahashi Y, Kawamura S, Hanita T, Kure S, Yaegashi N, Newnham JP, Kemp MW. Successful use of an artificial placenta-based life support system to treat extremely preterm ovine fetuses compromised by intrauterine inflammation. Am J Obstet Gynecol 2020; 223:755.e1-755.e20. [PMID: 32380175 DOI: 10.1016/j.ajog.2020.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ex vivo uterine environment therapy is an experimental intensive care strategy for extremely preterm infants born between 21 and 24 weeks of gestation. Gas exchange is performed by membranous oxygenators connected by catheters to the umbilical vessels. The fetus is submerged in a bath of synthetic amniotic fluid. The lungs remain fluid filled, and pulmonary respiration does not occur. Intrauterine inflammation is strongly associated with extremely preterm birth and fetal injury. At present, there are no data that we are aware of to show that artificial placenta-based systems can be used to support extremely preterm fetuses compromised by exposure to intrauterine inflammation. OBJECTIVE To evaluate the ability of our ex vivo uterine environment therapy platform to support extremely preterm ovine fetuses (95-day gestational age; approximately equivalent to 24 weeks of human gestation) exposed to intrauterine inflammation for a period of 120 hours, the following primary endpoints were chosen: (1) maintenance of key physiological variables within normal ranges, (2) absence of infection and inflammation, (3) absence of brain injury, and (4) gross fetal growth and cardiovascular function matching that of age-matched in utero controls. STUDY DESIGN Ten ewes with singleton pregnancies were each given a single intraamniotic injection of 10-mg Escherichia coli lipopolysaccharides under ultrasound guidance 48 hours before undergoing surgical delivery for adaptation to ex vivo uterine environment therapy at 95-day gestation (term=150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with constant monitoring of key vital parameters (ex vivo uterine environment group) before being killed at 100-day equivalent gestational age. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, biochemical parameters, inflammatory markers, and microbial load to exclude infection. Ultrasound was conducted at 48 hours after intraamniotic lipopolysaccharides (before surgery) to confirm fetal viability and at the conclusion of the experiments (before euthanasia) to evaluate cardiac function. Brain injury was evaluated by gross anatomic and histopathologic investigations. Eight singleton pregnant control animals were similarly exposed to intraamniotic lipopolysaccharides at 93-day gestation and were killed at 100-day gestation to allow comparative postmortem analyses (control group). Biobanked samples from age-matched saline-treated animals served as an additional comparison group. Successful instillation of lipopolysaccharides into the amniotic fluid exposure was confirmed by amniotic fluid analysis at the time of administration and by analyzing cytokine levels in fetal plasma and amniotic fluid. Data were tested for mean differences using analysis of variance. RESULTS Six of 8 lipopolysaccharide control group (75%) and 8 of 10 ex vivo uterine environment group fetuses (80%) successfully completed their protocols. Six of 8 ex vivo uterine environment group fetuses required dexamethasone phosphate treatment to manage profound refractory hypotension. Weight and crown-rump length were reduced in ex vivo uterine environment group fetuses at euthanasia than those in lipopolysaccharide control group fetuses (P<.05). There were no biologically significant differences in cardiac ultrasound measurement, differential leukocyte counts (P>.05), plasma tumor necrosis factor α, monocyte chemoattractant protein-1 concentrations (P>.05), or liver function tests between groups. Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment group animals. No cases of intraventricular hemorrhage were observed. White matter injury was identified in 3 of 6 lipopolysaccharide control group fetuses and 3 of 8 vivo uterine environment group fetuses. CONCLUSION We report the use of an artificial placenta-based system to support extremely preterm lambs compromised by exposure to intrauterine inflammation. Our data highlight key challenges (refractory hypotension, growth restriction, and white matter injury) to be overcome in the development and use of artificial placenta technology for extremely preterm infants. As such challenges seem largely absent from studies based on healthy pregnancies, additional experiments of this nature using clinically relevant model systems are essential for further development of this technology and its eventual clinical application.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shota Koshinami
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Gabrielle C Musk
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Animal Care Services, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erin Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shigeo Kure
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| |
Collapse
|
17
|
Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants <1000 g. J Clin Med 2020; 9:jcm9072240. [PMID: 32679682 PMCID: PMC7408743 DOI: 10.3390/jcm9072240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease mainly provoked by pre- and postnatal infections, mechanical ventilation, and oxygen toxicity. In severely affected premature infants requiring mechanical ventilation, association of bacterial colonization of the lung and BPD was recently disclosed. To analyze the impact of bacterial colonization of the upper airway and gastrointestinal tract on moderate/severe BPD, we retrospectively analyzed nasopharyngeal and anal swabs taken weekly during the first 6 weeks of life at a single center in n = 102 preterm infants <1000 g. Colonization mostly occurred between weeks 2 and 6 and displayed a high diversity requiring categorization. Analyses of deviance considering all relevant confounders revealed statistical significance solely for upper airway colonization with bacteria with pathogenic potential and moderate/severe BPD (p = 0.0043) while no link could be established to the Gram response or the gastrointestinal tract. Our data highlight that specific colonization of the upper airway poses a risk to the immature lung. These data are not surprising taking into account the tremendous impact of microbial axes on health and disease across ages. We suggest that studies on upper airway colonization using predefined categories represent a feasible approach to investigate the impact on the pulmonary outcome in ventilated and non-ventilated preterm infants.
Collapse
|
18
|
Perna-Barrull D, Gieras A, Rodriguez-Fernandez S, Tolosa E, Vives-Pi M. Immune System Remodelling by Prenatal Betamethasone: Effects on β-Cells and Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:540. [PMID: 32849311 PMCID: PMC7431597 DOI: 10.3389/fendo.2020.00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial disease of unknown aetiology. Studies focusing on environment-related prenatal changes, which might have an influence on the development of T1D, are still missing. Drugs, such as betamethasone, are used during this critical period without exploring possible effects later in life. Betamethasone can interact with the development and function of the two main players in T1D, the immune system and the pancreatic β-cells. Short-term or persistent changes in any of these two players may influence the initiation of the autoimmune reaction against β-cells. In this review, we focus on the ability of betamethasone to induce alterations in the immune system, impairing the recognition of autoantigens. At the same time, betamethasone affects β-cell gene expression and apoptosis rate, reducing the danger signals that will attract unwanted attention from the immune system. These effects may synergise to hinder the autoimmune attack. In this review, we compile scattered evidence to provide a better understanding of the basic relationship between betamethasone and T1D, laying the foundation for future studies on human cohorts that will help to fully grasp the role of betamethasone in the development of T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- *Correspondence: Marta Vives-Pi
| |
Collapse
|
19
|
Sarno L, Della Corte L, Saccone G, Sirico A, Raimondi F, Zullo F, Guida M, Martinelli P, Maruotti GM. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and Meta-analysis. J Matern Fetal Neonatal Med 2019; 34:3803-3812. [PMID: 31722581 DOI: 10.1080/14767058.2019.1689945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Histological chorioamnionitis is associated with significant adverse maternal, perinatal and long-term outcome. We performed a meta-analysis of 30 observational studies in order to clarify the association between Histological chorioamnionitis and pulmonary complications, like respiratory distress syndrome and Bronchopulmonary Dysplasia. Unadjusted data extracted from all studies showed that Histological chorioamnionitis has no effect on development of RDS (RR 0.93, 95% CI 1.08-1.67), while it increased the risk of Bronchopulmonary Dysplasia (RR 1.75, 95% CI 1.37-2.23). However, when we restricted the analysis to the studies that adjust for Gestational Age, in order to exclude the influence of prematurity, we found that HCA reduced the risk of respiratory distress syndrome (RR 0.57, CI 95% 0.35-0.93) and it did not affect the development of Bronchopulmonary Dysplasia (RR 0.99, CI 0.76-1.3). Our results confirmed a possible role of prenatal inflammation on lung maturation. However, further prospective studies with a selected population are needed, in order to clarify the role of Histological chorioamnionitis in neonatal pulmonary complications.
Collapse
Affiliation(s)
- Laura Sarno
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Luigi Della Corte
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Gabriele Saccone
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Angelo Sirico
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Raimondi
- Division of Neonatology, Section of Pediatrics, Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Fulvio Zullo
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Maurizio Guida
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Martinelli
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe M Maruotti
- Department of Neurosciences, Reproductive and Dentistry Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
20
|
Elgin TG, Fricke EM, Gong H, Reese J, Mills DA, Kalantera KM, Underwood MA, McElroy SJ. Fetal exposure to maternal inflammation interrupts murine intestinal development and increases susceptibility to neonatal intestinal injury. Dis Model Mech 2019; 12:dmm.040808. [PMID: 31537532 PMCID: PMC6826024 DOI: 10.1242/dmm.040808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Fetal exposure to chorioamnionitis can impact the outcomes of the developing fetus both at the time of birth and in the subsequent neonatal period. Infants exposed to chorioamnionitis have a higher incidence of gastrointestinal (GI) pathology, including necrotizing enterocolitis (NEC); however, the mechanism remains undefined. To simulate the fetal exposure to maternal inflammation (FEMI) induced by chorioamnionitis, pregnant mice (C57BL/6J, IL-6 -/-, RAG -/- or TNFR1 -/-) were injected intraperitoneally on embryonic day (E)15.5 with lipopolysaccharide (LPS; 100 µg/kg body weight). Pups were delivered at term, and reared to postnatal day (P)0, P7, P14, P28 or P56. Serum and intestinal tissue samples were collected to quantify growth, inflammatory markers, histological intestinal injury, and goblet and Paneth cells. To determine whether FEMI increased subsequent susceptibility to intestinal injury, a secondary dose of LPS (100 µg/kg body weight) was given on P5, prior to tissue harvesting on P7. FEMI had no effect on growth of the offspring or their small intestine. FEMI significantly decreased both goblet and Paneth cell numbers while simultaneously increasing serum levels of IL-1β, IL-10, KC/GRO (CXCL1 and CXCL2), TNF and IL-6. These alterations were IL-6 dependent and, importantly, increased susceptibility to LPS-induced intestinal injury later in life. Our data show that FEMI impairs normal intestinal development by decreasing components of innate immunity and simultaneously increasing markers of inflammation. These changes increase susceptibility to intestinal injury later in life and provide novel mechanistic data to potentially explain why preterm infants exposed to chorioamnionitis prior to birth have a higher incidence of NEC and other GI disorders.
Collapse
Affiliation(s)
- Timothy G Elgin
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Erin M Fricke
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Huiyu Gong
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey Reese
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Karen M Kalantera
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA
| | - Steven J McElroy
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Wooldridge AL, Clifton VL, Moss TJM, Lu H, Jamali M, Agostino S, Muhlhausler BS, Morrison JL, De Matteo R, Wallace MJ, Bischof RJ, Gatford KL. Maternal allergic asthma during pregnancy alters fetal lung and immune development in sheep: potential mechanisms for programming asthma and allergy. J Physiol 2019; 597:4251-4262. [PMID: 31192454 DOI: 10.1113/jp277952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Experimental maternal allergic asthma in sheep provides an experimental model in which to test impacts on progeny. Fetuses from allergic asthmatic ewes had fewer surfactant-producing cells in lungs. A greater proportion of lymphocytes from thymus were CD44 positive in fetuses from allergic asthmatic ewes than in controls. These changes to fetal development might contribute to poor neonatal lung function and increased risk of allergy seen in offspring of pregnancies complicated by asthma. ABSTRACT Asthma is prevalent in pregnancy and increases the risk of disease in offspring, including neonatal respiratory distress and childhood asthma and allergy, but the mechanisms are not understood. We hypothesized that fetal lung structure and immune phenotype in late gestation fetal sheep would be impaired in our sheep model of maternal allergic asthma during pregnancy. Singleton-bearing ewes were either sensitized before pregnancy to house dust mite (HDM, allergic, n = 7) or were non-allergic (control, n = 5). The ewes were subsequently subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Tissues were collected at 140 ± 1 days gestational age (term, ∼147 days). The density of type II alveolar epithelial cells (surfactant protein C-immunostained) in the lungs was 30% lower in fetuses from allergic ewes than in controls (P < 0.001), but tissue-to-air space ratio and numbers of leucocytes and macrophages were not different between groups. The proportion of CD44+ lymphocytes in the fetal thymus was 3.5-fold higher in fetuses from allergic ewes than in control ewes (P = 0.043). Fewer surfactant-producing type II alveolar epithelial cells may contribute to the increased risk of neonatal respiratory distress in infants of asthmatic mothers, suggesting that interventions to promote lung maturation could improve their neonatal outcomes. If the elevated lymphocyte expression of CD44 persists postnatally, this would confer greater susceptibility to allergic diseases in progeny of asthmatic mothers, consistent with observations in humans. Further experiments are needed to evaluate postnatal phenotypes of progeny and investigate potential interventions.
Collapse
Affiliation(s)
- Amy L Wooldridge
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Vicki L Clifton
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Mater Medical Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Hui Lu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Monerih Jamali
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Stefanie Agostino
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Beverly S Muhlhausler
- Food and Nutrition Research Centre, Department of Food and Wine Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Sezik M, Köker A, Özmen Ö, Halıgür M, Kaşıkçı D, Aydoğan A, Özatik O. Inflammation-mediated fetal injury by maternal granulocyte-colony stimulating factor and high-dose intraamniotic endotoxin in the caprine model. Turk J Obstet Gynecol 2019; 16:41-49. [PMID: 31019839 PMCID: PMC6463425 DOI: 10.4274/tjod.tjod.galenos.2019.92300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/20/2019] [Indexed: 12/01/2022] Open
Abstract
Objective: To define a novel experimental model with maternal intravenous (i.v.) granulocyte-colony stimulating factor (G-CSF) followed by a single- and high-dose of 20 mg intra-amniotic (IA) endotoxin to induce fetal brain injury in the preterm fetal goat. Materials and Methods: Pregnant goats (n=4) were given 50 microg/day G-CSF into the maternal jugular vein through gestational days 110-115 (term, 150 days). At gestational day 115, 20 mg of IA endotoxin was administered. Following preterm delivery at day 120 by cesarean section umbilical cord, fetal lung and brain tissues were harvested for histopathology, immunohistochemistry, and electron microscopy. Inflammatory markers were evaluated in the amniotic fluid and fetal plasma. Results: Necrotizing funisitis with abundant leukocyte infiltration and fetal brain injury was induced in all the fetuses in the experimental group. Conclusion: Maternal i.v. G-CSF for 5 days followed by 20 mg of IA endotoxin is a feasible caprine model to exacerbate intrauterine inflammation.
Collapse
Affiliation(s)
- Mekin Sezik
- Süleyman Demirel University Faculty of Medicine, Department of Obstetrics and Gynecology, Isparta, Turkey
| | - Afşin Köker
- Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Burdur, Turkey
| | - Özlem Özmen
- Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Department of Pathology, Burdur, Turkey
| | - Mehmet Halıgür
- Çukurova University Faculty of Ceyhan Veterinary Medicine, Department of Pathology, Adana, Turkey
| | - Duygu Kaşıkçı
- Isparta University of Applied Sciences Faculty of Agricultural Sciences and Technologies, Department of Animal Science, Isparta, Turkey
| | - Ahmet Aydoğan
- Çukurova University Faculty of Ceyhan Veterinary Medicine, Department of Pathology, Adana, Turkey
| | - Orhan Özatik
- Kütahya Health Sciences University Faculty of Medicine, Department of Histology and Embryology, Kütahya, Turkey
| |
Collapse
|
23
|
Staude B, Oehmke F, Lauer T, Behnke J, Göpel W, Schloter M, Schulz H, Krauss-Etschmann S, Ehrhardt H. The Microbiome and Preterm Birth: A Change in Paradigm with Profound Implications for Pathophysiologic Concepts and Novel Therapeutic Strategies. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7218187. [PMID: 30370305 PMCID: PMC6189679 DOI: 10.1155/2018/7218187] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Preterm birth poses a global challenge with a continuously increasing disease burden during the last decades. Advances in understanding the etiopathogenesis did not lead to a reduction of prematurely born infants so far. A balanced development of the host microbiome in early life is key for the maturation of the immune system and many other physiological functions. With the tremendous progress in new diagnostic possibilities, the contribution of microbiota changes to preterm birth and the acute and long-term sequelae of prematurity have come into the research focus. This review summarizes the latest advances in the understanding of microbiomes in the amniotic cavity and the female lower genital tract and how changes in microbiota structures contribute to preterm delivery. The exhibition of these highly vulnerable infants to the hostile environment in the neonatal intensive care unit necessarily entails the rapid colonization with a nonbalanced microbiome in a situation where the organism is still very prone and at an early stage of development. The global research efforts to decipher pathologic changes will pave the way to new pre- and postnatal therapeutic concepts.
Collapse
Affiliation(s)
- Birte Staude
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Frank Oehmke
- Department of Gynecology and Obstetrics, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| | - Wolfgang Göpel
- Department of General Pediatrics, University Clinic of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, D-81377 Munich, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany, Member of the German Center for Lung Research (DZL), Germany
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstrasse 12, D-35392 Gießen, Germany
| |
Collapse
|
24
|
Kemp MW, Jobe AH, Usuda H, Nathanielsz PW, Li C, Kuo A, Huber HF, Clarke GD, Saito M, Newnham JP, Stock SJ. Efficacy and safety of antenatal steroids. Am J Physiol Regul Integr Comp Physiol 2018; 315:R825-R839. [PMID: 29641233 DOI: 10.1152/ajpregu.00193.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antenatal steroids (ANS) are among the most important and widely utilized interventions to improve outcomes for preterm infants. A significant body of evidence demonstrates improved outcomes in preterm infants (24-34 wk) delivered between 1 and 7 days after the administration of a single course of ANS. Moreover, ANS have the advantage of being widely available, low cost, and easily administered via maternal intramuscular injection. The use of ANS to mature the fetal lung is, however, not without contention. Their use in pregnancy is not FDA approved, and treatment doses and regimens remain largely unoptimized. Their mode of use varies considerably between countries, and there are lingering concerns regarding the safety of exposing the fetus to high doses of exogenous steroids. A significant proportion of women deliver outside the 1- to 7-day therapeutic window after ANS treatment, and this delay may be associated with an increased risk of adverse outcomes for both mother and baby. Today, animal-based studies are one means by which key questions of dosing and safety relating to ANS may be resolved, allowing for further refinement(s) of this important therapy. Complementary approaches using nonhuman primates, sheep, and rodents have provided invaluable advances to our understanding of how exogenous steroid exposure impacts fetal development. Focusing on these three major model groups, this review highlights the role of three key animal models (sheep, nonhuman primates, rodents) in the development of antenatal steroid therapy, and provides an up-to-date synthesis of current efforts to refine this therapy in an era of personalised medicine.
Collapse
Affiliation(s)
- Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre , Cincinnati, Ohio
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | | | - Cun Li
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
| | - Anderson Kuo
- Department of Radiology, University of Texas Health Science Center San Antonio , San Antonio, Texas
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center San Antonio , San Antonio, Texas
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | - John P Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
| | - Sarah J Stock
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Visconti K, Senthamaraikannan P, Kemp MW, Saito M, Kramer BW, Newnham JP, Jobe AH, Kallapur SG. Extremely preterm fetal sheep lung responses to antenatal steroids and inflammation. Am J Obstet Gynecol 2018; 218:349.e1-349.e10. [PMID: 29274832 DOI: 10.1016/j.ajog.2017.12.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/27/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The efficacy of antenatal steroids for fetal lung maturation in the periviable period is not fully understood. OBJECTIVE We sought to determine the lung maturational effects of antenatal steroids and inflammation in early gestation sheep fetuses, similar to the periviable period in human beings. STUDY DESIGN Date-mated ewes with singleton fetuses were randomly assigned to 1 of 4 treatment groups (n = 8/group): (1) maternal intramuscular injection of betamethasone; (2) intraamniotic lipopolysaccharide; (3) betamethasone + lipopolysaccharide; and (4) intraamniotic + intramuscular saline (controls). Fetuses were delivered surgically 48 hours later at 94 days' gestation (63% term gestation) for comprehensive evaluations of lung maturation, and lung and systemic inflammation. RESULTS Relative to controls, first, betamethasone increased the fetal lung air space to mesenchymal area ratio by 47% but did not increase the messenger RNAs for the surfactant proteins-B and -C that are important for surfactant function or increase the expression of pro-surfactant protein-C in the alveolar type II cells. Second, betamethasone increased expression of 1 of the 4 genes in surfactant lipid synthetic pathways. Third, betamethasone increased genes involved in epithelium sodium channel transport, but not sodium-potassium adenosine triphosphatase or Aquaporin 5. Fourth, lipopolysaccharide increased proinflammatory genes in the lung but did not effectively recruit activated inflammatory cells. Last, betamethasone incompletely suppressed lipopolysaccharide-induced lung inflammation. In the liver, betamethasone when given alone increased the expression of serum amyloid A3 and C-reactive protein messenger RNAs. CONCLUSION Compared the more mature 125-day gestation sheep, antenatal steroids do not induce pulmonary surfactants during the periviable period, indicating a different response.
Collapse
|
26
|
|
27
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Loughran CM, Kemp MW, Musk GC. Maternal and fetal arterial blood gas data in normotensive, singleton, isoflurane anesthetized sheep at 124-126 days of gestation. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:231-234. [PMID: 28725115 PMCID: PMC5508377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/14/2016] [Indexed: 06/07/2023]
Abstract
The aim of this case series was to describe the differences between maternal and fetal blood-gas results during anesthesia. Sixteen singleton adult merino ewes weighing 60.1 ± 5.1 kg at 125.7 d (124 to 126 d) gestation were anesthetized. Maternal (radial) and fetal (umbilical) arterial blood gas samples were collected 79 ± 6 min after the start of anesthesia if maternal mean arterial pressure (MAP) was stable and > 65 mmHg. Fetal pH, partial arterial pressure of oxygen (PaO2), glucose, arterial hemoglobin oxygen saturation (SaO2), sodium, and chloride were significantly lower and fetal partial arterial pressure of carbon dioxide (PaCO2), lactate, hematocrit, total hemoglobin, potassium, and calcium were significantly higher than maternal blood-gas values. Fetal pH, PaO2, and BE were lower and fetal lactate was higher than fetal umbilical arterial samples previously reported, which may indicate a non-reassuring fetal status. Further refinement of the ovine experimental model is warranted with fetal monitoring during maternal anesthesia.
Collapse
|
29
|
Moss TJM, Westover AJ. Inflammation-induced preterm lung maturation: lessons from animal experimentation. Paediatr Respir Rev 2017; 23:72-77. [PMID: 27856214 DOI: 10.1016/j.prrv.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 07/08/2016] [Accepted: 10/05/2016] [Indexed: 02/05/2023]
Abstract
Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS.
Collapse
Affiliation(s)
- Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, VIC 3168, Australia.
| | - Alana J Westover
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
30
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
31
|
Shahzad T, Radajewski S, Chao CM, Bellusci S, Ehrhardt H. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 2016; 3:23. [PMID: 27357257 PMCID: PMC4927524 DOI: 10.1186/s40348-016-0051-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
Bronchopulmonary dysplasia is a chronic lung disease of preterm infants. It is caused by the disturbance of physiologic lung development mainly in the saccular stage with lifelong restrictions of pulmonary function and an increased risk of abnormal somatic and psychomotor development. The contributors to this disease’s entity are multifactorial with pre- and postnatal origin. Central to the pathogenesis of bronchopulmonary is the induction of a massive pulmonary inflammatory response due to mechanical ventilation and oxygen toxicity. The extent of the pro-inflammatory reaction and the disturbance of further alveolar growth and vasculogenesis vary largely and can be modified by prenatal infections, antenatal steroids, and surfactant application. This minireview summarizes the important recent research findings on the pulmonary inflammatory reaction obtained in patient cohorts and in experimental models. Unfortunately, recent changes in clinical practice based on these findings had only limited impact on the incidence of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Tayyab Shahzad
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Sarah Radajewski
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Cho-Ming Chao
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Saverio Bellusci
- University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany. .,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol Hum Reprod 2016; 22:858-65. [PMID: 27226490 DOI: 10.1093/molehr/gaw036] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
33
|
Hütten MC, Wolfs TGAM, Kramer BW. Can the preterm lung recover from perinatal stress? Mol Cell Pediatr 2016; 3:15. [PMID: 27075524 PMCID: PMC4830776 DOI: 10.1186/s40348-016-0043-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
After birth, adequate lung function is necessary for the successful adaptation of a preterm baby. Both prenatal and postnatal insults and therapeutic interventions have an immediate effect on lung function and gas exchange but also interfere with fetal and neonatal lung development. Prenatal insults like chorioamnionitis and prenatal interventions like maternal glucocorticosteroids interact but might also determine the preterm baby's lung response to postnatal interventions ("second hit") like supplementation of oxygen and drug therapy. We review current experimental and clinical findings on the influence of different perinatal factors on preterm lung development and discuss how well-established interventions in neonatal care might be adapted to attenuate postnatal lung injury.
Collapse
Affiliation(s)
- Matthias C Hütten
- Neonatology, Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,Neonatology, Department of Pediatrics, Aachen University Hospital, Aachen, Germany.,Neonatology, Department of Pediatrics, Würzburg University Hospital, Würzburg, Germany.,Faculty of Health, Medicine and Lifesciences, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Neonatology, Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Health, Medicine and Lifesciences, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Boris W Kramer
- Neonatology, Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands. .,Faculty of Health, Medicine and Lifesciences, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Abstract
Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, although the mechanisms of susceptibility and immune dysregulation are active areas of research. This article reviews aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children.
Collapse
Affiliation(s)
- Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642, USA,Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA,Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642.
| |
Collapse
|
35
|
Willems MGM, Ophelders DRMG, Nikiforou M, Jellema RK, Butz A, Delhaas T, Kramer BW, Wolfs TGAM. Systemic interleukin-2 administration improves lung function and modulates chorioamnionitis-induced pulmonary inflammation in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 2015; 310:L1-7. [PMID: 26519206 DOI: 10.1152/ajplung.00289.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023] Open
Abstract
Chorioamnionitis, an inflammatory reaction of the fetal membranes to microbes, is an important cause of preterm birth and associated with inflammation-driven lung injury. However, inflammation in utero overcomes immaturity of the premature lung by inducing surfactant lipids and lung gas volume. Previously, we found that lipopolysaccharide (LPS)-induced chorioamnionitis resulted in pulmonary inflammation with increased effector T cells and decreased regulatory T cell (Treg) numbers. Because Tregs are crucial for immune regulation, we assessed the effects of interleukin (IL)-2-driven selective Treg expansion on the fetal lung in an ovine chorioamnionitis model. Instrumented fetuses received systemic prophylactic IL-2 treatment [118 days gestational age (dGA)] with or without subsequent exposure to intra-amniotic LPS (122 dGA). Following delivery at 129 dGA (term 147 dGA), pulmonary and systemic inflammation, morphological changes, lung gas volume, and phospholipid concentration were assessed. IL-2 pretreatment increased the FoxP3(+)/CD3(+) ratio, which was associated with reduced CD3-positive cells in the fetal lungs of LPS-exposed animals. Prophylactic IL-2 treatment did not prevent pulmonary accumulation of myeloperoxidase- and PU.1-positive cells or elevation of bronchoalveolar lavage fluid IL-8 and systemic IL-6 concentrations in LPS-exposed animals. Unexpectedly, IL-2 treatment improved fetal lung function of control lambs as indicated by increased disaturated phospholipids and improved lung gas volume. In conclusion, systemic IL-2 treatment in utero preferentially expanded Tregs and improved lung gas volume and disaturated phospholipids. These beneficial effects on lung function were maintained despite the moderate immunomodulatory effects of prophylactic IL-2 in the course of chorioamnionitis.
Collapse
Affiliation(s)
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Maria Nikiforou
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Reint K Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Anke Butz
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of BioMedical Engineering, Maastricht University Medical Center, Maastricht, The Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands;
| |
Collapse
|
36
|
Musk GC, Kemp MW. Maternal and fetal arterial blood gas data during general anaesthesia for caesarean delivery of preterm twin lambs. Lab Anim 2015. [PMID: 26219550 DOI: 10.1177/0023677215598449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Much remains to be understood with regards the effects of prolonged anaesthesia on maternal and fetal haemodynamics and oxygenation. With the aim of improving anaesthetic management of pregnant sheep undergoing recovery surgery under anaesthesia, paired maternal and fetal arterial blood samples were collected during caesarean delivery of twin preterm lambs to document the blood gas status of the ewe and fetus. Twenty-one Merino twin pregnant ewes at 126 (±1) days of gestation were anaesthetized for caesarean delivery of their fetuses. Arterial blood samples were collected from the radial artery of the ewe and umbilical artery of the fetus at the point of delivery. There was a significant difference between maternal PaCO2 and end-tidal CO2 and alveolar and arterial PaO2, indicating ventilation perfusion mismatch. Interestingly, the ewes were anaemic but the fetuses were not. These data underscore the need to undertake further work to determine the optimal anaesthetic regimen for twin pregnant ewes at different gestational ages in a biomedical research setting.
Collapse
Affiliation(s)
- G C Musk
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Western Australia Animal Care Services, University of Western Australia, Perth, Western Australia
| | - M W Kemp
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia
| |
Collapse
|
37
|
Sharma S, Kho AT, Chhabra D, Qiu W, Gaedigk R, Vyhlidal CA, Leeder JS, Barraza-Villarreal A, London SJ, Gilliland F, Raby BA, Weiss ST, Tantisira KG. Glucocorticoid genes and the developmental origins of asthma susceptibility and treatment response. Am J Respir Cell Mol Biol 2015; 52:543-53. [PMID: 25192440 DOI: 10.1165/rcmb.2014-0109oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antenatal corticosteroids enhance lung maturation. However, the importance of glucocorticoid genes on early lung development, asthma susceptibility, and treatment response remains unknown. We investigated whether glucocorticoid genes are important during lung development and their role in asthma susceptibility and treatment response. We identified genes that were differentially expressed by corticosteroids in two of three genomic datasets: lymphoblastoid cell lines of participants in the Childhood Asthma Management Program, a glucocorticoid chromatin immunoprecipitation/RNA sequencing experiment, or a murine model; these genes made up the glucocorticoid gene set (GCGS). Using gene expression profiles from 38 human fetal lungs and C57BL/6J murine fetal lungs, we identified developmental genes that were in the top 5% of genes contributing to the top three principal components (PCs) most highly associated with post-conceptional age. Glucocorticoid genes that were enriched in this set of developmental genes were then included in the developmental glucocorticoid gene set (DGGS). We then investigated whether glucocorticoid genes are important during lung development, and their role in asthma susceptibility and treatment response. A total of 232 genes were included in the GCGS. Analysis of gene expression demonstrated that glucocorticoid genes were enriched in lung development (P = 7.02 × 10(-26)). The developmental GCGS was enriched for genes that were differentially expressed between subjects with asthma and control subjects (P = 4.26 × 10(-3)) and were enriched after treatment of subjects with asthma with inhaled corticosteroids (P < 2.72 × 10(-4)). Our results show that glucocorticoid genes are overrepresented among genes implicated in fetal lung development. These genes influence asthma susceptibility and treatment response, suggesting their involvement in the early ontogeny of asthma.
Collapse
|
38
|
Presenting Twins Are Exposed to Higher Levels of Inflammatory Mediators than Nonpresenting Twins as Early as the Midtrimester of Pregnancy. PLoS One 2015; 10:e0125346. [PMID: 26076029 PMCID: PMC4468219 DOI: 10.1371/journal.pone.0125346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022] Open
Abstract
Objective Presenting twins are less likely to develop respiratory complications than non-presenting twins. The precise reason for this difference is not well understood, although it is known that the presence of inflammation reduces the risk of respiratory morbidity at birth. To further investigate this association, we compared the concentrations of inflammatory biomarkers in mid-trimester amniotic fluid (AF) of asymptomatic twin pairs. Study Design The study population consisted of women with twin pregnancies who underwent mid-trimester amniocentesis (15–20 weeks) for routine clinical indications and delivered at term. AF was analyzed for pro-inflammatory cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-15, IFN-γ, TNF-α), matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-12), and chemokines (Complement Factor D/Adipsin, Serpin E1/PAI-1, Adiponectin/Acrp30, CRP, CCL2/MCP-1, Leptin, Resistin) using Luminex Performance Assay multiplex kits. Data were analyzed using Wilcoxon signed rank test. Results A total of 82 twin pairs were enrolled. Mid-trimester AF concentrations of IL-8, MMP-8, CRP, MCP-1, leptin, and resistin were significantly higher in the presenting twin compared with the non-presenting twin (p<0.05 for each). Differences in AF concentrations of IL-8, MMP-8, and CRP persisted after adjustment for the fetal growth restriction at the time of birth and chorionicity. Conclusion These data suggest that, as early as the mid-trimester, the presenting fetus in an otherwise uncomplicated twin pregnancy is exposed to higher levels of pro-inflammatory mediators (especially IL-8, MMP-8, and CRP) than its non-presenting co-twin. Whether this pro-inflammatory milieu reduces the risk of neonatal respiratory morbidity at birth or has other functional implications needs to be further evaluated.
Collapse
|
39
|
Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1145-58. [DOI: 10.1152/ajplung.00039.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
| | - Alicia Madurga
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
40
|
Cetinkaya M, Cansev M, Cekmez F, Tayman C, Canpolat FE, Kafa IM, Yaylagul EO, Kramer BW, Sarici SU. Protective Effects of Valproic Acid, a Histone Deacetylase Inhibitor, against Hyperoxic Lung Injury in a Neonatal Rat Model. PLoS One 2015; 10:e0126028. [PMID: 25938838 PMCID: PMC4418724 DOI: 10.1371/journal.pone.0126028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Histone acetylation and deacetylation may play a role in the pathogenesis of inflammatory lung diseases. We evaluated the preventive effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, on neonatal hyperoxic lung injury. Methods Forty newborn rat pups were randomized in normoxia, normoxia+VPA, hyperoxia and hyperoxia+VPA groups. Pups in the normoxia and normoxia+VPA groups were kept in room air and received daily saline and VPA (30 mg/kg) injections, respectively, while those in hyperoxia and hyperoxia+VPA groups were exposed to 95% O2 and received daily saline and VPA (30 mg/kg) injections for 10 days, respectively. Growth, histopathological, biochemical and molecular biological indicators of lung injury, apoptosis, inflammation, fibrosis and histone acetylation were evaluated. Results VPA treatment during hyperoxia significantly improved weight gain, histopathologic grade, radial alveolar count and lamellar body membrane protein expression, while it decreased number of TUNEL(+) cells and active Caspase-3 expression. Expressions of TGFβ3 and phospho-SMAD2 proteins and levels of tissue proinflammatory cytokines as well as lipid peroxidation biomarkers were reduced, while anti-oxidative enzyme activities were enhanced by VPA treatment. VPA administration also reduced HDAC activity while increasing acetylated H3 and H4 protein expressions. Conclusions The present study shows for the first time that VPA treatment ameliorates lung damage in a neonatal rat model of hyperoxic lung injury. The preventive effect of VPA involves HDAC inhibition.
Collapse
Affiliation(s)
- Merih Cetinkaya
- Gulhane Military Medical Academy, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
- * E-mail:
| | - Mehmet Cansev
- Uludag University Medical School, Department of Pharmacology, Bursa, Turkey
| | - Ferhat Cekmez
- Gulhane Military Medical Academy, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
| | - Cuneyt Tayman
- Gulhane Military Medical Academy, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
| | - Fuat Emre Canpolat
- Gulhane Military Medical Academy, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
| | | | | | - Boris W. Kramer
- Maastricht University Medical Center, Department of Pediatrics, Maastricht, Netherlands
| | - Serdar Umit Sarici
- Gulhane Military Medical Academy, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
| |
Collapse
|
41
|
Kipfmueller F, Schneider J, Prusseit J, Dimitriou I, Zur B, Franz AR, Bartmann P, Mueller A. Role of Neutrophil CD64 Index as a Screening Marker for Late-Onset Sepsis in Very Low Birth Weight Infants. PLoS One 2015; 10:e0124634. [PMID: 25894336 PMCID: PMC4404048 DOI: 10.1371/journal.pone.0124634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/17/2015] [Indexed: 01/30/2023] Open
Abstract
Introduction The role of CD64 in late onset sepsis (LOS) in preterm infants has been described in several studies. Aim of this study was to investigate whether CD64 expression is increased in the days before clinical manifestation of LOS. Methods Patients with birth weight below 1,500g were eligible for study participation. During routine blood sampling CD64 index was determined between day of life 4 and 28. Patients were allocated to one of four groups: (1) blood-culture positive sepsis, (2) clinical sepsis, (3) symptoms of infection without biochemical evidence of infection, or (4) patients without suspected infection. Kinetics of CD64 expression were compared during a period before and after the day of infection in the respective groups. Results 50 infants were prospectively enrolled and allocated to each group as follows: group (1) n = 7; group (2) n = 10; group (3) n = 8; and group (4) n = 25. CD64 index was elevated in 57% of patients in group (1) at least two days before infection. In contrast only 20% in the clinical sepsis group and 0% in group (3) had an elevated CD64 index in the days before infection. 10 of the 25 patients in the control group (4) presented increased CD64 index values during the study period. Conclusions The CD64 index might be a promising marker to detect LOS before infants demonstrate signs or symptoms of infection. However, larger prospective studies are needed to define optimal cut-off values and to investigate the role of non-infectious inflammation in this patient group.
Collapse
Affiliation(s)
- Florian Kipfmueller
- Department of Neonatology and Pediatric Critical Care, University Children‘s Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Jessica Schneider
- Department of Neonatology and Pediatric Critical Care, University Children‘s Hospital Bonn, Bonn, Germany
| | - Julia Prusseit
- Department of Neonatology and Pediatric Critical Care, University Children‘s Hospital Bonn, Bonn, Germany
| | - Ioanna Dimitriou
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Berndt Zur
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel R. Franz
- Department of Neonatology and Pediatric Critical Care, University Children‘s Hospital Bonn, Bonn, Germany
- Current affiliation: Department of Neonatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Critical Care, University Children‘s Hospital Bonn, Bonn, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Critical Care, University Children‘s Hospital Bonn, Bonn, Germany
| |
Collapse
|
42
|
Responses of the spleen to intraamniotic lipopolysaccharide exposure in fetal sheep. Pediatr Res 2015; 77:29-35. [PMID: 25285474 DOI: 10.1038/pr.2014.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/09/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Intrauterine inflammation activates the fetal immune system and can result in organ injury and postnatal complications in preterm infants. As the spleen is an important site for peripheral immune activation, we asked how the fetal spleen would respond to intrauterine inflammation over time. We hypothesized that intraamniotic lipopolysaccharide (IA LPS) exposure induces acute and persistent changes in the splenic cytokine profile and T-cell composition that may contribute to the sustained fetal inflammatory response after chorioamnionitis. METHODS Fetal sheep were exposed to IA LPS 5, 12, and 24 h and 2, 4, 8, or 15 d before delivery at 125 d of gestational age (term = 150 d). Splenic cytokine mRNA levels and cleaved caspase-3, CD3, and Foxp3 expression were evaluated. RESULTS IA LPS increased interleukin (IL)1, IL4, IL5, and IL10 mRNA by twofold 24 h after injection. Interferon gamma increased by fivefold, whereas IL23 decreased 15 d post-LPS exposure. Cleaved caspase-3-positive cells increased 2 and 8 d after LPS exposure. CD3 immunoreactivity increased within 5 h with increased Foxp3-positive cells at 12 h. CONCLUSION Intrauterine inflammation induced a rapid and sustained splenic immune response with persistent changes in the cytokine profile. This altered immune status may drive sustained inflammation and injury in other fetal organs.
Collapse
|
43
|
Abstract
Bronchopulmonary dysplasia (BPD) is the major cause of pulmonary disease in infants. The pathophysiology and management of BPD changed with the improvement of neonatal intensive care unit (NICU) management and with the increase of survival rates. Despite the improvements made, BPD is still a public health concern, resulting in frequent hospitalizations with high rates of mortality, impaired weight and height growth, and neurodevelopmental disorders. Lung injury in the neonatal period has multiple etiologic factors - genetic, hemodynamic, metabolic, nutritional, mechanical, and infectious mechanisms - act in a cumulative and synergic way. Free radical (FR) generation is largely recognized as the major cause of lung damage. Oxidative stress (OS) is the final common endpoint for a complex convergence of events, some genetically determined and some triggered by in utero stressors. Inflammatory placental disorders and chorioamnionitis also play an important role due to the coexistence of inflammatory and oxidative lesions. In addition, the contribution of airway inflammation has been extensively studied. The link between inflammation and OS injury involves the direct activation of inflammatory cells, especially granulocytes, which potentiates the inflammatory reaction. Individualized interventions to support ventilation, minimize oxygen exposure, minimize apnea, and encourage growth should decrease both the frequency and severity of BPD. Future perspectives suggest supplementation with enzymatic and/or non-enzymatic antioxidants. The use of antioxidants in preterm newborns particularly exposed to OS and at risk for BPD represents a logical strategy to ameliorate FRs injury, but further studies are needed to support this hypothesis.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Italy
| | | | | |
Collapse
|
44
|
Lambermont VA, Kuypers E, Collins JJP, Pillow JJ, Newnham JP, Polglase GR, Nitsos I, Kemp MW, Jobe AH, Kallapur SG, Kramer BW. Effects of intra-amniotic lipopolysaccharide exposure on the fetal lamb lung as gestation advances. Pediatr Res 2014; 75:500-6. [PMID: 24441106 DOI: 10.1038/pr.2014.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/27/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intra-amniotic lipopolysaccharide (LPS) exposure may affect neonatal outcome by altering fetal lung and immune system development. We hypothesized that intra-amniotic LPS exposure would cause persistent fetal pulmonary responses as the lungs develop in utero. METHODS Fetal lambs were exposed to intra-amniotic LPS at 118 or at 118 and 123 d of gestational age (GA) with delivery at 125, 133, or 140 d (term = 147 d). Immune responses, PU.1 expression, Toll-like receptor (TLR)-1,2,4,6 mRNA levels, mast cell levels, and pulmonary elastin deposition were evaluated. RESULTS After a single dose of LPS, pulmonary inflammatory responses were observed with increases of (i) PU.1 and TLR1 at 125 d GA and (ii) monocytes, lymphocytes, TLR2, and TLR6 at 133 d GA. Repetitive LPS exposure resulted in (i) increases of neutrophils, monocytes, PU.1, and TLR1 at 125 d GA; (ii) increases of neutrophils, PU.1, and TLR2 at 133 d GA; and (iii) decreases of mast cells, elastin foci, TLR4, and TLR6 at early gestation. At 140 d GA, only PU.1 was increased after repetitive LPS exposure. CONCLUSION The preterm fetal lung can respond to a single exposure or repeated exposures from intra-amniotic LPS in multiple ways, but the absence of inflammatory and structural changes in LPS-exposed fetuses delivered near term suggest that the fetus can resolve an inflammatory stimulus in utero with time.
Collapse
Affiliation(s)
- Verena A Lambermont
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jennifer J P Collins
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Jane Pillow
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - John P Newnham
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Graeme R Polglase
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Ilias Nitsos
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Matthew W Kemp
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Alan H Jobe
- 1] School of Women's and Infants Health, University of Western Australia, Perth, Australia [2] Department of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Suhas G Kallapur
- 1] School of Women's and Infants Health, University of Western Australia, Perth, Australia [2] Department of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Boris W Kramer
- 1] Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands [2] School of Women's and Infants Health, University of Western Australia, Perth, Australia
| |
Collapse
|
45
|
Altered canonical Wingless-Int signaling in the ovine fetal lung after exposure to intra-amniotic lipopolysaccharide and antenatal betamethasone. Pediatr Res 2014; 75:281-7. [PMID: 24232635 DOI: 10.1038/pr.2013.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/16/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Antenatal inflammation and maternal corticosteroids induce fetal lung maturation but interfere with late lung development. Canonical Wingless-Int (Wnt) signaling directs lung development and repair. We showed that intra-amniotic (IA) lipopolysaccharide (LPS) exposure disrupted developmental signaling pathways in the preterm lamb lungs. Therefore, we hypothesized that pulmonary Wnt signaling was altered by exposure to IA LPS and/or antenatal corticosteroids. METHODS Ovine fetuses were exposed to IA LPS, maternal intramuscular betamethasone, a control saline injection, or a combination thereof at 107 and/or 114 d gestational age (term = 150 d gestational age) before delivery at 121 d gestational age. RESULTS IA LPS exposure decreased the lung expression of lymphoid enhancer-binding factor 1 (LEF1), a major Wnt pathway effector. WNT1, WNT4, and downstream messenger β-catenin decreased after LPS exposure. WNT7b mRNA increased fourfold 14 d post-LPS exposure. Betamethasone treatment 7 d before LPS exposure prevented the reduction in LEF1 expression, whereas betamethasone administration after LPS normalized the LPS-induced increase in Wnt7b mRNA. CONCLUSION IA LPS exposure decreased canonical Wnt signaling in the developing lung. Antenatal corticosteroids before or after IA inflammation had different effects on pulmonary Wnt signaling. This study provides new insights into possible mechanisms by which prenatal inflammation affects lung development and how corticosteroid can be beneficial in this setting.
Collapse
|
46
|
Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA. Fetal immune response to chorioamnionitis. Semin Reprod Med 2014; 32:56-67. [PMID: 24390922 DOI: 10.1055/s-0033-1361823] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chorioamnionitis is a frequent cause of preterm birth and is associated with an increased risk for injury responses in the lung, gastrointestinal tract, brain, and other fetal organs. Chorioamnionitis is a polymicrobial nontraditional infectious disease because the organisms causing chorioamnionitis are generally of low virulence and colonize the amniotic fluid often for extended periods, and the host (mother and the fetus) does not have typical infection-related symptoms such as fever. In this review, we discuss the effects of chorioamnionitis in experimental animal models that mimic the human disease. Our focus is on the immune changes in multiple fetal organs and the pathogenesis of chorioamnionitis-induced injury in different fetal compartments. As chorioamnionitis disproportionately affects preterm infants, we discuss the relevant developmental context for the immune system. We also provide a clinical context for the fetal responses.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Pietro Presicce
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Cesar M Rueda
- Division of Immunobiology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Claire A Chougnet
- Division of Immunobiology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
47
|
Abstract
Glucorticorticoids have both anti-inflammatory and immunosuppressive properties and both synthetic and natural glucocorticoid medications have been used to treat a number of inflammatory and autoimmune conditions, including the management of acute multiple sclerosis (MS) attacks. Many of the studies supporting the use of this approach to MS treatment have important limitations. Nevertheless, on balance, the data seem to support the notion that a brief glucocorticoid treatment regimen (~2 weeks) hastens recovery from an acute MS flare and that this treatment, in general, is well tolerated. However, such treatment does not seem to alter the final degree of recovery from the MS attack. Among the practice community, even within MS centers, there seems to be a general belief that the selection of the optimal agent, route of administration, and the duration of therapy can be made on the basis of personal experience and/or theoretic considerations. As a result, currently, there are a variety of idiosyncratic regimens (often vigorously defended), which are commonly used to treat patients. Nevertheless, it is important to recognize that the best route of administration, the optimal dose and duration of treatment, and the preferred agent or agents have yet to be firmly established. Moreover, although it may well turn out that some of these factors are more important than others, the best current evidence for the efficacy of glucocorticoid treatment in MS, by far, comes from the optic neuritis treatment trial, which used high-dose intravenous methylprednisolone for the first 3 days followed by an 11-day course of low-dose oral prednisone.
Collapse
Affiliation(s)
- Douglas S Goodin
- Department of Neurology, University of California, San Francisco, USA.
| |
Collapse
|
48
|
Kuypers E, Jellema RK, Ophelders DRMG, Dudink J, Nikiforou M, Wolfs TGAM, Nitsos I, Pillow JJ, Polglase GR, Kemp MW, Saito M, Newnham JP, Jobe AH, Kallapur SG, Kramer BW. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep. PLoS One 2013; 8:e81644. [PMID: 24358119 PMCID: PMC3866104 DOI: 10.1371/journal.pone.0081644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/15/2013] [Indexed: 01/16/2023] Open
Abstract
Rationale Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure. Methods Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles. Results LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis. Conclusion Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daan R. M. G. Ophelders
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jeroen Dudink
- Department of Pediatrics, Erasmus Medical Center-Sophia, Rotterdam, The Netherlands
| | - Maria Nikiforou
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ilias Nitsos
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- The Ritchie Centre, Monash Institute of Medical Research, Melbourne, Australia
| | - J. Jane Pillow
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Australia
| | - Graeme R. Polglase
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- The Ritchie Centre, Monash Institute of Medical Research, Melbourne, Australia
| | - Matthew W. Kemp
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Masatoshi Saito
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - John P. Newnham
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Suhas G. Kallapur
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Boris W. Kramer
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Romero R, Yoon BH, Chaemsaithong P, Cortez J, Park CW, Gonzalez R, Behnke E, Hassan SS, Chaiworapongsa T, Yeo L. Bacteria and endotoxin in meconium-stained amniotic fluid at term: could intra-amniotic infection cause meconium passage? J Matern Fetal Neonatal Med 2013; 27:775-88. [PMID: 24028637 DOI: 10.3109/14767058.2013.844124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Meconium-stained amniotic fluid (MSAF) is a common occurrence among women in spontaneous labor at term, and has been associated with adverse outcomes in both mother and neonate. MSAF is a risk factor for microbial invasion of the amniotic cavity (MIAC) and preterm birth among women with preterm labor and intact membranes. We now report the frequency of MIAC and the presence of bacterial endotoxin in the amniotic fluid of patients with MSAF at term. MATERIALS AND METHODS We conducted a cross-sectional study including women in presumed preterm labor because of uncertain dates who underwent amniocentesis, and were later determined to be at term (n = 108). Patients were allocated into two groups: (1) MSAF (n = 66) and (2) clear amniotic fluid (n = 42). The presence of bacteria was determined by microbiologic techniques, and endotoxin was detected using the Limulus amebocyte lysate (LAL) gel clot assay. Statistical analyses were performed to test for normality and bivariate comparisons. RESULTS Bacteria were more frequently present in patients with MSAF compared to those with clear amniotic fluid [19.6% (13/66) versus 4.7% (2/42); p < 0.05]. The microorganisms were Gram-negative rods (n = 7), Ureaplasma urealyticum (n = 4), Gram-positive rods (n = 2) and Mycoplasma hominis (n = 1). The LAL gel clot assay was positive in 46.9% (31/66) of patients with MSAF, and in 4.7% (2/42) of those with clear amniotic fluid (p < 0.001). After heat treatment, the frequency of a positive LAL gel clot assay remained higher in the MSAF group [18.1% (12/66) versus 2.3% (1/42), p < 0.05]. Median amniotic fluid IL-6 concentration (ng/mL) was higher [1.3 (0.7-1.9) versus 0.6 (0.3-1.2), p = 0.04], and median amniotic fluid glucose concentration (mg/dL) was lower [6 (0-8.9) versus 9 (7.4-12.6), p < 0.001] in the MSAF group, than in those with clear amniotic fluid. CONCLUSION MSAF at term was associated with an increased incidence of MIAC. The index of suspicion for an infection-related process in postpartum women and their neonates should be increased in the presence of MSAF.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD and Detroit, MI , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|