1
|
Colás-Algora N, Muñoz-Pinillos P, Cacho-Navas C, Avendaño-Ortiz J, de Rivas G, Barroso S, López-Collazo E, Millán J. Simultaneous Targeting of IL-1-Signaling and IL-6-Trans-Signaling Preserves Human Pulmonary Endothelial Barrier Function During a Cytokine Storm-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2213-2222. [PMID: 37732482 DOI: 10.1161/atvbaha.123.319695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1β (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1β signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Cristina Cacho-Navas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain (J.A.O., E.L.-C.)
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain (J.A.O., E.L.-C.)
| | - Gema de Rivas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Susana Barroso
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain (J.A.O., E.L.-C.)
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain (J.A.O., E.L.-C.)
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| |
Collapse
|
2
|
Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, Du S, Zhu C. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother 2023; 165:115029. [PMID: 37343434 DOI: 10.1016/j.biopha.2023.115029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The difficulty and poor prognosis of malignant tumor have always been a difficult problem to be solved. The internal components of solid tumor are complex, including tumor cells, stromal cells and immune cells, which play an important role in tumor proliferation, migration, metastasis and drug resistance. Hence, targeting of only the tumor cells will not likely improve survival. Various studies have reported that tumor cells and endothelial cells have high plasticity, which is reflected in the fact that they can simulate each other's characteristics by endothelial-mesenchymal transition (EndMT) and vasculogenic mimicry (VM). In this paper, this mutual mimicry concept was integrated and reviewed for the first time, and their similarities and implications for tumor development are discussed. At the same time, possible therapeutic methods are proposed to provide new directions and ideas for clinical targeted therapy and immunotherapy of tumor.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Clinical Medicine, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| | - Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
3
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
5
|
Rashmi, More SK, Wang Q, Vomhof-DeKrey EE, Porter JE, Basson MD. ZINC40099027 activates human focal adhesion kinase by accelerating the enzymatic activity of the FAK kinase domain. Pharmacol Res Perspect 2021; 9:e00737. [PMID: 33715263 PMCID: PMC7955952 DOI: 10.1002/prp2.737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) regulates gastrointestinal epithelial restitution and healing. ZINC40099027 (Zn27) activates cellular FAK and promotes intestinal epithelial wound closure in vitro and in mice. However, whether Zn27 activates FAK directly or indirectly remains unknown. We evaluated Zn27 potential modulation of the key phosphatases, PTP-PEST, PTP1B, and SHP2, that inactivate FAK, and performed in vitro kinase assays with purified FAK to assess direct Zn27-FAK interaction. In human Caco-2 cells, Zn27-stimulated FAK-Tyr-397 phosphorylation despite PTP-PEST inhibition and did not affect PTP1B-FAK interaction or SHP2 activity. Conversely, in vitro kinase assays demonstrated that Zn27 directly activates both full-length 125 kDa FAK and its 35 kDa kinase domain. The ATP-competitive FAK inhibitor PF573228 reduced basal and ZN27-stimulated FAK phosphorylation in Caco-2 cells, but Zn27 increased FAK phosphorylation even in cells treated with PF573228. Increasing PF573228 concentrations completely prevented activation of 35 kDa FAK in vitro by a normally effective Zn27 concentration. Conversely, increasing Zn27 concentrations dose-dependently activated kinase activity and overcame PF573228 inhibition of FAK, suggesting the direct interactions of Zn27 with FAK may be competitive. Zn27 increased the maximal activity (Vmax ) of FAK. The apparent Km of the substrate also increased under laboratory conditions less relevant to intracellular ATP concentrations. These results suggest that Zn27 is highly potent and enhances FAK activity via allosteric interaction with the FAK kinase domain to increase the Vmax of FAK for ATP. Understanding Zn27 enhancement of FAK activity will be important to redesign and develop a clinical drug that can promote mucosal wound healing.
Collapse
Affiliation(s)
- Rashmi
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Shyam K More
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Emilie E Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Marc D Basson
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
6
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
7
|
Rastogi M, Singh SK. Zika virus NS1 affects the junctional integrity of human brain microvascular endothelial cells. Biochimie 2020; 176:52-61. [PMID: 32640279 DOI: 10.1016/j.biochi.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) infection leads to microcephaly in newborns. Flaviviruses are known to secrete NS1 protein extracellularly and its concentration in serum directly co-relate to disease severity. The presence of ZIKV-NS1 near the brain microvascular endothelial cells (BMVECs) affects blood-brain-barrier, which is composed of tight junctions (TJs) and adherens junctions (AJs). Viruses utilize different strategies to circumvent this barrier to enter in brain. The present study demonstrated the mechanism of junctional integrity disruption in BMVECs by ZIKV-NS1 protein exposure. The Transendothelial Electrical Resistance and sodium fluorescein migration assays revealed the endothelial barrier disruption in BMVECs exposed to ZIKV-NS1 at different time (12hr and 24hr) and doses (500 ng/mL, 1000 ng/mL and 1500 ng/mL). The exposure of ZIKV-NS1 on BMVECs led to the phosphorylation of AJs and suppression of TJs through secreted ZIKV-NS1 in a bystander fashion. The activation of NADPH dependent reactive oxygen species activity and redox sensitive tyrosine kinase further increased the phosphorylation of AJs. The reduced expression of the phosphatase led to the increased phosphorylation of the AJs. The treatment with Diphenyleneiodonium chloride rescued the phosphatase and TJs expression and suppressed the expression of kinase and AJs in BMVECs exposed to ZIKV-NS1.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
8
|
Arefi SMA, Tsvirkun D, Verdier C, Feng JJ. A biomechanical model for the transendothelial migration of cancer cells. Phys Biol 2020; 17:036004. [PMID: 32015219 DOI: 10.1088/1478-3975/ab725c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We propose a biomechanical model for the extravasation of a tumor cell (TC) through the endothelium of a blood vessel. Based on prior in vitro observations, we assume that the TC extends a protrusion between adjacent endothelial cells (ECs) that adheres to the basement membrane via focal adhesions (FAs). As the protrusion grows in size and branches out, the actomyosin contraction along the stress fibers (SFs) inside the protrusion pulls the relatively rigid nucleus through the endothelial opening. We model the chemo-mechanics of the SFs and the FAs by following the kinetics of the active myosin motors and high-affinity integrins, subject to mechanical feedback. This is incorporated into a finite-element simulation of the extravasation process, with the contractile force pulling the nucleus of the TC against elastic resistance of the ECs. To account for the interaction between the TC nucleus and the endothelium, we consider two scenarios: solid-solid contact and lubrication by cytosol. The former gives a lower bound for the required contractile force to realize transmigration, while the latter provides a more realistic representation of the process. Using physiologically reasonable parameters, our model shows that the SF and FA ensemble can produce a contractile force on the order of 70 nN, which is sufficient to deform the ECs and enable transmigration. Furthermore, we use an atomic force microscope to measure the resistant force on a human bladder cancer cell that is pushed through an endothelium cultured in vitro. The magnitude of the required force turns out to be in the range of 70-100 nN, comparable to the model predictions.
Collapse
Affiliation(s)
- S M Amin Arefi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
9
|
Gong H, Ni J, Xu Z, Huang J, Zhang J, Huang Y, Zeng C, Zhang X, Cheng H, Ke Y. Shp2 in myocytes is essential for cardiovascular and neointima development. J Mol Cell Cardiol 2019; 137:71-81. [PMID: 31634485 DOI: 10.1016/j.yjmcc.2019.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/26/2022]
Abstract
Mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase Shp2, cause Noonan syndrome and LEOPARD syndrome, inherited multifaceted diseases including cardiac and vascular defects. However, the function of Shp2 in blood vessels, especially in vascular smooth muscle cells (VSMCs), remains largely unknown. We generated mice in which Shp2 was specifically deleted in VSMCs and embryonic cardiomyocytes using the SM22α-Cre transgenic mouse line. Conditional Shp2 knockout resulted in massive hemorrhage, cardiovascular defects and embryonic lethality at the late embryonic developmental stage (embryonic date 16.5). The thinning of artery walls in Shp2-knockout embryos was due to decreased VSMC number and reduced extracellular matrix deposition. Myocyte proliferation was decreased in Shp2-knockout arteries and hearts. Importantly, cardiomyocyte-specific Shp2-knockout did not cause similar vascular defects. Shp2 was required for TGFβ1-induced expression of ECM components, including collagens in VSMCs. In addition, collagens were sufficient to promote Shp2-inefficient VSMC proliferation. Finally, Shp2 was deleted in adult mouse VSMCs by using SMMHC-CreERT2 and tamoxifen induction. Shp2 deletion dramatically inhibited the expression of ECM components, proliferation of VSMCs and neointima formation in a carotid artery ligation model. Therefore, Shp2 is required for myocyte proliferation in cardiovascular development and vascular remodeling through TGFβ1-regulated collagen synthesis.
Collapse
Affiliation(s)
- Hui Gong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, Huzhou 31300, China
| | - Jiaojiao Ni
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jie Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chunlai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui 323000, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
10
|
Li W, Chen Z, Chin I, Chen Z, Dai H. The Role of VE-cadherin in Blood-brain Barrier Integrity Under Central Nervous System Pathological Conditions. Curr Neuropharmacol 2018; 16:1375-1384. [PMID: 29473514 PMCID: PMC6251046 DOI: 10.2174/1570159x16666180222164809] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
The blood-brain barrier (BBB) is a layer between the blood circulation and neural tissue. It plays a pivotal role in maintaining the vulnerable extracellular microenvironment in the neuronal parenchyma. Neuroinflammatory events can result in BBB dysregulation by disturbing adherens junctions (AJs) and tight junctions (TJs). VE-cadherin, as one of the most im-portant components of the vascular system, is specifically responsible for the assembly of AJs and BBB architecture. Here, we present a review, which highlights recently available insights into the relationship between the neuroinflammation and BBB dysregulation. We then explore the specific interaction between VE-cadherin and BBB. Fi-nally, we discuss the changes of VE-cadherin with different neurological diseases from both experimental and clinical stud-ies. An understanding of VE-cadherin in BBB regulation may indicate that VE-cadherin can partially be a biomarker of neu-roinflammation disease and lead to novel approaches for abating BBB dysregulation under pathological conditions and the opening of the BBB following central nervous system (CNS) drug delivery.
Collapse
Affiliation(s)
- Wenlu Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhigang Chen
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Ian Chin
- Metcalf Science Center, Boston University, Boston, MA 02215, United States
| | - Zhong Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
11
|
Zhang J, Huang J, Qi T, Huang Y, Lu Y, Zhan T, Gong H, Zhu Z, Shi Y, Zhou J, Yu L, Zhang X, Cheng H, Ke Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1. FASEB J 2018; 33:1124-1137. [PMID: 30102570 DOI: 10.1096/fj.201800284r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vascular endothelial (VE)-cadherin junctional localization is known to play a central role in vascular development, endothelial barrier integrity, and homeostasis. The sarcoma homology domain containing protein tyrosine phosphatase (SHP)2 has been shown to be involved in regulating endothelial barrier function; however, the mechanisms remain largely unknown. In this work SHP2 knockdown in an HUVEC monolayer increased VE-cadherin internalization and endothelial barrier permeability. Loss of SHP2 specifically augmented the GTPase activity of ADP-ribosylation factor (ARF)-1. ARF1 knockdown or inhibition of its guanine nucleotide exchange factors (GEFs) markedly attenuated VE-cadherin internalization and barrier hyperpermeability induced by SHP2 deficiency. SHP2 knockdown increased the total and phosphorylated levels of MET, whose activity was necessary for ARF1 activation and VE-cadherin internalization. Furthermore, constitutive endothelium-specific deletion of Shp2 in mice led to disrupted endothelial cell junctions, massive hemorrhage, and lethality in embryos. Induced and endothelium-specific deletion of Shp2 in adult mice resulted in lung hyperpermeability. Inhibitors for ARF1-GEF or MET used in pregnant mice prevented the vascular leakage in endothelial Shp2-deleted embryos. Together, our findings define a novel role of SHP2 in stabilizing junctional VE-cadherin in the resting endothelial barrier through suppressing MET and ARF1 activation.-Zhang, J., Huang, J., Qi, T., Huang, Y., Lu, Y., Zhan, T., Gong, H., Zhu, Z., Shi, Y., Zhou, J., Yu, L., Zhang, X., Cheng, H., Ke, Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyun Qi
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Lu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianwei Zhan
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyang Yu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China; and
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
12
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
13
|
Jiang Z, Liu H. Metformin inhibits tumorigenesis in HBV-induced hepatocellular carcinoma by suppressing HULC overexpression caused by HBX. J Cell Biochem 2018; 119:4482-4495. [PMID: 29231260 DOI: 10.1002/jcb.26555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
We aimed to understand whether metformin imposes the inhibitory effect on the HBV-associated tumorigenesis by regulating the HULC and its downstream signaling pathway. Luciferase assay, RT-PCR, and Western-blot, MTT and flow cytometry analysis were performed to understand and the mechanism, by which metformin enhance the inhibitory effect on the HBV-associated tumorigenesis by regulating the HULC and its downstream signaling pathway. HBX promoted viability of three types of cell lines, while metformin inhibited apoptosis of above two cells. ZEB1 was a direct downstream of miR-200a, which was further confirmed that miR-200a reduced luciferase activity of wild-type but not mutant ZEB1 3'UTR, and HULC was bound to region of miR-200a-3p using alignment prediction, but can't affect ZEB1 level. HULC transcription ability, HULC, ZEB1, and p18 levels were much higher in cell treated with HBX, while notably lower in cell treated with metformin, furthermore miR-200a level in cell showed an opposite trend as HULC, ZEB1, and p18 levels. HULC siRNA and miR-200a had no effect on HULC transcription ability, but decreased HULC, ZEB1, and p18 levels, and increased miR-200a expression. HBV (+) HCC +metformin exhibited a higher survival ratio and a lower recurrence rates than HBV (+) HCC group, HBV (-) HCC displayed an even higher survival ratio and an even lower recurrence rates than HBV (+) HCC + metformin groups. This study indicated that metformin imposed inhibitory effect on the HBV-associated HCC by negatively regulating the HULC/p18/miR-200a/ZEB1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Gastroenterology, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Haichao Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Yan M, Zhang X, Chen A, Gu W, Liu J, Ren X, Zhang J, Wu X, Place AT, Minshall RD, Liu G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. FASEB J 2017; 31:4759-4769. [PMID: 28701303 DOI: 10.1096/fj.201700280r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2-via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.
Collapse
Affiliation(s)
- Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinhua Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ao Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Gu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiao Ren
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aaron T Place
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
15
|
Luo M, Flood EC, Almeida D, Yan L, Berlin DA, Heerdt PM, Hajjar KA. Annexin A2 supports pulmonary microvascular integrity by linking vascular endothelial cadherin and protein tyrosine phosphatases. J Exp Med 2017; 214:2535-2545. [PMID: 28694388 PMCID: PMC5584111 DOI: 10.1084/jem.20160652] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/14/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Luo et al. demonstrate that annexin A2 is required to maintain vascular integrity in the hypoxic mouse lung. A2 prevents extravasation of fluid and leukocytes by promoting activity of the phosphatases VE-PTP and SHP2, thereby modulating phosphorylation of vascular endothelial cadherin. Relative or absolute hypoxia activates signaling pathways that alter gene expression and stabilize the pulmonary microvasculature. Alveolar hypoxia occurs in disorders ranging from altitude sickness to airway obstruction, apnea, and atelectasis. Here, we report that the phospholipid-binding protein, annexin A2 (ANXA2) functions to maintain vascular integrity in the face of alveolar hypoxia. We demonstrate that microvascular endothelial cells (ECs) from Anxa2−/− mice display reduced barrier function and excessive Src-related tyrosine phosphorylation of the adherens junction protein vascular endothelial cadherin (VEC). Moreover, unlike Anxa2+/+ controls, Anxa2−/− mice develop pulmonary edema and neutrophil infiltration in the lung parenchyma in response to subacute alveolar hypoxia. Mice deficient in the ANXA2-binding partner, S100A10, failed to demonstrate hypoxia-induced pulmonary edema under the same conditions. Further analyses reveal that ANXA2 forms a complex with VEC and its phosphatases, EC-specific protein tyrosine phosphatase (VE-PTP) and Src homology phosphatase 2 (SHP2), both of which are implicated in vascular integrity. In the absence of ANXA2, VEC is hyperphosphorylated at tyrosine 731 in response to vascular endothelial growth factor, which likely contributes to hypoxia-induced extravasation of fluid and leukocytes. We conclude that ANXA2 contributes to pulmonary microvascular integrity by enabling VEC-related phosphatase activity, thereby preventing vascular leak during alveolar hypoxia.
Collapse
Affiliation(s)
- Min Luo
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Elle C Flood
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - LunBiao Yan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY
| | - David A Berlin
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Paul M Heerdt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY
| | - Katherine A Hajjar
- Department of Pediatrics, Weill Cornell Medical College, New York, NY .,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
16
|
Liu Y, Chen XL, Wang L, Martins-Green M. Insulin Antagonizes Thrombin-Induced Microvessel Leakage. J Vasc Res 2017; 54:143-155. [DOI: 10.1159/000470844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/11/2017] [Indexed: 11/19/2022] Open
|
17
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Wylezinski LS, Hawiger J. Interleukin 2 Activates Brain Microvascular Endothelial Cells Resulting in Destabilization of Adherens Junctions. J Biol Chem 2016; 291:22913-22923. [PMID: 27601468 DOI: 10.1074/jbc.m116.729038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/06/2022] Open
Abstract
The pleiotropic cytokine interleukin 2 (IL2) disrupts the blood-brain barrier and alters brain microcirculation, underlying vascular leak syndrome that complicates cancer immunotherapy with IL2. The microvascular effects of IL2 also play a role in the development of multiple sclerosis and other chronic neurological disorders. The mechanism of IL2-induced disruption of brain microcirculation has not been determined previously. We found that both human and murine brain microvascular endothelial cells express constituents of the IL2 receptor complex. Then we established that signaling through this receptor complex leads to activation of the transcription factor, nuclear factor κB, resulting in expression of proinflammatory interleukin 6 and monocyte chemoattractant protein 1. We also discovered that IL2 induces disruption of adherens junctions, concomitant with cytoskeletal reorganization, ultimately leading to increased endothelial cell permeability. IL2-induced phosphorylation of vascular endothelial cadherin (VE-cadherin), a constituent of adherens junctions, leads to dissociation of its stabilizing adaptor partners, p120-catenin and β-catenin. Increased phosphorylation of VE-cadherin was also accompanied by a reduction of Src homology 2 domain-containing protein-tyrosine phosphatase 2, known to maintain vascular barrier function. These results unravel the mechanism of deleterious effects induced by IL2 on brain microvascular endothelial cells and may inform the development of new measures to improve IL2 cancer immunotherapy, as well as treatments for autoimmune diseases affecting the central nervous system.
Collapse
Affiliation(s)
| | - Jacek Hawiger
- From the Departments of Molecular Physiology and Biophysics and .,Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37232-2363
| |
Collapse
|
19
|
Zhao L, Xia J, Li T, Zhou H, Ouyang W, Hong Z, Ke Y, Qian J, Xu F. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization. J Infect Dis 2016; 214:625-33. [PMID: 27330052 DOI: 10.1093/infdis/jiw205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.
Collapse
Affiliation(s)
| | - Jingyan Xia
- Department of Oncology Radiation, Second Affiliated Hospital
| | | | - Hui Zhou
- Department of Infectious Diseases Experimental Medical Class 1102, Chu Kochen Honor College, Zhejiang University
| | | | - Zhuping Hong
- Department of Infectious Diseases College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology Program in Molecular Cell Biology, Zhejiang University School of Medicine
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences
| | - Feng Xu
- Department of Infectious Diseases
| |
Collapse
|
20
|
Gasparics Á, Rosivall L, Krizbai IA, Sebe A. When the endothelium scores an own goal: endothelial cells actively augment metastatic extravasation through endothelial-mesenchymal transition. Am J Physiol Heart Circ Physiol 2016; 310:H1055-63. [PMID: 26993222 DOI: 10.1152/ajpheart.00042.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023]
Abstract
Endothelial-mesenchymal transition (EndMT) is an important mechanism during organ development and in certain pathological conditions. For example, EndMT contributes to myofibroblast formation during organ fibrosis, and it has been identified as an important source of cancer-associated fibroblasts, facilitating tumor progression. Recently, EndMT was proposed to modulate endothelial function during intravasation and extravasation of metastatic tumor cells. Evidence suggests that endothelial cells are not passive actors during transendothelial migration (TEM) of cancer cells, as there are profound changes in endothelial junctional protein expression, signaling, permeability, and contractility. This review describes these alterations in endothelial characteristics during TEM of metastatic tumor cells and discusses them in the context of EndMT. EndMT could play an important role during metastatic intravasation and extravasation, a novel hypothesis that may lead to new therapeutic approaches to tackle metastatic disease.
Collapse
Affiliation(s)
- Ákos Gasparics
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary; Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania; and
| | - Attila Sebe
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary; Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
21
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
22
|
Chichger H, Braza J, Duong H, Harrington EO. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function. Am J Respir Cell Mol Biol 2015; 52:695-707. [PMID: 25317600 DOI: 10.1165/rcmb.2013-0489oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients suffering from ALI.
Collapse
Affiliation(s)
- Havovi Chichger
- 1 Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and
| | | | | | | |
Collapse
|
23
|
Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L924-35. [PMID: 25381026 PMCID: PMC4269690 DOI: 10.1152/ajplung.00318.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively.
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Chichger H, Duong H, Braza J, Harrington EO. p18, a novel adaptor protein, regulates pulmonary endothelial barrier function via enhanced endocytic recycling of VE-cadherin. FASEB J 2014; 29:868-81. [PMID: 25404710 DOI: 10.1096/fj.14-257212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular permeability is a hallmark of several disease states including acute lung injury (ALI). Endocytosis of VE-cadherin, away from the interendothelial junction (IEJ), causes acute endothelial barrier permeability. A novel protein, p18, anchors to the endosome membrane and plays a role in late endosomal signaling via MAPK and mammalian target of rapamycin. However, the fate of the VE-cadherin-positive endosome has yet to be elucidated. We sought to elucidate a role for p18 in VE-cadherin trafficking and thus endothelial barrier function, in settings of ALI. Endothelial cell (EC) resistance, whole-cell ELISA, and filtration coefficient were studied in mice or lung ECs overexpressing wild-type or nonendosomal-binding mutant p18, using green fluorescent protein as a control. We demonstrate a protective role for the endocytic protein p18 in endothelial barrier function in settings of ALI in vitro and in vivo, through enhanced recycling of VE-cadherin-positive early endosomes to the IEJ. In settings of LPS-induced ALI, we show that Src tethered to the endosome tyrosine phosphorylates p18 concomitantly with VE-cadherin internalization and pulmonary edema formation. We conclude that p18 regulates pulmonary endothelial barrier function in vitro and in vivo, by enhancing recycling of VE-cadherin-positive endosomes to the IEJ.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
25
|
Marcos-Ramiro B, García-Weber D, Millán J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 2014; 112:1088-102. [PMID: 25078148 DOI: 10.1160/th14-04-0299] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 11/05/2022]
Abstract
The decrease of endothelial barrier function is central to the long-term inflammatory response. A pathological alteration of the ability of endothelial cells to modulate the passage of cells and solutes across the vessel underlies the development of inflammatory diseases such as atherosclerosis and multiple sclerosis. The inflammatory cytokine tumour necrosis factor (TNF) mediates changes in the barrier properties of the endothelium. TNF activates different Rho GTPases, increases filamentous actin and remodels endothelial cell morphology. However, inhibition of actin-mediated remodelling is insufficient to prevent endothelial barrier disruption in response to TNF, suggesting that additional molecular mechanisms are involved. Here we discuss, first, the pivotal role of Rac-mediated generation of reactive oxygen species (ROS) to regulate the integrity of endothelial cell-cell junctions and, second, the ability of endothelial adhesion receptors such as ICAM-1, VCAM-1 and PECAM-1, involved in leukocyte transendothelial migration, to control endothelial permeability to small molecules, often through ROS generation. These adhesion receptors regulate endothelial barrier function in ways both dependent on and independent of their engagement by immune cells, and orchestrate the crosstalk between leukocyte transendothelial migration and endothelial permeability during inflammation.
Collapse
Affiliation(s)
| | | | - J Millán
- Jaime Millán, Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, Tel.: +34 911964713, Fax: +34 911964420, E-mail:
| |
Collapse
|
26
|
Küppers V, Vockel M, Nottebaum AF, Vestweber D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res 2014; 355:577-86. [DOI: 10.1007/s00441-014-1812-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
|
27
|
VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 2013; 26:441-54. [PMID: 24044891 DOI: 10.1016/j.devcel.2013.08.020] [Citation(s) in RCA: 577] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
VE-cadherin is a component of endothelial cell-to-cell adherens junctions, and it has a key role in the maintenance of vascular integrity. During embryo development, VE-cadherin is required for the organization of a stable vascular system, and in the adult it controls vascular permeability and inhibits unrestrained vascular growth. The mechanisms of action of VE-cadherin are complex and include reshaping and organization of the endothelial cell cytoskeleton and modulation of gene transcription. Here we review some of the most important pathways through which VE-cadherin modulates vascular homeostasis and discuss the emerging concepts in the overall biological role of this protein.
Collapse
|
28
|
Abstract
During metastasis, cancer cells disseminate to other parts of the body by entering the bloodstream in a process that is called intravasation. They then extravasate at metastatic sites by attaching to endothelial cells that line blood vessels and crossing the vessel walls of tissues or organs. This Review describes how cancer cells cross the endothelial barrier during extravasation and how different receptors, signalling pathways and circulating cells such as leukocytes and platelets contribute to this process. Identification of the mechanisms that underlie cancer cell extravasation could lead to the development of new therapies to reduce metastasis.
Collapse
Affiliation(s)
- Nicolas Reymond
- 1] Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK. [2] Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS) - UMR5237, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France. [3]
| | | | | |
Collapse
|
29
|
McCole DF. Phosphatase regulation of intercellular junctions. Tissue Barriers 2013; 1:e26713. [PMID: 24868494 DOI: 10.4161/tisb.26713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023] Open
Abstract
Intercellular junctions represent the key contact points and sites of communication between neighboring cells. Assembly of these junctions is absolutely essential for the structural integrity of cell monolayers, tissues and organs. Disruption of junctions can have severe consequences such as diarrhea, edema and sepsis, and contribute to the development of chronic inflammatory diseases. Cell junctions are not static structures, but rather they represent highly dynamic micro-domains that respond to signals from the intracellular and extracellular environments to modify their composition and function. This review article will focus on the regulation of tight junctions and adherens junctions by phosphatase enzymes that play an essential role in preserving and modulating the properties of intercellular junction proteins.
Collapse
Affiliation(s)
- Declan F McCole
- Division of Biomedical Sciences; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
30
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
31
|
Abstract
The blood-testis barrier (BTB) is a large junctional complex composed of tight junctions, adherens junctions, and gap junctions between adjacent Sertoli cells in the seminiferous tubules of the testis. Maintenance of the BTB as well as the controlled disruption and reformation of the barrier is essential for spermatogenesis and male fertility. Tyrosine phosphorylation of BTB proteins is known to regulate the integrity of adherens and tight junctions found at the BTB. SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) and a key regulator of growth factor-mediated tyrosine kinase signaling pathways. We found that SHP2 is localized to Sertoli-Sertoli cell junctions in rat testis. The overexpression of a constitutive active SHP2 mutant, SHP2 Q79R, up-regulated the BTB disruptor ERK1/2 via Src kinase in primary rat Sertoli cells in culture. Furthermore, focal adhesion kinase (FAK), which also supports BTB integrity, was found to interact with SHP2 and constitutive activation of SHP2 decreased FAK tyrosine phosphorylation. Expression of the SHP2 Q79R mutant in primary cultured Sertoli cells also resulted in the loss of tight junction and adherens junction integrity that corresponded with the disruption of the actin cytoskeleton and mislocalization of adherens junction and tight junction proteins N-cadherin, β-catenin, and ZO-1 away from the plasma membrane. These results suggest that SHP2 is a key regulator of BTB integrity and Sertoli cell support of spermatogenesis and fertility.
Collapse
Affiliation(s)
- Pawan Puri
- Center for Research in Reproductive Physiology, Department of Cell Biology and Molecular Physiology, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
32
|
Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:119-44. [PMID: 23481193 DOI: 10.1016/b978-0-12-394311-8.00006-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
VE-cadherin is an endothelial-specific cadherin that is essential for the formation and regulation of endothelial cell junctions. The adhesive function and expression levels of VE-cadherin at endothelial contacts are central determinants of the control of vascular permeability and leukocyte recruitment into tissue. In addition to controlling junctional integrity, VE-cadherin modulates a multitude of signaling processes that influence the behavior of endothelial cells, such as proliferation, survival, migration, polarity, expression of other junctional components, and tube and lumen formation of blood vessels. This chapter highlights recent progress in understanding how VE-cadherin modulates these various cellular processes. In addition, the current knowledge about how VE-cadhern participates in the regulation of the endothelial barrier in the adult organism is discussed.
Collapse
Affiliation(s)
- Elisabetta Dejana
- IFOM, FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
33
|
Abstract
Adherens junctions have an important role in the control of vascular permeability. These structures are located at cell-to-cell contacts, mediate cell adhesion and transfer intracellular signals. Adhesion is mediated by cadherins, which interact homophilically in trans and form lateral interactions in cis. VE-cadherin (also known as CDH5 and CD144) is the major component of endothelial adherens junctions and is specific to endothelial cells. Endothelial cells from different types of vessels, such as lymphatic vessels, arteries and veins, show differences in junction composition and organization. Vascular permeability is increased by modifications in the expression and function of adherens junction components. In some cases these defects might be cause of pathology. In this Cell Science at a Glance article, we present the example of the so-called cerebral cavernous malformation (CCM), where adherens junctions are dismantled in the vessels contributing to brain microcirculation. This causes the loss of endothelial cell apical–basal polarity and the formation of cavernomas, which are fragile and hemorrhagic. Other diseases are accompanied by persistent alterations of vascular morphology and permeability, such as seen in tumors. It will be important to achieve a better understanding of the relationship between vascular fragility, malformations and junctional integrity in order to develop more effective therapies.
Collapse
|
34
|
Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci 2012; 1257:184-92. [PMID: 22671605 DOI: 10.1111/j.1749-6632.2012.06558.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammation and immune surveillance rely on the ability of leukocytes to leave the blood stream and enter tissue. Cytokines and chemokines regulate expression and the activation state of adhesion molecules that enable leukocytes to adhere and arrest at sites of leukocyte exit. Capturing and arrest is followed by the transmigration of leukocytes through the vessel wall-a process called diapedesis. The review will focus on recently published novel approaches to determine the route that leukocytes take in vivo when they migrate through the endothelial layer of blood vessels. This work has revealed the dominant importance of the junctional pathway between endothelial cells in vivo. In addition, recent progress has improved our understanding of the molecular mechanisms that regulate junctional stability, the opening of endothelial junctions during leukocyte extravasation, and the induction of vascular permeability.
Collapse
|
35
|
Chichger H, Grinnell KL, Casserly B, Chung CS, Braza J, Lomas-Neira J, Ayala A, Rounds S, Klinger JR, Harrington EO. Genetic disruption of protein kinase Cδ reduces endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L880-8. [PMID: 22983354 DOI: 10.1152/ajplung.00169.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of acute lung injury and acute respiratory distress syndrome is characterized by sequestration of leukocytes in lung tissue, disruption of capillary integrity, and pulmonary edema. PKCδ plays a critical role in RhoA-mediated endothelial barrier function and inflammatory responses. We used mice with genetic deletion of PKCδ (PKCδ(-/-)) to assess the role of PKCδ in susceptibility to LPS-induced lung injury and pulmonary edema. Under baseline conditions or in settings of increased capillary hydrostatic pressures, no differences were noted in the filtration coefficients (k(f)) or wet-to-dry weight ratios between PKCδ(+/+) and PKCδ(-/-) mice. However, at 24 h after exposure to LPS, the k(f) values were significantly higher in lungs isolated from PKCδ(+/+) than PKCδ(-/-) mice. In addition, bronchoalveolar lavage fluid obtained from LPS-exposed PKCδ(+/+) mice displayed increased protein and cell content compared with LPS-exposed PKCδ(-/-) mice, but similar changes in inflammatory cytokines were measured. Histology indicated elevated LPS-induced cellularity and inflammation within PKCδ(+/+) mouse lung parenchyma relative to PKCδ(-/-) mouse lungs. Transient overexpression of catalytically inactive PKCδ cDNA in the endothelium significantly attenuated LPS-induced endothelial barrier dysfunction in vitro and increased k(f) lung values in PKCδ(+/+) mice. However, transient overexpression of wild-type PKCδ cDNA in PKCδ(-/-) mouse lung vasculature did not alter the protective effects of PKCδ deficiency against LPS-induced acute lung injury. We conclude that PKCδ plays a role in the pathological progression of endotoxin-induced lung injury, likely mediated through modulation of inflammatory signaling and pulmonary vascular barrier function.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Timmerman I, Hoogenboezem M, Bennett AM, Geerts D, Hordijk PL, van Buul JD. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation. Mol Biol Cell 2012; 23:4212-25. [PMID: 22956765 PMCID: PMC3484100 DOI: 10.1091/mbc.e12-01-0038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reconstitution of the endothelial barrier involves SHP2-mediated dephosphorylation of VE-cadherin–associated β-catenin, leading to reassembly of adherens junctions and thereby closing the gaps between endothelial cells. Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Tandon P, Conlon FL, Taylor JM. ROCKs cause SHP-wrecks and broken hearts. Small GTPases 2012; 3:209-12. [PMID: 22858643 PMCID: PMC3520883 DOI: 10.4161/sgtp.20960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
During embryogenesis, the heart is one of the first organs to develop. Its formation requires a complex combination of migration of cardiac precursors to the ventral midline coupled with the fusion of these cardiogenic fields and subsequent cellular reorganization to form a linear heart tube. A finely controlled choreography of cell proliferation, adhesion, contraction and movement drives the heart tube to loop and subsequently septate to form the four-chambered mammalian heart we are familiar with. Defining how this plethora of cellular processes is controlled both spatially and temporally is a scientific feat that has fascinated researchers for decades. Unfortunately, the complex nature of this organ’s development also makes it a prime target for mutation-induced malformation, as evidenced by the multitude of prevalent congenital heart disorders identified that afflict up to 1% of the population.
Collapse
Affiliation(s)
- Panna Tandon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
38
|
Hatanaka K, Lanahan AA, Murakami M, Simons M. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2. PLoS One 2012; 7:e37600. [PMID: 22629427 PMCID: PMC3358251 DOI: 10.1371/journal.pone.0037600] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background The fibroblast growth factor (FGF) system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization. Methods and Findings In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs) known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity. Conclusions These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.
Collapse
Affiliation(s)
- Kunihiko Hatanaka
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Anthony A. Lanahan
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Masahiro Murakami
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Michael Simons
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
39
|
Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y, Wei L. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol 2012; 138:637-46. [PMID: 22228034 DOI: 10.1007/s00432-011-1143-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 02/08/2023]
Abstract
PURPOSE The human gene PTPN11, which encodes the non-receptor protein tyrosine phosphatase of Src homology phosphotyrosine phosphatase 2 (Shp2), has been previously well interpreted as a proto-oncogene in a variety of malignancies. However, the tumor suppressor role of Shp2 has also been reported. The present study was conducted to investigate the role of Shp2 expression and its associated clinical manifestations in hepatocellular carcinoma (HCC). METHODS A tissue microarray of 333 pairs of HCC and self-matched adjacent non-tumor tissues was constructed, and the expression of Shp2 was determined by immunohistochemistry. The results were also conformed by Western blotting and quantitative PCR of 31 self-paired fresh HCC specimens. The associations of Shp2 expression with 25 clinicopathologic features were analyzed. Overall survival analysis and multivariate analysis were performed. RESULTS Significantly decreased Shp2 expression in tumor tissues (T) compared with adjacent non-tumor tissues (NT) could be detected, and the positive rate was 66.1 and 96.7%, respectively. We combined the T and NT Shp2 immunoreactivity by a variable of the decrease in Shp2 expression (ΔShp2) and divided cases into 2 groups: T < NT and T ≥ NT. Survival analysis showed both low Shp2 expression and T < NT group were significantly associated with short overall survival. Multivariate analysis showed ΔShp2 was an independent prognostic marker (P = 0.033; HR: 0.527; 95% CI: 0.293-0.950). CONCLUSION Shp2 is a tumor suppressor, and the decrease in Shp2 expression was a new prognostic marker in HCC. The oncogenic role of Shp2 was tissue specific, and the therapeutic target of human gene PTPN11 should be reconsidered.
Collapse
Affiliation(s)
- Chengying Jiang
- Pathology Department, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Grinnell KL, Chichger H, Braza J, Duong H, Harrington EO. Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation. Am J Respir Cell Mol Biol 2011; 46:623-32. [PMID: 22180868 DOI: 10.1165/rcmb.2011-0271oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One hallmark of acute lung injury is the disruption of the pulmonary endothelial barrier. Such disruption correlates with increased endothelial permeability, partly through the disruption of cell-cell contacts. Protein tyrosine phosphatases (PTPs) are known to affect the stability of both cell-extracellular matrix adhesions and intercellular adherens junctions (AJs). However, evidence for the role of select PTPs in regulating endothelial permeability is limited. Our investigations noted that the inhibition of PTP1B in cultured pulmonary endothelial cells (ECs), as well as in the vasculature of intact murine lungs via the transient overexpression of a catalytically inactive PTP1B, decreased the baseline resistance of cultured EC monolayers and increased the formation of edema in murine lungs, respectively. In addition, we observed that the overexpression of wild-type PTP1B enhanced basal barrier function in vitro. Immunohistochemical analyses of pulmonary ECs and the coimmunoprecipitation of murine lung homogenates demonstrated the association of PTP1B with the AJ proteins β-catenin, p120-catenin, and VE-cadherin both in vitro and ex vivo. Using LPS in a model of sepsis-induced acute lung injury, we showed that reactive oxygen species were generated in response to LPS, which correlated with enhanced PTP1B oxidation, inhibited phosphatase activity, and attenuation of the interactions between PTP1B and β-catenin, as well as enhanced β-catenin tyrosine phosphorylation. Finally, the overexpression of a cytosolic PTP1B fragment, shown to be resistant to nicotinamide adenine dinucleotide phosphate-reduced oxidase-4 (Nox4)-mediated oxidation, significantly attenuated LPS-induced endothelial barrier dysfunction and the formation of lung edema, and preserved the associations of PTP1B with AJ protein components, independent of PTP1B phosphatase activity. We conclude that PTP1B plays an important role in maintaining the pulmonary endothelial barrier, and PTP1B oxidation appears to contribute to sepsis-induced pulmonary vascular dysfunction, possibly through the disruption of AJs.
Collapse
Affiliation(s)
- Katie L Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
41
|
Brown AL, Salerno DG, Sadras T, Engler GA, Kok CH, Wilkinson CR, Samaraweera SE, Sadlon TJ, Perugini M, Lewis ID, Gonda TJ, D'Andrea RJ. The GM-CSF receptor utilizes β-catenin and Tcf4 to specify macrophage lineage differentiation. Differentiation 2011; 83:47-59. [PMID: 22099176 DOI: 10.1016/j.diff.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 01/31/2023]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.
Collapse
Affiliation(s)
- Anna L Brown
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology 2011; 62:78-88. [PMID: 21903109 DOI: 10.1016/j.neuropharm.2011.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 01/30/2023]
Abstract
In addition to its role in development and cell proliferation, β-catenin has been implicated in neuronal synapse regulation and remodeling. Here we review basic molecular and structural mechanisms of synaptic plasticity, followed by a description of the structure and function of β-catenin. We then describe a role for β-catenin in the cellular processes underlying synaptic plasticity. We also review recent data demonstrating that β-catenin mRNA and protein phosphorylation are dynamically regulated during fear memory consolidation in adult animals. Such alterations are correlated with a change in the association of β-catenin with cadherin, and deletion of the β-catenin gene prevents fear learning. Overall, the extant data suggest that β-catenin may function in mediating the structural changes associated with memory formation. This suggests a general role for β-catenin in synaptic remodeling and stabilization underlying long-term memory in adults, and possible roles for dysfunction in the β-catenin pathway in disorders of memory impairment (e.g. Alzheimer's Disease) and in disturbances in which emotional memories are too strong or resistant to inhibition (e.g. fear learning in Posttraumatic Stress Disorder). Further understanding of the β-catenin pathway may lead to better appreciation for the structural mechanisms underlying learning and memory as well as provide novel therapeutic approaches in memory related disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
43
|
Chavez A, Smith M, Mehta D. New Insights into the Regulation of Vascular Permeability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:205-48. [DOI: 10.1016/b978-0-12-386037-8.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Shen W, Li S, Chung SH, Zhu L, Stayt J, Su T, Couraud PO, Romero IA, Weksler B, Gillies MC. Tyrosine phosphorylation of VE-cadherin and claudin-5 is associated with TGF-β1-induced permeability of centrally derived vascular endothelium. Eur J Cell Biol 2010; 90:323-32. [PMID: 21168935 DOI: 10.1016/j.ejcb.2010.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 01/25/2023] Open
Abstract
Breakdown of the inner blood-retinal barrier and the blood-brain barrier is associated with changes in tight and adherens junction-associated proteins that link vascular endothelial cells. This study aimed to test the hypothesis that transforming growth factor (TGF)-β1 increases the paracellular permeability of vascular endothelial monolayers through tyrosine phosphorylation of VE-cadherin and claudin-5. Bovine retinal and human brain capillary endothelial cells were grown as monolayers on coated polycarbonate membranes. Paracellular permeability was studied by measuring the equilibration of (14)C-inulin or fluorescence-labelled dextran. Changes in VE-cadherin and claudin-5 expression were studied by immunocytochemistry (ICC) and quantified by cell-based enzyme linked immunosorbent assays (ELISA). Tyrosine phosphorylation of VE-cadherin and claudin-5 was studied by ICC, immunoprecipitation and Western blotting. We found that exposure of endothelial cells to TGF-β1 caused a dose-dependent increase in paracellular permeability as reflected by increases in the equilibration of (14)C-inulin. This effect was enhanced by the tyrosine phosphatase inhibitor orthovanadate and attenuated by the tyrosine kinase inhibitor lavendustin A. ICC and cell-based ELISA revealed that TGF-β1 induced both dose- and time-dependent decreases in VE-cadherin and claudin-5 expression. Assessment of cell viability indicated that changes in these junction-associated proteins were not due to endothelial death or injury. ICC revealed that tyrosine phosphorylation of endothelial monolayers was greatly enhanced by TGF-β1 treatment, and immunoprecipitation of cell lysates showed increased tyrosine phosphorylation of VE-cadherin and claudin-5. Our results suggest that tyrosine phosphorylation of VE-cadherin and claudin-5 is involved in the increased paracellular permeability of central nervous system-derived vascular endothelium induced by TGF-β1.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, the University of Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|