1
|
Held M, Kozmar A, Sestan M, Turudic D, Kifer N, Srsen S, Gagro A, Frkovic M, Jelusic M. Insight into the Interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in IgA Vasculitis (IgAV). Int J Mol Sci 2024; 25:4383. [PMID: 38673968 PMCID: PMC11050592 DOI: 10.3390/ijms25084383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The pathogenesis of IgAV, the most common systemic vasculitis in childhood, appears to be complex and requires further elucidation. We aimed to investigate the potential role of galactose-deficient immunoglobulin A1 (Gd-IgA1), high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE) and protocadherin 1 (PCDH1) in the pathogenesis of IgAV. Our prospective study enrolled 86 patients with IgAV and 70 controls. HMGB1, RAGE, Gd-IgA1 and PCDH1 in serum and urine were determined by the enzyme-linked immunosorbent assay (ELISA) method at the onset of the disease and after a six-month interval in patients and once in the control group. Serum concentrations of HMGB1, RAGE and PCDH1 and urinary concentrations of HMGB1, RAGE, Gd-IgA1 and PCDH1 were significantly higher in patients with IgAV than in the control group (p < 0.001). Concentrations of HMGB1 (5573 pg/mL vs. 3477 pg/mL vs. 1088 pg/mL, p < 0.001) and RAGE (309 pg/mL vs. 302.4 pg/mL vs. 201.3 pg/mL, p = 0.012) in the serum of patients remained significantly elevated when the disease onset was compared with the six-month follow-up interval, and thus could be a potential marker of disease activity. Urinary concentration of HMGB1 measured in the follow-up period was higher in patients with nephritis compared to IgAV without nephritis (270.9 (146.7-542.7) ng/mmol vs. 133.2 (85.9-318.6) ng/mmol, p = 0.049) and significantly positively correlated with the urine albumine to creatinine ratio (τ = 0.184, p < 0.05), the number of erythrocytes in urine samples (τ = 0.193, p < 0.05) and with the outcome of nephritis (τ = 0.287, p < 0.05); therefore, HMGB1 could be a potential tool for monitoring patients with IgAV who develop nephritis. Taken together, our results imply a possible interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in the development of IgAV. The identification of sensitive biomarkers in IgAV may provide disease prevention and future therapeutics.
Collapse
Affiliation(s)
- Martina Held
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Ana Kozmar
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Mario Sestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Daniel Turudic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Nastasia Kifer
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Sasa Srsen
- Department of Pediatrics, University of Split School of Medicine, University Hospital Centre Split, 21000 Split, Croatia;
| | - Alenka Gagro
- Children’s Hospital Zagreb, Medical Faculty Osijek, Josip Juraj Strossmayer University of Osijek, 10000 Zagreb, Croatia;
| | - Marijan Frkovic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Marija Jelusic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| |
Collapse
|
2
|
Lebold KM, Cook M, Pincus AB, Nevonen KA, Davis BA, Carbone L, Calco GN, Pierce AB, Proskocil BJ, Fryer AD, Jacoby DB, Drake MG. Grandmaternal allergen sensitization reprograms epigenetic and airway responses to allergen in second-generation offspring. Am J Physiol Lung Cell Mol Physiol 2023; 325:L776-L787. [PMID: 37814791 PMCID: PMC11068409 DOI: 10.1152/ajplung.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. DNA methylation is one form of epigenetic modification that regulates gene expression and is both inherited and modified by environmental exposures throughout life. Prenatal development is a particularly vulnerable time period during which exposure to maternal asthma increases asthma risk in offspring. How maternal asthma affects DNA methylation in offspring and what the consequences of differential methylation are in subsequent generations are not fully known. In this study, we tested the effects of grandmaternal house dust mite (HDM) allergen sensitization during pregnancy on airway physiology and inflammation in HDM-sensitized and challenged second-generation mice. We also tested the effects of grandmaternal HDM sensitization on tissue-specific DNA methylation in allergen-naïve and -sensitized second-generation mice. Descendants of both allergen- and vehicle-exposed grandmaternal founders exhibited airway hyperreactivity after HDM sensitization. However, grandmaternal allergen sensitization significantly potentiated airway hyperreactivity and altered the epigenomic trajectory in second-generation offspring after HDM sensitization compared with HDM-sensitized offspring from vehicle-exposed founders. As a result, biological processes and signaling pathways associated with epigenetic modifications were distinct between lineages. A targeted analysis of pathway-associated gene expression found that Smad3 was significantly dysregulated as a result of grandmaternal allergen sensitization. These data show that grandmaternal allergen exposure during pregnancy establishes a unique epigenetic trajectory that reprograms allergen responses in second-generation offspring and may contribute to asthma risk.NEW & NOTEWORTHY Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. This study shows that maternal allergen exposure during pregnancy promotes unique epigenetic trajectories in second-generation offspring at baseline and in response to allergen sensitization, which is associated with the potentiation of airway hyperreactivity. These effects are one mechanism by which maternal asthma may influence the inheritance of asthma risk.
Collapse
Affiliation(s)
- Katie M Lebold
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, United States
| | - Madeline Cook
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Alexandra B Pincus
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Kimberly A Nevonen
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Brett A Davis
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Lucia Carbone
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon, United States
| | - Gina N Calco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Aubrey B Pierce
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Becky J Proskocil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Matthew G Drake
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
3
|
Du X, Yi X, Zou X, Chen Y, Tai Y, Ren X, He X. PCDH1, a poor prognostic biomarker and potential target for pancreatic adenocarcinoma metastatic therapy. BMC Cancer 2023; 23:1102. [PMID: 37957639 PMCID: PMC10642060 DOI: 10.1186/s12885-023-11474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.
Collapse
Affiliation(s)
- Xingyi Du
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaoyu Yi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaocui Zou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Yanhong Tai
- Department of Pathology, No.307 Hospital of PLA, Beijing, 100071, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Nanhu Laboratory, Jiaxing, 314002, China.
| |
Collapse
|
4
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
5
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
El-Khoury F, Bignon J, Martin JR. jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genomics 2020; 21:817. [PMID: 33225905 PMCID: PMC7682050 DOI: 10.1186/s12864-020-07197-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are conserved from archaebacteria to mammals. They are associated in the nucleolus, with proteins to form small nucleolar ribonucleoprotein (snoRNPs). They modify ribosomal RNAs, for example, the H/ACA box that converts uridine to pseudouridine. In humans, various pathologies have been associated with snoRNAs, and several snoRNAs have been reported to participate in many cancer processes. Recently, a new H/ACA box snoRNA named jouvence has been identified in Drosophila and has been shown to be involved in lifespan determination in relation to gut homeostasis. Because snoRNAs are conserved through evolution, both structurally and functionally, a jouvence orthologue has been identified in humans. RT-PCR has revealed that jouvence is expressed, suggesting that it might be functional. These results suggest the hypothesis that jouvence may display similar functions, including increasing the healthy lifespan in humans. Results Here, we report the characterization of the human snoRNA jouvence, which has not yet been annotated in the genome. We show that its overexpression significantly stimulates cell proliferation, both in various stable cancerous cell lines as well as in primary cells. By contrast, its knockdown by siRNA leads to the opposite phenotype, a rapid decrease in cell proliferation. Transcriptomic analysis (RNA-Seq) revealed that the overexpression of jouvence leads to a dedifferentiation signature of the cells. Conversely, the knockdown of jouvence led to a striking decrease in the expression levels of genes involved in ribosome biogenesis and the spliceosome. Conclusion The overexpression of a single and short non-coding RNA of 159 nucleotides, the snoRNA-jouvence, seems to be sufficient to reorient cells toward stemness, while its depletion blocks cell proliferation. In this context, we speculate that the overexpression of jouvence, which appears to be a non-canonical H/ACA snoRNA, could represent a new tool to fight against the deleterious effects of aging, while inversely, its knockdown by siRNA could represent a new approach in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07197-3.
Collapse
Affiliation(s)
- Flaria El-Khoury
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-René Martin
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, Nawijn MC. Epithelial cell dysfunction, a major driver of asthma development. Allergy 2020; 75:1902-1917. [PMID: 32460363 PMCID: PMC7496351 DOI: 10.1111/all.14421] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single‐cell RNA sequencing (scRNA‐Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.
Collapse
Affiliation(s)
- Irene H. Heijink
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Pulmonology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Virinchi N. S. Kuchibhotla
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
| | - Mirjam P. Roffel
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
- UBC Providence Health Care Research Institute Vancouver BC Canada
- Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver BC Canada
| | - Ian Sayers
- Division of Respiratory Medicine National Institute for Health Research Nottingham Biomedical Research Centre University of Nottingham Biodiscovery Institute University of Nottingham Nottingham UK
| | - Martijn C. Nawijn
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
8
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Application of pharmacogenomics and bioinformatics to exemplify the utility of human ex vivo organoculture models in the field of precision medicine. PLoS One 2019; 14:e0226564. [PMID: 31860681 PMCID: PMC6924641 DOI: 10.1371/journal.pone.0226564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023] Open
Abstract
Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response.
Collapse
|
10
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Tighe RM, Heck K, Soderblom E, Zhou S, Birukova A, Young K, Rouse D, Vidas J, Komforti MK, Toomey CB, Cuttitta F, Sunday ME. Immediate Release of Gastrin-Releasing Peptide Mediates Delayed Radiation-Induced Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1029-1040. [PMID: 30898588 DOI: 10.1016/j.ajpath.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Radiation-induced pulmonary fibrosis (RTPF) is a progressive, serious condition in many subjects treated for thoracic malignancies or after accidental nuclear exposure. No biomarker exists for identifying the irradiated subjects most susceptible to pulmonary fibrosis (PF). Previously, we determined that gastrin-releasing peptide (GRP) was elevated within days after birth in newborns exposed to hyperoxia who later developed chronic lung disease. The goal of the current study was to test whether radiation (RT) exposure triggers GRP release in mice and whether this contributes to RTPF in vivo. We determined urine GRP levels and lung GRP immunostaining in mice 0 to 24 after post-thoracic RT (15 Gy). Urine GRP levels were significantly elevated between 24 hours post-RT; GRP-blocking monoclonal antibody 2A11, given minutes post-RT, abrogated urine GRP levels by 6 to 12 hours and also altered phosphoprotein signaling pathways at 24 hours post-RT. Strong extracellular GRP immunostaining was observed in lung at 6 hours post-RT. Mice given one dose of GRP monoclonal antibody 2A11 24 hours post-RT had significantly reduced myofibroblast accumulation and collagen deposition 15 weeks later, indicating protection against lung fibrosis. Therefore, elevation of urine GRP could be predictive of RTPF development. In addition, transient GRP blockade could mitigate PF in normal lung after therapeutic or accidental RT exposure.
Collapse
Affiliation(s)
- Robert M Tighe
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Karissa Heck
- Department of Pathology, Duke University Durham, North Carolina
| | - Erik Soderblom
- Department of Cell Biology, Duke University Durham, North Carolina
| | - Shutang Zhou
- Department of Pathology, Duke University Durham, North Carolina
| | - Anastasiya Birukova
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Durham, North Carolina
| | - Douglas Rouse
- Division of Laboratory Animal Resources, Duke University Durham, North Carolina
| | - Jessica Vidas
- Department of Pathology, Duke University Durham, North Carolina
| | | | | | - Frank Cuttitta
- Mouse, Cancer and Genetics Program, National Cancer Institute, Frederick, Maryland
| | - Mary E Sunday
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina; Department of Pathology, Duke University Durham, North Carolina.
| |
Collapse
|
12
|
Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients 2018; 10:nu10040417. [PMID: 29597262 PMCID: PMC5946202 DOI: 10.3390/nu10040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Collapse
Affiliation(s)
| | - Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA.
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
13
|
Chen L, Pan H, Zhang YH, Feng K, Kong X, Huang T, Cai YD. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues. Genes (Basel) 2017; 8:genes8100252. [PMID: 28974058 PMCID: PMC5664102 DOI: 10.3390/genes8100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/26/2022] Open
Abstract
Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein–protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Hongying Pan
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA.
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA 02115, USA.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou 510507, Guangdong, China.
| | - XiangYin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 2017; 139:1736-1751. [PMID: 28583446 PMCID: PMC5457128 DOI: 10.1016/j.jaci.2017.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Collapse
Affiliation(s)
- Matthew Loxham
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
15
|
Faura Tellez G, Willemse BWM, Brouwer U, Nijboer-Brinksma S, Vandepoele K, Noordhoek JA, Heijink I, de Vries M, Smithers NP, Postma DS, Timens W, Wiffen L, van Roy F, Holloway JW, Lackie PM, Nawijn MC, Koppelman GH. Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma. PLoS One 2016; 11:e0163967. [PMID: 27701444 PMCID: PMC5049773 DOI: 10.1371/journal.pone.0163967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background The asthma gene PCDH1 encodes Protocadherin-1, a putative adhesion molecule of unknown function expressed in the airway epithelium. Here, we characterize the localization, differential expression, homotypic adhesion specificity and function of PCDH1 in airway epithelial cells in asthma. Methods We performed confocal fluorescence microscopy to determine subcellular localization of PCDH1 in 16HBE cells and primary bronchial epithelial cells (PBECs) grown at air-liquid interface. Next, to compare PCDH1 expression and localization in asthma and controls we performed qRT-PCR and fluorescence microscopy in PBECs and immunohistochemistry on airway wall biopsies. We examined homotypic adhesion specificity of HEK293T clones overexpressing fluorescently tagged-PCDH1 isoforms. Finally, to evaluate the role for PCDH1 in epithelial barrier formation and repair, we performed siRNA knockdown-studies and measured epithelial resistance. Results PCDH1 localized to the cell membrane at cell-cell contact sites, baso-lateral to adherens junctions, with increasing expression during epithelial differentiation. No differences in gene expression or localization of PCDH1 isoforms expressing the extracellular domain were observed in either PBECs or airway wall biopsies between asthma patients and controls. Overexpression of PCDH1 mediated homotypic interaction, whereas downregulation of PCDH1 reduced epithelial barrier formation, and impaired repair after wounding. Conclusions In conclusion, PCDH1 is localized to the cell membrane of bronchial epithelial cells baso-lateral to the adherens junction. Expression of PCDH1 is not reduced nor delocalized in asthma even though PCDH1 contributes to homotypic adhesion, epithelial barrier formation and repair.
Collapse
Affiliation(s)
- Grissel Faura Tellez
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Brigitte W. M. Willemse
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uilke Brouwer
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Susan Nijboer-Brinksma
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karl Vandepoele
- Department of Biomedical Molecular Biology, Ghent University & Inflammation Research Center, VIB, Ghent, Belgium
- Laboratory for Molecular Diagnostics - Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jacobien A. Noordhoek
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Heijink
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maaike de Vries
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, University of Southampton, Southampton, United Kingdom
| | - Natalie P. Smithers
- Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, University of Southampton, Southampton, United Kingdom
| | - Dirkje S. Postma
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Wiffen
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Human Genetics and Genomic Medicine, Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University & Inflammation Research Center, VIB, Ghent, Belgium
| | - John W. Holloway
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Human Genetics and Genomic Medicine, Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Peter M. Lackie
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Martijn C. Nawijn
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Ortega A, Gil-Cayuela C, Tarazón E, García-Manzanares M, Montero JA, Cinca J, Portolés M, Rivera M, Roselló-Lletí E. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction. PLoS One 2016; 11:e0160168. [PMID: 27472518 PMCID: PMC4966940 DOI: 10.1371/journal.pone.0160168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | | | - Estefanía Tarazón
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | | | - José Anastasio Montero
- Cardiovascular Surgery Service, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Juan Cinca
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
- * E-mail:
| |
Collapse
|
17
|
Shan M, Su Y, Kang W, Gao R, Li X, Zhang G. Aberrant expression and functions of protocadherins in human malignant tumors. Tumour Biol 2016; 37:12969-12981. [PMID: 27449047 DOI: 10.1007/s13277-016-5169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Protocadherins (PCDHs) are a group of transmembrane proteins belonging to the cadherin superfamily and are subdivided into "clustered" and "non-clustered" groups. PCDHs vary in both structure and interaction partners and thus regulate multiple biological responses in complex and versatile patterns. Previous researches showed that PCDHs regulated the development of brain and were involved in some neuronal diseases. Recently, studies have revealed aberrant expression of PCDHs in various human malignant tumors. The down-regulation or absence of PCDHs in malignant cells has been associated with cancer progression. Further researches suggest that PCDHs may play major functions as tumor suppressor by inhibiting the proliferation and metastasis of cancer cells. In this review, we focus on the altered expression of PCDHs and their roles in the development of cancer progression. We also discuss the potential mechanisms, by which PCDHs are aberrantly expressed, and its implications in regulating cancers.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yonghui Su
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Wenli Kang
- Department of Oncology, General Hospital of Hei Longjiang Province Land Reclamation Headquarter, Harbin, China
| | - Ruixin Gao
- Department of Breast Surgery, The First Hospital of Qiqihaer City, Qiqihaer, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guoqiang Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Zhang T, Liang L, Liu X, Wu JN, Chen J, Su K, Zheng Q, Huang H, Liao GQ. TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway takes part in tumorigenesis and progress of tongue squamous cell carcinoma. J Oral Pathol Med 2016; 45:486-93. [PMID: 26764364 DOI: 10.1111/jop.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND TGFβ1 and Smad3 play an important role in the process of EMT. TGFβ1 regulates the expression of Jagged1 by modulating Notch signaling. Jagged1 is related to tumor invasion, metastasis, chemotherapy resistance, and tumor immune escape. The aims of this study are to examine deregulation of TGFβ1-Smad3-Jagged1-Notch1-Slug signaling in TSCC and to investigate its roles in TSCC progression. MATERIALS AND METHODS Notch1, Smad3, Jagged1 and Slug proteins and mRNA expression were detected in specimens from 89 cases of patients. We analyzed the correlation between their expressions and histological grade, clinical stage and lymph node metastasis. RESULTS Notch1, Smad3, Jagged1 and Slug mRNA expressions in TSCC were higher than normal tissue (P <0.05). The protein expression of Notch1 and Smad3 in TSCC were higher (χ(2) =7.30, P <0.01 and χ(2) = 5.84, P <0.05). Notch1 and Smad3 expressions were correlated with clinical stage (χ(2) =18.81, P<0.01; χ(2) =22.29, P<0.01), but not Jagged1 (χ(2) =0.53, P>0.05). The Slug protein expression was correlated with clinical stage. The positive rate of Notch1 was higher in lymph node metastases positive cases (χ(2) =7.30, P<0.01). Moreover, higher expression of Jagged1 was found in lymph node positive cases (χ(2) =10.82, P<0.01). CONCLUSIONS The key protein expression in TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway significantly correlated with the clinicopathological features of TSCC patients. It's potential as a biomarker and a novel therapeutic target for TSCC patients at risk of metastasis. It may play an irreplaceable role in TSCC progression which may attribute to promoting EMT which enhances cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Tonghan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaoling Liu
- Department of Medicine Intensive Care Unit, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Ji-Nan Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Jueyao Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Kui Su
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Qiaoyi Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Hongzhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|